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TRIVIAL SOURCE BIMODULE RINGS FOR

BLOCKS AND p-PERMUTATION EQUIVALENCES

Markus Linckelmann

Abstract. We associate with any p-block of a finite group a Grothendieck ring of certain p-permutation
bimodules. We extend the notion of p-permutation equivalences introduced by Boltje and Xu [4] to source
algebras of p-blocks of finite groups. We show that a p-permutation equivalence between two source
algebras A, B of blocks with a common defect group and same local structure induces an isotypy.

1 Introduction

Let p be a prime, let O be a complete discrete valuation ring having a quotient field K of charac-
teristic zero and a algebraically closed residue field k of prime characteristic p. For any finite p-group
P and any interior P -algebra A we denote by T (A) the Grothendieck group, with respect to split
exact sequences, of finite direct sums of summands of the A-A-bimodules A ⊗

OQ
A, with Q running

over the subgroups of P . If A is a source algebra of a block of a finite group algebra OG then the
group T (A) has a ring structure:

Theorem 1.1. Let A be a source algebra of a block of a finite group with defect group P . The
tensorproduct over A induces an associative bilinear multiplication on T (A) through which T (A)
becomes a unitary ring having an augmentation and an antipode.

We will restate and prove the various parts of Theorem 1.1 in greater generality in 8.2, 8.6 and
12.3. We show in 8.4 that the ring T (A) does not depend on the choice of a source algebra of the
considered block b ∈ Z(OG) of a finite group G, and is hence an invariant of the block b. One may
think of T (A) as a bimodule version for source algebras of the trivial source ring of a finite group
and call T (A) the trivial source bimodule ring of the block b. If A = OP then T (A) is isomorphic
to the Burnside ring of P (cf. 12.1), which is also the trivial source ring in that case. Results of
Alperin-Broué [1] and Broué-Puig [9] imply that a source algebra A of a block with defect group P
determines a fusion system on P . For P a finite p-group, A an interior P -algebra and Q a subgroup
of P , the Brauer construction with respect to the conjugation action of Q on A yields an interior
CP (Q)-algebra A(∆Q). In certain cases, this is compatible with the ring structure on T (A):

Theorem 1.2. Let A be a source algebra of a block with defect group P and fusion system F . For
any fully F-centralised subgroup Q of P the tensorproduct over A(∆Q) induces an associative unitary
ring structure on T (A(∆Q)) and the Brauer construction induces a unitary ring homomorphism
T (A) −→ T (A(∆Q)).

This is proved in 9.1 and 9.2. The difficult part is to show that the Brauer construction does
actually induce a map from T (A) to T (A(∆Q)); the fact that this map is multiplicative follows then
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2 MARKUS LINCKELMANN

from a result in [15]. This Theorem does not hold, in general, for the block algebra OGb instead
of A. For A, B two source algebras of blocks of finite groups having a common defect group P we
denote more generally by T (A,B) the Grothendieck group, with respect to split exact sequences, of
finite direct sums of summands of the A-B-bimodules A ⊗

OQ
B, with Q running over the subgroups

of P . Since A, B are symmetric O-algebras, the O-dual of an A-B-bimodule of the form A ⊗
OQ

B

is isomorphic to the B-A-module B ⊗
OQ

A. In other words, O-duality induces a group isomorphism

T (A,B) ∼= T (B,A). For X an element in T (A,B) we denote by X∗ its image in T (B,A) under
this isomorphism. The map sending a pair (M,N) consisting of an A-B-bimodule M and a B-A-
bimodule N to the A-A-bimodule M ⊗

B
N induces a bilinear map − ·

B
− from T (A,B) × T (B,A)

to the Grothendieck group of A-A-bimodules, again taken with respect to split exact sequences.
The following definition is the source algebra version of the concept of a p-permutation equivalence
between blocks of finite groups, as introduced by Boltje and Xu [4].

Definition 1.3. Let A, B be source algebras of blocks of finite groups with a common defect group
P . A p-permutation equivalence between A and B is an element X ∈ T (A,B) such that X ·

B
X∗ = [A]

in the Grothendieck group of A-A-bimodules and X∗ ·
A
X = [B] in the Grothendieck group of B-B-

bimodules.

A p-permutation equivalence between source algebras A, B induces a p-permutation equivalence
in the sense of Boltje and Xu [4]. The converse is true for principal blocks, but not for arbitrary
blocks in general (cf. 7.5, 7.6). What one gains by adopting the slightly more restrictive definition
1.3 is a generalisation of [4, 1.11] to arbitrary blocks:

Theorem 1.4. Let A, B be source algebras of blocks b, c of finite groups G, H, respectively, having
a common defect group P and the same fusion system on P . If there is a p-permutation equivalence
between the source algebras A and B then the blocks b and c are isotypic.

This is proved in 10.1; as in [4], we will show that the isotypy between b and c is obtained from
applying the Brauer construction to the p-permutation equivalence. Following [15, 1.10] or [17, 1.1] a
splendid derived equivalence between source algebras A, B of blocks of finite groups with a common
defect group P is a derived equivalence given by a bounded two-sided tilting complex X of A-B-
bimodules whose components in each degree are direct sums of summands of the A-B-bimodules
A ⊗

OQ
B, where Q runs over the subgroups of P . A two-sided tilting complex X of this form is then

called a splendid tilting complex of A-B-bimodules. This is a variation of Rickard’s version [25] of
a splendid equivalence - our definition is again slightly more restrictive in that it is relative to a
choice of source idempotents. The motivation then as here is to make the notion “splendid” work for
arbitrary blocks. If X is a bounded complex of A-B-bimodules, we set [X] =

∑
i∈Z

(−1)i[Xi], where

[Xi] is the isomorphism class of the degree i component of X viewed as element in the Grothendieck
group of A-B-bimodules. We obtain the result corresponding to [4, 1.5] in this setting:

Theorem 1.5. Let A, B be source algebras of blocks of finite groups having a common defect group
P and let X be a splendid tilting complex of A-B-bimodules. The image [X] of X in T (A,B) is a
p-permutation equivalence.

This is an immediate consequence of [14, 11.4.2]. Combining the present material with a result of
Puig [24] yields the following invariance statement:
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Theorem 1.6. Let A, B be source algebras of blocks b, c of finite groups G, H, respectively, having
a common defect group P . Suppose that OGb and OHc are Morita equivalent via a bimodule with
endo-permutation source. Then T (A) ∼= T (B).

The structure theory of nilpotent blocks [23] in conjunction with 1.6 implies:

Corollary 1.7. Let A be a source algebra of a nilpotent block with defect group P . Then T (A) ∼=
T (OP ).

Further remarks in §13 include the observation that the Hochschild cohomology and block coho-
mology of a block are modules over the trivial source bimodule ring of the block (cf. 13.2), as well as
considerations on how far off the trivial source bimodule ring is from being commutative (cf. 13.3).

Convention: all O-algebras are assumed to be finitely generated as O-modules, and all modules are
finitely generated left modules, unless stated otherwise. Given two O-algebras A, B, we assume that
for any A-B-bimodule M the left and right O-module structure on M concident; in other words, M
can be viewed as A⊗

O
Bop-module. Given finite groups G, H, an OG-OH-bimodule M can be viewed

as O(G×H)-module, with (x, y) ∈ G×H acting on M by sending m ∈M to xmy−1. In particular,
if M is an indecomposable OG-OH-bimodule, it makes sense to consider its vertices and sources as
O(G×H)-module.

§2 Fusion systems

As a consequence of results in [1], [9], any block of a finite group gives rise to a fusion system on any
of its defect groups (see 4.4 below). When dealing with fusion systems - a concept introduced by Puig
in the early 1990’s - we follow the terminology in [18, §2]. Given a fusion system F on a finite p-group
P , a subgroup Q is called fully F-centralised if |CP (Q)| ≥ |CP (ϕ(Q))| for any ϕ ∈ HomF (Q,P ). By
a result of Puig, any fully F-centralised subgroup Q of P gives rise to a fusion system, denoted by
CF (Q), on CP (Q). See e.g. [19] for a more detailed introduction to fusion systems. We collect in
this section some elementary facts on centralisers in fusion systems.

Proposition 2.1. Let F be a fusion system on a finite p-group P , let Q be a fully F-centralised
subgroup of P and let S be a subgroup of CP (Q). Then S is fully CF (Q)-centralised if and only if
QS is fully F-centralised.

Proof. Suppose that S is fully CF (Q)-centralised. Let ψ : QS → P be a morphism in F . Denote
by τ : ψ(Q) → Q the inverse of the isomorphism ψ|Q : Q ∼= ψ(Q) induced by ψ. Since Q is fully
F-centralised, τ extends to a morphism σ : ψ(Q)CP (ψ(Q)) → QCP (Q) in F (cf. [18]). Note that
ψ(S) ⊆ CP (ψ(Q)). By construction, we have σ ◦ ψ|Q = IdQ. Thus σ ◦ ψ|S is a morphism in CF (Q).
Since S is fully CF (Q)-centralised, we have

|CP (QS)| = |CCP (Q)(S)| ≥ |CCP (Q)(σ(ψ(S)))| = |CP (Qσ(ψ(S))|

Now σ sends CP (ψ(QS)) to CP (Qσ(ψ(S))), and hence |CP (Qσ(ψ(S)))| ≥ |CP (ψ(QS)|, which proves
that QS is fully F-centralised. Conversely, suppose that QS is fully F-centralised. Let τ : S → CP (Q)
be a morphism in CF (Q). That is, τ extends to a morphism σ : QS → P in F such that σ|Q = IdQ.
Since QS is fully F-centralised, we have

|CCP (Q)(S)| = |CP (QS)| ≥ |CP (σ(QS))| = |CP (Qτ(S))| = |CCP (Q)(τ(S))|
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which proves that S is fully CF (Q)-centralised. �

Let P , Q be finite p-groups, let F be a fusion system on P and let G be a fusion system on Q. By
[6], the category on P ×Q generated by F and G is a fusion system on P ×Q, denoted by F ×G. In
particular, F determines a fusion system F × F on P × P .

Proposition 2.2. Let F be a fusion system on a finite p-group P , let Q be a subgroup of P , let
τ ∈ HomF (Q,P ) and set ∆τQ = {(u, τ(u)) | u ∈ Q}. The subgroup ∆τQ of P × P is fully F × F-
centralised if and only if Q and τ(Q) are fully F-centralised.

Proof. Let σ : ∆τQ→ P be a morphism in F ×F . By the definition of F ×F , this means there are
morphisms ϕ ∈ HomF (Q,P ) and ψ ∈ HomF (τ(Q), P ) such that σ(u, τ(u)) = (ϕ(u), ψ(τ(u))) for all
u ∈ Q. Clearly CP×P (∆τQ) = CP (Q)×CP (τ(Q)) and CP×P (σ(∆τQ)) = CP (ϕ(Q))×CP (ψ(τ(Q))).
Thus the inequality |CP×P (σ(∆τQ))| ≤ |CP×P (∆τQ)| holds for all morphisms σ : ∆τQ→ P × P in
F × F if and only if the inequalities |CP (ϕ(Q))| ≤ |CP (Q)| and |CP (ψ(τ(Q)))| ≤ |CP (τ(Q))| hold
for all ϕ ∈ HomF (Q,P ) and all ψ ∈ HomF (τ(Q), P ). The result follows. �

Proposition 2.3. Let F be a fusion system on a finite p-group P and let Q be a fully F-centralised
subgroup of P . Then the fusion systems CF×F (∆Q) and CF (Q)×CF (Q) on CP×P (∆Q) = CP (Q)×
CP (Q) are equal.

Proof. Since Q is fully F-centralised it follows from 2.2 that ∆Q is fully F × F-centralised. Thus
both CF×F (∆Q) and CF (Q) × CF (Q) are fusion systems on CP×P (∆Q) = CP (Q) × CP (Q). Let
R be a subgroup of CP (Q) × CP (Q). Denote by R1, R2 the images of R in CP (Q) under the
two projections of the direct product CP (Q) × CP (Q) onto its first and second factor, respectively.
Let ϕ : R → CP (Q) × CP (Q) be a morphism in CF×F (∆Q). That is, ϕ extends to a morphism
ψ : R∆Q → P × P in F × F such that ψ|∆Q = Id∆Q. The images in P of R∆Q under the two
projections of P ×P onto its factors are equal to R1Q and R2Q. Thus ψ being a morphism in F ×F
is equivalent to the existence of morphisms ψ1 : R1Q→ P and ψ2 : R2Q→ P which are the identity
on Q and which induce ψ. The result follows. �

§3 The generalised Brauer construction

3.1. The Brauer construction has its origins in Brauer’s observation that the canonical linear pro-
jection kG→ kCG(P ) induces an algebra homomorphism Z(kG) → Z(kCG(P )), for any finite group
G and any p-subgroup P of G. Broué [7] observed that this extends to a surjective algebra homo-
morphism (kG)∆P → kCG(P ). This in turn has been extended to G-algebras in [9], to modules in
[11], and generalised further by Boltje and Külshammer in [3]. We briefly recall the definition and
some of the basic properties of this construction, following [3, §2]. Let P be a finite p-group and let
θ : P → O× be a group homomorphism. For any OP -module M we set

M (P,θ) = {m ∈M | ym = θ(y)m (∀y ∈ P )} .

For θ = 1 (the trivial group homomorphism) this is the usual O-submodule of P -fixpoints in M ;
we write MP instead of M (P,1). For Q a subgroup of P and τ = θ|Q : Q → O× we denote by

[P/Q] a system of representatives in P of the cosets P/Q, and for m ∈ M (Q,τ) we set Tr
(P,θ)
(Q,τ)(m) =∑

y∈[P/Q]

θ(y)−1ym . This expression does not depend on the choice of [P/Q] and hence defines an

O-linear map Tr
(P,θ)
(Q,τ) : M (Q,τ) → M (P,θ). We set M

(P,θ)
(Q,τ) = Im(Tr

(P,θ)
(Q,τ)). If θ = 1 we write TrPQ
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and MP
Q instead of Tr

(P,θ)
(Q,τ) and M

(P,θ)
(Q,τ), respectively. The generalised Brauer construction [3, 2.2] is

defined by

M(P, θ) = M (P,θ)/(
∑

Q

M
(P,θ)
(Q,θ|Q) + J(O)M (P,θ))

where Q runs over the set of all proper subgroups of P . The Brauer homomorphism is defined to be
the canonical surjection

BrM(P,θ) : M (P,θ) −→M(P, θ)

If no confusion arises we will write Br(P,θ) instead of BrM(P,θ). If moreover θ is the trivial homomorphism

we write M(P ) instead of M(P, θ) and BrP instead of Br(P,θ). One can play back this construction

to the usual Brauer construction as follows: for θ : P → O× a group homomorphism, denote by θ̄
the O-algebra automorphism of OP sending u ∈ P to uθ(u−1). For M an OP -module denote by θ̄M
the OP -module obtained from restricting the action of OP along θ̄; that is, θ̄M = M as O-module,
and y ∈ P acts on m ∈M as multiplication by yθ(y)−1. Then M (P,θ) = (θ̄M)P and we have

M(P, θ) = (θ̄M)(P ) .

Note that if M is a permutation OP -module and if θ : P → O× is a non-trivial group homomorphism
then M(P, θ) = {0}.

3.2. If G is a finite group having P as subgroup, then OG is an O(P ×P )-module with (u, v) ∈ P ×P
acting on a ∈ OG as uav−1. For Q a subgroup of P we set ∆Q = {(u, u) | u ∈ Q}. This is a subgroup
of P × P , hence acts on OG (this is the conjugation action of Q on OG). The corresponding
Brauer construction (OG)(∆Q) is well-known to be canonically isomorphic to kCG(Q), and under
the canonical identification (OG)(∆Q) = kCG(Q) the Brauer homomorphism

Br∆Q : (OG)∆Q −→ kCG(Q)

is a surjective algebra homomorphism induced by the linear map sending x ∈ G to its image in
kCG(Q) if x ∈ CG(Q) and to zero otherwise.

3.3. Let A be an interior P -algebra; that is, A is an O-algebra endowed with a group homomorphism
σ : P → A× (or equivalently, with a unitary algebra homomorphism OP → A). Then A becomes an
O(P × P )-module with (u, v) ∈ P × P acting on a ∈ A by σ(u)aσ(v−1). For Q a subgroup of P , the
Brauer construction A(∆Q) becomes then an interior CP (Q)-algebra, with multiplication induced by

that in A∆Q via the Brauer homomorphism BrA∆Q, and with structural homomorphism

CP (Q)
σ|CP (Q)

−→ (A×)∆Q = (A∆Q)×
Br∆Q

−→ A(∆Q)×

If M is an A-module, then M can be viewed as OP -module via σ : P → A×. The A-module structure
on M induces then an A(∆Q)-module structure on the corresponding Brauer construction M(Q),
for Q a subgroup of P . If A and B are two interior P -algebras with structural homomorphisms
σ : P → A× and τ : P → B×, and if M is an A-B-bimodule, then M can be viewed as O(P × P )-
module with (u, v) ∈ P × P acting on m ∈ M as σ(u)mτ(v−1). For Q a subgroup of P , the
A-B-bimodule structure on M restricts to an A∆Q-B∆Q-bimodule structure on M∆Q which in turn
induces an A(∆Q)-B(∆Q)-bimodule structure on M(∆Q). In particular, if G, H are two finite
groups having P as common p-subgroup and if M is an OG-OH-bimodule, we regard M(∆Q) as
kCG(Q)-kCH(Q)-bimodule through the canonical identifications.

The Brauer construction is functorial, sends p-permutation modules to p-permutation modules,
commutes with duality, and in some cases, commutes with tensor products. See [28, §11, §27] for
more details. Calculating the Brauer construction for p-permutation modules is particularly easy:



6 MARKUS LINCKELMANN

Lemma 3.4. ([28, (27.6)]) Let P be a finite p-group and let M be an OP -module having a P -stable

O-basis X. Then the image in M(P ) of the fixpoint set XP under BrMP is a k-basis of M(P ).

Lemma 3.5. ([15, 6.1.(iii)]) Let P be a finite p-group and let M be an indecomposable OP -OP -
bimodule having a P ×P -stable O-basis such that M is projective as left and right OP -module. Then
M(∆P ) is non zero if and only if M ∼= OP as OP -OP -bimodule.

3.6 Let P be a finite p-group, let θ : P → O× be a group homomorphism, let A be an interior
P -algebra with structural homomorphism σ : P → A× and let M be an A-module. Denote by θ̄A the
interior P -algebra which is equal to A as O-algebra, with structural homomorphism sending y ∈ P
to σ(y)θ(y−1). Note that σ(y) and σ(y)θ(y−1) act in the same way on A. Thus (θ̄A)(∆P ) = A(∆P )
as k-algebras. More precisely, for Q a subgroup of P we get that

(θ̄A)(∆Q) = A(∆Q)

as interior CP (Q)-algebras. The A-module M is still a θ̄A-module, and its restriction to OP via the
structural homomorphism is now θ̄M . Thus, using 3.3, we get that M(P, θ) is an A(∆P )-module
with a module structure which is induced by the A∆P -module structure on M (P,θ). In particular,
if A = OGb for some finite group G containing P and some idempotent b ∈ Z(OG) it follows that
M(P, θ) is a kCG(P )Br∆P (b)-module.

3.7 By [4, Theorem 2.4], the generalised Brauer construction can be used to “lift” generalised de-
composition maps. We describe this briefly. Let G be a finite group and let b be an idempotent
in Z(OG). Denote by ZIrrK(G, b) the group of generalised characters of G over K associated with
b and by ZIBrK(G, b) the corresponding group of generalised Brauer characters. If b = 1 we write
ZIrrK(G) instead of ZIrrK(G, b). Denote by b̄ the image of b in kG. For a kGb̄-module N denote
by [[N ]] its Brauer character viewed as element in the group ZIBrK(G, b) associated with b (which
can be identified with the Grothendieck group of kGb̄-modules taken with respect to all short exact
sequences). For u a p-element in G and e an idempotent in Z(kCG(u)) the generalised decomposition
map

d
(u,e)
(G,b) : ZIrrK(G, b) −→ K ⊗

Z

ZIBrK(CG(u), e)

is defined by d
(u,e)
(G,b)(χ)(s) = χ(eus) for all p′-elements s in CG(u). An OG-module M is called a linear

source module if M is a finite direct sum of summands of OG-modules of the form OG ⊗
OQ

θO, where

Q runs over the p-subgroups of G and θ over the group homomorphisms from Q to O× and where

θO is the rank one module determined by θ.

Theorem 3.8. ([4, Theorem 2.4]) Let G be a finite group, let u be a p-element in G, let b be an
idempotent in Z(OG) and let e be an idempotent in Z(kCG(u)). Let M be a linear source OGb-module
and let χ be the character of M . We have

d
(u,e)
(G,b)(χ) =

∑

θ∈Hom(〈u〉,O×)

θ(u) ⊗ [[M(〈u〉, θ)]] .

The generalised Brauer construction “commutes” with “cutting by idempotents”:
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Lemma 3.9. Let G be a finite group, let P be a p-subgroup of G, let θ : P → O× be a group
homomorphism and let i be an idempotent in (OG)∆P such that Br∆P (i) 6= 0. For any OG-module
M there is a natural isomorphism of Br∆P (i)kCG(P )Br∆P (i)-modules

(iM)(P, θ) ∼= Br∆P (i)M(P, θ) .

Proof. The kCG(P )-module structure on M(P, θ) is induced by the (OG)∆P -module structure on
M (P,θ). That is, for a ∈ (OG)∆P and m ∈M (P,θ) we have

am+ ker(BrM(P,θ)) = Br∆P (a)(m+ ker(BrM(P,θ))) .

Since i commutes with P we have (iM)(P,θ) = i(M (P,θ)). It follows that the map sending im +

ker(BrM(P,θ)) to Br∆P (i)(m+ker(BrM(P,θ)) is in fact an equality (iM)(P, θ) = Br∆P (i)M(P, θ) of subsets

of M(P, θ). �

3.10. Let P be a finite p-group and let A be an interior P -algebra. Following [21] a local point
of a subgroup Q of P on A is an (A∆Q)×-conjugacy class δ of primitive idempotents in A∆Q such
that Br∆Q(δ) 6= 0. Since Br∆Q : A∆Q → A(∆Q) is a surjective algebra homomorphism, the standard
lifting theorems for idempotents imply that then Br∆Q(δ) is a conjugacy class of primitive idempotents
in A(∆Q). If Q, R are subgroups of P , δ a local point of Q on A and ǫ a local point of R on A, we
write Qδ ⊆ Rǫ if Q ⊆ R and if there are i ∈ δ, j ∈ ǫ satisfying ij = ji = i. We refer to [28] for a
detailed account on local pointed groups.

§4 Almost source algebras

Let G be a finite group and let b be a block of OG; that is b is a primitive idempotent in Z(OG). Let
P be a defect group of b; that is, P is a maximal p-subgroup of G with the property that Br∆P (b) 6= 0,
where Br∆P : (OG)∆P → kCG(P ) is the Brauer homomorphism as described in the previous section.
Equivalently, P is a minimal subgroup of G such that b ∈ (OG)GP . Since Br∆P (b) 6= 0 there must be
a primitive idempotent i ∈ (OGb)∆P satisfying Br∆P (i) 6= 0. Such an idempotent i is called a source
idempotent and the algebra A = iOGi is called a source algebra of b. This concept is due to Puig
[21]. A source algebra is always considered as interior P -algebra; that is, together with the group
homomorphism P → A× sending u ∈ P to ui = iu = iui ∈ A×. If P ′ is another defect group of b
and i′ ∈ (OGb)∆P

′

a source idempotent then there is an O-algebra isomorphism α : iOGi ∼= i′OGi′

and an element x ∈ G such that xP = P ′ and such that α(ui) = xui′ for all u ∈ P . Source algebras
of a block b are Morita equivalent to the block algebra OGb; more generally:

Proposition 4.1. ([21, 3.5]) Let G be a finite group, let b be a block of OG, let P be a defect group
of b and let i be an idempotent in (OGb)∆P such that Br∆P (i) 6= 0. The block algebra OGb and the
algebra iOGi are Morita equivalent via the OGb-iOGi-bimodule OGi and its O-dual iOG.

Proof. We sketch a proof for the convenience of the reader. The obvious map iOG ⊗
OG

OGi→ iOGi

given by multiplication in OG is clearly an isomorphism. For any idempotent j ∈ (OGb)∆P , (OGj)∆G∆P

is a left ideal, hence an ideal in the commutative algebra Z(OGb). Since b ∈ (OGb)∆G∆P , Rosenberg’s
Lemma [28, (4.9)] implies that b ∈ (OGj)∆G∆P for some primitive idempotent j ∈ (OGb)∆P . Since
Br∆P (b) 6= 0 this implies Br∆P (j) 6= 0 and hence that j belongs to a local point of P on OGb.
Since all local points of P on OGb are NG(P )-conjugate it follws that b ∈ (OGi)∆G∆P . Thus there is

c ∈ (OG)∆P such that Tr∆G∆P (ci) = b. Now Tr∆G∆P (ci) belongs to the two-sided ideal OGiOG generated
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by i, and hence b is in the image of the the map OGi ⊗
iOGi

iOG→ OG given by multiplication in OG.

Therefore this map is surjective and the result follows. �

Source algebras are known to be “relatively separable” with respect to their defect groups. As
before, this is true in slightly greater generality:

Proposition 4.2. Let G be a finite group, let b be a block of OG, let P be a defect group of b and
let i be an idempotent in (OGb)∆P such that Br∆P (i) 6= 0. Set A = iOGi. The canonical map
A ⊗

OP
A→ A induced by multiplication in A splits as homomorphism of A-A-bimodules; in particular,

A is isomorphic to a direct summand of A ⊗
OP

A as A-A-bimodule.

Proof. As in the proof of 4.1, write b = Tr∆G∆P (ci) for some c ∈ (OG)∆P . One checks that the map
sending a ∈ OG to

∑
x∈[G/P ]

axci⊗ix−1 in OGi ⊗
OP

iOG is a section for the canonical OG-OG-bimodule

homomorphism OGi ⊗
OG

iOG→ OGb given by multiplication in OG. Multiplying this homomorphism

by i on the left and right yields the required section as stated. �

Note that the idempotent i ∈ (OGb)∆P in 4.1 and 4.2 need not be primitive (if it is, then A is a
source algebra of b). A crucial property of a source idempotent i ∈ (OGb)∆P is that, by [9, 1.8], for
any subgroup Q of P the idempotent Br∆Q(i) in kCG(Q) belongs in fact to a unique block algebra
of kCG(Q). In the following definition we keep this key property but require no longer that i is
primitive:

Definition 4.3 Let G be a finite group, let b be a block of OG, let P be a defect group of b. An
idempotent i in (OGb)∆P is called an almost source idempotent if Br∆P (i) 6= 0 and for every subgroup
Q of P there is a unique block eQ of kCG(Q) such that Br∆Q(i) ∈ kCG(Q)eQ. The interior P -algebra
iOGi is then called an almost source algebra of the block b.

Remark 4.4. As pointed out before, any source idempotent is an almost source idempotent, by
[9, 1.8]. The choice of an almost source idempotent i ∈ (OGb)∆P determines a fusion system F as
follows. For any subgroup Q of P denote by eQ the unique block of kCG(Q) such that Br∆Q(i)eQ 6= 0.
For any two subgroups Q, R of P , the set HomF (Q,R) is the set of all group homomorphisms
ϕ : Q→ R for which there is an element x ∈ G satisfying ϕ(u) = xux−1 for all u ∈ Q and satisfying
xeQx

−1 = exQx−1 , which is equivalent to the inclusion of Brauer pairs x(Q, eQ) ⊆ (R, eR) as defined
in [1]. It follows from the results in [1] that F is indeed a fusion system; see e.g. [18, §2] or [19] for
some more details. Moreover, a subgroup Q of P is fully F-centralised if and only if CP (Q) is a defect
group of the block eQ of kCG(Q). Given a subgroup Q of P it is always possible to find a subgroup
R of P such that Q ∼= R in F and such that R is fully F-centralised. The following observation
explains why we will need to work with fully centralised subgroups and almost source idempotents
rather than source idempotents:

Proposition 4.5. Let G be a finite group, let b be a block of OG, let P be a defect group of b and
let i be an almost source idempotent in (OGb)∆P . Let F be the fusion system determined by i on
P , let Q be a fully F-centralised subgroup of P and let e be the unique block of kCG(Q) such that
Br∆Q(i)e 6= 0. The idempotent Br∆Q(i) in (kCG(Q)e)∆CP (Q) is an almost source idempotent of the
block e of kCG(Q).

Proof. Since Q is fully F-centralised, the group CP (Q) is a defect group of e (cf. [18, §2]). The
idempotent Br∆Q(i) belongs to kCG(Q)CP (Q) and satisfies Br∆CP (Q)(Br∆Q(i)) = Br∆QCP (Q)(i) which
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is non zero because even Br∆P (i) is non zero. Moreover, for every subgroup S of CP (Q) we have
CCP (Q)(S) = CP (QS) and CCG(Q)(S) = CG(QS). Thus the unique block f of CG(QS) satisfying
Br∆QS(i)f 6= 0 is also the unique block of kCCG(Q)(S) satisfying Br∆S(Br∆Q(i))f 6= 0, and so
Br∆Q(i) is an almost source idempotent. �

Proposition 4.6. Let G be a finite group, let b be a block of OG, let P be a defect group of b and
let i be an almost source idempotent in (OGb)∆P . Set A = iOGi and let F be the fusion system of
A on P . Let Q be a fully F-centralised subgroup of P and let e be the unique block of kCG(Q) such
that Br∆Q(i)e 6= 0.

(i) The block algebra kCG(Q)eQ is Morita equivalent to the algebra A(∆Q) via the bimodule
kCG(Q)Br∆Q(i) and its dual.

(ii) For any local point δ of Q on OGb satisfying Br∆Q(δ)eQ 6= {0} we have δ ∩A 6= ∅.

(iii) The canonical map A(∆Q) ⊗
kCP (Q)

A(∆Q) → A(∆Q) induced by multiplication in A(∆Q) splits

as homomorphism of A(∆Q)-A(∆Q)-bimodules.

Proof. By 4.5, Br∆Q(i) is an almost source idempotent, and thus 4.1.(i) applies to kCG(Q)e and
Br∆Q(i) which implies statement (i). If δ is a local point of Q on OGb satisfying Br∆Q(eQ) 6= {0}
then Br∆Q(δ) is a conjugacy class of primitive idempotents in kCG(Q)e. Since kCG(Q)e is
Morita equivalent to A(∆Q) = Br∆Q(i)kCG(Q)Br∆Q(i) there is j ∈ δ such that Br∆Q(j) ∈
Br∆Q(i)kCG(Q)Br∆Q(i). The usual lifting theorems for idempotents imply that j can be chosen
in A∆Q = i(kG)∆Qi, whence statement (ii). Statement (iii) follows from 4.1.(ii) applied to kCG(Q),
eQ, Br∆Q(i) and CP (Q) instead of OG, b, i and P , respectively. �

This explains why it is technically easier to work at the source algebra level: while (OGb)(∆Q) =
kCG(Q)Br∆Q(b) may decompose as product of more than one block algebra, the algebra A(∆Q)
remains indecomposable so long as one chooses Q to be fully centralised with respect to the fusion
system of A on P . The following result is a tool to switch back and forth between block and source
algebras:

Proposition 4.7. Let G be a finite group, let b be a block of OG, let P be a defect group of b and
let i be an almost source idempotent in (OGb)∆P . Set A = iOGi and let F be the fusion system of A
on P . Let Q be a fully F-centralised subgroup of P and let e be the unique block of kCG(Q) such that
Br∆Q(i)e 6= 0. Let θ : Q → O× be a group homomorphism. For any A-module M there is a natural
isomorphism of kCG(Q)e-modules

e((OGi⊗
A
M)(Q, θ)) ∼= kCG(Q)Br∆Q(i) ⊗

A(∆Q)
M(Q, θ) .

Proof. Since Br∆Q(i) ∈ kCG(Q)e, both sides in the statement are indeed kCG(Q)e-modules. By
4.6.(i), multiplication by Br∆Q(i) induces a Morita equivalence between kCG(Q)e and A(∆Q). Thus,
in order to show that there is a natural isomorphism as stated, it suffices to show this after multiplying
both sides with Br∆Q(i). Using 3.9, the left side becomes

Br∆Q(i)(kGi⊗
A
M)(Q, θ)) = (ikGi⊗

A
M)(Q, θ) = (A⊗

A
M)(Q, θ) ∼= M(Q, θ)

and the right side becomes

Br∆Q(i)kCG(Q)Br∆Q(i) ⊗
A(∆Q)

M(Q, θ) ∼= M(Q, θ) ;

both sides are naturally isomorphic as A(∆Q)-modules. �
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Proposition 4.8. Let G be a finite group, b a block of OG, P a defect group of b and i ∈ (OGb)∆P

an almost source idempotent. Let Q be a subgroup of P and let e, e′ be two different blocks of kCG(Q).
For any subgroup R of P and any direct summand Y of OGi ⊗

OR
iOG we have eY (∆Q)e′ = {0}.

Proof. We may assume O = k. Since i is an almost source idempotent, for any subgroup S of P there
is a unique block eS of kCG(S) satisfying Br∆S(i)eS 6= 0. The image of the set G×G in kG ⊗

kR
kG is

a k-basis which is stable under the action of ∆Q. In order to compute Y (∆Q) we have to determine
the ∆Q-fixpoints in this basis. For x, y ∈ G the image x ⊗ y in kG ⊗

kR
kG is fixed under the action

of ∆Q if for every u ∈ Q there is ru ∈ R such that ux = xru and yu−1 = (ru)
−1y, or equivalently, if

and only if xy ∈ CG(Q) and Qx = yQ ⊆ R. Thus we have

(kG ⊗
kR
kG)∆Q =

∑

(x,y)

k(x⊗ y) ⊕ ker(Br∆Q)

where (x, y) runs over the set of pairs in G × G satisfying xy ∈ CG(Q) and Qx ⊆ R. Consequently,
we get that

(ekGi ⊗
kR
ikGe′)∆Q =

∑

(x,y)

k(exi⊗ iye′) + ker(Br∆Q)

with (x, y) as before. Write exi = e(xi)x. Since i is an almost source idempotent we have e(xi) ∈
ker(Br∆Q) unless e = x(eQx). Similarly, we have (yi)e′ ∈ ker(Br∆Q) unless e′ = (eyQ)y. But these
two equalities would imply the contradiction e = e′ since xy ∈ CG(Q). Thus at least one of e(xi),
(yi)e′ is contained in ker(Br∆Q), whence the result. �

Proposition 4.9. Let G,H be finite groups, let b, c be blocks of OG,OH with defect group P , Q,
respectively. Let i ∈ (OGb)∆P and j ∈ (OHc)∆Q be almost source idempotents, let F be the fusion
system on P determined by i and let G be the fusion system on Q determined by j. Identify OG⊗

O
OH

and O(G×H) through the canonical isomorphism.

(i) b⊗ c is a block of O(G×H) and P ×Q is a defect group of b⊗ c.

(ii) i⊗ j is an almost source idempotent of b⊗ c.

(iii) The fusion system determined by i⊗ j on P ×Q is equal to F × G.

Proof. Statement (i) is well-known (and easy to prove). For R a subgroup of P ×Q, denote by R1 the
image of R under the projection P×Q→ P and by R2 the image of R under the projection P×Q→ Q.
Then R ⊆ R1 × R2 and CG×H(R) = CG(R1) × CH(R2). Thus Br∆R(i⊗ j) = Br∆R1

(i) ⊗ Br∆R2
(j).

Therefore, if e1, f2 are the unique blocks of kCG(R1), kCH(R2), respectively, satisfying Br∆R1
(i)e1 6=

0 and Br∆R2
(j)f2 6= 0 then e = e1 ⊗ f2 is the unique block of CG×H(R) satisfying Br∆R(i⊗ j)e 6= 0.

This shows (ii), and (iii) is clear. �

Proposition 4.10. Let G be a finite group, let b be a block of OG, let P be a defect group of b and
let i ∈ (OGb)∆P be an almost source idempotent. Let α be the anti-automorphism of OG sending
x ∈ G to x−1. Set b0 = α(b) and i0 = α(i). Then b0 is a block of OG having P as defect group and
i0 ∈ (OGb0)∆P is an almost source idempotent of b0. Moreover, the fusion systems on P determined
by i and by i0 are equal.

Proof. Straightforward verification. �

Combining 4.7 and 4.9, 4.10 yields another statement about switching between block algebras and
source algebras for bimodules which will be needed in the proof of 1.4:
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Proposition 4.11. Let G, H be finite groups, let b, c be blocks of OG, OH, respectively, having a
common defect group P . Let i ∈ (OGb)∆P and j ∈ (OHc)∆P be almost source idempotents. Suppose
that i and j determine the same fusion system F on P . Let Q be a fully F-centralised subgroup of P
and let e and f be the unique blocks of kCG(Q) and kCH(Q), respectively, satisfying Br∆Q(i)e 6= 0
and Br∆Q(j)f 6= 0. Let X be an A-B-bimodule and set Y = e((OGi⊗

A
X ⊗

B
jOH)(∆Q))f . Then

Y ∼= kCG(Q)Br∆Q(i) ⊗
A(∆Q)

X(∆Q) ⊗
B(∆Q)

Br∆Q(j)kCH(Q)

as kCG(Q)e-kCH(Q)f-bimodules and

Br∆Q(i)Y Br∆Q(j) ∼= X(∆Q)

as A(∆Q)-B(∆Q)-bimodules.

Proof. By 2.2, ∆Q is fully F ×F-centralised. By 4.7 applied to G×H, the almost source idempotent
i ⊗ j0, the subgroup ∆Q of P × P and the block e ⊗ f0 of CG×H(∆Q) we get the first of the two
isomorphisms, and multiplying this on the left and on the right by Br∆Q(i) and Br∆Q(j), respectively,
yields the second isomorphism. �

§5 Fusion in almost source algebras

By [22, 3.1], the fusion system F of a block b of OG can be read off the OP -OP -bimodule structure
of the source algebra A = iOGi of b. The following Propositions collect some technical details around
this theme, similar to material in [15, 17], extended here to almost source idempotents.

Proposition 5.1. Let G be a finite group, let b be a block of OG with defect group P , let i ∈ (OGb)∆P

be an almost source idempotent and set A = iOGi. Denote by F the fusion system of A on P . Let Q
be a fully F-centralised subgroup of P and let ϕ : Q→ P be a morphism in F . Set R = ϕ(Q). Denote
by eQ, eR the unique blocks of kCG(Q), kCG(R) satisfying Br∆Q(i)eQ 6= 0 and Br∆R(i)eR 6= 0.

(i) For any primitive idempotent n in (OGb)∆R satisfying Br∆R(n)eR 6= 0 there is a primitive idem-
potent m in A∆Q satisfying Br∆Q(m) 6= 0 such that mOG ∼= ϕ(nOG) as OQ-OGb-bimodules and
such that OGm ∼= (OGn)ϕ as OGb-OQ-bimodules.

(ii) For any primitive idempotent n in A∆R satisfying Br∆R(n) 6= 0 there is a primitive idempotent
m in A∆Q satisfying Br∆Q(m) 6= 0 such that mA ∼= ϕ(nA) as OQ-A-bimodules and such that Am ∼=
(An)ϕ as A-OQ-bimodules.

Proof. Since ϕ belongs to the fusion system F there is an element x ∈ G such that ϕ(u) = xux−1

for all u ∈ Q and such that x(eQ) = eR. Let n be a primitive idempotent in (OGb)∆R satisfying
Br∆R(n)eR 6= 0. Denote by ν be the local point of R on OGb containing n. Since xQ = R there is a
local point µ of Q on OGb such that ν = xµ. Since Br∆R(ν)eR 6= 0 we have Br∆Q(µ)eQ 6= 0. This
implies that Br∆Q(µ) is in fact a conjugacy class of primitive idempotents in kCG(Q)eQ. Now Q is
fully F-centralised, and hence by 4.6.(ii), µmust contain an elementm such thatm ∈ A. Moreover, nx

and m belong both to the same point µ of Q on OGb, and hence there is an element c ∈ ((OGb)∆Q)×

such that xcm = n. The map sending ma ∈ mOG to xcma = nxca is the required isomorphism
mOG ∼= ϕ(nOG). The map sending am to amc−1x−1 = ac−1x−1n is the required isomorphism
OGm ∼= (OGn)ϕ. This proves (i). Statement (ii) is played back to (i) via the Morita equivalence
between OGb and A. Let n be a primitive idempotent in A∆R satisfying Br∆R(n) 6= 0. The unit
element i of A satisfies Br∆R(i)eR = Br∆R(i) by the uniqueness of the inclusion of Brauer pairs.
Thus Br∆R(n)eR 6= 0. Therefore statement (i) applies and yields a primitive idempotent m ∈ A∆Q
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satisfying Br∆Q(m) 6= 0 such that there are isomorphisms mOG ∼= ϕ(nOG) and OGm ∼= (OGn)ϕ.
Multiplying these isomorphisms by i on the right and on the left, respectively, yields the isomorphisms
as stated in (ii). �

The following is [17, 7.7, 7.8] generalised to almost source idempotents.

Proposition 5.2. Let G be a finite group, let b be a block of OG with defect group P , let i be an
almost source idempotent in (OGb)∆P and set A = iOGi. Denote by F be the fusion system of A on
P . Let Q, R be subgroups of P .

(i) Every indecomposable direct summand of A as OQ-OR-bimodule is isomorphic to OQ ⊗
OS

ϕOR

for some subgroup S of Q and some morphism ϕ : S → R belonging to F .

(ii) If ϕ : Q→ R is an isomorphism in F such that R is fully F-centralised then ϕOR is isomorphic
to a direct summand of A as OQ-OR-bimodule.

Proof. (i) Let Y be an indecomposable direct summand of A as OQ-OR-bimodule. Then Y has a
Q×R-stable O-basis on which Q and R act freely on the left and on the right, respectively. Thus

Y ∼= OQ ⊗
OS

ϕOR

for some subgroup S of Q and some injective group homomorphism ϕ : S → R. Set T = ϕ(S).
Restricting Y to S × T shows that ϕOT is isomorphic to a direct summand of Y , hence of A, as
OS-OT -bimodule. Now A is a direct summand of OG as OP -OP -bimodule. In particular, ϕOT is
isomorphic to a direct summand of OG as OS-OT -bimodule, hence isomorphic to OSy−1 = y−1OT
for some element y ∈ G such that yS = T and such that ys = ϕ(s) for all s ∈ S. Then OS is isomorphic
to a direct summand of iOGiy = iOGy−1iy as OS-OS-bimodule. Thus Br∆S(iOGy−1iy) 6= 0 by 3.5.
Since Br∆S(i) ∈ kCG(S)eS this forces also that Br∆S(y−1iy)eS 6= 0. Conjugating by y yields that
Br∆T (i)yeS 6= 0. But then necessarily yeS = eT because eT is the unique block of kCG(T ) with the
property Br∆T (i)eT 6= 0. This shows that ϕ is a morphism in the fusion system F , whence (i).

(ii) Since ϕ belongs to F there is an element x ∈ G such that ϕ(u) = xu for all u ∈ Q and such that
xeQ = eR. Let µ be a local point of Q on OGb such that µ∩A 6= ∅. Set ν = xµ; that is, ν is the local
point of R on OGb such that x(Qδ) = Rν . Since µ ∩ A 6= ∅ we have Br∆Q(µ)eQ 6= 0. Conjugating
by x implies that Br∆R(ν)eR 6= 0. Since R is fully F-centralised, it follows from 4.6.(ii) that also
ν∩A 6= ∅. Let m ∈ µ∩A and let n ∈ ν∩A. Note that n and xm belong both to ν, hence are conjugate
in (AR)×. Since Br∆Q(m) 6= 0 we get (mOGm)(∆Q) 6= {0}, hence mOGm has a direct summand
isomorphic to OQ as OQ-OQ-bimodule. Therefore, mOGmx−1 = mOGxmx−1 ∼= mOGn = mAn
has a direct summand isomorphic to OQϕ−1

∼= ϕOR as OQ-OR-bimodule. �

Corollary 5.3. With the notation of 5.2, the fusion system F is generated by the set of inclusions
between subgroups of P and automorphisms ϕ of any subgroup Q of P for which ϕOQ is isomorphic
to a direct summand of A as OQ-OQ-bimodule.

Proof. This follows from 5.2 and Alperin’s fusion theorem. �

6 Vertices of p-permutation modules for almost source algebras

The Brauer construction sends p-permutation modules to p-permutation modules. Combining
material of the previous sections we can be more precise regarding vertices:
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Proposition 6.1. Let A be an almost source algebra of a block with defect group P and fusion system
F . Let R be a subgroup of P and let X be an indecomposable direct summand of the A-module A ⊗

OR
O.

Then X is isomorphic to a direct summand of Am ⊗
OQ

O for some fully F-centralised subgroup Q of

P which is isomorphic, in F , to a subgroup of R, and some primitive idempotent m ∈ A∆Q satisfying
Br∆Q(m) 6= 0.

Proof. Since X is indecomposable, X is isomorphic to a direct summand of An ⊗
OR

O for some

primitive idempotent n ∈ A∆R. Up to replacing R by a proper subgroup we may assume by [15, 2.6]
that Br∆R(n) 6= 0. Let Q be a fully F-entralised subgroup of P such that there is an isomorphism
ϕ : Q ∼= R in F . By 5.1.(ii) there is a primitive idempotent m ∈ A∆Q such that Br∆Q(m) 6= 0 and
such that Am ∼= (An)ϕ as A-OQ-bimodules. Then An ⊗

OR
O ∼= Am ⊗

OQ
O, and hence in particular, X

is isomorphic to a direct summand of A ⊗
OQ

O as stated. �

We use 6.1 to track to vertices of indecomposable summands of p-permutation modules after
applying the Brauer construction:

Theorem 6.2. Let A be an almost source algebra of a block with defect group P and fusion system
F . Let Q, R be subgroups of P such that Q is fully F-centralised. Let Y be an indecomposable
direct summand of the A(∆Q)-module (A ⊗

OR
O)(Q). Then Y is isomorphic to a direct summand

of A(∆Q)m ⊗
kS
k for some subgroup S of CP (Q) containing Z(Q) and some primitive idempotent

m ∈ A(∆Q)∆S satisfying Br∆S(m) 6= 0 such that S is fully CF (Q)-centralised and QS is isomorphic
in F to a subgroup of R.

Proof. By 4.6, A(∆Q) is isomorphic to a direct summand of A(∆Q) ⊗
kCP (Q)

A(∆Q). Tensoring with

− ⊗
A(∆Q)

Y implies that Y is isomorphic to a direct summand of A(∆Q) ⊗
kCP (Q)

Y . Since Y is indecom-

posable, Y is in fact isomorphic to a direct summand of A(∆Q) ⊗
kCP (Q)

W for some indecomposable

direct summand of Y as kCP (Q)-module. Thus we need to determine the kCP (Q)-module structure
of Y . Let X be a P -P -stable O-basis of A. We use the notation X ⊗ 1 for the image of the set X in
A ⊗

OR
O. The set X ⊗ 1 is a P -stable O-basis of A ⊗

OR
O. Thus, in order to compute (A ⊗

OR
O)(Q) we

need to determine the Q-fixpoints in the set X ⊗ 1. For x, y ∈ X the images x⊗ 1 and y⊗ 1 in X ⊗ 1
are equal if and only if there is an element r ∈ R such that y = xr. Therefore, x ⊗ 1 ∈ (X ⊗ 1)Q if
and only if for every u ∈ Q there is ru ∈ R such that ux = xru. In that case, ru is then uniquely
determined by u because P acts freely on the right of X. Since P acts also freely on the left of X,
the map sending u ∈ Q to ru ∈ R is an injective group homomorphism ϕ : Q→ R. Set

Uϕ = {x ∈ X | ux = xϕ(u) (∀ u ∈ Q)}

Note that by 5.2.(i) any ϕ arising in this way belongs to the fusion system F because OQx =
xOϕ(Q) ∼= ϕOϕ(Q) is a direct summand of A as OQ-Oϕ(Q)-bimodule. It follows from the above
that

(X ⊗ 1)Q =
⋃

ϕ

Uϕ ⊗ 1

where ϕ runs over the set HomF (Q,R). Let ϕ,ψ ∈ HomF (Q,R) and denote by ϕ̃, ψ̃ their images in
the orbit space Inn(R)\HomF (Q,R), where the group of inner automorphisms Inn(R) of R acts by
composition of group homomorphisms on the set HomF (Q,R). Suppose there is an element x ∈ Uϕ



14 MARKUS LINCKELMANN

and y ∈ Uψ such that x ⊗ 1 = y ⊗ 1. Then there is an element r ∈ R such that y = xr, and for all
u ∈ U , we have ux = xϕ(u) and uy = yψ(u). Thus uxr = xϕ(u)r = xrψ(u), hence ϕ(u)r = ψ(u)r,

or equivalently, ϕ(u) = rψ(u) for all u ∈ Q. This means that ϕ̃ = ψ̃. It follows that Uϕ ⊗ 1 = Uψ ⊗ 1

if ϕ̃ = ψ̃ and that Uϕ⊗ 1∩Uψ⊗ 1 = ∅ if ϕ̃ 6= ψ̃. In other words, (X⊗ 1)Q is in fact the disjoint union

(X ⊗ 1)Q =
⋃

ϕ

Uϕ ⊗ 1

with ϕ running over a set of representatives in HomF (Q,R) of Inn(R)\HomF (Q,R). Therefore, by
3.4, we have

(A ⊗
OR

O)(Q) ∼= k((X ⊗ 1)Q) = ⊕
ϕ
k(Uϕ ⊗ 1)

with ϕ running as before over a set of representatives in HomF (Q,R) of Inn(R)\HomF (Q,R). This
is a decomposition of (A ⊗

OR
O)(Q) as kCP (Q)-module because the subsets Uϕ of X are invariant

under the left action of CP (Q). Thus the direct summand W of Y as kCP (Q)-module is isomorphic
to a direct summand of k(Uϕ ⊗ 1) for some ϕ ∈ HomF (Q,R). Now W is a permutation kCP (Q)-
module, and hence, in order to determine its structure, it suffices to determine the stabilisers in
CP (Q) of basis elements x⊗ 1 ∈ Uϕ ⊗ 1. Let x, y ∈ Uϕ such that x⊗ 1 = y ⊗ 1. Then, on one hand,
y = xr for some r ∈ R, and on the other hand, ux = xϕ(u) and uy = yϕ(u) for all u ∈ Q. Thus
uxr = xϕ(u)r = xrϕ(u), which implies r ∈ CP (ϕ(Q)). It follows that the stabiliser S in CP (Q) of an
element x⊗1 ∈ Uϕ⊗1 consists of all elements z ∈ CP (Q) such that zx = xrz for some rz ∈ CP (ϕ(Q)).
In particular Z(Q) ⊆ S because zx = xϕ(z) for z ∈ Z(Q). It follows that there is a well-defined
group homomorphism ψ : QS −→ R given by ψ(uz) = ϕ(u)rz for all u ∈ Q and z ∈ S. Note that ψ
has the property uzx = xψ(uz), so O(QS)x = xO(ψ(QS)) ∼= ψOψ(QS) is a direct summand of A as
O(QS)-Oψ(QS)-bimodule. Hence ψ belongs to the fusion system F by 5.2.(i). This shows that Y is
isomorphic to a direct summand of A(∆Q) ⊗

kS
k for some subgroup S of CP (Q) containing Z(Q) for

which there exists a morphism ψ : QS → R in F . We need to show that S can furthermore be chosen
to be fully CF (Q)-centralised. Applying 6.1 to A(∆Q) and its fusion system CF (Q) shows that Y
is isomorphic to a direct summand of A(∆Q)m ⊗

kT
k for some fully CF (Q)-centralised subgroup T

of CP (Q) for which there exists a morphism τ : T → S in CF (Q) and some primitive idempotent
m ∈ A(∆Q)∆T satisfying Br∆T (m) 6= 0. By the definition of CF (Q), the morphism τ extends to a
morphism σ : QT → QS in F satisfying σ|Q = IdQ. Thus replacing S by T and ψ by ψ ◦σ concludes
the proof. �

Corollary 6.3. Let A be an almost source algebra of a block with defect group P and fusion system F .
Let Q, R be subgroups of P such that Q is fully F-centralised. If HomF (Q,R) = ∅ then (A ⊗

OR
O)(Q) =

{0}.

Corollay 6.4. Let A, B be almost source algebras of blocks of finite groups having a common defect
group P and the same fusion system F . Let Q, R be subgroups of P such that Q is fully F-centralised.
If HomF (Q,R) = ∅ then (A ⊗

OR
B)(∆Q) = {0}.

Proof. This follows from 6.3 in conjunction with 4.9 and 2.2. �
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Corollary 6.5. Let A be an almost source algebra of a block with defect group P and fusion system F .
Let Q be a fully F-centralised subgroup of P . Every indecomposable direct summand of (A ⊗

OQ
O)(Q)

is isomorphic to A(∆Q)m ⊗
kZ(Q)

k for some primitive idempotent m ∈ A(∆Q).

Proof. By 6.2, an indecomposable direct summand Y of (A ⊗
OQ

O)(Q) is isomorphic to a direct

summand of A(∆Q)m ⊗
kS
k for some subgroup S of CP (Q) containing Z(Q) and some primitive

idempotent m ∈ A(∆Q)∆S satisfying Br∆S(m) 6= 0 such that QS is isomorphic to a subgroup of Q in
F . This forces S ⊆ Q, hence S = Z(Q). Since the image of Z(Q) in A(∆Q)× belongs to Z(A(∆Q)),
a primitive idempotent in A(∆Q)Z(Q) is primitive in A(∆Q) and hence the module A(∆Q)m ⊗

kZ(Q)
k

is indecomposable since it is an indecomposable projective module for the algebra A(∆Q) ⊗
kZ(Q)

k. �

7 Grothendieck groups of trivial and linear

source modules for almost source algebras

We translate in this section some of the concepts and terminology related to trivial source and
linear source modules for block algebras to the source algebra level.

Definition 7.1. Let A, B be O-algebras. We denote by R(A,B) the Grothendieck group of A-B-
bimodules which are finitely generated as left A-modules and as right B-modules, with respect to split
exact sequences. We denote by P(A,B) the subgroup of R(A,B) generated by the A-B-bimodules
which are finitely generated projective as left A-modules and as right B-modules. For A, B, C three
O-algebras we denote by

− ·
B
− : R(A,B) ×R(B,C) −→ R(A,C)

the group homomorphism induced by the tensorproduct M ⊗
B
N over B of an A-B-bimodule M and

a B-C-bimodule N . We consider R(A) = R(A,A) as unitary associative ring with multiplication
− ·

A
− and unit element [A], the isomorphism class of A as A-A-bimodule in R(A), and we consider

R(A,B) as R(A)-R(B)-bimodule via − ·
A
− and − ·

B
−. Clearly the bilinear map − ·

B
− induces a

bilinear map

− ·
B
− : P(A,B) × P(B,C) −→ P(A,C) ;

in particular, P(A) = P(A,A) is a unitary subring of R(A).

Following [21], given a finite group P , an interior P -algebra is an O-algebra A endowed with a
group homomorphism P → A×, or equivalently, endowed with a unitary algebra homomorphism
OP → A.

Definition 7.2. Let P be a finite group and let A,B be interior P -algebras. We denote by T (A,B)
the subgroup of R(A,B) generated by the finite direct sums of summands of the A-B-bimodules
A ⊗

OQ
B, where Q runs over the subgroups of P .

We will also need a source algebra version of linear source modules. Let Q be a finite p-group.
Any group homomorphism θ : Q→ O× induces an O-algebra automorphism sending u ∈ Q to θ(u)u.
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Given an OQ-module U we denote by θU the OQ-module which is equal to U as O-module, with
u ∈ Q acting as θ(u)u on U . We use a similar notation for right modules and bimodules.

Definition 7.3 Let P be a finite p-group and let A, B be interior P -algebras. We denote by L(A,B)
the Grothendieck group of finite direct sums of summands of A-B-bimodules of the form A ⊗

OQ
θB,

with Q running over the subgroups of P and θ over the set Hom(Q,O×) of group homomorphisms
from Q to O×.

Clearly T (A,B) is a subgroup of L(A,B). If A, B are finitely generated projective over OP then
T (A,B) and L(A,B) are subgroups of P(A,B). If A is isomorphic to a direct summand of A ⊗

OP
A as

A-A-bimodule then [A] belongs to T (A) = T (A,A). By 4.2 this case occurs whenever A is an almost
source algebra of a block with P as defect group. The groups T (A,B) and L(A,B) are independent
of the choice of almost source idempotents in the following sense:

Theorem 7.4. Let G, H be finite groups and let b, c be blocks of OG, OH with a common defect
group P , respectively. Let i ∈ (OGb)∆P , j ∈ (OHc)∆P be almost source idempotents. Set A = iOGi
and B = jOHj. Let i′ ∈ (OGb)∆P , j′ ∈ (OHc)∆P be idempotents satisfying i = ii′ = i′i and
j = jj′ = j′j. Set A′ = i′OGi′ and B′ = j′OHj′. The map sending an A-B-bimodule M to the
A′-B′-bimodule A′i⊗

A
M ⊗

B
jB′ induces injective group homomorphisms

T (A,B) −→ T (A′, B′),

L(A,B) −→ L(A′, B′) .

If the idempotents i′, j′ are also almost source idempotents and if i, j determine the same fusion
system on P then these maps are isomorphisms whose inverses are induced by the map sending an
A′-B′-bimodule N to the A-B-bimodule iNj.

Proof. The condition i = ii′ = i′i is equivalent to i ∈ A′, so the statement makes sense. Let M be a
direct summand of A ⊗

OR
θB for some subgroup R of P and some group homomorphism θ : R → O.

Then A′i ⊗
A
M ⊗

B
jB′ is a direct summand of A′i ⊗

A
A ⊗

OR
θB ⊗

B
jB′ ∼= A′i ⊗

OR
θjB

′, which is a direct

summand of A′ ⊗
OR

θB
′, Thus the map sending M to A′i⊗

A
M ⊗

B
jB′ induces group homomorphisms

T (A,B) → T (A′, B′) and L(A,B) → L(A′, B′). These group homomorphisms are injective because
A, A′ and B, B′ are Morita equivalent via the bimodules A′i, B′j and their duals, respectively, as
a consequence of 4.1. Suppose now that i′ and j′ are almost source idempotents. In order to show
the surjectivity of the above maps we may assume that i, j are source idempotents. Let N be an
indecomposable direct summand of A′ ⊗

OR
θB

′ for some group homomorphism θ : Q→ O×. Thus N is

an indecomposable direct summand of A′n ⊗
OR

θsB
′ for some primitive idempotents n ∈ (A′)∆R and

s ∈ (B′)∆R. By choosing R of minimal order we may assume that Br∆R(n) 6= 0 and Br∆R(s) 6= 0.
In other words, n belongs to a local point ν of Q on A′, and s belongs to a local point σ of R
on B′. Since i′, j′ are almost source idempotents, the defect group P has unique local points γ,
δ on A′, B′, respectively, and so i ∈ γ and j ∈ δ. Denote by F the common fusion system of G
and H on P . Let ϕ : Q ∼= R be an isomorphism in F such that Q is fully F-centralised. By 5.1
there is a primitive idempotent m ∈ A∆Q satisfying Br∆Q(m) 6= 0 such that OGm ∼= (OGn)ϕ as
OGb-OQ-bimodules. Multiplying by i′ yields an isomorphism A′m ∼= (A′n)ϕ as A′-OQ-bimodules.
Similarly, there is a primitive idempotent r ∈ B∆Q satisfying Br∆Q(r) 6= 0 such that rB′ ∼= ϕsB

′ as
OQ-B′- bimodules. Then θ◦ϕrB

′ ∼= ϕθsB
′ as OQ-B′- bimodules. Thus N is isomorphic to a direct

summand of A′n ⊗
OR

θsB
′ ∼= A′m ⊗

OQ
τsB

′, where τ = θ ◦ ϕ : Q → O×. Since m ∈ A, r ∈ B the
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latter is isomorphic to a direct summand of A′i ⊗
OQ

τ jB
′. Thus N is in fact a direct summand of

A′i ⊗
OQ

τ jB
′. Multiplication by i on the left and by j on the right is a Morita equivalence between

the category of A′-B′-bimodules and the category of A-B-bimodules. Thus, setting M = iNj we get
that N ∼= A′i⊗

A
M ⊗

B
jB′. Since by construction M is a direct summand of A ⊗

OQ
τB the surjectivity

of the given maps follows. �

Following the notation in [4, 1.2], if G, H are finite groups, b a block of OG and c a block
of OH with a common defect group P , then T∆P (OGb,OHc) denotes the Grothendieck group of
OGb-OHc-bimodules (with respect to split exact sequences) whose indecomposable direct summands
have trivial source and a vertex contained in ∆P , when viewed as O(G × H)-modules. Similarly,
L∆P (OGb,OHc) denotes the Grothendieck group of linear source OGb-OHc-bimodules (with respect
to split exact sequences) whose indecomposable direct summands have a linear source and a vertex
contained in ∆P . The following consequence of Theorem 7.4 implies in particular that the notion of
p-permutation equivalence as introduced by Boltje and Xu is equivalent to the source algebra version
1.3 above in case the involved blocks are of principal type. Recall that b is said to be of principal type
if Br∆Q(b) is a block of kCG(Q) for every subgroup Q of a defect group P of b. Equivalently, b is of
principal type if and only if b itself is an almost source idempotent. If b is the principal block of OG
then by Brauer’s Third Main Theorem, Br∆Q(b) is the principal block of kCG(Q) for any subgroup
Q of a Sylow-p-subgroup P of G, and hence in particular and not surprisingly, the principal block b
is of principal type.

Corollary 7.5. Let G, H be finite groups and let b, c be blocks of OG, OH with a common defect
group P , respectively. Let i ∈ (OGb)∆P , j ∈ (OHc)∆P be almost source idempotents. Set A = iOGi
and B = jOHj. The map sending an A-B-bimodule M to the OGb-OHc-bimodule OGi⊗

A
M ⊗

B
jOH

induces injective group homomorphisms

T (A,B) −→ T∆P (OGb,OHc) ,

L(A,B) −→ L∆P (OGb,OHc) .

If the blocks b, c are of principal type and have the same fusion system these maps are isomorphisms.

Proof. For any subgroup R of P and any group homomorphism θ : R→ O× we have an isomorphism
of O(G×H)-modules

OG ⊗
OR

θOH ∼= IndG×H
∆R (θO)

sending x ⊗ y−1 to (x, y) ⊗ 1 for x ∈ G, y ∈ H. Thus T (OGb,OHc) ∼= T∆P (OGb,OHc) and
L(OGb,OHc) ∼= L∆P (OGb,OHc). Thus 7.4 applied to i′ = b and j′ = c yields the injective group
homomorphisms as stated. If b and c are of principal type then b and c are almost source idempotents,
and hence, if they determine the same fusion system it follows again from 7.4 that the maps in the
statement are isomorphisms. �

Remark 7.6. For non principal blocks the maps in 7.5 need not be isomorphisms, in general. If OGb
is a block algebra whose defect group P has two different local points γ, γ′ on OGb then OGi ⊗

OP
i′OG

is a p-permutation O(G×G)-module, where i ∈ γ, i′ ∈ γ′, but not all indecomposable summands of
iOGi ⊗

OP
i′OGi as iOGi-iOGi-bimodules will be summands of bimodules of the form iOGi ⊗

OQ
iOGi.

This is because γ′ = xγ for some x ∈ NG(P ) not contained in NG(Pγ), so conjugation by x is an
automorphism of P which does not belong to the A-fusion on P .
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For the sake of completeness we include some further observations relating the notation of the
present paper to that in [4]. Let A be an almost source algebra of a block b of a finite group
G with defect group P . Consider O as trivial interior P -algebra with structural homomorphism
P → O× sending any element u ∈ P to 1O. Then T (A,O) is the Grothendieck group of sums
of summands of the left A-modules A ⊗

OQ
O, where Q runs over the subgroups of P . Similarly,

L(A,O) is the Grothendieck group of sums of summands of the left A-modules A ⊗
OQ

θO, where

Q ⊆ P and θ ∈ Hom(Q,O×). Following the notation of Boltje and Xu [4], we denote by T (OGb) the
Grothendieck group of p-permutation OGb-modules; that is, T (OGb) is generated by the isomorphism
classes of summands of OGb ⊗

OQ
O, with Q ⊆ P . Similarly, we denote by L(OGb) the Grothendieck

group generated by the linear source OGb-modules; that is, L(OGb) is generated by the isomorphism
classes of summands of OGb ⊗

OQ
θO, with Q ⊆ P and θ ∈ Hom(Q,O×).

Proposition 7.7. Let G be a finite group, let b be a block of OG, let P be a defect group of b and
let i ∈ (OGb)∆P be an idempotent satisfying Br∆P (i) 6= 0 and set A = iOGi. The functor OGi⊗

A
− :

mod(A) → mod(OGb) induces group isomorphisms T (A,O) ∼= T (OGb) and L(A,O) ∼= L(OGb).

Proof. Let Q be a subgroup of P , let θ : Q → O× be a group homomorphism and let Y be a direct
summand of A ⊗

OQ
θO. Then OGi⊗

A
Y is a direct summand of OGi ⊗

OQ
θO, hence of OGb ⊗

OQ
θO. Thus

the functor OGi ⊗
A
− induces group homomorphisms T (A,O) → T (OGb) and L(A,O) → L(OGb).

These group homomorphisms are injective because the functor OGi⊗
A
− is an equivalence, by 4.1. To

see that they are also surjective, let X be an indecomposable linear source OGb-module. It follows
from [13, 6.3] that one can choose a vertex R of X such that X is isomorphic to a direct summand
of OGi ⊗

OR
ρO for some group homomorphism ρ : R → O×. Thus the functor OGi ⊗

A
− induces the

isomorphisms as stated. �

With the notation of 7.5, the map given by − ·
OHc

− sends T∆P (OGb,OHc)×L(OHc) to L(OGb)

(cf. [2, 2.3]). Clearly the map − ·
B
− sends T (A,B)×L(B,O) to L(A,O). These two maps correspond

to each other via the maps from 7.5 and 7.7:

Proposition 7.8. Let G, H be finite groups and let b, c be blocks of OG, OH with a common defect
group P , respectively. Let i ∈ (OGb)∆P , j ∈ (OHc)∆P be almost source idempotents. Set A = iOGi
and B = jOHj. We have a commutative diagram

T (A,B) × L(B,O)
− ·

B
−

//

��

L(A,O)

∼=

��
T∆P (OGb,OHc) × L(OHc)

− ·
OHc

−
// L(OGb)

where the vertical arrows are induced by those in 7.5 and 7.7.

Proof. Let M be a direct summand of an A-B-bimodule of the form A ⊗
OQ

B for some subgroup Q of

P and let Y be a direct summand of a left B-module B ⊗
OR

θO for some subgroup R of P and some

group homomorphism θ : R → O×. Then M ⊗
B
Y is a direct summand of A ⊗

OQ
B ⊗

OR
θO. Since B is
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a permutation O(Q × R)-module it follows that M ⊗
B
Y is a direct sum of linear source A-modules.

The composition of maps T (A,B) × L(B,O) → T∆P (OGb,OHc) × L(OHc) → L(OGb) is induced
by the map

(M,Y ) 7→ (OGi⊗
A
M ⊗

B
jOH,OHj ⊗

B
Y ) 7→ OGi⊗

A
M ⊗

B
jOH ⊗

OHc
OHj ⊗

B
Y ∼= OGi⊗

A
M ⊗

B
Y

and the composition of maps T (A,B) × L(B,O) → L(B,O) ∼= L(OGb) is induced by the map

(M,Y ) 7→M ⊗
B
Y 7→ OGi⊗

A
M ⊗

B
Y

and hence both maps coincide. �

§8 Ring and module structures of T (A,B) and L(A,B)

As a consequence of [17, §2] we get some extra structure on T (A,B) in case A, B are source
algebras. The following theorem extends [17, 2.3.(i)] to linear source modules over almost source
algebras.

Theorem 8.1. Let A, B, C be almost source algebras of p-blocks of finite groups with a common
defect group P all having the same fusion system F on P . The tensorproduct over B induces bilinear
maps

− ·
B
− : L(A,B) × L(B,C) −→ L(A,C) ,

− ·
B
− : T (A,B) × T (B,C) −→ T (A,C) .

Proof. Let M be an indecomposable direct summand of A ⊗
OQ

θB and let N be an indecomposable

direct summand of B ⊗
OR

ηC for some subgroups Q, R of P and some group homomorphisms θ : Q→

O× and η : R → O×. Let X be an indecomposable direct summand of M ⊗
B
N . We have to show

that X is isomorphic to a direct summand of A ⊗
OS

τC for some subgroup S of P and some group

homomorphism τ : S → O×, such that τ is trivial whenever both θ, η are trivial. The bimodule X
is isomorphic to a direct summand of

A ⊗
OQ

θB ⊗
OR

ηC .

Since X is indecomposable, there is an indecomposable direct summand W of B as OQ-OR-bimodule
such that X is isomorphic to a direct summand of

A ⊗
OQ

θW ⊗
OR

ηC .

By 5.2.(i), the OQ-OR-bimodule W is isomorphic to OQ ⊗
OS

ϕOR for some subgroup S of Q and some

morphism ϕ : S → R belonging to the fusion system F . Thus X is isomorphic to a direct summand
of

A ⊗
OS

ϕ(σC) ,

where σ : ϕ(S) → O× is the group homomorphism sending ϕ(y) to θ(y)η(ϕ(y)), for every y ∈ S. Since
X is indecomposable, X is in fact isomorphic to a direct summand of An ⊗

OS
ϕ(σsC) for some primitive



20 MARKUS LINCKELMANN

idempotent n ∈ A∆S and some primitive idempotent s ∈ C∆ϕ(S). By [15, 2.6] we may assume that
n, s belong to local points of S, ϕ(S) on A, C, respectively. Let T be a fully F-centralised subgroup
of P such that there is an isomorphism ψ : T → S in F . By 5.1 there are primitive idempotents
m ∈ A∆T and r ∈ C∆T such that Am ∼= Anψ as A-OT -bimodules, and such that rC ∼= ϕψsC as
OT -C-bimodules. Thus X is a direct summand of

Am ⊗
OT

τrC

where τ = σ ◦ ψ : T → O×. This shows that the isomorphism class of X belongs to L(A,C). By
construction, if θ, η are trivial, so is τ , and hence in that case, the isomorphism class of X belongs
to T (A,C). �

Corollary 8.2. Let A be an almost source algebra of a p-block of a finite group with defect group P .
The abelian groups T (A) and L(A) are unitary subrings of P(A).

Proof. Applying 8.1 to A = B = C shows that T (A) and L(A) are rings; the fact that they are
unitary follows from 4.2. �

Corollary 8.3. Let A, B be almost source algebras of p-blocks of finite groups with a common defect
group P and the same fusion system. Then L(A,B) is an L(A)-L(B)-bimodule and T (A,B) is an
T (A)-T (B)-bimodule, with left and right module structure induced by the tensorproducts over A and
B, respectively.

Proof. This follows from 8.1 applied to the cases A = B and B = C. �

Corollary 8.4. Let A, B be almost source algebras of p-blocks of finite groups with a common defect
group P and the same fusion system. Let X be a p-permutation equivalence between A and B. The
map sending Y ∈ T (A) to X∗ ·

A
Y ·
A
X is a ring isomorphism

T (A) ∼= T (B) .

Proof. For Y , Z in T (A) we have (X∗ ·
A
Y ·
A
X) ·

B
(X∗ ·

A
Z ·
A
X) = X∗ ·

A
Y ·
A
(X ·

B
X∗) ·

A
Z ·
A
X =

X∗ ·
A
Y ·
A
[A] ·

A
Z ·
A
X = X∗ ·

A
(Y ·

A
Z) ·

A
X, which shows that the given map is a ring homomorphism. Ex-

changing the roles of A, B and X, X∗ yields the inverse. �

The ring structure of T (A) does not depend on the choice of the almost source idempotents:

Proposition 8.5. Let G be a finite group, let b be a block of OG, let P , P ′ be defect groups of b,
let i ∈ (OGb)∆P and i′ ∈ (OGb)∆P

′

be almost source idempotents. Set A = iOGi and A′ = i′OGi′.
There is a canonical ring isomorphism T (A) ∼= T (A′).

Proof. As a consequence of 7.4 we may assume that i, i′ are source idempotents. Let γ, γ′ be the
local points of P , P ′ on OGb containing i, i′, respectively. By [21, 1.2] there is x ∈ G such that
P ′
γ′ = x(Pγ). We may assume that i′ = xi. Let α : A ∼= A′ be the O-algebra isomorphism sending

a ∈ A to xa ∈ A′. Then α induces an isomorphism of A-A-bimodules

A ⊗
OQ

A ∼= αA
′ ⊗
Oα(Q)

A′
α
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where we have identified Q to its image in A. Thus the map sending an A-A-bimodule M to the
A′-A′-bimodule α−1Mα−1 induces a ring isomorphism T (A) ∼= T (A′). We need to show that this
isomorphism does not depend on the choice of x. If y is another element such that P ′

γ′ = y(Pγ) then

y = xn for some n ∈ NG(Pγ), so it suffices to show that the automorphism of T (A) induced by n
is the identity. By [22, 2.12] there is an element c ∈ A× which normalises the image of P in A such
that conjugation by c induces the same group automorphism P as conjugation by n. Denote by β
the inner automorphism of A sending a ∈ A to ca. Then β induces for any A-A-bimodule M an
isomorphism of A-A-bimodules M ∼= βMβ . The result follows. �

Given two O-algebras A, B, the the O-dual M∗ = HomO(M,O) of an A-B-bimodule is a B-
A-bimodule via (b.µ.a)(m) = µ(amb) for a ∈ A, b ∈ B, m ∈ M and µ ∈ M∗. This, taking
O-duality induces a group homomorphism R(A,B) ∼= R(B,A). Recall that an O-algebra A is called
symmmetric if A is free of finite rank as O-module and if A ∼= A∗ as A-A-bimodule. Group algebras
of finite groups, their block algebras and almost source algebras are symmetric.

Proposition 8.6. Let A, B be symmetric O-algebras. Taking O-duals of bimodules induces a group
isomorphism P(A,B) ∼= P(B,A) and an anti-automorphism on the ring P(A).

Proof. Since A, B are symmetric, the O-dual of an A-B-bimodule which is finitely generated projec-
tive as left A-module and as right B-module is again finitely generated projective as left B-module
and as right A-module. This shows the first statememt. If M , N are A-A-bimodules which are
finitely generated projective as left and right A-modules then (M ⊗

A
N)∗ ∼= N∗ ⊗

A
M∗ which implies

the second statement. �

Proposition 8.7. Let A, B be almost source algebras of blocks of finite groups with a common
defect group P . Taking O-duals of bimodules induces group isomorphisms L(A,B) ∼= L(B,A) and
T (A,B) ∼= T (B,A), as well as anti-automorphisms of the rings L(A) and T (A).

Proof. Since A, B, OP are symmetric, the O-dual of an A-B-bimodule of the form A ⊗
OQ

θB for

some subgroup Q of P and a group homomorphism θ : Q → O× is isomorphic to the B-A-bimodule
Bθ ⊗

OQ
A ∼= B ⊗

OQ
(θ−1)A. The first statement follows. The second statement follows from 8.6. �

Given a finite group G, any p-permutation kG-module lifts uniquely, up to isomorphism, to a
p-permutation OG-module. Conversely, a linear source OG-module reduces modulo J(O) to a trivial
source kG-module because there are no non trivial group homomorphisms from a finite p-group to
k×. At the source algebra level, this translates to the following statement:

Proposition 8.8. Let A, B be almost source algebras of blocks with a common defect group P . The
map sending an A-B-bimodule M to k ⊗

O
M induces a surjective group homomorphism L(A,B) →

T (k ⊗
O
A, k ⊗

O
B) and a group isomorphism T (A,B) ∼= T (k ⊗

O
A, k ⊗

O
B). For A = B this is a ring

isomorphism T (A) ∼= T (k ⊗
O
A).

Proof. If A and B are almost source algebras of blocks b and c of finite groups G and H, respectively,
with a common defect group P then A⊗

O
B is an almost source algebra of the block b⊗c of G×H. Via

the Morita equivalence between a block algebra and its almost source algebra any direct summand of
Ā ⊗
kQ
B̄ corresponds to a ∆P -projective p-permutation k(G×H)-module, and hence lifts uniquely, up
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to isomorphism, to a direct summand of A ⊗
OQ

B, where Q is a subgroup of P and where Ā = k ⊗
O
A,

B̄ = k ⊗
O
B. The result follows. �

.

§9 Compatibility with the Brauer construction

The first result in this section says that under suitable hypotheses, the Brauer construction sends
T (A,B) to T (A(∆Q), B(∆Q)). For P abelian this is [4, 3.3].

Theorem 9.1. Let A, B be almost source algebras of p-blocks b, c of finite groups G, H, respectively,
with a common defect group P having the same fusion system F on P . Let Q be a fully F-centralised
subgroup of P . For any X ∈ T (A,B) we have X(∆Q) ∈ T (A(∆Q), B(∆Q)).

Proof. Let i ∈ (OGb)∆P and j ∈ (OHc)∆P be almost source idempotents such that A = iOGi and
B = jOHj. Denote by c0 and j0 the images in OH of c and j, respectively, of the anti-automorphism
of OH sending y ∈ H to y−1. Then Bop ∼= j0OHj0 is an almost source algebra of the block c0 of
OH, by 4.10. Let R be a subgroup of P . We need to show that (A ⊗

OR
B)(∆Q) is a direct sum of

summands of the A(∆Q)-B(∆Q)- bimodules A(∆Q) ⊗
kS
B(∆Q), with S running over the subgroups

of CP (Q). Let Y be an indecomposable direct summand of (A ⊗
OR

B)(∆Q). As A⊗
O
Bop-modules we

have an isomorphism
A ⊗

OR
B ∼= (A⊗

O
Bop) ⊗

O∆R
O

sending x⊗ y to (x⊗ y)⊗ 1O, for x ∈ A and y ∈ B. By 4.9, the algebra A⊗
O
Bop is an almost source

algebra of the block b⊗ c0 of G×H. By the assumptions, A, B and hence Bop determine the same
fusion system F on P (cf. 4.10). Since Q is fully F-centralised, ∆Q is fully F ×F-centralised by 2.2.
We apply now 6.2 to A⊗

O
Bop, P × P , F × F , ∆Q, ∆R instead of A, P , F Q, R, respectively. The

conclusion of 6.2 yields a fully CF×F (∆Q)-centralised subgroup S of CP (Q)×CP (Q) and a morphism
ψ : ∆Q · S → ∆R in F × F such that Y is isomorphic to a direct summand of (A ⊗

O
Bop)(∆Q) ⊗

kS
k

as (A⊗
O
Bop)(∆Q)-modules. Note that we have obvious isomorphisms

(A⊗
O
Bop)(∆Q) ∼= A(∆Q) ⊗

k
Bop(∆Q) ∼= A(∆Q) ⊗

k
B(∆Q)op .

Since ψ : ∆Q · S → ∆R is an injective group homomorphism, the group S must be of the form

S = {(t, τ(t)) | t ∈ T}

for some subgroup T of CP (Q) and some injective group homomorphism τ : T → CP (Q). Since ψ is
a morphism in F × F there are morphisms ψ1 : QT → P and ψ2 : Qτ(T ) → P such that

ψ(ut, vτ(s)) = (ψ1(ut), ψ2(vτ(t)))

for all u, v ∈ Q and t, s ∈ T . Since ψ(∆Q) ⊆ ∆R we have ψ1(u) = ψ2(u) for all u ∈ Q. Since also
ψ(S) ⊆ ∆R we have ψ1(t) = ψ2(τ(t)) for all t ∈ T . Thus ψ−1

2 ◦ψ1|Q = IdQ and ψ−1
2 ◦ψ1|T = τ . This

proves that τ is a morphism in CF (Q). Thus we have an isomorphism

∆(QT ) ∼= ∆Q · S
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in F × F mapping (ut, ut) to (u, u) · (t, τ(t)) for all u ∈ Q and t ∈ T . Now S is fully CF×F (∆Q)-
centralised and CF×F (∆Q) = CF (Q) × CF (Q) by 2.3. Thus, by 2.2, in particular T is fully CF (Q)-
centralised. But then, by 2.2 again, ∆T is fully CF (Q)×CF (Q)-centralised. Thus, by combining 5.1
and 6.2 we may replace S by ∆T . This, however, shows that Y is isomorphic to a direct summand of

(A(∆Q) ⊗
k
B(∆Q)op) ⊗

k∆T
k ∼= A(∆Q) ⊗

kT
B(∆Q) .

Thus the isomorphism class of Y belongs to T (A(∆Q), B(∆Q)). The result follows. �

The second theorem in this section extends similar statements in [15, 2.4], [17, 2.3.(ii)], [4, 3.6]
and includes in particular a proof of Theorem 1.2.

Theorem 9.2. Let A, B be almost source algebras of p-blocks of finite groups with a common defect
group P having the same fusion system F on P and let C be an interior P -algebra. Let Q be a fully
F-centralised subgroup of P and let θ : Q → O× be a group homomorphism. For any X ∈ T (A,B)
and any Y ∈ R(B,C) we have

(X ·
B
Y )(∆Q,∆θ) = X(∆Q) ·

B(∆Q)
Y (∆Q,∆θ)

where ∆θ : ∆Q → O× is the group homomorphism sending (u, u) to θ(u) for all u ∈ Q. In partic-
ular, for any fully F-centralised subgroup Q of P the map sending X ∈ T (A) to X(∆Q) is a ring
homomorphism ρQ : T (A) → T (A(∆Q)).

Proof. Let M be an A-B-bimodule and let N be a B-C-bimodule. Consider the obvious maps

M∆Q ⊗
O
N (∆Q,∆θ) → (M ⊗

O
N)(∆Q,∆θ) → (M ⊗

B
N)(∆Q,∆θ) → (M ⊗

B
N)(∆Q,∆θ) .

The composition of these maps induces a homomorphism of A(∆Q)-C(∆Q)-bimodules

M(∆Q) ⊗
B(∆Q)

N(∆Q,∆θ) −→ (M ⊗
B
N)(∆Q,∆θ)

If we fix N and let M vary, this map is additive functorial in M . Thus, in order to show that this is
an isomorphism if M is a finite direct sum of summands of bimodules of the form A ⊗

OR
B, we may

assume that M is a direct summand of A ⊗
OR

B as OQ-B-bimodule for some subgroup R of P . It

suffices to show that this map is a k-linear isomorphism, and so we may ignore the left A(∆Q)-module
structure. Thus we may in fact assume that M = W ⊗

OR
B for some indecomposable direct summand

W of A as OQ-OR-bimodule, for some subgroup R of P . By 5.2 we have W ∼= OQ ⊗
OT

ϕOR for some

subgroup T of Q and some group homomorphism ϕ : T → R belonging to the common fusion system
of A and B on P . If T is a proper subgroup of Q then both sides in the above map are zero. Assume
that Q = T , hence M ∼= ϕB as OQ-B-bimodule. By decomposing M further we may in fact assume

that M = ϕnB for some primitive idempotent n ∈ B∆ϕ(Q). Then again, if Br∆ϕ(Q)(n) = 0, both
sides in the above map are easily seen to be zero. Thus we may assume that Br∆ϕ(Q)(n) 6= 0. As Q

is fully F-centralised, we can apply 5.1, which shows that there is a primitive idempotent m ∈ B∆Q

such that ϕnB ∼= mB as OQ-B-bimodules. Thus we may assume M = mB. But then M is a direct
summand of B itself, so we may assume that M = B as OQ-B-bimodule. But in that case, both sides
in the above map are canonically isomorphic to N(∆Q). The last statement follows from applying
this to A = B = C and θ = 1. �

If one translates 9.2 back to modules over block algebras, one gets in particular the following
statement (needed in the proof of 1.4):
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Corollary 9.3. Let G, H be finite groups, let b be a block of OG, and let c be a block of OH. Suppose
that b and c have a common defect group P and that there are source idempotents i ∈ (OGb)∆P and
j ∈ (OHc)∆P such that the fusion systems on P determined by i and j coincide. For any subgroup
Q of P denote by eQ the unique block of kCG(Q) satisfying Br∆Q(i)eQ 6= 0 and by fQ the unique
block of kCH(Q) satisfying Br∆Q(j)fQ 6= 0. Let M be an OGb-OHc-bimodule which is a finite direct
sum of summands of the bimodules OGi ⊗

OQ
jOH, with Q running over the subgroups of P . For

any OHc-module U , any subgroup Q of P and any group homomorphism θ : Q → O× we have an
isomorphism of kCG(Q)eQ-modules

eQ(M(∆Q))fQ ⊗
kCH(Q)fQ

fQ(U(Q, θ)) ∼= eQ((M ⊗
kHc

U)(Q, θ)) .

Proof. By conjugating Q simultaneously we may assume that Q is fully centralised with respect to the
common fusion system of A = iOGi and B = jOHj. Then, by making use of the Morita equivalences
between A(∆Q), kCG(eQ) and between B(∆Q), kCH(Q)fQ from 4.6 it suffices to show that there is
an isomorphism of A(∆Q)-modules

Br∆Q(i)M(∆Q)Br∆Q(j) ⊗
B(∆Q)

Br∆Q(j)U(Q, θ) ∼= Br∆Q(i)((Mj ⊗
B
jU)(Q, θ)) .

Now the left side is isomorphic to (iMj)(∆Q) ⊗
B(∆Q)

(jU)(Q, θ) by 3.9, and the right side is isomorphic

to (iMj ⊗
B
jU)(Q, θ). Both are isomorphic thanks to 9.2 applied to A, B, C = O, the isomorphism

class of iMj instead of X and the isomorphism class of jU instead of Y . �

Remark 9.4. Theorem 9.1 adds to the results in [15, 17] that if X is a splendid tiliting complex
of A-B-bimodules then for any F-centric subgroup Q of P the Rickard complex X(∆Q) of A(∆Q)-
B(∆Q)-bimodules is splendid (in the slightly more restrictive sense of the definition given in [15,
1.10] or [17, 1.1]).

Remark 9.5. With the notation of 9.2, if Q is a fully F-centralised subgroup of P and S a fully
CF (Q)-centralised subgroup of CP (Q), then R = QS is fully F-centralised by 2.1. By the usual
transitivity properties of the Brauer construction we have A(∆Q)(∆S) = A(∆R) and the following
diagram of ring homomorphisms is commutative:

T (A)
ρQ

//

ρR
%%KKKKKKKKKK

T (A(∆Q))

ρS
wwppppppppppp

T (A(∆R))

§10 Isotypies

Let G, H be finite groups, let b be a block of OG and let c be a block of OH. Suppose that
the quotient field K of O is large enough for b, c and their Brauer pairs. As before, denote by
ZIrrK(G, b) the group of generalised characters of G over K associated with the block b, and denote
by ZIBrK(G, b) the corresponding group of generalised Brauer characters. Following Broué, a perfect
isometry between b and c is a group isomorphism

Ψ : ZIrrK(H, c) ∼= ZIrrK(G, b)
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sending χ ∈ IrrK(H, c) to ǫ(χ)ηχ for some ǫ(χ) ∈ {1,−1} and some ηχ ∈ IrrK(G, b) such that the
character µ ∈ ZIrr(H ×G) defined by

µ(y, x) =
∑

χ∈IrrK(H,c)

ǫ(χ)χ(y)ηχ(x−1)

for all (y, x) ∈ H ×G has the following properties: the character value µ(y, x) is divisible in O by the
orders of CG(x), CH(y), for all x ∈ G, all y ∈ H, and µ(x, y) = 0 if exactly one of x, y is a p′-element.
Since the decomposition map ZIrrK(G, b) → ZIBrK(G, b) given by restricting a generalised character
to the set of p′-elements in G is surjective, the arithmetic properties of a perfect isometry Ψ imply
that Ψ induces an isomorphism

Ψ̄ : ZIBrK(H, c) ∼= ZIBrK(G, b) .

Since µ determines the map Ψ by the formula Ψ(χ)(x) = 1
|H|

∑
y∈H

µ(y, x)χ(y−1) for all x ∈ G and all

χ ∈ ZIrrK(H, c), we will sometimes use abusively the same notation for Ψ and µ.

Suppose now that b and c have a common defect group P , let i ∈ (OGb)∆P and j ∈ (OHc)∆P be
source idempotents. Suppose that the fusion systems of the source algebras iOGi and jOHj on P are
equal. For any subgroup Q of P denote by eQ the unique block of kCG(Q) satisfying Br∆Q(i)eQ 6= 0

and by fQ the unique block of kCH(Q) satisfying Br∆Q(j)fQ 6= 0. Denote by êQ and f̂Q the blocks of
OCG(Q) and OCH(Q) which lift eQ and fQ, respectively. Again following Broué, an isotypy between
b and c is a family of perfect isometries

ΨQ : ZIrrK(CH(Q), f̂Q) ∼= ZIrrK(CG(Q), êQ)

for every subgroup Q of P , with the following properties:

(1) for any isomorphism ϕ : Q ∼= R in the common fusion system F we have ϕΨQ = ΨR, where ϕΨQ

is obtained from composing ΨQ with the isomorphisms ZIrrK(CG(Q), êQ) ∼= ZIrrK(CG(R), êR) and

ZIrrK(CH(Q), f̂Q) ∼= ZIrrK(CH(R), f̂R) given by conjugation with elements x ∈ G, y ∈ H satisfying
ϕ(u) = xux−1 = yuy−1 for all u ∈ Q;

(2) for any subgroup Q of P , any element u ∈ CP (Q), setting R = Q〈u〉, we have an equality of maps

d
(u,eR)
(CG(Q),eQ) ◦ ΨQ = Ψ̄R ◦ d

(u,eR)
(CH(Q),fQ)

from ZIrrK(CH(Q), f̂Q) toK⊗
Z

ZIBrK(CG(R), êR), where d
(u,eR)
(CG(Q),eQ) is the generalised decomposition

map from ZIrrK(CG(Q), êQ) to K⊗
Z

ZIBrK(CG(R), êR) as mentioned in 3.7 and d
(u,fR)
(CH(Q),fQ) is defined

analogously.

Theorem 10.1. Let G, H be finite groups, let b be a block of OG, and let c be a block of OH. Suppose
that b and c have a common defect group P and that there are source idempotents i ∈ (OGb)∆P and
j ∈ (OHc)∆P such that the fusion systems on P of the source algebras A = iOGi and B = jOHj
coincide. Suppose there is a p-permutation equivalence X between A and B. Then for any subgroup
Q of P the character ΨQ of CG(Q)×CH(Q) determined by eQ(OGi⊗

A
X⊗

B
jOH)(∆Q)fQ is a perfect

isometry between the unique blocks eQ, fQ of CG(Q), CH(Q) determined by i, j, respectively, and the
family {ΨQ | Q ⊆ P} is an isotypy between b and c.

Proof. Observe the abuse of notation in the statement: we mean by eQ((OGi⊗
A
X ⊗

B
jOH)(∆Q))fQ

the image in T (kCG(Q)eQ), kCH(Q)fQ) of X under the map which is induced by the map sending
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an A-B-bimodule M to the kCG(Q)eQ-kCH(Q)fQ-bimodule eQ((OGi ⊗
A
M ⊗

B
jOH)(∆Q))fQ. This

could have been denoted more accurately by eQ(([OGi] ·
A
X ·
B
[jOH])(∆Q))fQ. Condition (1) holds

clearly. Thus, in order to show that ΨQ induces a perfect isometry, we may assume that Q is fully
F-centralised. Set

YQ = eQ((OGi⊗
A
X ⊗

B
jOH)(∆Q))fQ .

By 4.11 we have

YQ = kCG(Q)Br∆Q(i) ⊗
A(∆Q)

X(∆Q) ⊗
B(∆Q)

Br∆Q(j)kCH(Q) .

By 9.1, X(∆Q) belongs to T (A(∆Q), B(∆Q) and hence, by 7.5, YQ belongs to

T∆CP (Q)(kCG(Q)eQ, kCH(Q)fQ). Since p-permutation modules over k lift uniquely, up to isomor-

phism, to p-permutation modules over O preserving vertices, YQ lifts to a unique element ŶQ in

T∆CP (Q)(OCG(Q)êQ,OCH(Q)f̂Q). Moreover, YQ is a virtual module which is projective on the left
and on the right. Therefore, in order to show that this induces a perfect isometry it suffices to show
that it induces an isometry. The fact that p-permutation modules lift uniquely as mentioned above
implies that it suffices to show that

YQ ·
kCH(Q)fQ

Y ∗
Q = [kCG(Q)eQ] .

Since Q is fully F-centralised, cutting with Br∆Q(i) and Br∆Q(j) yields Morita equivalences. Thus,
it suffices to show that

Br∆Q(i)YQBr∆Q(i) ·
B(∆Q)

Br∆Q(i)Y ∗
QBr∆Q(i) = [A(∆Q)]

Using 4.11 we get
Br∆Q(i)YQBr∆Q(i) = X(∆Q)

and hence this is simply equivalent to showing that

X(∆Q) ·
B(∆Q)

X(∆Q)∗ = [A(∆Q)]

Thanks to 9.2 we have

X(∆Q) ·
B(∆Q)

X(∆Q)∗ = (X ·
B
X∗)(∆Q) = [A](∆Q) = [A(∆Q)]

as required, and thus ΨQ is a perfect isometry. The commutativity (2) follows from translating the
argument given by Boltje and Xu in [4, 3.8. (e)] with BrP (e), BrQ(e), BrP (f), BrQ(f) replaced
by eQ, eR, fQ, fR, respectively, where the notation is now as in (2). Note that fR is a block of

CCG(Q)(u) = CG(R). In what follows we write d(u,eR) instead of d
(u,eR)
(CG(Q),êQ) and smilarly we write

d(u,fR) instead of d
(u,fR)

(CH(Q),f̂Q)
We need to show the equality

(d(u,eR) ◦ ΨQ)(χ) = (Ψ̄R ◦ d(u,fR))(χ)

for any χ ∈ ZIrrK(CH(Q), f̂Q). By a theorem of Brauer, every generalised character is a Z-linear
combination of characters of linear source modules. Thus it suffices to prove the above equality in the

case where χ is the character of a linear source OCH(Q)f̂Q-module U . Then ΨQ(χ) is the character
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of ŶQ ⊗
OCH(Q)f̂Q

U (which in line with our convention on abuse of notation means ŶQ ·
OCH(Q)f̂Q

[U ]).

This is again a virtual linear source OCG(Q)êQ-module (cf. 7.8). Thus, by 3.8, we get that

d(u,eR)(ΨQ(χ)) =
∑

θ∈Hom(〈u〉,O×)

θ(u) ⊗ [[fR((ŶQ ⊗
OCH(Q)f̂Q

U)(〈u〉, θ))]]

Similarly, again by 3.8, we have d(u,fR)(χ) =
∑

θ∈Hom(〈u〉,O×)

θ(u) ⊗ [[fR(U(〈u〉, θ))]]. Applying Ψ̄R to

this expression yields

Ψ̄R(d(u,fR)(χ)) =
∑

θ∈Hom(〈u〉,O×)

θ(u) ⊗ [[YR ⊗
kCH(R)fR

fR(U(〈u〉, θ))]] .

Since YR = eR(ŶQ(∆〈u〉))fR, the required equality of these two expressions follows now from 9.3. �

§11 Invariance under Morita equivalences with endo-permutation source

If b, c are blocks of finite groups G, H such that the block algebras OGb, OHc are Morita equivalent
via an OGb-OHc-bimodule M with endo-permutation source V , then by a result of Puig [24], b and
c have isomorphic defect groups, and there is an identification of defect groups of b and c such that
for some choice of source idempotents the corresponding fusion systems are equal and such that V
is stable with respect to this fusion system (see e.g [12] for the terminology regarding fusion stable
endo-permutation modules). Thus Theorem 1.6 is a consequence of the following Theorem:

Theorem 11.1. Let A, B be source algebras of blocks b, c of finite groups G, H with a common
defect group P and the same fusion system F on P . Suppose that there is an indecomposable F-stable
endo-permutation OP -module V and an indecomposable direct summand M of the A-B-bimodule
A ⊗

OP
IndP×P

∆P (V ) ⊗
OP

B satisfying M ⊗
B
M∗ ∼= A and M∗ ⊗

A
M ∼= B. Then the map sending an

A-A-bimodule X to the B-B-bimodule M∗ ⊗
A
X ⊗

A
M induces a ring isomorphism T (A) ∼= T (B).

Proof. We need to show that for Q a subgroup of P , the isomorphism class of the B-B-bimodule
M∗ ⊗

A
A ⊗

OQ
A ⊗

A
M belongs to T (B). By the assumptions on M , the bimodule M∗ ⊗

A
A ⊗

OQ
A ⊗

A
M

is isomorphic to a direct summand of B ⊗
OP

IndP×P
∆P (V ∗) ⊗

OP
A ⊗

OQ
A ⊗

OP
IndP×P

∆P (V ) ⊗
OP

B. It follows

from 5.2 that every indecomposable direct summand of A ⊗
OQ

A as OP -OP -bimodule is isomorphic to

OP ⊗
OR

ϕOP for some subgroup R of P and some ϕ ∈ HomF (R,P ). Thus, if Y is an indecomposable

direct summand of the bimodule M∗ ⊗
A
A ⊗

OQ
A ⊗

A
M then Y is isomorphic to a direct summand of

B ⊗
OP

IndP×P
∆P (V ∗) ⊗

OR
ϕIndP×P

∆P (V ) ⊗
OP

B. One checks that

IndP×P
∆P (V ∗) ⊗

OR
ϕIndP×P

∆P (V ) ∼= IndP×P
∆R (V ∗ ⊗

O
ϕV )

and since V is fusion stable, it follows that V ∗ ⊗
O
ϕV is a permutation OR-module. Thus the iso-

morphism class of Y belongs to T (B). The fact that the map sending an A-A-bimodule X to
M∗ ⊗

A
X ⊗

A
M induces a ring homomorphism follows from the isomorphism M ⊗

B
M∗ ∼= B. Finally,

this is an isomorphism - its inverse is obtained by exchanging the roles of A, B and of M , M∗. �
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Corollary 11.2. Let A be a source algebra of a nilpotent block with defect group P . Then T (A) ∼=
T (OP ).

Proof. By the main result in [23] we can identify A = S ⊗
O

OP , where S = EndO(V ) for some

indecomposable endo-permutation OP -module V with vertex P . Set

M = V ⊗
O
OP ,

viewed as A-OP -bimodule via the canonical action of S on V and the regular actions of OP on the
left and the right of OP . Using the canonical isomorphism S ∼= V ⊗

O
V ∗ one shows that M induces

a Morita equivalence. As A-A-bimodule, A is isomorphic to a direct summand of A ⊗
OP

A. Thus,

as A-OP -bimodule, M is isomorphic to a direct summand of A ⊗
OP

M = A ⊗
OP

(V ⊗
O
OP ). When

considered as A⊗
O
OP -module, this is isomorphic to (A⊗

O
OP ) ⊗

O∆P
V via the map sending a⊗ (v⊗ y)

to (a⊗y−1)⊗v, for all a ∈ A, v ∈ V and y ∈ P . This in turn is isomorphic to A ⊗
OP

IndP×P
∆P (V ) ⊗

OP
OP

via the map sending (a ⊗ y−1) ⊗ v to a ⊗ ((1, 1) ⊗ v) ⊗ y, so the isomorphism T (A) ∼= T (OP ) is a
particular case of 11.1. �

Remark 11.3. A nilpotent block with defect group P is known to be isotypic to the defect group
algebra OP . Does any such isotypy lift to a p-permutation equivalence? The answer is positive
whenever a source V of the unique simple module has an endo-split p-permutation resolution in the
sense of Rickard [25, §7], because then the isotypy is in fact induced by a splendid derived equivalence
(cf. [15, 1.3] and [25, 6.3]).

§12 Augmentation homomorphisms

Given a finite p-group P we denote by B(P ) the Burnside ring of P .

Proposition 12.1. Let P be a finite p-group. The map sending for any subgroup Q of P the P -set
P/Q to the OP -OP -bimodule OP ⊗

OQ
OP induces a ring isomorphism

δP : B(P ) ∼= T (OP ) .

In particular, the ring T (OP ) is commutative and the Z-rank of T (OP ) is equal to the number of
conjugacy classes of subgroups of P .

Proof. One can verify this directly; alternatively, by [14, 11.4.6], the map sending an OP -module V

to the OP -OP -bimodule IndP×P
∆P (V ) induces an injective ring homomorphism from the Green ring

of OP -modules to the ring P(OP ), where here V is considered as module over O∆P via the obvious
isomorphism ∆P ∼= P . This map sends the isomorphism class of OP/Q to that of OP ⊗

OQ
OP , for

any subgroup Q of P , and hence induces an isomorphism B(P ) ∼= T (OP ) because any bimodule of
the form OP ⊗

OQ
OP is indecomposable. �

The Burnside ring of a finite p-group P admits for any subgroupQ an augmentation homomorphism
σQ : B(P ) → Z, induced by the map sending a finite P -set X to the number of Q-fixpoints |XQ|.
Composed with δP this yields an augmentation of T (OP ) which can be described explicitly as follows:
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Proposition 12.2. Let P be a finite p-group and let Q be a subgroup of P . The map sending an OP -

OP -bimodule M to the rational number dimk(M(∆Q)
|CP (Q)| induces a ring homomorphism ρQ : T (OP ) → Z,

and we have σQ = ρQ ◦ δP .

Proof. Let R be a subgroup of P . The image P ×
R
P of P × P in OP ⊗

OR
OP is a P -P -stable O-basis

of OP ⊗
OR

OP . In order to calculate (OP ⊗
OR

OP )(∆Q) we need to determine the set of Q-fixpoints in

this basis. Let y, z ∈ P and denote by y⊗ z the image of (y, z) in OP ⊗
OR

OP . This is a ∆Q-fixpoint

if and only if for every u ∈ Q there is ru ∈ R such that uy ⊗ z = yru ⊗ z = y ⊗ ruz = y ⊗ zu, hence
if and only if Qy ⊆ R and yz ∈ CP (Q). The condition Qy ⊆ R is also equivalent to yR being in the
Q-fixpoint set (P/R)Q. Note that CP (Q) acts freely on the left on the set of ∆Q-fixpoints in the
basis P ×

R
P of OP ⊗

OR
OP . Thus the map sending y ∈ P satisfying Qy ⊆ R to y ⊗ y−1 induces a

bijection between the Q-fixpoints in P/R and the CP (Q)-orbits of ∆Q-fixpoints in P ×
R
P . The result

follows. �

We get in particular an augmentation for the ring T (A):

Proposition 12.3. Let A be a source algebra of a block of a finite group with defect group P . The

map sending an A-A-bimodule M to to the rational number dimk(M(∆P ))
|Z(P )| induces a unitary ring

homomorphism αP : T (A) → Z.

Proof. By [28, 38.10] we have A(∆P ) ∼= kZ(P ). Thus, by 9.2, the Brauer construction with respect to
∆P induces a unitary ring homomorphism T (A) → T (kZ(P )). The result follows from 12.2 applied
to kZ(P ) and 1 instead of OP and Q, respectively. �

As in the case of Burnside rings of finite groups, there are other homomorphisms from T (A) to Z.
In order to describe them, we need the following terminology.

Definition 12.4. Let F be a fusion system on a finite p-group P . A subgroup Q of P is called
F-nilpotent if Q is fully F-centralised and if CF (Q) is the trivial fusion system FCP (Q)(CP (Q)) of
the group CP (Q) on itself.

In particular, if Q is F-centric then Q is F-nilpotent. It is easy to check that if Q, R are fully
F-centralised subgroups of P such that Q is F-nilpotent and HomF (Q,R) 6= ∅ then R is F-nilpotent
as well.

Remark 12.5. Let G be a finite group, b a block of OG, P a defect group of b and let i ∈ (OGb)∆P

be an almost source idempotent of b. Set A = iOGi, denote by F the fusion system of A on P and
for any subgroup Q of P denote by eQ the unique block of kCG(Q) satisfying Br∆P (i)eQ 6= 0. Then
a subgroup Q of P is F-nilpotent if and only if eQ is a nilpotent block of kCG(Q) having CP (Q)
as defect group (this is well-known and follows, for instance, from [18, §2]). Therefore, if Q is F-
nilpotent we have T (A(∆Q)) ∼= T (kCP (Q)) by 11.2. Thus the composition of ring homomorphisms
T (A) → T (A(∆Q)) ∼= T (kCP (Q)) → Z yields a unitary ring homomorphism T (A) −→ Z for any
F-nilpotent subgroup Q of P . We can describe these ring homomorphisms explicitly:

Theorem 12.6. Let A be an almost source algebra of a block with defect group P and fusion system
F . Let Q be an F-nilpotent subgroup of P and let j ∈ A∆Q be a primitive idempotent such that

Br∆Q(j) 6= 0. The map sending an A-A-bimodule M to the rational number dimk((jMj)(∆Q))
|CP (Q)| induces

a unitary ring homomorphism αQ : T (A) → Z. Moreover, αQ is independent of the choice of j.
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Proof. The ring homomorphism ρQ : T (A) → T (A(∆Q)) is induced by the map sending an A-
A-bimodule M to M(∆Q). The block eQ of CG(Q) determined by A is nilpotent because Q is
F-nilpotent. Thus eQ has CP (Q) as defect group, there is a unique local point µ of CP (Q) on
A(∆Q), and for any m ∈ µ we have an isomorphism of interior CP (Q)-algebra

mA(∆Q)m ∼= S ⊗
k
kCP (Q)

with S = Endk(V ) for some indecomposable endo-permutation kCP (Q)-module V . Every primitive
idempotent in S remains primitive in mA(∆Q)m and hence lifts to a primitive idempotent j in
A(∆Q)∆Q, uniquely up to conjugation, and hence

(jAj)(∆Q) ∼= kCP (Q)

Thus the map sending M to (jMj)(∆Q) induces a ring homomorphism T (A) → T (kCP (Q)). Com-
posing this with the augmentation T (kCP (Q)) → Z obtained from 12.2 (with CP (Q) and 1 instead
of P and Q) yields the ring homomorphism αQ as stated. �

The ring homomorphisms αQ depend only on the isomorphism class of Q in the fusion system.
More precisely:

Theorem 12.7. Let A be a source algebra of a block of a finite group G with defect group P and
fusion system F . Let Q, R be F-nilpotent subgroups of P . We have αQ = αR if and only if Q ∼= R
in F .

Proof. Suppose that αQ = αR. Let j ∈ A∆Q be a primitive idempotent satisfying Br∆Q(j) 6= 0.
Then (jA ⊗

OQ
Aj)(∆Q) is non zero, hence the image of [A ⊗

OQ
A] under αQ is non zero. But then its

image under αR is non zero, which forces (A ⊗
OQ

A)(∆R) 6= {0}. It follows from 6.4 that HomF (R,Q)

is non-empty. Exchanging the roles of Q and R yields an isomorphism Q ∼= R in F . Suppose
conversely that Q ∼= R in F . By [22, 3.1], the existence of an isomorphism Q ∼= R in F is equivalent
to the existence of an invertible element a ∈ A× and primitive idempotents m ∈ A∆Q, n ∈ A∆R

not contained in ker(Br∆Q), ker(Br∆R), respectively, such that a(Qm) = Rn. Thus conjugation
by a induces an isomorphism (mAm)(∆Q) ∼= (nAn)(∆R), and since the blocks eQ, eR of kCG(Q),
kCG(R), respectively, determined by A are nilpotent, we have kCP (Q) ∼= (mAm)(∆Q) and kCP (R) ∼=
(nAn)(∆R). Thus we get a commutative diagram of ring homomorphisms of the form

T (A(∆Q))
∼= // T ((mAm)(∆Q))

∼=

��

&&MMMMMMMMMMMM

T (A)

99ssssssssss

%%KKKKKKKKKK
Z

T (A(∆R)) ∼=
// T ((nAn)(∆R))

88qqqqqqqqqqqq

where the vertical arrow is induced by conjugation with a. The result follows. �
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§13 Further remarks

13.1. One advantage of the concept of a p-permutation equivalence introduced by Boltje and Xu
[4] is that it admits the obvious source algebra formulation 1.3 above. The concept of isotypies,
however, is formulated at the block algebra level, involving character values of group elements. Some
of the technical issues in this paper are caused by the need to switch between block algebras and their
source algebras; a version of isotypies in terms of source algebras would simplify some parts. The other
advantage of p-permutation equivalences versus isotypies is that the rather technical compatibility
conditions of an isotypy get replaced by a condition which is simpler in that it does not refer to the
local structure of the blocks. It does not seem to be known whether every isotypy between two blocks
can be “lifted” to a p-permutation equivalence.

13.2. Let A, B be symmetric O-algebras. Following [16, 2.9] any A-B-bimodule M which is finitely
generated projective as left A-module and as right B-module gives rise to a transfer map on Hochschild
cohomology

tM : HH∗(B) −→ HH∗(A) .

This depends only on the isomorphism class of M . Thus, any element in X ∈ P(A,B) determines a
transfer map tX : HH∗(B) −→ HH∗(A). When applied to A = B this yields a graded P(A)-module
structure on HH∗(A) given by

X · ζ = tX(ζ)

for any X ∈ P(A) and any ζ ∈ HH∗(A). If A is a source algebra of a block b of some finite group
with defect group P then this module structure restricts to a T (A)-module structure on HH∗(A).
By [16, 5.6.(iii)], the Hochschild cohomology algebra HH∗(A) contains a canonical copy of the block
cohomology H∗(G, b). By [16, 6.7] this is a T (A)-submodule of HH∗(A).

13.3. Unlike the Burnside ring of a finite group, the trivial source bimodule ring of a block need not be
commutative. Consider p = 2 and G = A4 = P ⋊E, where P ∼= C2×C2 and |E| = 3. Then OG has a
unique block. Write Hom(E,O×) = {µ0, µ1, µ2} with µ0 = 1. Every µi extends to an automorphism
αi of OG defined by αi(eu) = µi(e)ue, for u ∈ P and e ∈ E. These automorphisms fix P and
hence the three OG-OG-bimodules (OG)αi

have vertex ∆P and trivial source. Thus they determine
three elements in T (OG). Setting ei = 1

3

∑
e∈E

µi(e)e we get a primitive decomposition {e1, e2, e3}

of 1 in OG. One checks that αi(e0) = ei and that α2 = (α1)
−1. Any algebra automorphism α of

OG induces an isomorphism of bimodules αOG ∼= OGα−1 and isomorphisms of left OG-modules

αOGj ∼= OGα−1(j) for any idempotent j in OG. Therefore

[(OG)α1
] ·
OG

[OGe0 ⊗
O
e0OG] = [OGe1 ⊗

O
e0OG] ,

[OGe0 ⊗
O
e0OG] ·

OG
[(OG)α1

] = [OGe0 ⊗
O
e2OG] .

In particular T (OG) is not commutative.

Appendix: On stable equivalences and blocks of defect 2

The technology of this paper can be used to show that the proofs of two results due to R. Rouquier
[27, 5.6, 6.3] for principal blocks carry over nearly verbatim to arbitrary blocks, giving in particular
proofs of some of the results announced by Rouquier in [27, 6.4, Appendix]. For A, B two symmetric
O-algebras, a bounded complex X of A-B-bimodules which are projective as left A-modules and
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as right B-modules is said to induce a stable equivalence if there are isomorphisms of complexes of
bimodules X ⊗

B
X∗ ∼= A ⊕ Y and X∗ ⊗

A
X ∼= B ⊕ Z with Y and Z homotopy equivalent to bounded

complexes of projective A-A-bimodules and B-B-bimodules, respectively. If Y and Z are homotopic
to zero then X is called a Rickard complex. The following two theorems are [27, 5.6] and [27, 6.3] for
arbitrary blocks:

Theorem A.1. Let G, H be finite groups, b, c blocks of OG, OH, respectively, having a common
defect group P , let i ∈ (OGb)∆P and j ∈ (OHc)∆P be source idempotents. Suppose that i and j
determine the same fusion system F on P . For any subgroup Q of P denote by eQ and fQ the unique
blocks of kCG(Q) and kCH(Q) satisfying Br∆Q(i)eQ 6= 0 and Br∆Q(j)fQ 6= 0. Let X be a bounded
complex of OGb-OHc bimodules whose terms are finite direct sums of summands of the OGb-OHc-
bimodules OGi ⊗

OQ
jOH, where Q runs over the subgroups of P . The following are equivalent:

(i) The complex X induces a stable equivalence.

(ii) For every non-trivial subgroup Q of P the complex eQX(∆Q)fQ is a Rickard complex of
kCG(Q)eQ-kCH(Q)fQ-bimodules.

Proof. Suppose that (i) holds. Write X ⊗
OHc

X∗ ∼= OGb ⊕ Y for some bounded complex Y of OGb-

OGb-bimodules which is homotopy equivalent to a complex of projective OGb-OGb-bimodules. Since
the Brauer construction with respect to a non-trivial p-subgroup sends any projective module to zero
and preserves homotopies, we get that Y (∆Q) ≃ {0} for any non-trivial subgroup Q of P . Thus, by
[17, 2.3] (or by 9.2 translated back to block algebras via 4.7) we get that

(eQX(∆Q)fQ) ⊗
kCH(Q)fQ

(fQX
∗(∆Q)eQ) ∼= eQ(X ⊗

OHc
X∗)(∆Q)eQ

≃ eQ(OGb)(∆Q)eQ = kCG(Q)eQ

for any non-trivial fully F-centralised subgroup Q of P . Since any subgroup of P is isomorphic, in
the fusion system F , to a fully F-centralised subgroup we get this isomorphism for any non-trivial
subgroup Q of P . In particular, eQX(∆Q)fQ is a Rickard complex for any non-trivial subgroup
Q of P . Suppose conversely that (ii) holds. Let Y be the mapping cone of the adjunction unit
OGb→ X ⊗

OHc
X∗. By the assumptions, the induced map

kCG(Q)eQ → (eQX(∆Q)fQ) ⊗
kCH(Q)fQ

(fQX
∗(∆Q)eQ)

is a homotopy equivalence, and so its mapping cone is contractible, for every non-trivial subgroup Q
of P . But as before, the right side is canonically isomorphic to eQ(X ⊗

OHc
X∗)(∆Q)eQ, and so the

corresponding mapping cone is eQY (∆Q)fQ. This is contractible, for every non-trivial Q. But then
in fact Y (∆Q) ≃ 0 for every non-trivial subgroup Q of P , thanks to 4.8. A theorem of Bouc [5, 7.9]
implies that Y is homotopy equivalent to a bounded complex of projective bimodules, whence (i). �

Theorem A.2. Let G be a finite group, let b be a block of OG with a defect group of order p2, set
H = NG(P ) and denote by c the block of OH satisfying Br∆P (b) = Br∆P (c). Let i ∈ (OGb)∆P and
j ∈ (OHc)∆P be source idempotents such that Br∆P (i) = Br∆P (j). There is a bounded complex of
OGb-OHc-bimodules whose components are finite direct sums of summands of the bimodules OGi ⊗

OQ

jOH, with Q running over the subgroups of P , such that X induces a stable equivalence.

Proof. If P is cyclic there is a Rickard complex of OGb-OHc-bimodules explicitly constructed by
Rouquier [26]; it is observed in [17, §7] that the components of this complex are as stated. Thus we
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may assume that P is elementary abelian of rank 2. The proof follows the lines of [27, 6.3]. Denote
by eQ and fQ the unique blocks of kCG(Q) and kCH(Q), respectively, satisfying Br∆Q(i)eQ 6= 0 and
Br∆Q(j)fQ 6= 0. Since P is abelian, the fusion systems on P determined by i and by j are equal to
that of kN(P, eP )eP . Hence, for any subgroup Q of P , we have

NG(Q, eQ)/CG(Q) ∼= NH(Q, fQ)/CH(Q)

and both sides are p′-groups. The blocks eQ, fQ lift to unique blocks êQ, f̂Q of OCG(Q), OCH(Q),

respectively. The images of êQ, f̂Q in OCG(Q)/Q, OCH(Q)/Q are blocks, denoted by ēQ, f̄Q,
respectively. If Q has order p then ēQ, f̄Q have the cyclic group P/Q as defect group, and CH(Q)/Q
is the normaliser in CG(Q)/Q of P/Q. Thus f̄Q is in fact the Brauer correspondent of ēQ. By
Rouquier’s construction of Rickard complexes for blocks with cyclic defect groups in [26, 10.3], there
is a Rickard complex of OCG(Q)/QēQ-OCH(Q)f̄Q-bimodules C̄Q of the form

C̄Q = · · · → 0 → N̄Q
Φ̄Q

−→ ēQOCG(Q)/Qf̄Q → 0 → · · ·

for some projective bimodule N̄Q. This complex lifts to a Rickard complex of OCG(Q)êQ-OCH(Q)f̂Q-
bimodules of the form

CQ = · · · → 0 → NQ
ΦQ

−→ eQOCG(Q)fQ → 0 → · · ·

whereNQ is a projective O(CG(Q)×OCH(Q))/∆Q-module lifting N̄Q, inflated to O(CG(Q)×CH(Q)),
and where ΦQ lifts the map Φ̄Q. By adapting arguments of Marcuş [20, 5.5] this complex extends to
the group

T = NG×H(∆Q) ∩ (NG(Q, eQ) ×NH(Q, fQ))

and T contains CG(Q) × CH(Q) as normal subgroup of p′-index by the above remarks. Thus NQ
remains projective when considered as OT/∆Q-module. We set

VQ = IndG×H
T (NQ) .

The inclusion CG(Q) ⊆ G induces an OT -homomorphism eQOCG(Q)fQ −→ bOGc, which, by ad-
junction, yields a homomorphism of O(G×H)-modules

αQ : IndG×H
T (eQOCG(Q)fQ) −→ bOGc .

Set ψQ = αQ ◦ IndG×H
T (ΦQ) : VQ → bOGc and define the complex X by

X = · · · → 0 → ⊕
Q
VQ

P

Q

ψQ

−→ bOGc→ 0 → · · ·

with bOGc in degree zero, where Q runs over a set of representatives of the NG(P, eP )-conjugacy
classes of subgroups of order p of P . If Q, R are two subgroups of order p which are not NG(P, eP )-
conjugate then VR(∆Q) = {0}. This implies that eQX(∆Q)fQ ≃ CQ ⊗

O
k, and this is a Rickard

complex of kCG(Q)eQ-CH(Q)fQ-bimodules. Moreover, bOGc is a direct summand of OGi ⊗
OP

jOH,

and VQ is a direct sum of summands of OGi ⊗
OQ

jOH because it is obtained from lifting, inflating

and inducing a projective bimodule. Thus Theorem A.1 applies, showing that X induces a stable
equivalence. �

Acknowledgement. The author would like to thank the referee for his valuable comments.



34 MARKUS LINCKELMANN

References
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