

City, University of London Institutional Repository

Citation: Tran, S.N. & d'Avila Garcez, A. S. (2018). Deep Logic Networks: Inserting and

Extracting Knowledge from Deep Belief Networks. IEEE Transactions on Neural Networks
and Learning Systems, 29(2), pp. 246-258. doi: 10.1109/tnnls.2016.2603784

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/19150/

Link to published version: https://doi.org/10.1109/tnnls.2016.2603784

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

1

Deep Logic Networks: Inserting and Extracting
Knowledge from Deep Belief Networks

Son N. Tran and Artur S. d’Avila Garcez*

Abstract—Developments in deep learning have seen the use
of layer-wise unsupervised learning combined with supervised
learning for fine-tuning. With this layer-wise approach, a deep
network can be seen as a more modular system which lends itself
well to learning representations. In this paper we investigate
whether such modularity can be useful to the insertion of
background knowledge into deep networks, and whether it
can improve learning performance when it is available, and to
the extraction of knowledge from trained deep networks, and
whether it can offer a better understanding of the representations
learned by such networks. To this end we use a simple symbolic
language - a set of logical rules which we call confidence rules -
and show that it is suitable for the representation of quantitative
reasoning in deep networks. We show by knowledge extraction
that confidence rules can offer a low-cost representation for layer-
wise networks (or restricted Boltzmann machines). We also show
that layer-wise extraction can produce an improvement in the
accuracy of Deep Belief Networks. Furthermore, the proposed
symbolic characterisation of deep networks provides a novel
method for the insertion of prior knowledge and training of
deep networks. With the use of this method, a deep neural-
symbolic system is proposed and evaluated, with experimental
results indicating that modularity through the use of confidence
rules and knowledge insertion can be beneficial to network
performance.

Index Terms—Neural-Symbolic Integration, Deep Belief Net-
works, Knowledge Representation and Reasoning, Deep Learn-
ing, Knowledge Extraction

I. INTRODUCTION

Knowledge representation and reasoning are two impor-
tant topics in Artificial Intelligence (AI). Since the early

years of AI, researchers have sought to represent knowledge
in symbolic form to facilitate automated reasoning and help
explain a machine’s conclusions much like humans do. The
benefits of having a symbolic representation are that knowl-
edge can be verified formally, consolidated into knowledge-
bases which can offer insight into the nature of the problem
domain, and used to provide explanations for the answers
produced by the system e.g. in the form of proofs.

Although symbolic representations have been deployed suc-
cessfully in many intelligent and multi-agent systems, flexible
representations and forms of reasoning are needed that can
account for the inherent uncertainty in the problems tackled
by AI [1], [2], such as for example handling noise in video
and audio data. In such domains, statistical models such
as deep networks seem capable of approximating a desired
input-output function well purely from data for application
in a range of classification tasks. More specifically, a Deep

*Garcez and Tran are with the Department of Computer Science, City
University London, London, EC1V 0HB, UK e-mail: son.tran.1@city.ac.uk,
aag@soi.city.ac.uk

Belief Network (DBN) [3] can be constructed by stacking
several generative Restricted Boltzmann Machines (RBMs)
[4]. Nevertheless, scientists are still concerned about offering
a better understanding of how such complex systems work [5].

Within the area of neural-symbolic computing [6], [7] ef-
forts have been placed on how knowledge can be inserted and
extracted from neural-network models [8], [9]. Background
knowledge insertion, whenever it is available, is expected
to offer an alternative to network pre-training. Knowledge
extraction after training is expected to provide explanations
[10], [11], [12], [13], [14], as already mentioned. A major
challenge which has not been addressed fully yet is how to
build an efficient neural-symbolic system capable of capturing
the semantic meaning of a domain within a simple represen-
tation while supporting flexible inference given large-scale,
noisy data, particularly from image, video and audio data.

Results in deep learning [3], [15] have shown that the
combination of unsupervised (layer-wise, modular) network
training with supervised training (also known as fine-tuning,
using back-propagation) over multiple network layers can
provide an effective way of learning and representing complex
patterns. Bottou [16] argues that modularity should be key to
building a reasoning system that combines rich inference and
simple manipulations from linked models.

In this paper, we study the effects of modularity on a
hierarchical network from a neural-symbolic perspective. We
propose and evaluate methods and algorithms for inserting
hierarchical knowledge into deep networks, and for knowledge
extraction from deep networks following network training
[9]. A simple symbolic language for hierarchical knowledge
representation, named confidence rules [17], [18], [19], is
deployed and evaluated. Confidence rules are shown em-
pirically to be suitable for combining symbolic knowledge
and quantitative reasoning, including probabilistic inference in
deep networks. Each confidence rule is associated with a real
number called a confidence value c such that a rule of the form
c : h ↔ x1 ∧ ¬x2 ∧ x3 denotes that h holds with confidence
c if x1 holds, x2 does not hold, and x3 holds. In order to
perform inference under uncertainty dealing with continuous-
valued data as well as missing values, an extension of the
traditional modus-ponens logical inference rule is introduced.
A novel and efficient knowledge extraction algorithm is then
shown capable of deriving useful confidence rules from DBNs
trained directly from data. Finally, we study how to insert prior
knowledge into deep networks. In previous work [20], [21],
prior knowledge such as local information of image batches
was used to improve learning of deep networks. In this paper,
we study the effects of inserting hierarchical knowledge into
deep networks. We introduce a deep neural-symbolic system

2

capable of encoding symbolic knowledge into DBNs and
leveraging the above inference algorithm to guide and improve
learning of the model.

The paper is organised as follows. The next section reviews
the related literature in DBNs and neural-symbolic integration.
Section III defines confidence rules and shows their relation-
ship with Deep Networks. Section IV proposes and evaluates
the general algorithm for extracting symbolic knowledge from
RBMs, and extends it to deal with DBNs. Section V shows
how prior knowledge in the form of hierarchical confidence
rules can be encoded effectively into Deep Networks, and how
this can improve learning performance in comparison with
DBNs. Section VI concludes the paper and discusses directions
for future work.

II. PRELIMINARIES

A. Notation

Matrices and vectors are denoted using boldface capital
letters X and boldface letters x, respectively. A subscript is
used to denote an element of a matrix or vector, for example
xij and xi. A vector xj denotes the column j of matrix
X. While numerical variables are denoted as x, a logical
proposition is denoted as x, and it assumes two possible values:
true or false, which are equivalent to a binary variable x with
values 1 and 0, respectively.

B. Deep Networks

In unsupervised learning, deep networks [3], [22], [15] have
been established as a powerful architecture for the learning of
features at different levels of abstraction. For example, a Deep
Belief Network (DBN) [3] can be constructed by stacking
several generative Restricted Boltzmann Machines (RBMs) [4]
one on top of another in order to learn better representations
of unlabelled data. Shallow generative networks with a single
hidden layer such as RBMs have an advantage that inference,
i.e. the conditional probability of a unit’s state given the states
of the other units, can be computed exactly. However, they
are limited in their learning to a single level of representation
[15]. Deep architectures [23], [20], [3], [24], [25], on the other
hand, are connectionist systems that consist of many hidden
layers, and therefore are capable of learning representations at
multiple levels of abstraction. Even though these deep models
are complex in terms of learning, e.g. their cost function is
non-convex, research has shown that they can scale better than
their shallow counterparts [15].

Formally, one can represent a deep belief network as a
hierarchy of network layers X,H(1), ...,H(L), where X is
a visible layer and H(l) (l = 1 : L) are hidden layers.
Let us consider a network with a single hidden layer (L=1;
i.e. a restricted Boltzmann machine [4], [26]). This two-layer
connectionist model is characterised by an energy function:

E(x,h(1)) = −
∑
ij

xiwijh
(1)
j −

∑
i

aixi −
∑
j

bjh
(1)
j (1)

where wij ∈W is the weight between unit i in layer X and
unit j in layer H(1), ai and bj are the biases of the units in X

and H(1), respectively. For learning, one can train the model
by maximising the log-likelihood:

logP (x) = log

∑
h(1) e−E(x,h(1))

Z
(2)

where Z is the partition function Z =
∑

x,h(1) e−E(x,h(1)).
The gradient of this function, call it 5θ, can be computed

as follows:

5θ = E
[∂E(x,h(1); θ)

∂θ

]
h(1)|x−E

[∂E(x,h(1); θ)

∂θ

]
x,h(1) (3)

Here, we get into a common problem in statistical machine
learning: even though the first term can be computed exactly,
the second term is intractable as the complexity of computing
the joint probability P (x,h(1)) increases exponentially with
the size of x and h(1). This is typically a serious problem
because most real-world applications such as video analysis
will have a large number of attributes x. Now, if we generalise
the model into a deep network with multiple hidden layers,
the problem of intractability worsens with the dependency
between hidden layers, to the point that one becomes unable
to compute the conditional probability P (h(l)|x) exactly from
the data.

The common way to avoid the above intractability is to learn
a deep network layer by layer [3], [24], [27]. To this end, the
deep network is used as a stack of several shallow networks,
each having a single hidden layer. Training of each layer is
performed bottom-up with the focus now turned to how Eq.
2 can be solved approximately. This is called layer-wise pre-
training. After that, the fine-tuning phase trains the network
as a whole using the parameters which have been initialised
by the pre-training phase. In this paper, we are interested in
investigating such modularity property and the hierarchical
reasoning that takes place within deep networks. Therefore, we
focus on layer-wise training as a key component in learning
complex models. We exclude the fine-tuning phase from our
models, since it can break the modularity of the models by
treating them as traditional multi-layer neural networks [15].

C. Neural-Symbolic Systems

Considerable research has been devoted to the integration
of symbolic knowledge and connectionist systems [28], [29],
[17], [8], [9], [30], [6], [31], [32]. The first reason for this
is that symbolic rules can represent knowledge in a formal
language and therefore offer a formal semantics to models
and systems. The second is that one may find symbolic
knowledge helpful when seeking a better understanding of the
connectionist models learned or when seeking to add prior
knowledge to such models. Furthermore, symbolic knowledge
extracted from a connectionist model can be employed as a
foundation for some other sub-areas of Artificial Intelligence,
e.g. knowledge-based transfer learning [33].

In several circumstances, prior knowledge can be provided
by domain experts, frequently in the form of symbolic logic
rules. Such a use of domain knowledge has been shown
capable of improving model learning. In [34], a model named
KBANN (Knowledge-Based Artificial Neural Networks) was

3

proposed. KBANN uses multi-layer feedforward networks and
a method for encoding rules into the networks to enable
learning from data and background knowledge. In [35], the
CILP (Connectionist Inductive Logic Programming) system
was introduced. Inspired by KBANN, CILP uses logic pro-
gramming rules applied to recurrent neural networks to achieve
an improvement in performance in comparison with KBANN
at learning from data and background knowledge.

Symmetrical systems such as Markov networks and recur-
rent temporal restricted Boltzmann machines also have been
used for neural-symbolic integration. In [36], a method is
presented for encoding background knowledge into a template
Markov network (named Markov Logic Network, MLNs)
which is used to create a ground Markov network representing
the relationships between all the instances in the data. The idea
of representing each formula into a clique of Markov network
is similar to that of Penalty Logic which has been proposed
to integrate symbolic knowledge and Hopfield networks [32].
The difference is that in MLNs a feature is defined by the
number of true groundings of the formulas corresponding to
a clique in the template model, while in Penalty Logic [32]
a feature is defined by the multiplication of the variables
in the clique. In practice, MLNs work well in a variety of
relational domains; however, the models learned are not as
comprehensible as one would expect from a symbolic model
due to the size of the ground Markov network and exponential
nature of such grounding. A more recent development in
neural-symbolic integration is the Neural-Symbolic Cognitive
Agent (NSCA) introduced in [17] in which a model based on
recurrent temporal restricted Boltzmann machines (RTRBM)
is proposed to represent temporal symbolic knowledge and
applied to online learning and reasoning. The NSCA model
contains algorithms for learning and extraction of temporal
logic rules by sampling the RTRBM. It has been applied
successfully to driving assessment and training in simulators.

For decades, neural networks have been used successfully
as a learning model, from which symbolic rules can be
extracted through the use of knowledge extraction algorithms
[29], [8], [9]. However, most extraction algorithms exist for
discriminative models which do not support modularity. We
argue that the modularity found in deep networks may facil-
itate knowledge extraction, in particular improving efficiency
of extraction from large networks. Most such discriminative
extraction approaches treat the class variables as a special
type of variable. As a result, the rules which are extracted
may be helpful at explaining the relationships between all
other variables and the class variables, but not the relationships
that might exist among such other variables. For example,
suppose a discriminative neural network was trained perfectly
to learn the XOR function (denoted by ⊕ below) from its
truth-table. Discriminative knowledge extraction might pro-
duce the rule x3 ↔ x1 ⊕ x2, with x3 as the class variable,
but fail to capture equally valid rules x1 ↔ x2 ⊕ x3 and
x2 ↔ x1 ⊕ x3. In what follows, we introduce an efficient
method for symbolic knowledge extraction from generative
models, specifically RBMs, which can capture such relations.
Efficiency is measured by the computational complexity of the
rule extraction, as discussed in Section IV, which instead of

depending on the combinations of the input vectors (which
might be intractable for real-valued inputs or a large number
of attributes x), uses the network structure for extraction,
depending on the values of the network’s weight vectors W
structured hierarchically. Knowledge extraction from DBNs
will then be performed layer-by-layer through the extraction
of confidence rules from each RBM [18], [19], [17].

III. CONFIDENCE RULES

Classical logical reasoning has been found difficult to adapt
to account for uncertainty in complex domains, with various
non-classical ways of integrating logic and probabilities having
been proposed towards this end (for a recent account, c.f. [37]).
One way of accounting for uncertainty has been by assigning
a real value between 0 and 1 (a probability) to each logical
variable so that if, say, x is false, given the truth-table shown
in Table I, one can conclude that the probability of y being
true is 0.5.

In what follows we define confidence rules which will
be used for combining symbolic representations and deep
networks. Confidence rules support the above form of quan-
titative inference, useful for reasoning under uncertainty in
a way similar to Penalty Logic [32]. In order to perform
inference using confidence rules, dealing with continuous data
and missing values, we introduce an algorithm that extends the
standard modus-ponens logical inference rule, as detailed next.

x y (x↔ y)
false false true
false true false
true false false
true true true

TABLE I: Truth-table for bi-conditional (if-and-only-if).

A. Confidence Rules

A confidence rule is a bi-conditional (if-and-only-if) for-
mula of the form c : h↔ x1 ∧ · · · ∧ xn, where h is an atomic
proposition and each xi, 1 ≤ i ≤ n, is a literal (an atomic
proposition or its negation), labelled by a real-valued number
c called a confidence value [17]. For example, the formula:

1.5 : h↔ x1 ∧ ¬x2 ∧ x3 (4)

associates hypothesis (hidden unit) h with beliefs (visible
units) x1, x2, x3 with confidence value 1.5. The confidence
value as defined in this paper is similar to the penalty used
by Penalty Logic [32], formula weights from Markov Logic
Networks [36], and confidence credibility used by Neural-
Symbolic Cognitive Agents [17]. However, a main difference
from all of these is that, in this paper, confidence values are
used for quantitative inference by selecting rules for extraction
based on their confidence. Specifically, given the confidence
values of two formulas, one can quantitatively decide, because
of the way that the values will be calculated, which formula
should be selected for extraction. In what follows, we describe
the inference algorithm for confidence-logic rules.

4

INFERENCE RULE: INF1
Given:
c : h↔

∧
∀t∈T xt ∧

∧
∀k∈K ¬xk

αt′ : xt′ where t′ ∈ T, αt′ ∈ [min,max]
αk′ : xk′ where k′ ∈ K,αk′ ∈ [min,max]
Infer:
αh : h with αh = c · (

∑
t′ αt′ +

∑m∈T
m 6=∀t′ αm −

∑
k′ αk′ −

∑m∈K
m 6=∀k′ αm)

where αm = min+max
2

B. Hierarchical Inference
Many logic programming systems have hierarchical rules in

which intermediate literals exist. An intermediate literal is a
literal that appears in the antecedent (or body) of some rule
and in the consequent (or head) of another rule. For example,
in the background theory of the DNA promoter dataset used
by [8] (Table II), literals minus35, minus10, contact and
conformation are intermediate literals. In what follows, we
will use the same promoter dataset to exemplify our work.
We represent the name of each nucleotide with its position
in subscript, e.g. t−35 denotes that nucleotide t appears at
position −35 in the DNA sequence.

L-1{ minus35 ← t−36 ∧ t−35 ∧ g−34 ∧ a−33 ∧ c−32

minus10 ← t−12 ∧ a−11 ∧ t−7

conformation ← a−45 ∧ a−44

conformation ← a−44 ∧ a−41}
L-2{ contact ← minus35 ∧minus10 }
L-3{ promoter ← contact ∧ conformation}

TABLE II: Hierarchy of rules used as background knowledge
for the promoter DNA dataset; the first four rules appear in
level L1 of the hierarchy, then level L2, and so on. Each level
will be mapped onto a layer of a DBN.

Confidence rules can also be organised into hierarchies, and
inference is performed bottom-up: for each subset of rules
in the hierarchy, the confidence value of each hypothesis in
the subset is inferred, given the confidence value of each
belief that is present. This value is then normalised before
being used for inference, now as beliefs, at the next level
of the hierarchy using another subset of the rules. Here,
normalisation is required to maintain correspondence between
the propositions in the rules and the units of the RBMs. The
following definition formalises this idea.

Definition 3.1: Let β(1) be a set of confidence rules relating
a set of beliefs x1, x2, ... and a set of hypotheses h

(1)
1 , h

(1)
2 ,

Let β(2) be a set of confidence rules relating hypotheses
h
(1)
1 , h

(1)
2 , ... and new hypotheses h(2)1 , h

(2)
2 , Let β(3) be a set

of confidence rules relating hypotheses h
(2)
1 , h

(2)
2 , ... and new

hypotheses h(3)1 , h
(3)
2 , ..., and so on. We call β(1), β(2), β(3), ...

a hierarchical weighted knowledge-base.
Given an input to any sequence β(1), β(2), ..., β(i) of a

hierarchical weighted knowledge-base, local inference can be
carried out and results propagated to β(i+1). This type of
inference can be seen as an extension of modus-ponens to
deal with uncertainty through the calculation of confidence
values, which allows logical inference to work with real-valued
data types through the application of inference rule INF1, as
defined above.

Algorithm 1 QUANT INFERENCE

1: Initialise the set of beliefs B in level 1 to αi : x
(1)
i , where

each belief has a value α(1)
i (α(1)

i can be seen as the input
value of visible unit xi corresponding to proposition xi);

2: for l = 1 to L do
3: Initialise the set of beliefs Bnext at the next level to

zero, i.e. 0 : x
(l+1)
j

4: for each rule r in level l do
5: Calculate the confidence value α of the hypotheses

in r using INF1;
6: Normalise α;
7: Increase the confidence value of the beliefs in

Bnext that are associated with the hypotheses in r by the
normalised α;

8: end for
9: Set B = Bnext

10: end for

In inference rule INF1, T and K are sets of positive and
negative literals, respectively. The confidence value αm of any
missing beliefs is the average of an upper-bound and a lower-
bound on the normalised confidence values in the rule set. For
example, given the rule and beliefs:

1.5 : h↔ x1 ∧ ¬x2 ∧ x3
1 : x1, normalised to [0, 1]
x2 is missing
1 : x3, normalised to [0, 1]
one uses α2 = 0.5 to derive h with confidence value 1.5×

(2− 0.5) = 2.25.
In this process, with normalisation bounded by [min,max],

if ¬x has confidence value α then x must have confidence value
min+max−α. Algorithm 1 specifies the inference process.

IV. KNOWLEDGE EXTRACTION FROM DEEP NETWORKS

In this section, we focus on the extraction of knowledge
in the form of confidence rules from deep networks. In order
to build hierarchies of confidence rules, we employ a layer-
wise approach [3], [15] to extract rules from each layer of a
deep network. In what follows, we introduce the algorithm for
knowledge extraction from RBMs, and then we extend it to
deep networks. For ease of presentation, we omit the biases;
however, the approach below can be extended easily to include
biases.

A. Knowledge Extraction from RBMs

We now propose an algorithm for extracting rules from a
trained RBM. For each hidden unit j, a confidence rule is
extracted of the form:

5

cj : hj ↔
∧
∀t∈T

xt ∧
∧
∀k∈K

¬xk (5)

where xt and ¬xk represent the literals xt = 1 and xt = 0,
respectively. The idea behind the extraction algorithm is that it
seeks to find the positive and negative literals and confidence
values cj that minimise information loss, according to the
following equation:

Iloss =
∑
ij

‖wij − cjIj(xi)‖2 (6)

where cj is the confidence value of rule j corresponding to
unit j in a hidden layer, and:

Ij(xi) =

 1 if literal xi appear in rule j
−1 if literal ¬xi appear in rule j
0 otherwise

(7)

For ease of notation, let us use sij = Ij(xi), such that Eq.
6 becomes:

Iloss =
∑
ij

‖wij − cjsij‖2 (8)

Since Eq. (8) is quadratic, the confidence values can be found
by setting the derivatives to zero, as follows.∑

i

2(wij − cjsij)sij = 0, for all j∑
i

wijsij − cj
∑
i

s2ij = 0, for all j
(9)

From Eq. (9), we obtain:

cj =

∑
i wijsij∑

i s
2
ij

(10)

Since the value of sij is in the set {−1, 0, 1}, we have:

‖wij − cjsij‖2 = ‖abs(wij)− cj
sij

sign(wij)
‖2 =

=

 (abs(wij) + cj)
2 if sij 6= sign(wij)

(abs(wij)− cj)2 if sij = sign(wij)
abs(wij)

2 if sij = 0
(11)

Here, abs(wij) and sign(wij) are functions that return,
respectively, the absolute value and sign of wij . Since
(abs(wij) + cj)

2 > (abs(wij)− cj)2 and (abs(wij) + cj)
2 >

abs(wij)
2, the information loss will be minimised if sij =

sign(wij) or sij = 0. In particular, sij = 0 will minimise the
loss function if and only if:

abs(wij)
2 ≤ (abs(wij)− cj)2

cj
2
≥ abs(wij)

(12)

The intention here is that for each rule j, an input xi with
small weight abs(wij) ≤ cj/2 should not appear in the rule.
The rule, therefore, only captures the relations between input
variables having strong connection through the hidden unit j.
From Eq. (10) and Eq. (12), the extraction algorithm below is
derived.

Algorithm 2 RBM EXTRACT

Require: An RBM with visible layer V and hidden layer H
1: for j = 1 to the number of hidden units do
2: Create rule rj of the form cj : hj ↔

∧
wtj>0 xt ∧∧

wkj<0 ¬xk
3: Create sign matrix S with each sij = sign(wij)
4: Do
5: cj :=

∑
sij 6=0 abs(wij)∑

i s
2
ij

6: for each sij 6= 0 do
7: if cj ≥ 2 · abs(wij) then
8: sij := 0
9: Remove xi or ¬xi from rule rj

10: end if
11: end for
12: Until the value of cj is unchanged
13: end for

Suppose an RBM has I visible units and J hidden units.
Rule extraction Algorithm 2 has worst-case time complexity
O(I × J). This is an improvement on searching through the
combinations of input vectors, which has worst-case time
complexity O(2I).

A working example (XOR problem): In this example, we
show how confidence rules can be extracted from an RBM
trained on the XOR function shown in Table III. An RBM
with visible units x1, x2, x3 and 10 hidden units was trained
to learn this truth-table using input value 0 to denote truth-
value false, and input value 1 to denote true.

x1 x2 x3
false false false
false true true
true false true
true true false

TABLE III: Truth-table for XOR function

In this example, 10 rules exist with antecedents x1, x2 and
x3, and consequent hi, 1 ≤ i ≤ 10. The rules extracted
from the trained RBM are shown below: Assuming that x3

1.340 : h1 ↔ x1 ∧ ¬x2 ∧ x3 1.677 : h6 ↔ ¬x1 ∧ x2 ∧ x3
2.970 : h2 ↔ x1 ∧ ¬x2 ∧ x3 2.544 : h7 ↔ x1 ∧ ¬x2 ∧ x3
6.165 : h3 ↔ ¬x1 ∧ x2 ∧ x3 7.355 : h8 ↔ x1 ∧ x2 ∧ ¬x3
0.158 : h4 ↔ ¬x1 ∧ x2 ∧ ¬x3 6.540 : h9 ↔ ¬x1 ∧ ¬x2 ∧ ¬x3
2.481 : h5 ↔ x1 ∧ ¬x2 ∧ x3 4.868 : h10 ↔ ¬x1 ∧ ¬x2 ∧ ¬x3

TABLE IV: Rules extracted from RBM trained on XOR

is a target proposition, one can see by inspecting Table IV
that, among the rules with the higher confidence values, x3 is
associated with either x1 ∧ ¬x2 or with ¬x1 ∧ x2. Similarly,
¬x3 is associated with ¬x1 ∧¬x2 or with x1 ∧ x2, as expected.
In this case, a rule such as 7.355 : h8 ↔ x1 ∧ x2 ∧ ¬x3 can
be read as: If x1 is true and x2 is true then, assuming that h8
is true, z should be false with confidence 7.355. Notice how
in this way any subset of the visible units could have been
assumed to be the target proposition.

Given a trained RBM, it is clear that Algorithm 2 would
also apply to any subset I of the RBM’s visible units. The

6

algorithm could equally be applied from the hidden units to
the remaining visible units not in I. In this way, an RBM where
the visible units have been split into input and target units can
be seen as a single-hidden-layer DBN to which Algorithm
2 is applied twice for the sake of rule extraction. This idea
will be explored in detail in the next section. Returning to the
XOR example, assuming I={x1, x2}, the following rules can
be extracted:

1.499 : h1 ↔ x1 ∧ ¬x2 1.908 : h6 ↔ ¬x1 ∧ x2
2.782 : h2 ↔ x1 ∧ ¬x2 2.638 : h7 ↔ x1 ∧ ¬x2
6.134 : h3 ↔ ¬x1 ∧ x2 7.375 : h8 ↔ x1 ∧ x2
0.139 : h4 ↔ ¬x1 ∧ x2 6.433 : h9 ↔ ¬x1 ∧ ¬x2
2.582 : h5 ↔ x1 ∧ ¬x2 4.823 : h10 ↔ ¬x1 ∧ ¬x2

5.720 : x3 ↔ h1 ∧ h2 ∧ h3 ∧ ¬h4 ∧ h5 ∧ h6 ∧ h7 ∧ ¬h8 ∧ ¬h9 ∧ ¬h10

TABLE V: Rules from part of the RBM trained on XOR

From the above rules, an assignment of truth-values to x1
and x2 allows us to derive confidence values for x3 by applying
Inference Rule INF1. In this example, as expected, x3 will have
a high confidence value when either x1 is true and x2 is false
or vice-versa, but not when both x1 and x2 are assigned the
same truth-value.

Notice that, if either x1 or x2 were chosen as target variable,
the same procedure above could be applied, without the need
for retraining the RBM. Differently from extraction from
supervised models [8], [9], here the target does not have to
be chosen in advance and the model retrained for each target.

Low-cost Representation: In RBMs, the state of the hidden
units given the state of the visible units can be used as
latent features which, in many cases, can improve the training
of a classifier. Frequently, the accuracy of, say, a Support
Vector Machine (SVM) will improve when it is trained having
latent features such as the state of an RBM’s hidden units as
input, instead of raw data (that is, the state of the RBM’s
visible units). Let us investigate whether the same holds for
confidence rules. Given one’s confidence in a set of beliefs,
the confidences of the hypotheses referred to by the confidence
rules can be inferred using rule of inference INF1. These
confidence values can also be used as input to a classifier. In
what follows, we compare the performance of RBMs with that
of confidence rules on large image data sets. The confidence
rules are shown to offer a more compact representation than
RBMs.

We compare the performances of the confidence rules and
the latent features of the RBM using three datasets: the TiCC
handwritten characters, the MNIST handwritten digits, and the
Yale faces dataset. All three datasets consist of images with
pixel values ranging from 0 to 255, which are then normalised
onto the interval [0-1]. Hence, for the purpose of carrying out
inference using the rules we convert each pixel value xi = αi

into a proposition xi having confidence value αi. The TiCC
dataset consists of 18, 189 training samples, 1, 250 validation
samples, and 18, 177 test samples. The MNIST consists of
60, 000 training and 10, 000 test samples. The Yale dataset
contains 135 training and 30 test samples. Model selection
was performed by running a grid search (except for the Yale
dataset) over the learning rates for the RBMs (between 0.001

and 1), and for the SVM, cost (between 0.0001 and 100)
and gamma (between 0.0001 and 100), all on a log-scale.
On the MNIST dataset, for efficiency, we have used 10, 000
samples for training and 2, 000 samples for validation. Once
the best hyper-parameters were selected, the entire set of
60, 000 samples was used for training the best model, as
is normally the case, which was then tested on the unseen
10, 000 test samples. The number of hidden units was fixed at
500 (we have also trained an RBM with 1, 000 hidden units
which produced a non-statistically significant improvement in
performance). The classifier used was an SVM with Gaussian
kernel [38].

Table VI contains the test-set accuracies of the SVMs
trained using as input the values of the latent variables from the
RBMs with 500 and 1,000 hidden units, trained on the three
datasets, compared with the accuracies of the SVMs trained
using as input the confidence values obtained by applying rule
of inference INF1 on the rules extracted by Algorithm 2 from
the same RBMs. Each experiment was run 10 times and we
report the mean accuracies on the hold-out test sets, along with
the standard deviation. The results show that the performance
of the rules can be (consistently) almost identical to that of the
RBMs. In addition, in the rule set, each (positive or negative)
literal can be represented by 1 bit, while in the RBM each
weight value must be represented by a double data type (i.e.
64 bits in a 32-bit computer). Therefore, the rules require far
less storage memory than the RBMs while still preserving
similar performance. Confidence rules can be seen, therefore,
as a suitable low-cost representation for RBMs.

B. Knowledge Extraction from DBNs

Following a layer-wise approach [3], [15], a hierarchy of
confidence rules can be built for the extraction of rules from
DBNs through the repeated application of Algorithm 2. Let us
start by considering in more detail the case discussed earlier
of a single-hidden-layer DBN created by splitting the visible
layer of an RBM into input and target subsets and applying
Algorithm 2 twice. This will be followed by the presentation
of the general-case algorithm for rule extraction from DBNs.

A working example (DNA promoter problem): The DNA
promoter dataset [8] has 106 examples, each consisting of a
sequence of 57 nucleotides (either A, T , G or C) from position
−50 to +7 in the DNA; 53 examples are gene promoters and
53 examples are not. Let us use np to denote a nucleotide n
at position p, such that ap, tp, gp, cp indicate, respectively, that
np = A,np = T, np = G,np = C.

For each variable np, a group of 4 visible units was created
in the RBM. Two target units were also added, one for
promoter and one for ¬promoter. Five RBMs were trained
using 96 examples, each with 10 examples randomly selected
from the original 106 for testing. Only three hidden units were
used (h1, h2, h3); this was sufficient for the networks to achieve
90.67% training set performance on average. By applying
Inference Rule INF1 on these rules, all 10 test examples
were classified correctly, with promoter obtaining a higher
confidence value than ¬promoter whenever the DNA sequence
was a gene promoter. On average, for the five RBMs, the rules

7

TiCC SVM MNIST SVM Yale SVM
RBM (J=500) 94.851%± 0.033 98.553%± 0.031 95.00%± 2.833

Confidence rules 94.711%± 0.072 98.530%± 0.040 94.333%± 3.865

RBM (J=1000) 94.928%± 0.016 98.680%± 0.024 97.000%± 2.919
Confidence rules 94.729%± 0.070 98.562%± 0.035 96.667%± 1.757

TABLE VI: Accuracy of SVMs trained on the TiCC, MNIST and Yale datasets using the hidden features of an RBM (with
either 500 or 1000 hidden units) as input, compared with accuracy of SVMs trained using as input the confidence values of
the hypotheses derived from the rules extracted from the RBMs (c.f. Algorithm 2) by applying inference rule INF1.

extracted (such as the two rules which follow) have achieved
a test-set accuracy of 90%± 6.9296.

0.761 : ¬promoter↔ ¬h(1)1 ∧ h
(1)
2 ∧ ¬h

(1)
3

1.042 : promoter↔ h
(1)
1 ∧ h

(1)
3

Direct comparisons with other extraction approaches such as
MofN [8] and RuleSet [9] would be non-trivial because of the
differences in methodology and learning method (supervised
vs. unsupervised). Nevertheless, for completeness, we report
here the results obtained by those extraction methods on the
DNA promoter problem. The MofN approach is reported to
have achieved 92.5% accuracy using 10-fold cross-validation,
while RuleSet achieved 9 correct classifications out of 10 test
set examples on a rule set extracted from a feedforward neural
network trained using backpropagation on the remaining 96
examples.

Exploring the DNA promoter experiment more system-
atically, let us now evaluate empirically the impact of the
information loss expected as part of the process of rule
extraction. In order to do this, in what follows, we compare the
test set accuracy of the rules extracted from the DBN with that
of the DBN itself. This evaluation was done for four different
partitions of training and test data, as shown in Figures 1 and
2. For each partition, 20 networks were trained using different
settings. The figures plot the classification performance of the
network model against that obtained by the corresponding rule
set. The results indicate a high fidelity of the rules1.

We now turn our attention to the special nature of certain
nodes in the network, as seen in the case of the group-of-four
in the DNA promoter problem, and notably when the target
nodes are expected to be exclusive (e.g. as part of a softmax
target layer in the network). In this case, the rules extracted
are expected to follow the conditional distribution:

P (y = o|x) ∝
∏
j

(1 + e
∑

i wijxi+uojyo) (13)

where U is the weight matrix between the label layer Y and
the hidden layer H , and y is a one-hot vector representing
the label classes. For example, y = o represents class o
where yo = 1 and yo′ 6=o = 0. From Eq. (13), the following
confidence function can be defined:

C(y = o,x) =
∑
j

log(1 + e
∑

i wijxieuojyo) (14)

1Notice that the grid-like arrangement of accuracies in Figure 1(a) and
Figure 2(a) is a result of the small number of test samples in such cases (10
samples only)

Algorithm 2 accounts for the first product in the above
equation by extracting rules from input I to the hidden layer
h
(1)
j (or, more generally, from h

(i)
j to h

(i+1)
j). With y = o

expressed as yo = 1, the exponential in the second product in
the above equation can be used to normalise the confidence
values α(1)

j of h(1)j , producing:

C(y = o,x) ≈
∑
j

log(1 + α
(1)
j euoj) (15)

Given Eq. (15), for each hidden unit and hypothesis y = o,
one can extract a rule euoj : y = o ↔ h

(1)
j , whose

confidence value is euoj . By applying Inference Rule INF1 and
adding the confidence values of each hypothesis normalised by
f(α) = log(1 + α), one obtains the same confidence values
as produced by Eq. (15). Algorithm 3 formalises the resulting
rule extraction for such softmax layers.

Algorithm 3 TOP RBM EXTRACT

Require: An RBM with visible layer I, hidden layer H, and
label layer Y

1: R = ∅, T=∅
2: R = RBM EXTRACT(I,H)
3: for each hidden unit j ∈ H and output unit o ∈ Y do
4: Add a rule : euoj : y = o↔ hj to T
5: end for
6: return R,T

We are now in position to introduce the general algorithm
for rule extraction from DBNs, Algorithm 4. It follows a layer-
wise approach whereby, for a DBN having n layers, either
Algorithm 2 is applied n times or Algorithm 2 is applied n−
1 times and Algorithm 3 is applied once. We call the first
alternative compact as it generates fewer rules at the top level
of the DBN.

Algorithm 4 DBN EXTRACT

Require: A stack of L RBMs
1: Create empty rule set R = ∅
2: for l = 1 to L− 1 do
3: R(l) = RBM EXTRACT(l,l+1)
4: Add R(l) to R
5: end for
6: if COMPACT then
7: R(L) = RBM EXTRACT(L,Y)
8: else
9: R(L) = TOP RBM EXTRACT(L,Y)

10: end if
11: Add R(L) to R

8

(a) 96-training, 10-test (b) 76-training, 30-test (c) 66-training, 40-test (d) 46-training, 60-test

Fig. 1: Classification performances of RBMs and the extracted rules on DNA promoter dataset

(a) 96-training, 10-test (b) 76-training, 30-test (c) 66-training, 40-test (d) 46-training, 60-test

Fig. 2: Classification performances of DBNs compared with extracted rules on the DNA promoter dataset

Information Loss in Complex Domains: We now test
the general method of rule extraction from DBNs (Algorithm
4) on a harder problem, namely the MNIST handwritten
digit recognition dataset. This is a difficult problem for rule
extraction because the inputs are the values of the pixels in the
images to be classified into classes 0, 1, 2,..., 9. The rules are
therefore expected to capture the levels of abstraction learned
by the DBN, from the raw data through to the class, hopefully
identifying useful concepts such as edges and shapes as part
of the rule hierarchy. Such image domains are notoriously
difficult for symbolic reasoning.

In what follows, we report results using COMPACT=False
(c.f. Algorithm 4). In this image domain, we found that
information loss is larger when COMPACT=True. We attribute
information loss in this case of the MNIST dataset to the fact
that the input data is non-binary, showing more variance than
the DNA data evaluated earlier. As a result, in the case of a
deep network, information loss may be compounded when in-
ference is applied sequentially through the rule hierarchy (i.e.
without sampling). In what follows, we evaluate information
loss in more detail.

In Section IV-A, the confidence values of the rules extracted
from an RBM were provided as input for training an SVM.
In the case of a DBN, the same layer-wise approach would
result in each RBM in the hierarchy being trained and rules
extracted before the next RBM can be trained. In order to
evaluate information loss in DBNs, though, instead of doing
the above, we are interested in the extraction of a complete
hierarchy of rules from the entire DBN. We have trained 155
DBNs using the standard configuration used by others [3]:
784 input nodes, 500 nodes in the first hidden layer, 1000
nodes in the second hidden layer, and 10 target nodes. We
have used the benchmark MNIST data set with 20, 000 training
examples, 10, 000 held-out examples used for early stopping

validation [39], and 10, 000 test examples. Figure 3 shows
for the MNIST data, as done for the DNA promoter data, a
comparison between the test-set accuracy of the DBNs (model
accuracy) and the test-set accuracy of the extracted rules. As
expected, the results indicate more information loss here than
in the case of the DNA data, with an average information loss
in the rules of 15.3026% ±5.9255 in relation to the DBNs.

The DBNs were trained using learning rate decay and
early stopping based on their performance on the validation
set (whenever the validation set error increased, a lower
learning rate was used for network training). The same can be
done using rule sets extracted from the network, as follows:
rules are extracted after each epoch of training. Instead of
the network, the rules are used to calculate the validation
set error. Whenever the validation error increases using the
rules, a lower learning rate is used in the training of the
network. In this way, the extracted rules are used to trigger
the early stopping of the network training. It is expected that,
by using the rules for validation, the fidelity of the rules
to the final model should increase. Nevertheless, since the
time complexity of the extraction of rules from each RBM
is O(I × J), the computation cost for validation by rules
is higher than validation by using the model itself. Figure
4 shows a comparison between the test-set accuracy of the
DBNs (model accuracy), now using such rule-based early
stopping, and the test-set accuracy of the extracted rules. Now,
an average information loss of 9.2519% ±4.2095 is achieved
in relation to the DBNs. In comparison with Figure 3, it can
be seen that the use of rule-based early stopping produces
rule sets with higher fidelity to the network model (i.e. lower
information loss). Given the complexity of image domains
when it comes to rule extraction, we interpret the results shown
in Figure 4 as indicative that the extracted rules can be useful
at highlighting certain important relationships in the network

9

models, e.g. if the same or very similar rules are extracted from
the various network models. This domain specific analysis is
left as future work.

Achieving a higher level of integration between network and
rule models at learning may be desirable, as seen e.g. above
when extracted rules were used as criterion for the network’s
early stopping. Such integration can be achieved fully through
the provision of algorithms for inserting rules into network
models. This will be the topic of discussion for the rest of
this paper.

Fig. 3: Comparison between the test-set accuracies of DBNs
(model accuracy) and extracted rules on the MNIST dataset.

Fig. 4: Comparison between the test-set accuracies of DBNs
(model accuracy) and extracted rules using rule-based early
stopping on the MNIST dataset.

V. DEEP NEURAL-SYMBOLIC INTEGRATION

Having seen how symbolic knowledge can be extracted from
DBNs, we now investigate the inverse problem of inserting
symbolic knowledge into DBNs to improve network learning
using background knowledge. The idea of encoding knowledge
into DBNs to improve learning performance is inspired by
early work on knowledge-based neural networks [34], [35]. In
addition to improving learning time, prior knowledge has been
shown capable of improving learning accuracy by allowing
knowledge that is not reinforced through learning, but that
might nevertheless be relevant, to persist in the network model.

A. Knowledge Encoding

In this section, we propose a method and algorithm for
encoding confidence rules into DBNs. We also perform an

evaluation of knowledge insertion using both the DNA and
MNIST datasets used earlier. This evaluation shows that,
as expected, improvements in performance can be achieved
with the use of prior knowledge. We argue, therefore, that
when prior knowledge is available, the provision of algorithms
allowing its use within network models (such as the algorithm
introduced in this section) is desirable.

As has been discussed in Section IV, a hierarchical
knowledge-base with associated confidence values can offer
an appropriate symbolic representation for DBNs. In fact, such
a representation has been motivated by the way that DBNs
work, as indicated by the way that a hierarchical weighted
knowledge-base has been defined (c.f. Definition 3.1).

Example 5.1 and Figure 5 illustrate the main idea behind
the encoding algorithm to follow using a simple set of rules.
Figure 5 also illustrates how the DBN can be extended to
account for learning from data and background knowledge,
which is discussed in the sequel.

Example 5.1: (Encoding knowledge) Given a hierarchical
set of rules Ks = {K(1), K(2), K(3)}, where:

K(1) = {c1 : y1 ↔ x1 ∧ ¬x2; c2 : y2 ↔ x2 ∧ x3; c3 : y3 ↔ ¬x3 ∧ x4}
K(2) = {c4 : z1 ↔ ¬y1 ∧ y2; c5 : z2 ↔ y3}
K(3) = {c6 : t1 ↔ z1 ∧ z2}

For a dataset with variables {x1, x2, x3, x4, x5, t1, t2}, con-
sider rule c1 : y1 ↔ x1 ∧ ¬x2. We add a unit y1 to
the hidden layer of the first RBM and set the weights to
w11 = c1, w21 = −c1. We repeat the process for each
rule in K(1), and create random down-weight connections for
the units. We then repeat the process for each level of the
hierarchy. Finally, we allow the addition of extra hidden nodes
with bidirectional random connections to each hidden level.
Figure 5 shows the resulting network for hierarchical set K.

Algorithm 5 shows how a hierarchical weighted knowledge-
base can be encoded into a DBN. Since the connections in an
RBM are bidirectional, while the rules only support bottom-up
inference, the confidence values are encoded as up-weights in
the network, with a set of down-weights with random values
being added from the hidden units to the visible units.

B. Learning with Background Knowledge
Let K be a hierarchical weighted knowledge-base, that is,

a hierarchical set of implication rules with confidence values,
as defined earlier. We have encoded each subset of rules K(l)

at each level of the hierarchy into an RBM and have added
more hidden units to it (the number of extra hidden units to add
will be investigated empirically). For each RBM, the energy
function is:

E(x,h) = −
∑
j

hjcj
∑
i

sijxi−
∑
ik

xiuikhk−
∑
i

aixi−
∑
k

bkhk

(16)

where, x and h denote units added by Algorithm 5, associated
with background knowledge rules, cj is the initial confidence
value of rule j, J denotes the number of rule-encoded units in
the hidden layer (corresponding to the number of rules), K is
the number of extra units added to the hidden layer, sij = 1 if

10

Algorithm 5 Rule Encoding Algorithm

Require: a hierarchical weighted knowledge-base K
1: for l = 1 to L do
2: Initialise an empty RBM N (l);
3: for each rule c(l)j : h

(l)
j ↔

∧
t h

(l−1)
t ∧

∧
¬hl−1)k ∈ Kl

do;
4: Add a unit j to hidden layer l;
5: Set the value of the connection weight wl

tj from
node h

(l−1)
t to node j to ci;

6: Set the value of the connection weight wl
kj from

node h
(l−1)
k to node j to −ci;

7: end for
8: if l > 1 then
9: Stack N (l) on top of N (l−1);

10: end if
11: end for

Fig. 5: DBN obtained from hierarchical rule set K from
Example 5.1

the encoded weight is positive, sij = −1 if the encoded weight
is negative, or sij = 0 if the weight is zero (c.f. Algorithm 5),
and uij ∈ U is the value of the weights of the extra hidden
units (see Figure 5).

The encoded knowledge will be used to guide learn-
ing within the neural-symbolic RBMs by maximising the
log-likelihood of the parameters given the data and back-
ground knowledge. Since the connections in an RBM are bi-
directional, while the background knowledge only supports
bottom-up inference, we split the connection weights between
visible and rule-encoded hidden units. The confidence values
were used to define the up-weights (Wu), and random values
were assigned to the down-weights (Wd). The learning algo-
rithm below will, therefore, adapt the parameters that consist
of additional connection weights U and the down-weights Wd

given the confidence values.
We use Contrastive Divergence [26] to train the networks.

The log-likelihood function is given by:

LlRBM =
∑
x∈D

P (x|θ = {U,Wd};K) (17)

The gradient of the log-likelihood function is given by:

∆uik = 〈xihk〉0 − 〈xihk〉K (18)

where 〈.〉K is the average over the set of examples given
a neural-symbolic network with background knowledge K.
We call the learning algorithm below learning with guidance
because prior knowledge is used to partially fix some up-
ward connections in the network; all other connections, both
downward and bi-directional, are allowed to change as part of
learning using standard Contrastive Divergence.

Algorithm 6 Learning with Guidance

Require: A set of rules K(s)
l ; input data X

1: Select a number of rules in K
(s)
l with the highest confi-

dence values
2: Encode K(s)

l in hidden units H(s) with up-weights W (l)
u

and random down-weights W (l)
d

3: Add extra hidden units H(t) with weights U (l)

4: repeat
5: % positive stage: assign X to visible layer
6: Xpos := X;
7: Hpos := P (H|Xpos); Ĥpos ∼ P (H|Xpos);
8: Xneg := P (X|Ĥpos); X̂neg ∼ P (X|Ĥpos);
9: % negative stage

10: Hneg = P (H|X̂neg);

11: W
(l)
d = W

(l)
d + η(〈X>posH

(s)
pos − X̂>negH

(s)
neg〉)

12: U (l) = U (l) + η(〈X>posH
(t)
pos − X̂>negH

(t)
neg〉)

13: until convergence

C. Experiments on DNA Promoter dataset

In this experiment, we use the domain theory provided with
the DNA promoter dataset2 to set up and train a DBN. As
before, we use variable np to denote a nucleotide at position
p such that e.g. ap represents np = A. Hence, background
knowledge rule minus10 ↔ n−12 = T ∧n−11 = A∧n−7 =
T becomes c : minus10 ↔ t−12 ∧ a−11 ∧ t−7, with arbitrary
confidence value c.

We use Algorithm 5 to encode the domain theory into the
network and use Algorithm 6 to train each layer greedily as
done in standard DBNs. The domain theory is divided into a
hierarchical set of rules that is encoded into a 2-layer DBN.
We choose two hidden layers because the rule promoter ↔
contact ∧ conformation consists of variable conformation at
level 2 and contact at level 3 of the hierarchy. By combining
such rules we do not need to create another layer with more
intermediate variables3.

For evaluation, we partition the data into a training, val-
idation and test set. In order to investigate how background
knowledge influences learning given different amounts of data,
we use different training sets with 10, 30, 50 and 70 samples.

2http://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Promoter+
Gene+Sequences)

3We merge rules c : promoter ↔ contact ∧ conformation and c :
contact↔ minus35∧minus10 into c : promoter↔ minus35∧minus10∧
conformation

11

Fig. 6: Test set classification performance of 2-layer standard DBN (red and black lines, with and without model selection),
and 2-layer DBN encoded with prior knowledge from the DNA promoter domain theory using training sets with 10, 30, 50
and 70 samples, and 20 test samples.

The validation and test sets are the same for each of the train-
ing sets and consist of 16 and 20 samples, respectively. From
this experiment, we observe that when using the validation
set to select the DBNs without background knowledge, this
results in low performance on the test set. For the DBNs
encoded with background knowledge, the models selected by
the validation set produce good accuracy on the test set. This
might happen because the number of hyper-parameters is large
compared to the small validation and test sets. Hence, the grid
search tends to produce a DBN that overfits the validation set.
When background knowledge is encoded into the networks,
overfitting is avoided through the use of the rule guidance
learning algorithm, which seems to be able to produce a more
general model.

In order to make a better comparison between the standard
DBN and the encoded DBN, we include in Figure 6 the best
accuracy achieved on the test set using the standard DBN
without using model selection. The figure shows that with
background knowledge to guide the learning, the DBN can
achieve a considerable improvement in performance (e.g. up
by 15% when the training set has size 50). It also shows that
when the training set is larger (70 examples), the standard
DBN is able to learn from the data alone the knowledge
that had been provided as background theory, and therefore
the improvement with prior knowledge is smaller for larger
training sets.

D. Experiments on MNIST dataset

In order to evaluate the influence of background knowledge
on the MNIST dataset (for which no prior symbolic knowledge
is available), we have extracted rules from a network trained
on a subset of the data by applying Algorithm 4, and then
inserted such rules into a new network for further training
and comparison. In the MNIST dataset, there were 20,000
examples for training, 10,000 examples for validation, and
10,000 examples for testing. We have selected 1,000 examples
randomly from the training set for training a 2-layer DBN from

which rules were then extracted. Such rules were encoded
into a new DBN, following the procedure in Section V-A.
This new DBN was then trained on the remaining 19,000
examples. Finally, results were compared with those obtained
by another DBN trained from scratch on the entire 20,000
examples without any rule insertion.

Fig. 7: Test set performance comparison between DBNs
trained with and without prior encoding of rules on the MNIST
dataset; DBNs with rule encoding achieve slightly higher
accuracy faster.

Figure 7 shows that with the encoding of rules, a DBN
can achieve a slightly higher accuracy faster than a DBN
without rules. This suggests that the network structure may
be important. Although there is information loss within the
rules extracted from the DBN trained on the 1,000 examples,
the DBN set-up with such rules and trained on the remaining
19,000 examples performed slightly better than the DBN

12

trained on the entire 20,000 examples in one goal, which
included those 1,000 examples. This indicates that maintaining
the structures of the representations learned by deep networks
can be beneficial as part of a modular approach to learning.
This requires further research.

VI. CONCLUSION AND FUTURE WORK

This paper introduced and evaluated algorithms for inserting
and extracting knowledge from deep networks. The question
of whether modularity can help the integration of learning and
reasoning in deep networks has been investigated empirically.
A new inference rule for deep networks using confidence rules
has been proposed, which combines symbolic representation
and quantitative reasoning. This inference rule and logical
representation was designed to support hierarchical reasoning,
and was shown to be an adequate representation for the
modular training of deep networks. Knowledge represented by
confidence rules can be inserted or extracted from Deep Belief
Networks (DBNs). It is shown that in single-layer DBNs, also
known as restricted Boltzmann machines (RBMs), confidence
rules offer a low-cost representation for the RBMs. The use of
a modular, layer-wise approach to knowledge extraction from
DBNs is shown to produce information loss at times, notably
when the networks are trained on complex image data. Yet, the
modular training of networks as part of a cycle of knowledge
insertion, learning and extraction can produce an improvement
in performance (c.f. Figures 6 and 7). Knowledge encoding
into DBNs in the form of confidence rules has been shown to
be useful, leading to an improvement in performance following
a layer-wise training. The results from this work suggest that
there is promise in building a hierarchical reasoning system
capable of integrating symbolic and subsymbolic capabilities.
With the layer-wise extraction and insertion principle, the work
in this paper can be extended to deeper networks. However, for
knowledge extraction from very deep networks, as discussed
earlier, the use of extracted rules for model selection may not
be practical due to an increased computational overhead.

As future work, further domain specific experimental eval-
uations may be carried out. Of particular interest are appli-
cations of multimodal data using very deep networks. Recent
research shows a deep semantic mapping between text and
images [40] which motivates the use of knowledge extraction
from, say, a text modality as relevant for the explanation of
context in the image modality. Another direction for future
work includes the parallel implementation of the proposed
knowledge insertion and extraction algorithms, and its use in
the iterative evaluation of very large networks, as part of a
cycle of knowledge acquisition and revision. In this process,
one may consider the use of recent techniques from high-
performance computing which, applied to neural networks,
may take advantage of the underlying graph structures to
achieve large-scale improvements in performance. These in-
clude the local parallel method applied to directed acyclic
graphs and the multi-index chained hashing method for fast
neuron memory search [41], [42], [43].

REFERENCES

[1] L. G. Valiant, “Three problems in computer science,” Journal of the
ACM, vol. 50, no. 1, pp. 96–99, 2003.

[2] J. Y. Halpern, Reasoning about uncertainty. Cambridge, Mass.,
London: MIT Press, 2003. [Online]. Available: http://opac.inria.fr/
record=b1100784

[3] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning Algorithm
for Deep Belief Nets,” Neural Comp., vol. 18, no. 7, pp. 1527–1554,
Jul. 2006.

[4] P. Smolensky, “Information processing in dynamical systems: Founda-
tions of harmony theory,” in Parallel Distributed Processing: Volume 1:
Foundations. MIT Press, Cambridge, 1986, pp. 194–281.

[5] L. Breiman, “Statistical modeling: The two cultures (with comments
and a rejoinder by the author),” Statistical Science., vol. 16, no. 3,
pp. 199–231, 08 2001. [Online]. Available: http://dx.doi.org/10.1214/
ss/1009213726

[6] A. d’Avila Garcez, L. Lamb, and D. Gabbay, Neural-Symbolic Cognitive
Reasoning, ser. Cognitive Technologies. Springer, 2009.

[7] A. d’Avila Garcez, L. de Raedt, L. Lamb, R. Miikkulainen, P. Hitzler,
T. Icard, T. Besold, P. Foldiak, D. Silver, and K.-U. Kuehnberger,
“Neural-symbolic learning and reasoning: Contributions and challenges,”
in AAAI Spring Symposium on Knowledge Representation and Reason-
ing: Integrating Symbolic and Neural Approaches, March 2015.

[8] G. G. Towell and J. W. Shavlik, “The extraction of refined rules
from knowledge-based neural networks,” in Machine Learning, 1993,
p. 71101.

[9] A. d’Avila Garcez, K. Broda, and D. Gabbay, “Symbolic knowledge
extraction from trained neural networks: A sound approach,” Artificial
Intelligence, vol. 125, pp. 155–207, 2001.

[10] M. G. Augasta and T. Kathirvalavakumar, “Reverse engineering the
neural networks for rule extraction in classification problems,” Neural
Processing Letters, vol. 35, no. 2, pp. 131–150, 2012. [Online].
Available: http://dx.doi.org/10.1007/s11063-011-9207-8

[11] K. Odajima, Y. Hayashi, G. Tianxia, and R. Setiono, “Greedy rule
generation from discrete data and its use in neural network rule
extraction,” Neural Networks, vol. 21, no. 7, pp. 1020–1028, 2008.
[Online]. Available: http://dx.doi.org/10.1016/j.neunet.2008.01.003

[12] R. Setiono, B. Baesens, and C. Mues, “Recursive neural network
rule extraction for data with mixed attributes,” IEEE Trans. Neural
Networks, vol. 19, no. 2, pp. 299–307, 2008. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TNN.2007.908641

[13] A. Hara and Y. Hayashi, “Ensemble neural network rule extraction using
re-rx algorithm,” in The 2012 International Joint Conference on Neural
Networks (IJCNN), Brisbane, Australia, June 10-15, 2012, 2012, pp. 1–
6. [Online]. Available: http://dx.doi.org/10.1109/IJCNN.2012.6252446

[14] T. A. Etchells and P. J. G. Lisboa, “Orthogonal search-based rule
extraction (OSRE) for trained neural networks: a practical and efficient
approach,” IEEE Trans. Neural Networks, vol. 17, no. 2, pp. 374–384,
2006. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/
TNN.2005.863472

[15] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Advances in Neural Information
Processing Systems 19, B. Scholkopf, J. Platt, and T. Hoffman, Eds.
Cambridge, MA: MIT Press, 2007, pp. 153–160.

[16] L. Bottou, “From machine learning to machine reasoning: an essay,”
Machine Learning, vol. 94, pp. 133–149, January 2014. [Online].
Available: http://leon.bottou.org/papers/bottou-mlj-2013

[17] L. d. Penning, A. S. d. Garcez, L. C. Lamb, and J.-J. C. Meyer, “A
neural-symbolic cognitive agent for online learning and reasoning,” in
IJCAI, 2011, pp. 1653–1658.

[18] Son Tran and A. Garcez, “Logic extraction from deep
belief networks,” in ICML 2012 Representation Learning
Workshop, Edinburgh, Jul. 2012. [Online]. Available: https:
//sites.google.com/site/representationworkshopicml2012/schedule

[19] S. N. Tran and A. d’Avila Garcez, “Knowledge extraction from deep
belief networks for images,” in IJCAI-2013 Workshop on Neural-
Symbolic Learning and Reasoning, 2013.

[20] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, Nov. 1998.

[21] H. Lee, C. Ekanadham, and A. Y. Ng, “Sparse deep belief net model for
visual area v2,” in Advances in Neural Information Processing Systems,
2007.

[22] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional
deep belief networks for scalable unsupervised learning of hierarchical

13

representations,” in Proceedings of the International Conference on
Machine Learning. New York, NY, USA: ACM, 2009, p. 609616.

[23] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551,
Dec. 1989.

[24] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Proceedings of the International
Conference on Machine Learning, 2007, pp. 153–160.

[25] R. Salakhutdinov, “Learning in markov random fields using tempered
transitions,” in Advances in Neural Information Processing Systems,
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta,
Eds., 2009, p. 15981606.

[26] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural Computation, vol. 14, no. 8, pp. 1771–1800, Aug.
2002.

[27] R. Salakhutdinov, “Learning deep boltzmann machines using adaptive
mcmc.” in Proceedings of the International Conference on Machine
Learning. Omnipress, 2010, pp. 943–950.

[28] R. V. Borges, A. S. d’Avila Garcez, and L. C. Lamb, “Learning
and representing temporal knowledge in recurrent networks,” IEEE
Transactions on Neural Networks, vol. 22, no. 12, pp. 2409–2421, 2011.

[29] M. W. Craven and J. W. Shavlik, “Learning symbolic rules using arti-
ficial neural networks,” in The Proceedings of International Conference
on Machine Learning. Morgan Kaufmann, 1993, pp. 73–80.

[30] A. d’Avila Garcez, K. Broda, and D. Gabbay, Neural-Symbolic Learning
Systems: Foundations and Applications, ser. Perspectives in Neural
Computing. Springer, 2002.

[31] B. Hammer and P. Hitzler, Eds., Perspectives of Neural-Symbolic Inte-
gration. Springer, 2007.

[32] G. Pinkas, “Reasoning, nonmonotonicity and learning in connectionist
networks that capture propositional knowledge,” Artificial Intelligence,
vol. 77, no. 2, pp. 203 – 247, 1995.

[33] A. Argyriou, T. Evgeniou, and M. Pontil, “Multi-task feature learning,”
in Advances in Neural Information Processing Systems 19. MIT Press,
2007.

[34] G. G. Towell and J. W. Shavlik, “Knowledge-based artificial neural
networks,” Artificial Intelligence, vol. 70, no. 1-2, pp. 119–165, 1994.

[35] A. S. Avila Garcez and G. Zaverucha, “The connectionist inductive
learning and logic programming system,” Applied Intelligence, vol. 11,
no. 1, p. 5977, Jul. 1999.

[36] M. Richardson and P. Domingos, “Markov logic networks,” Machine
Learning, vol. 62, no. 1-2, p. 107136, feb 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10994-006-5833-1

[37] V. Gogate, K. Kersting, S. Natarajan, and D. Poole, “Statistical relational
artificial intelligence, papers from the 2013 aaai workshop, bellevue,
washington, usa, july 15, 2013,” in AAAI Workshop: Statistical Re-
lational Artificial Intelligence, ser. AAAI Workshops, vol. WS-13-16.
AAAI, 2013.

[38] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis.
New York, NY, USA: Cambridge University Press, 2004.

[39] Y. Yao, L. Rosasco, and A. Caponnetto, “On early stopping in
gradient descent learning,” Constructive Approximation, vol. 26, no. 2,
pp. 289–315, 2007. [Online]. Available: http://dx.doi.org/10.1007/
s00365-006-0663-2

[40] W. Liu, T. Mei, Y. Zhang, C. Che, and J. Luo, “Multi-task deep
visual-semantic embedding for video thumbnail selection,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2015.

[41] A. Forechi, A. F. D. Souza, J. de Oliveira Neto, E. de Aguiar,
C. Badue, A. S. d’Avila Garcez, and T. Oliveira-Santos, “Fat-fast
VG-RAM WNN: A high performance approach,” Neurocomputing, vol.
183, pp. 56–69, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.
neucom.2015.06.104

[42] C. C. Yan, Y. Zhang, J. Xu, F. Dai, J. Zhang, Q. Dai, and F. Wu,
“Efficient parallel framework for HEVC motion estimation on many-core
processors,” IEEE Trans. Circuits Syst. Video Techn., vol. 24, no. 12, pp.
2077–2089, 2014.

[43] C. Yan, Y. Zhang, J. Xu, F. Dai, L. Li, Q. Dai, and F. Wu, “A highly
parallel framework for HEVC coding unit partitioning tree decision on
many-core processors,” IEEE Signal Process. Lett., vol. 21, no. 5, pp.
573–576, 2014.

