

City Research Online

City, University of London Institutional Repository

Citation: Linckelmann, M. (2007). Blocks of minimal dimension. Archiv der Mathematik, 89(4), pp. 311-314. doi: 10.1007/s00013-007-2242-z

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1890/

Link to published version: https://doi.org/10.1007/s00013-007-2242-z

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

BLOCKS OF MINIMAL DIMENSION

MARKUS LINCKELMANN

ABSTRACT. Any block with defect group P of a finite group G with Sylow-*p*-subgroup S has dimension at least $|S|^2/|P|$; we show that a block which attains this bound is nilpotent, answering a question of G. R. Robinson. Mathematics Subject Classification 2000: 20C20

Theorem. Let p be a prime and let \mathcal{O} be a complete local Noetherian commutative ring with algebraically closed residue field k of characteristic p. Let G be a finite group, let b be a block of $\mathcal{O}G$ with a defect group P and let S be a Sylow-p-subgroup of G. Then $\operatorname{rk}_{\mathcal{O}}(\mathcal{O}Gb) \geq |S|^2/|P|$, and if $\operatorname{rk}_{\mathcal{O}}(\mathcal{O}Gb) = |S|^2/|P|$ then b is a nilpotent block, the block algebra $\mathcal{O}Gb$ is isomorphic to the matrix algebra $M_{|S|/|P|}(\mathcal{O}P)$ and the algebra $\mathcal{O}P$ is a source algebra of b.

Nilpotent blocks were introduced in [2] as a block theoretic analogue of p-nilpotent finite groups. The proof of the Theorem is based on Puig's results in [6] on the bimodule structure of a source algebra of $\mathcal{O}Gb$ as $\mathcal{O}P$ - $\mathcal{O}P$ -bimodule and the structure theory of nilpotent blocks in [7]. Examples of blocks of minimal \mathcal{O} -rank include all blocks of p-nilpotent finite groups G with abelian $\mathcal{O}_{p'}(G)$ and, with P = 1, the block of the Steinberg module of a finite group of Lie type in defining characteristic.

We refer to Thévenaz [8] for background material on *p*-blocks of finite groups. In particular, with the notation of the Theorem, by a block of $\mathcal{O}G$ we mean a primitive idempotent *b* in $Z(\mathcal{O}G)$, and a defect group of *b* is a minimal subgroup *P* of *G* such that $\mathcal{O}Gb$ is isomorphic to a direct summand of $\mathcal{O}Gb \underset{\mathcal{O}P}{\otimes} \mathcal{O}Gb$ as $\mathcal{O}Gb$ - $\mathcal{O}Gb$ -binodule. This is equivalent to requiring that *P* is a maximal *p*-subgroup of *G* such that $\operatorname{Br}_P(b) \neq 0$,

$$\operatorname{Br}_P : (\mathcal{O}G)^P \longrightarrow kC_G(P)$$

where

is the Brauer homomorphism sending a P-stable element $\sum_{x \in G} \lambda_x x$ of the group algebra $\mathcal{O}G$ to the element $\sum_{x \in C_G(P)} \bar{\lambda}_x x$ in the group algebra $kC_G(P)$, where here $\bar{\lambda}_x$ is the canonical image of the coefficient $\lambda_x \in \mathcal{O}$ in the residue field k. The map Br_P is well-known to be a surjective algebra homomorphism. In particular, $\operatorname{Br}_P(b)$ is an

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

MARKUS LINCKELMANN

idempotent in $Z(kC_G(P))$, hence a sum of blocks of $kC_G(P)$. The blocks occurring in Br_P(b) are all conjugate under $N_G(P)$. More generally, a b-Brauer pair is a pair (Q, e)consisting of a p-subgroup Q of G and a block e of $kC_G(Q)$ such that Br_Q(b)e $\neq 0$. Following [1], the set of b-Brauer pairs admits a canonical structure of partially ordered G-set with respect to the conjugation action of G. This partial order has the property that for any b-Brauer pair (Q, e) and any subgroup R of Q there is a unique block f of $kC_G(R)$ such that (R, f) is a b-Brauer pair and such that $(R, f) \subseteq (Q, e)$. The block b is called *nilpotent* if $N_G(Q, e)/C_G(Q)$ is a p-group for any b-Brauer pair (Q, e). As a consequence of a theorem of Frobenius, the group G is p-nilpotent if and only if the principal block of $\mathcal{O}G$ is nilpotent, which explains the terminology.

Proof of the Theorem. The statement on the minimal possible rank of $\mathcal{O}Gb$ is wellknown, but we include a proof for the convenience of the reader. Choose a Sylow*p*-subgroup *S* of *G* such that $P \subseteq S$. Since $\mathcal{O}Gb$ is a direct summand of $\mathcal{O}G$ as $\mathcal{O}S$ - $\mathcal{O}S$ -bimodule, there is an \mathcal{O} -basis *X* of $\mathcal{O}Gb$ which is stable under left and right multiplication with elements in *S*. For any subgroup *R* of *S*, the set of "diagonal" fixpoints

$$X^R = \{ x \in X \mid uxu^{-1} = x \text{ for all } u \in R \}$$

is mapped by Br_R to a k-basis in $\operatorname{Br}_R((\mathcal{O}Gb)^R) = kC_G(R)\operatorname{Br}_R(b)$. Since P is maximal such that $\operatorname{Br}_P(b) \neq 0$, the set X^P is in particular non empty. Also, $\mathcal{O}Gb$ has vertex ΔP and trivial source as $\mathcal{O}(G \times G)$ -module, hence is a direct summand of $\operatorname{Ind}_{\Delta P}^{G \times G}(\mathcal{O})$, where $\Delta P = \{(u, u) \mid u \in P\}$. Mackey's formula implies that every indecomposable direct summand of $\mathcal{O}Gb$ as $\mathcal{O}S$ - $\mathcal{O}S$ -bimodule is of the form $\operatorname{Ind}_Q^{S \times S}(\mathcal{O})$ for some subgroup Qof $S \times S$ of the form $S \times S \cap {}^{(x,y)}\Delta P$ with $x, y \in G$; in particular, Q has order at most |P|. In other words, the stabiliser of any element $x \in X$ in $S \times S$ has at most order |P|.

Let $x \in X^P$. The stabiliser of x in $S \times S$ contains ΔP but has at most order |P|, hence is equal to ΔP . Thus the \mathcal{OS} - \mathcal{OS} -bimodule $\mathcal{O}[SxS]$ generated by x is a direct summand of \mathcal{OGb} as \mathcal{OS} - \mathcal{OS} -bimodule isomorphic to $\mathcal{OS} \otimes \mathcal{OS}$. In particular,

$$\operatorname{rk}_{\mathcal{O}}(\mathcal{O}Gb) \ge \operatorname{rk}_{\mathcal{O}}(\mathcal{O}S \underset{\mathcal{O}P}{\otimes} \mathcal{O}S) = |S|^2/|P|$$

In order to show that b is nilpotent we use a result of Puig [6, 3.1] in the form as described in [4, 7.8]. Let $i \in (\mathcal{O}Gb)^P$ be a primitive idempotent in the algebra of fixpoints in $\mathcal{O}Gb$ with respect to the conjugation action by P on $\mathcal{O}Gb$ such that $\operatorname{Br}_P(i) \neq 0$; that is, i is a source idempotent for b and the algebra $i\mathcal{O}Gi$ is a source algebra of b. Since i commutes with the action of P, the source algebra $i\mathcal{O}Gi$ is also a direct summand of $\mathcal{O}Gb \cong \mathcal{O}S \otimes \mathcal{O}S$ as $\mathcal{O}P$ - $\mathcal{O}P$ -bimodule. As a consequence of results $\stackrel{\circ}{\mathcal{O}P}$ in [1], the choice of the source idempotent i determines a fusion system $\mathcal{F} = \mathcal{F}_{(P,e)}(G,b)$ on P, where e is the unique block of $kC_G(P)$ such that $\operatorname{Br}_P(i)e = \operatorname{Br}_P(i)$; this makes sense as $\operatorname{Br}_P(i)$ is a primitive idempotent in $kC_G(P)$. More precisely, for any subgroup Q of P we have $\operatorname{Aut}_{\mathcal{F}}(Q) \cong N_G(Q, e_Q)/C_G(Q)$ where e_Q is the unique block of $kC_G(Q)$ such that $(Q, e_Q) \subseteq (P, e)$. See e.g. [3] or [5], for more details on fusion systems of blocks. Now let Q be a subgroup of P and let $\varphi \in \operatorname{Aut}_{\mathcal{F}}(Q)$. Denote by $_{\varphi}\mathcal{O}Q$ the $\mathcal{O}Q$ - $\mathcal{O}Q$ -bimodule which is, as \mathcal{O} -module, equal to $\mathcal{O}Q$ but with $u \in Q$ acting on the left by multiplication with $\varphi(u)$ and on the right by multiplication with u. By [4, 7.8], the $\mathcal{O}Q$ - $\mathcal{O}Q$ -bimodule $_{\varphi}\mathcal{O}Q$ is isomorphic to a direct summand of $i\mathcal{O}Gi$ as $\mathcal{O}Q$ - $\mathcal{O}Q$ -bimodule. Thus $_{\varphi}\mathcal{O}Q$ is isomorphic to a direct summand of $\mathcal{O}S \otimes_{\mathcal{O}P} \mathcal{O}S$ as $\mathcal{O}Q$ - $\mathcal{O}Q$ -bimodule. This forces φ to be induced by conjugation with an element in $N_S(Q)$. In particular, φ is a *p*-automorphism of Q. Thus $\operatorname{Aut}_{\mathcal{F}}(Q)$ is a *p*-group for all subgroups Q of P, and hence b is a nilpotent block.

By the general structure theory of nilpotent blocks [7], the block algebra $\mathcal{O}Gb$ is isomorphic to a matrix algebra $M_n(\mathcal{O}P)$; in particular, the block *b* has a unique isomorphism class of simple modules. If *V* is a simple $\mathcal{O}Gb$ -module then *V* has the defect group *P* as vertex and an endo-permutation *kP*-module *W* as source. This source is trivial if and only if the source algebra $i\mathcal{O}Gi$ is isomorphic to $\mathcal{O}P$. Dimension counting yields $\operatorname{rk}_{\mathcal{O}}(\mathcal{O}Gb) = n^2|P| = |S|^2/|P|$, hence $\dim_k(V) = n = [S:P]$. Now *V* is a direct summand of $\operatorname{Ind}_{\mathcal{P}}^G(W)$, hence by Mackey's formula, $\operatorname{Res}_{\mathcal{S}}^G(V)$ is a direct sum of direct summands of $\operatorname{Ind}_{\mathcal{S}\cap^x P}^S(^xW)$ with $x \in G$. Green's indecomposability theorem [8, (23.6)] forces $S \cap {}^xP = {}^xP$ and $\dim_k(W) = 1$, hence *W* is the trivial *kP*-module. \Box

Remark. If $\mathcal{O}Gb$ has \mathcal{O} -rank $|S|^2/|P|$ then the first part in the proof of the Theorem says that $\mathcal{O}Gb \cong \mathcal{O}S \otimes \mathcal{O}S$ as $\mathcal{O}S$ - $\mathcal{O}S$ -bimodules for any defect group P of b contained in S. Thus, if $x \in G$ such that ${}^{x}P \subseteq S$ then $\mathcal{O}S \otimes \mathcal{O}S \cong \mathcal{O}S \otimes \mathcal{O}S$, which forces ${}^{x}P =$ ${}^{u}P$ for some $u \in S$. It follows that the set $\operatorname{Hom}_{G}(P,S)$ of group homomorphisms from P to S induced by conjugation with elements in G is equal to $\operatorname{Hom}_{S}(P,S) \circ \operatorname{Aut}_{G}(P)$ or equivalently, $N_{G}(P,S) = SN_{G}(P)$, where $N_{G}(P,S) = \{x \in G \mid {}^{x}P \subseteq S\}$. In other words, the fact that P is a defect group of a block of minimal \mathcal{O} -rank has implications for the fusion system of the group itself.

References

- 1. J. L. Alperin, M. Broué, Local methods in block theory, Ann. Math. 110 (1979), 143–157.
- 2. M. Broué, L. Puig, A Frobenius theorem for blocks, Invent. Math. 56 (1980), 117–128.
- R. Kessar, M. Linckelmann, G. R. Robinson, Local control in fusion systems of p-blocks of finite groups, J. Algebra 257 (2002), 393–413.
- M. Linckelmann, On splendid derived and stable equivalences between blocks of finite groups, J. Algebra 242 (2001), 819–843.
- M. Linckelmann, Simple fusion systems and the Solomon 2-local groups, J. Algebra 296 (2006), 385–401.
- 6. L. Puig, Local fusion in block source algebras, J. Algebra 104 (1986), 358-369.
- 7. L. Puig, Nilpotent blocks and their source algebras, Invent. Math. 93 (1986), 77-116.
- J. Thévenaz, G-Algebras and Modular Representation Theory, Oxford Science Publications, Clarendon Press, Oxford, 1995.

Markus Linckelmann Department of Mathematical Sciences Meston Building Aberdeen, AB24 3UE United Kingdom