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Abstract

State-of-the-art imaging equipment has increased clinician's ability to make non-invasive

diagnoses of coronary heart disease (CHD); however, high volumes of imaging data make

manual abnormality detection cumbersome in practice. In addition, the interpretation of CTA

heavily relies upon the previous knowledge of the clinician. These limitations have driven an

intense research in the context of automated solutions for fast, reliable and accurate diagnosis.

Accordingly, in this thesis, we present an automated framework for detection, localization

and quantification of the non-calcified coronary plaques in cardiac computed tomography

angiography (CTA).

The first contribution of the thesis is a coronary segmentation algorithm that is adaptive to

the contrast agent and employs a hybrid energy incorporating local and global image statistics

in a segmentation framework using partial differential equations (PDEs). Accordingly, we

illustrated with the help of experimental evidence that a volume-specific intensity threshold

leads to an improved segmentation in CTA. In the subsequent step, we employed a hybrid

region-based energy for improved segmentation in CTA imagery. The hybrid energy couples

an intensity-based local term with an efficient discontinuity-based global model of the image

for optimal segmentation. The proposed method is less sensitive to the local optima problem

and helps in reducing false positives, as well as it allows a certain degree of freedom for the

initialization. Moreover, we employed an auto-correction feature for improved segmentation,

as an auto-corrected mask captures the emerging peripheries of the coronary tree during the

curve evolution. The effectiveness of the proposed model is demonstrated with the help of

both qualitative and quantitative results, with a mean accuracy of 80% across the CTA dataset.



viii

The capability to address the variations in initial mask and localization radii simultaneously,

makes our algorithm a feasible choice for coronary segmentation.

The second contribution of the thesis is an automatic approach to analyse the segmented

coronary tree for the presence of non-calcified plaques. The specific focus of this work

is detection of non-calcified plaques in CTA, as intensity overlap between blood, fat and

non-calcified plaques make the detection challenging. Non-calcified plaques are identified

based on mean radial profiles that average the image intensities in concentric rings around

the vessel centreline. Subsequently, an SVM classifier is applied to differentiate the abnormal

coronary segments from normal ones. A total of 32 CTA volumes have been analysed and

a detection accuracy of 88.4% with respect to the manual expert has been achieved. For

plaque-affected segments, we further proposed a derivative-based method to localize the

position and length of the plaque inside the segment. The plaque localization accuracy has

been around 83.2%. Moreover, the proposed model has been tested on three different CTA

datasets and has produced consistent results, demonstrating its reproducibility for generic

CTA data.

The final contribution of the thesis is a method to segment and quantify the non-calcified

plaque. After evaluating the vessel wall thickness, posterior probability based voxel classifi-

cation has been performed to quantify the lumen and plaque, respectively. Both qualitative

and quantitative results demonstrate that the proposed model shows a good agreement with

three independent experts. To optimize the processing time, we employed sparse field method

in a level-set based active contour evolution.
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Chapter 1

Introduction

1.1 Introduction

The heart is the most important organ of the cardiovascular system that is responsible for

the continuous supply of blood to all body parts. In order to operate continuously, the heart

muscles, i.e. myocardium, require an uninterrupted supply of oxygenated blood, which

is accomplished through a complex vascular network known as the coronary tree. In a

biological context, the main trunk artery (aorta) filled with the oxygenated blood comes

out of the left ventricle chamber and splits into arterial network. This arterial network is

clinically divided into two structures namely left and right coronary arteries (LCA and RCA),

respectively. The two coronary structures are responsible for routing the oxygenated blood

from the aorta to myocardium tissues of the heart in respective dimensions.

Any obstruction in the supply of oxygenated blood to the myocardium may result in

severe clinical abnormalities. The most common abnormality based on reduced blood supply

is termed as “coronary atherosclerosis” or the Coronary Heart Disease (CHD). CHD is related

to an accumulation of calcium, cholesterol and fatty materials inside the coronary arteries.

The growth of non-blood depositions leads to deformation of the vasculature that supplies

blood to the heart tissues. Consequently, the heart muscles become oxygen starved which

may result in cardiac consequences including angina, heart failure and arrhythmias.
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From a clinical point of view, an early detection of arterial plaque can help physicians

to start preventive measures to avoid or at least delay the worst cardiac events. This can be

achieved by addressing behavioural risk factors, diet control and preventive medication as

proposed in [24]. The conventional methods used to detect coronary obstruction include:

catheter guided X-ray angiography [25], optical coherence tomography (OCT) [26] and intra-

vascular ultrasound (IVUS) [27, 28]. However, the invasive nature of these techniques makes

them time-consuming and impose a relative patient risk. In contrast, recent advancements in

non-invasive imaging have significantly improved the diagnostic accuracy in terms of high

temporal and spatial resolution [29]. An example is the clinical use of cardiac computed

tomography angiography (CTA) that enables three dimensional imaging of the heart with sub-

millimetre accuracy. This precision makes CTA a feasible substitute to cardiac catheterization

for detecting coronary obstructions [30]; however, the composition of the coronary plaques

poses a difficult challenge in the effective diagnosis.

In a three-dimensional (3D) CTA image, different organs can be visually identified based

on the characteristic intensity response i.e. blood-filled vessels appear brighter than the

surroundings in CTA [31, 32]. However, the atherosclerotic plaques can be divided into two

categories based on the intensity response in CTA: calcified plaques and non-calcified plaques.

The calcified plaques (also termed as hard plaques) are easily discernible in conventional

imaging due to high intensity values, whereas detection of the non-calcified plaques (also

termed as soft plaques) is difficult due to the ambiguous intensity values, i.e. the intensity

range for soft plaques often overlaps with the intensities of blood and nearby muscles.

From a clinical point of view, non-calcified plaques are more threatening due to unex-

pected rupturing phenomena that occurs without any early symptoms [33, 34]. The main

limitation of existing plaque diagnostic methods is the inability to provide information

about deformations of the vessel wall. Consequently, there is an ultimate need of advanced

imaging techniques for early identification of non-calcified plaques in coronary vasculature.

Accordingly, this work is focused on the detection, localization and segmentation of the

non-calcified plaques in cardiac CTA.
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Plaques are normally classified with clinical gradings to measure the severity of the

plaque [4]. Mild or immature plaques are considered less-threatening as well as difficult to

detect in a computational framework as they lack the characteristic features of plaques. In

contrast, developed or mature plaques can be detected using a computational framework as

demonstrated in this research.

1.2 Motivation

Coronary heart disease (CHD) has become a major cause of death worldwide. The mortality

rate of CHD has dramatically increased in the last decade around the globe. According to

the fact sheet of the World Health Organization [35], CHD was the prevailing cause of death

globally in 2014-15, resulting in 8.14 million deaths (16.8% of total deaths) compared to

5.74 million deaths (12%) in 1990. Moreover, recent statistics of the National Health Service,

United Kingdom [36] reveal that over 2.3 million people in the United Kingdom are suffering

from CHD and annual death toll is approximately 73,000 (on average, one death every seven

minutes). These substantial levels of ongoing morbidity and mortality have led to heightened

interest in new methods to identify coronary abnormalities. Consequently, clinicians are

interested in early detection of CHD methods to effectively predict and control possible

cardiac events in the future.

The gold standard method used for coronary abnormality detection in recent years has

been the cardiac angiography [25, 37]; however, it involves a certain amount of risk to the

patient due to the invasive nature of the procedure. In addition, the conventional angiography

process demands a certain amount of time and the outcome depends heavily on the expertise

of the clinician. These limitations have driven intensive research for non-invasive diagnosis

of coronary heart disease, resulting in highly sophisticated imaging procedures for accurate

diagnosis. The clinical use of computed tomography angiography is a prominent example of

non-invasive diagnosis, in which blood-filled vasculature can be easily discriminated from

the background based on high intensity.
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High spatial and temporal resolution of CT scanners produces a large quantity of data

that is very useful for revealing internal information; however, it becomes cumbersome and

time-consuming for the clinician to explore a large number of 2D axial slices to track the

coronary vasculature. Moreover, the facts that coronary vasculature represents about 2% of

imaged data and there is a wide inter-patient variability in coronary architecture [38], make

diagnosis much challenging. In addition, the “manual” interpretation of the complex CTA

imagery is prone to inter-observer error as well as it remains subjective because it employs

the previous knowledge of radiologist. Hence, an automated system is required to help

clinicians in fast and reliable diagnosis of coronary heart disease.

1.3 Aims and objectives of this work

In a broader view, the aim of this work is to develop an automated framework for detection,

localization and quantification of the non-calcified plaques in cardiac CTA imagery. The

objectives for this thesis can be defined as follows:

1. To derive an adaptive intensity threshold for improved segmentation using aorta-based

intensity statistics.

2. To formulate a hybrid energy model, which couples local intensity with global edges

for the improved segmentation of coronary vasculature in a 3D CTA volume.

3. To detect non-calcified plaques on per-segment basis in the segmented coronary tree,

with a good agreement to ground truth manually labelled by a human expert.

4. To quantify the vessel wall, lumen and detected non-calcified plaque in an abnormal

segment with a good agreement to ground truth manually labelled by three human

experts.

Accordingly, a brief summary of research objectives is given below.
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1.3.1 Adaptive threshold based on contrast medium diffusion

Non-vascular structures found in CTA volume should be suppressed in a pre-processing step

to effectively delineate coronary vasculature. In this context, geometric shape characteristics

are combined with intensity based constraints to extract the vascular tree in CTA imagery.

Hessian matrix-based eigenvalue analysis is used for detection of the tubular objects; however,

an intensity threshold constraint is often used from literature without employing the impact

of the contrast medium in the respective CTA volume. We aim to derive an adaptive intensity

threshold for optimal segmentation in the respective volume.

1.3.2 Hybrid energy based efficient coronary segmentation

Based upon the coronary seed points, a region based active contour model is applied for

delineation of the coronary vasculature. The inherent problem of intensity inhomogeneity

in medical images is generally addressed using localized intensity information in a curve

evolution. However, the localized energy based active contour model often suffers from

erroneous segmentation due to the local optima problem. We aim to formulate a hybrid

energy model for optimal segmentation of the coronary vasculature in CTA. The hybrid

energy model couples the localized intensity with the global discontinuity model of the image

for optimized segmentation.

1.3.3 Detection and localization of non-calcified plaques

In the subsequent step, we aim to employ a machine learning technique to detect the non-

calcified plaques in the segmented coronary tree. A support vector machine evaluates

individual coronary segments and plaque affected segments are identified accordingly. More-

over, the plaque affected segments are evaluated using a second order derivative to identify

the precise location of non-calcified plaque in respective segments.
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1.3.4 Segmentation and quantification of non-calcified plaques

In the final stage of this work, we aim to segment and statistically quantify the non-calcified

plaques present in the respective coronary segments. Moreover, we aim to perform the vessel

wall thickness analysis in this context as it directly reflects the amount of non-calcified plaque.

In the subsequent step, we aim to validate the quantified lumen and plaque with respect to

segmentations produced manually by three independent human experts.

1.4 Organization of the thesis

Fig. 1.1 Flowchart for the plaque segmentation framework. Chapter-wise processing is
illustrated using three different colours.
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The main flowchart reflecting the structure of this thesis is represented in Fig. 1.1. It is

important to mention that the initial three chapters address the background and the relevant

literature for this research, whereas Chapters 4 - 6 explain the implementation details and

relevant results for this work. Moreover, the limitations and possible future extensions for

this work are discussed in the last chapter. For a greater appreciation of this thesis, a brief

description for individual chapters is presented below.

Chapter 1 introduces the basic theme of this work with a short introduction followed by

the aims and objectives of the thesis. Moreover, the importance of the research problem is

highlighted with the help of disease incidence statistics in this chapter.Subsequently, Chapter

2 defines the clinical context of this work for the general audience. Starting with heart

anatomy, we explain the cardiovascular diseases with a specific emphasis on coronary heart

disease (CHD) and associated non-calcified plaques (NCP). This is followed by an overview

of medical imaging techniques (invasive versus non-invasive diagnosis methods). We con-

clude this chapter with a focus on CTA based acquisition and interpretation methodologies in

context of CHD diseases.

Chapter 3 addresses the basic problem of image segmentation. We start with an overview

of simple edge and region-based methodologies and extend our discussion to complex PDE

based parametric segmentation models. In the following section, we explore the explicit

curve representation in terms of level set formulation and the image based energy for curve

evolution. In the last section of this chapter, we provide a literature based detailed review for

vessel segmentation, and non-calcified plaque detection / segmentation.

Chapter 4 starts with the details of clinical CTA data used in this work, followed by the

ground truth construction of vessel boundaries for comparative purposes. In the subsequent

section, we explain the contrast medium modelling phenomena followed by the hybrid energy

based coronary segmentation. In the last section of this chapter, we illustrate the efficiency

of the proposed adaptive intensity threshold and the hybrid energy model with the help of

both qualitative and quantitative results.

In Chapter 5, we address the problem of detection and effective localization of non-

calcified plaques in the segmented coronary vasculature. Starting with the coronary skele-
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tonization details, we explain the idea of a discrete radial profile for the representation of

a coronary segment. This is followed with the SVM based formulation for the detection

of abnormal segments. Next, we explain the plaque localization method in the context of

abnormal segments. In the last section of this chapter, we discuss the efficiency of the plaque

detection and localization methods.

Chapter 6 explains the method for computing segment-wise non-calcified plaque. We start

with a description of our Matlab based coronary analysis tool, which allows an evaluation as

well as expert-based manual demarcations for coronary lumen and plaques. In the subsequent

step, we explain the voxel-wise ground truth formulation for non-calcified plaque based on

the work of Rotterdam experts [18]. Next, we explain the inter-observer variability statistics

to justify the complexity of the NCP segmentation problem and derive a range of accuracy

for our proposed model output. This is followed by the vessel wall analysis to establish a

reference for healthy arteries as non-calcified plaque directly affects the vessel wall geometry.

Next, we derive hand-crafted features for SVM based classification of plaque voxels by

exploiting intensity distributions. In the last section of this chapter, we present both visual

and statistical results in context of the plaque segmentation.

In Chapter 7, we conclude our work and explain some of the limitations of this work.

Moreover, we discuss some of the future directions in which this work can be extended for

an improved clinical diagnosis.

1.5 Contributions and Publications

The contributions of this research, i.e., those that form the basis of the thesis, are to be

found in two main areas, associated with the segmentation of the coronary vasculature

and quantitative plaque analysis in the segmented tree, described in Chapters 4, 5 and 6,

respectively. Specifically, the contributions of this thesis are summarised as follows:

We demonstrated that adaptive modelling of the contrast medium intensity can consider-

ably improve the accuracy of the coronary segmentation. The usefulness and originality of

these contributions is reflected in the promising results validating a significant improvement
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in segmentation accuracy which have produced two journal publications [39, 40]. More-

over, we introduced a hybrid energy formulation that integrates the local intensity and a

probability based global discontinuity map of the image. The proposed hybrid energy based

model captures object boundaries accurately as the hybrid energy is less attracted to the

local optima solutions. Consequently, this chapter leads to a quality journal publication [41].

After coronary tree segmentation, we extended our work for detection and localization of

the non-calcified plaques using discrete radial profiles in clinical CTA. In this work, we

employed a machine learning framework (support vector machine) for detecting non-calcified

plaque affected coronary segments from normal sections. This chapter leads to two quality

publications [42, 43].

In the final phase of this work, we proposed the framework for voxel-wise computation

in the plaque affected coronary segments. The experimental results show a good correlation

with respect to three human experts, which will lead to an additional journal publication. In

addition, our contribution in this work is the design of an automated tool (Coronary Artery

Evaluation Framework CAEF) for analysis and investigation of the segmented coronary

tree. CAEF framework allows user to visualize the segmented coronary tree both in 2D

and 3D space for a detailed investigation. Moreover, it allows user to construct customized

visualization using maximum intensity projection, re-sampled oblique cross-section and

multi-planar reformations for individual coronary segments. Furthermore, the notable feature

in CAEF is the provision of manual annotation facility, in which user can manually annotate

the vessel components i.e. lumen and the plaque. It should be mentioned that CAEF can be

used efficiently to construct expert based manual ground truth, which is the most important

step of any clinical study.





Chapter 2

Coronary Heart Disease - A Clinical

Context

2.1 Anatomy of Human Heart

The human heart is located between two lungs in the centre of the chest. Anatomically, it

is divided into four chambers: upper left and right atria; and lower left and right ventricles

[44, 45], each performing a specific task in the blood circulation in the body. The strongest

chamber of the heart is left ventricle, which is responsible for pushing blood through aortic

valve towards different organs of the body. In a cardiovascular system, the heart works as

a pump that moves nutrient rich blood to different organs of human body. In addition, the

deoxygenated blood is collected and routed to heart. This transportation of the blood is

accomplished through a complex network of vessels around the heart. According to the

purpose, vasculature is termed as arteries (moving purified blood away from the heart) or

veins (responsible for routing deoxygenated blood to the heart).

Being the centre of cardiovascular system, the heart is responsible for performing uninter-

rupted operation throughout the life of every person. For a continuous operation, a rich supply

of oxygen and nutrients is required to the heart itself so that muscles can perform required

contraction operations effectively. This is achieved through a vessel network (coronary artery

tree) over the external surface of the heart. Moreover, the constant motion of the heart is
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Fig. 2.1 Illustration for external surface of human heart [1]. The left image shows the
muscular surface of the heart with an overlaid network of arterial vessels for blood supply.
The right image shows a possible obstruction in the blood flow and resultant damage to the
heart muscle. It can be observed that reduced blood flow to a particular muscle/tissue results
in destruction of the respective region, which increases the chance of myocardial infarction
and ischaemia.

accommodated in terms of a “vaso-constriction” phenomena, a process of cyclic peaks and

troughs of coronary circulation. It allows coronary arteries to adjust blood flow according to

the requirement of the heart tissue and muscles.

In contrast to other organs, smaller branches of coronary arteries are very refined and

do not offer interconnections for blood flow diversions. This makes the coronary blockage

a severe threat leading to the myocardial infarction and ischemia. Cardiac ischemia often

results in an “angina” attack, i.e. reduced blood flow to heart muscles causing tissue damage

as illustrated in Fig. 2.1. The patient undergoing angina attack needs immediate restoration

of blood flow, otherwise the affected muscles begin to die which ultimately results in cardiac

morbidity.

The coronary network in humans comprises of two (left and right) arteries that originate

from the root of the aorta, where the aorta is the main vessel coming out of the left ventricle

filled with oxygenated blood. The Left Coronary Artery (LCA) supplies oxygenated blood

to the left chambers of the heart, whereas the right and posterior muscles of the heart are
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(a) coronary tree (b) Muscle nourishment using two coronaries

Fig. 2.2 Coronary Nomenclature and heart muscle nourishment [2]. (a) The heart surface
is overlaid with two coronary arteries, and the major branches are labelled in a clinical
context. The contribution of the respective coronary arteries (RCA, LCA) in the heart muscle
nourishment is presented in (b), where red and yellow shows the heart region dependent upon
left and right coronary arteries respectively.

nourished through the Right Coronary Artery (RCA) and the Posterior Descending Artery

respectively. For a meaningful clinical evaluation and diagnosis of the coronary vasculature,

two main arteries are further divided into branches as illustrated in Fig. 2.2 - 2.3. For

Left Coronary Artery, the initial segment from the aorta to the first bifurcation point is

termed as Left Main (LM) section. Subsequently, two bifurcated branches are named as

the Left Anterior Descending (LAD) and Left Circumflex (LCX) arteries. Likewise, the

Right coronary artery generally splits into few marginal arteries (OM1, OM2) and posterior

descending arteries (PDA).

Instead of a standard coronary architecture applicable to all human beings, a wide inter-

patient variability has been observed in clinical studies as defined in [46]. In a clinical context,

side dominance is used to classify subjects according to coronary behaviour. Dominance

is determined by identifying the oxygenated blood route to posterior muscles of the heart.

Almost 70% of the population is right dominant where posterior tissues are nourished by right

coronary artery. For 10% cases, the left coronary artery is dominant, whereas the remaining

20% are identified as co-dominant where both left and right arteries are feeding the PDA.

Moreover, the Sinuatrial nodal artery arises from the RCA in 55% of the population, whereas

for remaining 45% it comes out of the LCA [47].
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This inter-patient variability in coronary architecture has made coronary investigation a

challenging problem, as individual experts interpret the coronary tree without employing a

common terminology. In this context, the American Heart Association (AHA) [4] formulated

a standard for systematic interpretation and reporting compilation of coronary structural

diagnosis. Accordingly, the standard AHA coronary model divides two coronary arteries

(LCA and RCA) into 17 discrete segments as illustrated in Fig. 2.3. The clinical diagnosis

is reported in terms of quantitative coronary analysis (QCA) report based on a per-segment

basis. Likewise, the lumen - plaque quantification in advanced analysis tools is performed

on a per-segment/per patient basis to accurately represent the clinical threat. In a general

interpretation, segments close to the aorta are normally referred as proximal or major, whereas

segments away from the aorta are termed as distal or minor.

(a) coronary tree on heart surface (b) coronary tree schematic

Fig. 2.3 The 17-segment coronary model from [3]. (a) shows the heart surface overlaid
with two coronary arteries, with individual segments numbered according to the 17-segment
coronary model, (b) shows the coronary model schematic as proposed in [4].

2.2 Cardiovascular Diseases

The term cardiovascular disease (CVD) refers to all abnormalities that involve the heart and

the blood vessels, i.e. coronary artery diseases (CAD), stroke, heart failure, hypertensive

heart disease, cardiomyopathy, heart arrhythmia, congenital heart disease, aortic aneurysms

[20, 47]. In general, the underlying mechanism for cardiovascular diseases involves some
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chronic issues like high blood pressure, high blood cholesterol, Diabetes, as well as many

lifestyle habits including lack of exercise, smoking, obesity, poor diet and excessive alcohol

consumption among others [48, 35]. In recent years, CVDs have become the leading cause

of death globally; combined they resulted in 17.9 million deaths (32.1%) in 2015 up from

12.3 million (25.8%) in 1990 [24]. Developed counties have been affected severely by CVDs

in recent years. Approximately 40% of total deaths per year in the Unites States are related

with cardiovascular diseases [49]. Likewise, according to National Health Services (NHS)

United Kingdom statistics, over 1.6 million men and around 1 million women suffer from

cardiovascular diseases in United Kingdom [36]. In the UK each year, CVDs are responsible

for 88,000 deaths (an average of one death every six minutes), and around 276,000 attacks

(heart and stroke) occur every year leading to thousands of mortalities. The contribution

of individual diseases in the total death toll of CVDs is presented in Table 2.1. It can be

observed from the table that coronary heart disease is the most threatening condition as it

alone contributes to almost 50% of total CVD related deaths.

Table 2.1 Percentage breakdown of the death toll due to cardiovascular diseases world wide.
[20]

Disease Nature Contribution Ratio (%)

Coronary Heart Disease 49.9
Stroke 16.5
High Blood Pressure 7.5
Congestive Heart Failure 7
Diseases of Arteries 3.4
Other 15

2.2.1 Coronary Heart Disease

Coronary heart disease (CHD) is a state in which calcium and fatty material builds up inside

the coronary arteries as shown in Fig. 2.4. These depositions (also termed as plaques) nor-

mally reside inside the lumen or vessel wall causing an obstruction in the flow of oxygenated

blood to the heart muscles. Clinically, the development of plaques inside coronary arteries is

termed as “atherosclerosis” and it takes many years before it posses an acute risk. In case of
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calcium depositions (calcified plaque), the blood supply to heart tissues is almost terminated

leading to the symptomatic myocardial infarction and angina. However, the fatty depositions

(non-calcified plaque) makes the patient prone to arterial rupture due to its fragile nature

which results in unexpected casualties. Moreover, coronary heart disease can also weaken

the heart muscles leading to “arrhythmias” or heart failure, i.e. the heart cannot pump blood

to the body organs.

Fig. 2.4 Plaque present in a coronary artery. (a) calcified plaque deposition inside the lumen,
(b) non-calcified plaque deposition inside the vessel wall. It can be observed that calcified
plaque reduces the blood flow which leads to disease symptoms, whereas non-calcified
plaque generally exhibits positive remodelling, i.e. the expansion of the vessel [5].

As coronary heart disease has emerged as the most significant threat, it is essential to

diagnose coronary artery atherosclerosis at early stages to minimize the possible impact.

This is based on the fact that medication and surgical procedures can avoid or at least delay

the worst cardiac events in the future. Consequently, specialized medical examinations have

been designed for detection and diagnosis of coronary heart disease; however no single

investigation can draw final conclusions and multiple tests are advised for confirmation.

Electrocardiogram and stress testing are two simple methods to diagnose initial symptoms

of CHD, such that electrocardiogram monitors electrical activity of the heart, and the stress

test records blood flow, heart and breathing rate in the excited state to identify possible

abnormalities. Similarly, an echocardiography test uses sound waves for imaging the beating

heart such that poor blood flow can be identified. Based on the initial results, clinicians advise
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for coronary angiography that is an advanced, reliable but invasive test for CHD diagnosis.

Accordingly, coronary angiography injects a contrast medium (dye) in suspected arteries

followed by x-ray imaging. The injected contrast medium during cardiac catheterization

process makes the respective coronaries prominent in the X-ray imagery, which allows

clinicians to trace blood flow passage and identify any potential blockages therein.

2.2.2 Calcified versus Non-Calcified Plaques

Referring to the plaque depositions inside coronary arteries, atherosclerosis can be classified

into two categories depending upon the composition and plaque location as illustrated in

Fig. 2.5. The first type is “calcified” plaque, which is made up of calcium and normally

resides within the lumen. With the passage of time, the build-up can narrow the vessel lumen

and reduce blood supply to heart tissues, leading to clinical symptoms. These large plaques

remain relatively stable, and due to the hard calcified covering, these are less prone to rupture

or cracks. Moreover, the clinical symptoms reflect the presence of the calcification well

before fatal events, allowing medication and precautionary measures.

The second type is “non-calcified” plaque, which is made up of fatty materials, lipids and

cholesterol. This plaque normally resides inside the vessel walls, hence the lumen reduction

is not always the case in non-calcified plaques. However, these dynamic, less stable soft

plaques are much more likely to suddenly rupture through the arterial lining. As the body

forms a clot to try to heal such a rupture, the result is normally a total blockage of blood flow;

i.e. a severe heart attack. It is important to mention that these non-calcified plaques remain

hidden inside the walls of the artery and often causes no obvious arterial blockage until, the

fatal rupture occurs. This is the reason that clinically non-calcified plaques are treated more

threatening as they do not provide any early symptoms, i.e. in many cases, death is the first

symptom of non-calcified plaques [50].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2.5 Different types of plaques highlighted using different types of visualizations. (Top
row) three axial slices, (middle row) three multi-planar reformatted images, (bottom row)
three cross-sectional orthogonal images. The left column represents non-calcified plaques
(red arrow), the middle column shows mixed-plaque (green arrow) and the right column
shows calcified plaques(blue arrow).

2.3 Imaging based CHD Diagnosis

Medical imaging refers to the process of recording details of inside the body for visual

interpretation, medical analysis and possible intervention. By combining radiology with

imaging technologies, internal body structures are revealed for detailed clinical investigations.

Accordingly, state-of-the-art imaging techniques have been developed for imaging the cardiac

region in context of efficient diagnosis of cardiovascular diseases. In general, coronary

imaging methods are divided into invasive and non-invasive categories depending upon the

procedural and operational requirements.
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2.3.1 Invasive Imaging

Invasive imaging refers to procedures involving the insertion of an apparatus into the body

cavities. Some examples include X-ray angiography, optical coherent tomography (OCT) and

intra-vascular ultrasound (IVUS). These methods are catheter-guided techniques they carry

a sensor to the desired locations inside vessels. An example 2D angiogram obtained from

X-ray angiography is shown in Fig. 2.6. The ability to reflect luminal diameter and occlusion

points are the strengths of this method and it has remained as the gold standard for coronary

disease diagnosis for years. However; the 2D representation is the inherent limitation of this

method which can underestimate the plaque burden due to the loss of the third dimension

of 3D arteries. For effective 3D reconstruction of vessels, different variations of X-ray

angiography have been proposed including rotational systems for acquiring 2D angiograms

at different angles. The obtained image sequence is used to create a 3D volume representing

vascular structures. However, the rotational mechanism involved in this technique makes

image quality inferior to a real CT scan.

Fig. 2.6 An angiogram obtained from invasive angiography. In an optimal case, the arterial
blockage can be identified visually in this 2D image, as illustrated by the arrow. In general,
information relating to the third dimension is lost [6].

Catheter-guided IVUS is used for imaging vessel walls with high accuracy. This tech-

niques allow direct and real time imaging of vessel occlusions by providing cross sectional

views. Image acquisition is performed by recording signals from reflected laser beams (OCT)
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or ultrasound beams (IVUS) respectively. Generally OCT is capable of providing more

accurate images because of higher spatial resolution (around 10 micrometers); however, OCT

suffers from a problem of low penetration as the laser beams are attenuated quickly in arterial

walls. The main limitation associated with these methods are difficulty in reconstruction of

3D structures from 2D cross sections. Besides, these methods are applied to small segments

of vessels to reduce the complications of catheterization procedure, so it is not possible to

trace all the important branches of the arterial tree. For additional details, a comprehensive

review of IVUS, OCT can be found in [51].

2.3.2 Non Invasive Imaging

Despite the fact that invasive imaging acquires valuable coronary information, the main

drawback is complicated clinical procedures and associated risk to the patient. This becomes

a time consuming clinical procedure and requires expertise from clinician. In particular, if

the progress of the disease is to be tracked in routine examinations on regular basis, this

invasive methodology is not suitable at all. Advancements in the technology have turned 3D

non-invasive imaging of the human body into a reality in recent years. Two state-of-the-art

imaging modalities being used to record internal organ details include CTA and magnetic

resonance imaging (MRI). MRI is preferably used to image the muscular tissues, whereas

CTA is used for recording blood structures in clinical practice. A variant of MRI used for

non-invasive imaging of blood vessels is magnetic resonance angiography (MRA) but due

to less spatial resolution and high slice thickness, this modality is used for imaging larger

vessels only.

The advantage of these imaging modalities is that besides being non-invasive, these

methods reveal information in terms of 3D volume rather than 2D projections as recorded in

conventional angiograms. CTA is used clinically to record 3D behaviour of different organs

including the head, neck, abdomen and heart with precise details (sub millimetre resolution

in all three dimensions). Especially for cardiac imaging, CTA is a valuable technique as

contrast medium affected blood can be traced visually due to their high intensity value as

illustrated in Fig. 2.7. Along with blood filled coronaries, calcified plaques (if any) that
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(a) axial slice (b) zoomed version

(c) Plaque identification (d) Ultrasound analysis

Fig. 2.7 Non-invasive imaging for coronary analysis. (a) the intensity response (axial plane)
showing different components inside the field of view of a cardiac CTA image, (b) zoomed
version from an axial plane with annotations for different intensity responses. (c) shows the
plaque visualization in CTA imagery, whereas (d) shows an ultrasound based appearance for
the coronary vessel. It can be observed from (c) that calcium based plaque appears brighter
in CTA due to high intensity, whereas lipid based non-calcified plaque appears relatively dull.
Moreover, the IVUS based representation for the lumen and plaque can be visualized in (d).

are not seen in traditional angiograms can be visualised easily in CTA images. Moreover,

based on the fact that CTA leads to 3D volumetric data, the cross sectional images can be

constructed in 3D space to replicate the information captured by OCT and IVUS. Using

vessel medial axis, a direction vector can be used for extracting orthogonal 2D cross sectional

images to allow the analysis of the lumen and vessel wall. As the 2D oblique plane is

constructed by interpolating intensities in 3D space, the quality is inferior to OCT but still

useful for evaluating luminal changes. Digital subtraction angiography (DSA) is an extended

visualization procedure used to capture blood filled vessels by subtracting normal CTA image
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from a contrast enhanced version. Practically this procedure becomes difficult because it

requires collecting two CTA datasets, leading to additional exposure to radiation. Moreover,

it is difficult to obtain identical images of coronary arteries due to the constant motion of

the heart. Therefore despite of the advantages DSA offers, it is not widely used for cardiac

imaging and visualization.

2.4 Computed Tomography Angiography

2.4.1 Basics of Computed Tomography

Computed Tomography (CT) imaging combines specialized X-ray equipment with sophisti-

cated digital geometry processing for generating 3D images of internal organs of the body.

3D re-construction is done from a sequence of 2D images acquired around a single axis of

rotation, i.e. a number of images of same area are recorded from different angles and placed

together to produce a 3D image. An ability to provide precise internal details has made the

CT exam the preferred choice for clinical diagnosis of internal body organs like the head,

neck, abdomen etc.

In clinical practice, CT is used as a diagnostic imaging test to create detailed images of

internal organs, bones, soft tissue and blood vessels. The cross-sectional images generated

during a CT scan can be reformatted in multiple planes, and used to produce3D visualizations

that can be viewed on a computer monitor, printed on film or transferred to electronic media.

CT scanning is often the best method for detecting many different cancers since the images

allow the clinician to confirm the presence of an anomaly and determine its size and location.

To conclude, CT is a fast, painless, non-invasive and accurate method for clinical diagnosis.

In emergency cases, it can reveal internal injuries and bleeding to quickly help save lives.

However, excessive use of CT leads to increased exposure to radiation.

As illustrated in Fig. 2.8, a modern CT scanner, in general, consists of a tunnel-like

structure with an X-ray tube on one side and the detector on the other side. A motorized table

moves the patient through a circular opening in the CT imaging system. As the patient passes

through the CT imaging system, a source of X-rays rotates around the circular opening. In
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Fig. 2.8 A modern multiple slice computed tomography machine. The patient is placed on
the table, moving through the ring unit, which is comprised of the X-ray source and the
detector. [7].

typical examinations there are several phases; each made up of 10 to 50 rotations of the

x-ray tube around the patient in coordination with the table moving through the circular

opening. Detectors on the exit side of the patient record the x rays exiting the section of the

patient’s body being irradiated as an x-ray "snapshot" at one position (angle) of the source.

Many different "snapshots" (angles) are collected during one complete rotation. The data

are sent to a computer to reconstruct all of the individual "snapshots" into a cross-sectional

image (slice) of the internal organs and tissues for each complete rotation of the source of

x-rays. Moreover, CTA uses an injection of iodine-rich contrast material to help visualize

and evaluate blood vessel disease or related conditions, such as aneurysms or blockages.

Despite the impressive results, CTA scan has not been used widely for imaging the cardiac

system in the last decade because of the motion of the fast beating heart. High temporal

resolution is required to capture the dynamic heart in an instant in time. Moreover, coronary

arteries being very refined structures with a diameter in the sub-millimetre range demands

high spatial resolution acquisition. State-of-the-art advancements in medical imaging have

resolved this problem by introducing sub-second rotation combined with CT to achieve

high speed and high resolution at same time. Similarly, dual source technique employing
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Fig. 2.9 ECG triggered CT scan for compensation of the heart motion. In order to minimize
the impact of heart motion, each slice is scanned during same ECG phase [6].

double x-ray sources has reduced the acquisition time by imaging data in half a rotation,

whereas the multi-detector approach has increased the spatial resolution. This makes CTA

a clinical reality for assessment of the cardiac vascular system (i.e. imaging the dynamic

heart for coronary analysis). In addition, ECG gating is used during the CT scan process to

achieve synchronization between heart motion and image acquisition/reconstruction. Every

detail of the heart is imaged multiple times along with ECG traces. In the subsequent

step, corresponding phases of cardiac contraction are correlated by using ECG data. After

correlation, systole related data is discarded and images are constructed using static phase

(diastole) data. Fig. 2.9 represents the acquisition process of CT data showing compensation

of heart motion during scan.

2.4.2 Interpretation of Computed Tomography Imagery

According to the imaging principle of x-rays, the anatomical organ images are obtained

on the basis of their ability to block x-rays, termed as radiodensity. Radiodensity refers

to the relative inability of electromagnetic radiation (x-rays) to pass through a particular

material. Accordingly, materials that inhibit the passage of electromagnetic radiation are
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called radiodense, while those that allow radiation to pass more freely are referred to as

radiolucent. As the CT imaging employs x-rays, the CT scanner records the x-ray attenuation

of the patient through a plane with a finite cross-sectional thickness, and these attenuation

measurements are then reconstructed using a dedicated computerised system to produce a

3D volumetric image dataset of the body.

Every component (pixel) of a planar cross-section image represents the mean attenuation

value of the segment. The mathematical formulation for pixel attenuation is expressed as

follows:

It = Ioe−µL∆x, (2.1)

where It is the structure (pixel) attenuation value, Io represents intensity measured in the

beam path without obstruction and µ is the linear transformation coefficient for a specific

material. Three dimension information for volumetric objects can be incorporated by adding

all attenuation values along the beam path according to Eq. 2.2.

It = Ioe−∑
k
i=1 µL(i)∆x. (2.2)

A linear transformation coefficient or narrow beam attenuation coefficient of the volume of a

material characterizes how easily it can be penetrated by a beam of light, sound, particles,

or other energy or matter. A large attenuation coefficient means that the beam is quickly

"attenuated" (weakened) as it passes through the medium, and a small attenuation coefficient

means that the medium is relatively transparent to the beam.

The pixel attenuation value is represented in terms of the Hounsfield unit (HU) scale with

a standardized range of [-1024 to +3071] HU. The HU scale transforms intensity values into

a normalised scale where distilled water at standard temperature and pressure is assigned

zero HU, whilst the air is defined as -1000 HU. Accordingly, the HU value for a particular

structure is derived using Eq. 2.3. For a robust medical investigation, certain HU values are

expected according to the behaviour/structure of the anatomical organs as presented in Table

4.4. These expected values are used in the clinical diagnosis of structural abnormalities i.e.

investigation of calcified plaques and abnormal tumours.
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HU = 1000∗ (µ −µwater)

(µ −µair)
. (2.3)

Table 2.2 Standard intensity in Hounsfield unit for different anatomical structures [21, 22]

Structure HU Range

Air. -1000
Lung. -700 to -600
Fat. -120 to -90
Chyle. -30
Water. 0
Urine. -5 to +15
Bile. -5 to +15
Kidney. +20 to +45
Blood. +30 to +45
Muscle. +35 to +55
Soft tissue. +50 to +100
Bones. +700 to +3000

2.4.3 CTA processing and interpretation

In addition to the radiation dose, the major limitation of the non-invasive CTA imaging is the

amount of recorded data. Accordingly, the high volume of imaged data makes the manual

investigation difficult and the interpretation is dependent on the previous knowledge of the

clinician. Accordingly, a number of image-processing techniques are applied in clinical

practice to extract the required information from a 3D CTA volume. This includes the

use of customized window/level setting in visualization, application of maximum intensity

projection, re-construction of multi-planar reformatted images from 3D CTA volumes, and

volume rendering [52, 53, 38].

The basic concept behind window/level is to apply a linear grey-scale transform function,

in the form of a lookup table (LUT) specified by two parameters, window and level. The

end result is that pixel intensities corresponding to a subset of the entire dynamic range are

highlighted, at the expense of pixels not in the subset falling outside the specified range. Fig.

2.10 shows a LUT where input pixels of intensity less than 73HU are mapped to 0, pixels of
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intensity greater than 198HU are mapped to 255, and pixels within the range [74,...,197] HU

are scaled appropriately depending on the slope of the transform function in the bracketed

region of Fig. 2.10.

(a) Look-up table processing (b) Window transformation

(c) Cross-sectional view using maximum intensity (d) Cross-sectional view using window [74 197]

Fig. 2.10 Table look-up based processing for image. (a) shows that a pixel-to-pixel mapping is
performed using a pre-defined transformation criteria, (b) defines a window for investigating
a particular intensity range [74-197] HU.

A standard way of specifying a linear grey-scale transform function of Fig. 2.10 is to

define the width of the LUT where the slope is non-zero (window) and the centre of that

same segment of the LUT (level). Accordingly, holding the window constant while adjusting

the level has the effect of moving the non-zero slope portion of the transform to the left or

to the right. Likewise, altering the window parameter either broadens or narrows the pixel

intensity range to be highlighted. From a clinical point of view, standardized window/level

settings have been formulated to evaluate different anatomical structures from the CT image

as presented in Table 2.3. Accordingly, the object of the interest can be quickly isolated from

the background for a detailed investigation.



28 Coronary Heart Disease - A Clinical Context

Table 2.3 Standard window-level setting for visualization of different anatomical structures
in CTA [23]

Structure Window Level Grey-scale Range

Posterior fossa (P.F). 150 35 [-40 110]
Brain 70 35 [0 70]
Internal auditory canal 4095 600 [1448 2648]
Bone 2000 800 [-200 1800]
Lung 1600 -600 [-1400 200]
Abdomen 350 60 [-115 235]
Liver A 200 100 [0 200]
Liver B 220 25 [-85 135]
Spine. 300 60 [-90 210]
Fat 270 -35 [-170 100]
Coronary vasculature 800 300 [-100 700]

In addition to the window/level display settings, the CTA volume can be investigated

using a maximum intensity projection technique. Maximum intensity projection (MIP) is

a sophisticated method to project the voxels with maximum intensity from the 3D volume

to a visualization plane. Accordingly, the voxels with maximum intensity that falling in the

way of parallel rays traced from the viewpoint to the plane of projection are recorded. This

technique is used in CT imagery for the detection of lung nodules in lung cancer screening

programs which utilise computed tomography scans. Similarly, MIP is often used in cardiac

CTA to trace any existing high-intensity calcified plaques as illustrated in Fig. 2.11a. Multi-

planar/ curved-planar reformation is another possible technique which makes CT imaging

very effective in clinical context. Based on the medial axis of the segmented coronary tree, a

2D image can be sampled in 3D space to follow the progression of the curvilinear vessel as

shown in Fig. 2.11b.

The real strength of the CT imaging is illustrated in Fig. 2.12, in which a segmented coro-

nary structure is presented. Based on the fact that CT equipment records three dimensional

details, the segmented artery tree can be evaluated in all three directions. This is a significant

advantage over conventional 2D angiogram based imaging, in which the third dimension is

often lost. Moreover, the segmented coronary tree can be investigated for lumen and vessel

wall analysis by sampling 2D orthogonal cross sections as shown in Fig. 2.12b. Hence,
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(a) MIP (b) CPR

Fig. 2.11 Interpretation of a CTA image for effective diagnosis in clinical practice. (a)
Maximum intensity projection (MIP) representing the coronary vasculature and calcified
plaques. (b) Curved-planar reformatted (CPR) image representing right coronary artery in a
3D CTA volume.

the non-invasive nature and three dimensional data availability makes the CTA feasible for

clinical diagnosis of coronary heart disease.



30 Coronary Heart Disease - A Clinical Context

(a) 3D surface (b) Orthogonal

Fig. 2.12 Interpretation of a CTA image for effective diagnosis. (a) surface re-construction
of the 3D arterial tree, with overlaid oblique planes, (b) Cross-sectional slice defining the
coronary lumen. It can be observed that the 3D surface can be investigated in all three
dimension using rotation.



Chapter 3

Image Segmentation: Background and

Related Work

3.1 Introduction

Based on high temporal and spatial resolution, the latest imaging scanners are capable of

recording sub-millimetre details of internal body organs. However, the manual analysis of

recorded image data becomes time consuming, and interpretation often depends upon the

knowledge of the expert. Therefore, fast and precise segmentation of the object of interest is

important for reliable clinical diagnosis.

In computer vision, image segmentation is the process of assigning a label to every pixel

in an image such that pixels having the same label belong to one object. The result is a set of

segments that collectively cover the entire image where adjacent segments differ significantly

with respect to certain features. For effective analysis of the local features, segmentation

is necessary i.e. to extricate region of interest by suppressing the unwanted background

of the image. The concept of segmentation has been widely applied for image analysis in

several areas such as conception and visualization, intelligent transportation systems, satellite

imaging and biomedical diagnosis. One of the most important application domain is medical

imaging where it can be used as an effective tool to assist computer aided surgery, tumour

detection and the identification of vascular abnormalities.
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From a clinical point of view, a cardiac CTA image contains multiple anatomical organs

exhibiting similar visual appearance on the screen; however, a clinician is interested in the

coronary vasculature for abnormality detection. Here segmentation techniques can effectively

differentiate coronary vasculature from the remaining organs for a focused diagnosis. It is

important to mention that coronary vasculature comprises around 2 - 3% of the total CTA

volume [38]. Hence, it is extremely important to discard the irrelevant background and

delineate the object of interest for a focused investigation. Moreover, in context of this

research, the ultimate theme is detection and segmentation of the non-calcified plaques in

CTA. The presence of background structure can significantly affect the performance of plaque

detection algorithm, since the intensity value of non-calcified plaques and heart muscles

often overlap. Once, the object of interest is delineated successfully, a number of image

processing technique (contrast enhancement, image sharpening etc.) can be employed further

for optimal visualization and interpretation.

Generally, texture homogeneity and spatial connectivity is used to extract different objects

in an image [54, 55]; however, for complex medical data, a combination of features (intensity

and geometric) is often required for effective delineation. For a mathematical representation

of the segmentation problem, let Ω represent the image domain, and Sk represent a set of

connected pixels (discrete object). Accordingly, segmentation can be interpreted as process of

identifying non-overlapping setsSk such that the union is the image domain and intersection

is the /null set as expressed by Eq. 3.1.

Ω =
NumOb jects⋃

k=1

Sk, (3.1)

where Sk
⋂

S j = φ ,∀k ̸= j.

In some cases, one of these objects is called background and it includes all the regions not

covered by the objects of interest. For complex medical images, where there exist multiple

objects of the interest in the image, normally associated with organs, tissues or cells, the

classical segmentation process is replaced by pixel segmentation. Pixel segmentation is a

relaxed version of classical segmentation where the connectivity constraint between regions is
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removed; as a result disconnected regions belonging to the same tissue class can be delineated.

However, it is difficult to determine the total number of classes (sets) in pixel segmentation

at the beginning. Consequently, the domain specific knowledge is usually employed to make

the segmentation process robust and realistic in terms of expected number of classes in the

image.

A number of segmentation algorithms have been proposed in the literature with a basic

difference in the boundary detection principle. Simple algorithms employ the image charac-

teristics including predetermined cut-off intensity value for threshold based segmentation,

gradient strength for edge based segmentation and regional intensity characteristics for region

based segmentation [56, 57, 55, 58, 59]. In addition, sophisticated algorithms employ partial

differential equations (PDEs) to detect object boundaries [60, 61], i.e. an initial guess is

evolved under constraints to detect the object boundaries. Starting with simple edge and

region based segmentation techniques, we explain the classic active contour models, the

geometric deformation and the level set formulation in this section. In the subsequent section,

we present a review of the literature in the context of vascular segmentation. The last section

presents a comprehensive review of the state-of the-art literature for non-calcified plaque

detection/segmentation in CTA.

3.2 Classification of the segmentation algorithms

Apart from simple threshold and clustering techniques, the recent sophisticated algorithms

employ partial differential equations (PDEs) to detect object boundaries, i.e. an initial guess

is evolved under constraints to detect the object boundaries. Commonly used formulations

include the parametric snake model and the level set formulation. The parametric snake

i.e. active contour model [62] leads to a fast and computationally efficient segmentation but

shows greater sensitivity to the topological changes, whereas the level set representation [60],

[63] provides inherent split and merge mechanisms to accurately detect complex structures

at the cost of processing time. It should be noted that for both formulations, the evolution

of the initially placed curve is regulated by underlying image characteristics in terms of
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an energy functional. Methods reported in [62] and [63] approximate the image-based

energy in terms of the intensity gradient strength (edge-map), whereas techniques proposed

in [64] and [65] employ regional intensity statistics for the energy approximation. The

region-based methods show robust performance in general as the gradient strength often

leads to over segmentation for weak edges. However, the conventional region-based methods

fail to address the intensity inhomogeneity problem of medical images due to the underlying

piecewise constant assumption. Consequently, localized statistics have been frequently

reported to regulate the curve growth in medical images for minimizing the impact of the

intensity inhomogeneity Li et. al. [66] and Lankton et al. [16].

3.2.1 Edge-based Segmentation

The basic idea behind edge-based segmentation is that a closed shape object in a binary

image can be fully represented by its edges. Accordingly, edge detection often helps in

substantial evaluation of image contents by delineating individual components. In general,

the edge detectors are formulated to capture (respond to) image discontinuity in terms of

gradient strength. From a practical point of view, edge-based segmentation can be defined

as a multi-stage process starting with edge map generation in an image. In the subsequent

step, the identified edges are investigated for closed shape measures as segmentation aims

to delineate the closed boundary object(s). In the final step of edge-based segmentation,

intelligence-based operations are generally required to bridge small gaps and remove false

edges.

Mathematically, the gradient computation is the most effective way of detecting disconti-

nuities in an image intensity values. In a pre-processing step, image noise is often normalized

using smoothing filters to avoid detection of false edges. Subsequently, differentiation is

applied using finite differences to record spatial intensity variations as defined in Eq. 3.2.

The finite difference approximation of Eq. 3.2 represents the derivative for a continuous

function; however, a discrete approximation implementable on a computer is achieved by

substituting the minimum step distance ∆i = ∆ j = 1 pixel accordingly.
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∇Imi =
Im(i+∆i, j)− Im(i, j)

∆i
, ∇Im j =

Im(i, j+∆ j)− Im(i, j)
∆ j

. (3.2)

For two-dimensional images, the intensity variation is calculated in both directions

to obtain the gradient vector G
(
∇Imi,∇Im j

)
for respective pixels, where ∇Imi and ∇Im j

represents the partial derivatives in two directions. The effective gradient strength for the

pixel is computed using Eq. 3.3 , whereas the edges are established by comparing the gradient

magnitude with an application dependent threshold T according to Eq. 3.4.

|∇Im(i, j)|=
√(

∇Im2
i +∇Im2

j

)
. (3.3)

Emap (i, j) =

1 if |∇Im(i, j)|> T,

0 elsewhere.
(3.4)

Different operators [67, 68] have been proposed in literature employing horizontal, verti-

cal and diagonal computations. However, gradient-based edges usually results in frequent

gaps or false edge identification which require intelligent post-processing. If prior shape in-

formation is available, a Hough transformation [69, 70] can be applied in the post-processing

step to track objects in edge map. Another method for linking nearby pixels is the neigh-

bourhood search, which can lead to closed boundary edges. Constraints imposed on linking

criteria ensure the linkage on right path at the cost of computational complexity.

3.2.2 Region-based Segmentation

Edge-based segmentation isolates individual objects by delineating outer boundaries, whereas

region-based segmentation interprets individual objects as consolidated regions. The region-

based segmentation starts from a single reference (seed) point, and the object shape is adopted

gradually by including all the pixels that satisfy predefined similarity criteria in terms of
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texture, intensity or shape constraints as illustrated by Fig. 3.1. It can be observed that the

neighbouring voxels that satisfy the similarity criteria iteratively becomes the part of the

larger vessel in the proposed region based segmentation.

Fig. 3.1 Region growing algorithm for vessel segmentation. Based on the connectivity
criteria, the adjacent pixels are merged to form an object.

Region-based segmentation has shown potential to overcome the limitations of the edge

based theory, especially noise induced images are handled more effectively by region-based

processing with minimum leakage. The core idea of the region-based processing employs

“split” and “merge” operations for image pixels. Pixel merging operation begins with the

assumption of over segmentation in an image. Subsequently, it starts fusing adjacent pixels

having similarity until no more merging is possible. The similarity criteria used is important

and often relies on intensity value similarity. The region growing technique is a practical

implementation of merging segmentation. Starting with a set of pixels (seed values), the

neighbourhood is scanned for pixels that fulfil the similarity criteria and consequently added

to object. In contrast, splitting is based on the assumption of under segmentation, as it starts

splitting image regions having dissimilarity into distinct regions until no more splitting is

possible. The combination of these two operations produces accurate segmentation; however

the computational cost is often increased.

3.2.3 Parametric Active Contour Models

Active contours have been a popular choice for medical image segmentation in recent

years [71]. A comprehensive review of deformable models in image segmentation can be

found in [72]. The motivation for the active contour model is the seminal work of Kass et
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al. [62] in which the object segmentation was posed as an energy minimization problem.

According to this model, the object boundaries can be captured in an image with the help

of a parameterized contour, where the evolution (the propagation speed and the direction of

growth) of the contour is regulated by a complex energy function as expressed in Eq. 3.5.

E =
∫ 1

0
Eint (Cs)+Eext (Cs)+Econs (Cs)ds, (3.5)

where C(s) = (x(s),y(s)) , 0 < s < 1 denotes the evolving curve (also called as snake)

parameterized by arc-length s, such that intermediate values of s define the curve control

points representing deformable snake. The internal energy Eint penalizes the bending and

stretching of the curve to ensure smoothness, Eext represents an image based energy (intensity

statistics) and Econs refers to explicit constraints imposed by the user. Accordingly, image

based energy Eext pushes the finite length evolving curve towards the object boundaries,

whereas Econ based on prior knowledge is often employed to speed up the computation.

The internal energy Eint reflecting the snake behaviour can be modelled according to

Eq. 3.6. The norm of the first derivative∂C(s)
∂ s represents elasticity and second derivative

∂ 2C(s)
∂ s2 represents curvature measure. Two constants α and η in Equation 3.6 assign weights

controlling the importance of individual factors (elasticity and stiffness) in the overall cost

calculation. Setting α = 0 may lead to infinitely long snake, whereas low values of η

will allow sharp twists in the curve. However, sharp twists and lengthy spans increase the

internal energy, so an appropriate combination of two values (α) and (η) is obtained after

experimentation for minimization of the curve energy.

Eint = α(s)
∣∣∣∣∂C(s)

∂ s

∣∣∣∣2 +η(s)
∣∣∣∣∂ 2C(s)

∂ s2

∣∣∣∣ . (3.6)

Eext represents the external energy (derived from the image) that pushes the snake towards

specific features of image including line and corners. The energy value decreases as the

evolving curve comes closer to a particular feature of interest in the image. To emphasize

a particular feature, the respective weights can be assigned in terms of significance in the

cost function of Eq. 3.7, i.e. often edges are the most important features in images. To
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detect edges inside an image, the external energy is often represented using gradient strength

Eext = −w∥∇Im∥2. Accordingly, highest gradient locations (edges) will attain minimum

energy and forces the moving snake to stick therein. Econs represents external constraints

by the user for explicit control of snake movement. This can be used to penalize the snake

if it moves too away from the initial position, or into some undesired region. For many

applications constraints are not imposed, which means this energy is set equal to zero and

snake moves under influence of internal and external energy only.

Eext = wlineEline +wedgeEedge +wtermEterm. (3.7)

The energy optimization is achieved not by direct minimization of snake energy functional

of Equation 3.5, but solving a numerical model based on Euler-Lagrange formulation as

expressed by Eq. 3.8.

− [

∂

(
α

∣∣∣∂C(s)
∂ s

∣∣∣2)
∂ s

+

∂ 2
(

η

∣∣∣∂ 2C(s)
∂ s2

∣∣∣2)
∂ s2 ]+∇(Eext) = 0. (3.8)

The parametric snake has been used effectively for years in image segmentation [72].

Being an intuitive method, it directly moves the control points of the evolving curve; however

certain limitations are also associated with the snake model. Firstly, the convergence of the

snake depends upon an initial estimation of curve, i.e. the curve may fall to identity the

object accurately if initialization is done away from the object. Moreover, as the snake grows

or shrinks, the number of control points may require adjustment for precise estimation.

3.3 Level set Processing

The classical snake model of Kass et al. [62] is implemented using a parametric representation

for object segmentation, i.e. the underlying cost function (snake energy) reaches a minimum

at the object boundaries [73]. Unfortunately, this parametric model is not capable of handling

the topological changes as illustrated in Fig. 3.2. Another drawback is, the cost function (i.e.

the snake energy) depends upon the curve parametrization instead of related object geometry
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(a) Single object-Initialization (b) Single object-Final segmentation

(c) Multi object-Initialization (d) Multi object-Final segmentation

Fig. 3.2 Segmentation based on active contours (parametric snake models). Green is the
initial contour and red shows the final segmentation. It can be observed from (b) that the
evolving curve successfully segments a single object of interest, whereas (d) shows that the
snake model lacks split and merge capability, leading to an erroneous segmentation.

and shape information. These limitations were addressed by Caselles et al. [74–76] in terms

of “geometric contours,” that are capable of addressing topological variations. The curve

growth of the geometric contour is regulated by a speed function consisting of two terms

(first is the curve regularization term and the second is an image based energy responsible for

expansion or shrinkage towards the object boundary). Moreover, the curve deformation is

this work was achieved using a method called the level-set representation (a mathematical

formulation initially proposed to track the front propagation [60, 61, 8]).

According to the level set formulation, the evolving curve is represented as an iso-contour

embedded into a higher dimensional space, such that merge and split operations are handled

naturally by the surface motion. However, there are certain limitations for using a level set

formulation in practice. The main drawback is the required computational resources and

processing time, as the complete surface is evolved in every iteration. Consequently, different

algorithms have been proposed [77] to optimize the computational time with minimal
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impact on the segmentation completeness. The most important technique is “narrow-band”

processing that focusses the computation only at a specific region around the moving curve

for upcoming iterations, as sudden jumps in the object boundaries are not practical.

3.3.1 Level set Formulation

The level set formulation [61] has become a standard framework for complex medical image

segmentation in recent years. The idea of level set processing is to evolve a surface (φ )

instead of a curve (C), such that the curve is defined to be all points where the surface has no

height i.e. φ = 0. The curve is then represented implicitly using the zero level set φ = 0 as

shown in Fig. 3.3a. It should be noted that there occurs numerous structural changes leading

to cusps and valleys. The ability to handle these structural changes using the level set is

illustrated in Fig. 3.3b-3.3e, where the the intersection of the surface φ with the plane z=0

creates the implicit contour.

For mathematical representation of the level set, let us assume that a point x = (x,y)

belongs to a moving curve, such that x(t) is the position of the point over time. According to

the definition of the level sets, at any time t, for each point x(t) on the curve, the surface has

no height as expressed by Eq. 3.9.

φ(x(t), t) = 0. (3.9)

Here φ(x(t), t) can actually be any arbitrary function as long as its zero level set gives us the

contour. The surface height in level set formulation is equal to the distance from x to the

closest point on the contour, so that φ(x, t = 0) =±distt, with distance distt negative outside

the contour, and positive inside. So the initial φ can actually be any arbitrary signed distance

function as long as its zero level set matches the initial mask. Subsequently, the motion

equation ∂φ

∂ t can be employed to track the evolving curve based on the fact that the initial φ

at time t = 0 is available. Accordingly, the chain rule leads to the following computations:
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(a) Surface evolution

(b) z=φ(x, t = 50) (c) z=φ(x, t = 52)

(d) z=φ(x, t = 90) (e) z=φ(x, t = 120)

Fig. 3.3 Illustration of the implicit contour representation [8]. (a) shows how the contour
is extracted from the evolving surface, whereas (b-e) illustrate the level set evolution with
respect to time. (b) beginning of merging at t=50, (c) end of merging at t=52, (d) beginning
of splitting at t=90, and (e) end of splitting at t=120.

∂φ(x(t), t)
∂ t

= 0,

∂φ

∂x(t)
∂x(t)

∂ t
+

∂φ

t
t
t
= 0,

∂φ

∂x(t)
xt +φt = 0. (3.10)

Here, we substitute ∂φ

∂x with ∇φ , whereas the propagation speed xt is given by a force F

normal to the surface, so we redefine the propagation speed as xt =F (x(t)) .n where n= ∇φ

|∇φ | .
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Accordingly, motion equation of 3.10 can be rewritten as follows:

φt +∇φxt =0,

φt +∇φF.n =0,

φt +F∇φ .

(
∇φ

|∇φ |

)
=0,

φt +F |∇φ |=0. (3.11)

Eq. 3.11 defines the evolution of φ with respect to time, i.e. given φ at time t=0, and its

motion over time, it is now possible to track φ(x(t), t) by evolving the initial φ(x(t), t = 0)

over time using force F . This force can depend on a variety of physical effects as it is

application dependent. For instance, the problem of tracking a boundary of a melting ice

block in a warm liquid derives the force from the temperature difference, whereas tracking

a heavy liquid spreading into a lighter one (honey against water) derives F using a mix

of gravity, fluid density ratio and surface tension between the two liquids. Moreover, in

context of the curve regularization, the surface curvature κ can be computed directly from

the evolving surface φ as expressed by Eq. 3.12.

κ = ∇.
∇φ

|∇φ |
=

φxxφ 2
y −2φxyφxφy +φyyφ 2

x

(φ 2
x +φ 2

y )
3/2 . (3.12)

3.3.2 Level Set Discrete Implementation

Implementation of the level set formulation for image segmentation requires a bit of additional

processing as images have pixels and functions must be discretized. Accordingly, we can

compute φt at a spatial pixel {i, j} as expressed by Eq. 3.13, where the gradient will be

evaluated using finite difference scheme of Eq. 3.14.

φt =
φ(i, j, t +∆t)−φ(i, j, t)

∆t
, (3.13)
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∇
+x(i, j) = max[0,∆−x

φ(i, j)]2 +min[0,∆+x
φ(i, j)]2,when F > 0,

∇
−x(i, j) = max[0,∆+x

φ(i, j)]2 +min[0,∆−x
φ(i, j)]2,when F < 0. (3.14)

Here, ∆−xφ or ∆+xφ is the left or the right side finite difference for a given point. The

gradient is computed differently depending on the front direction and a finite difference

scheme takes account of that. Accordingly, we redefine the motion equation of 3.11 by

substituting the discrete approximations for gradient and the force terms as expressed by Eq.

3.15

φ(i, j, t +∆t)−φ(i, j, t)
∆t

+max[F,0]∇+x(i, j)+min[F,0]∇−x(i, j) = 0. (3.15)

From Eq. 3.15, the update equation for surface φ(i, j) is derived as expressed by Eq.

3.16, whereas the curvature regularization is computed for respective point (i, j) using Eq.

3.17. When computing the curvature, it depends only on the surface φ , so central differences

can be used accordingly.

φ(i, j, t +∆t) = φ(i, j, t)−∆t[max[F,0]∇+x(i, j)+min[F,0]∇−x(i, j)]. (3.16)
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κ(i, j) =
φxxφ 2

y −2φyφxφxy +φyyφ 2
x

(φ 2
x +φ 2

y )
3/2 , (3.17)

where

φx(i, j) =
1
2
(φ(i+1, j)−φ(i−1, j)),

φy(i, j) =
1
2
(φ(i, j+1)−φ(i, j−1)),

φxx(i, j) = (φ(i+1, j)−φ(i, j))− (φ(i, j)−φ(i−1, j)),

φyy(i, j) = (φ(i, j+1)−φ(i, j))− (φ(i, j)−φ(i, j−1)),

φxy(i, j) =
1
4
[(φ(i+1, j+1)−φ(i−1, j+1))− (φ(i+1, j−1)−φ(i−1, j−1))].

3.4 Image-Based Energy

For effective segmentation of objects using level set formulation, the curve driving force for

Eq. 3.11 (Eq. 3.16 in discrete approximation form) is derived from the image in context of the

particular application. For instance, the gradient strength is often used as image characteristic

to detect the object boundaries as expressed in Eq. 3.18.

F =
1

1+ |∇Im| , (3.18)

where |∇I| represents the magnitude of the image gradient and explicit one is added in

denominator to avoid division by zero. Based on the fact that the gradient magnitude is

an effective indicator of object separation, the conventional segmentation methods [62, 75,

63, 78] approximate the image based curve driving force in terms of gradient strength as

expressed in Eq. 3.18 with an expectation to stop the curve growth at object boundaries.

Despite being intuitive method, the major disadvantage of the gradient driven active contour

is that the initial curve should be placed near the objects to be segmented for a high quality

delineation. However, the complex medical imagery often contains multiple objects and

usually the inter-object border is comparatively weak due to the similar intensity of different
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anatomical structures. Consequently, the curve evolution does not stop at weak object edges,

resulting in oversegmentation or "leakage". Moreover, the performance of these methods is

very sensitive to image noise due to dependence on the image gradient. In general, Gaussian

smoothing is applied in a preprocessing step to filter the noise, but smoothing widens the

boundary of the objects and leads to under segmentation, i.e. the curve evolution may stop

before realistic edges of the objects.

In contrast, a region based image force can be used for more effective segmentation as

it employs the neighbourhood statistics for detecting the object boundaries. The regional

statistics make the region based segmentation resistant to image noise and weak edges.

Based on the assumption of homogeneous intensity for the object and background region,

Chan-Vese [79] approximated two regions with their global mean intensities as expressed by

Eq. 3.19. This method seeks to minimize the intraclass variance by optimizing the fitting

term F1(C)+F2(C).

F1(C)+F2(C) =
∫

inside(C)
|Im(x)− c1|2 dx+

∫
outside(C)

|Im(x)− c2|2 dx, (3.19)

where C is the evolving contour, c1 and c2 represent the mean intensity value inside and

outside the contour respectively. The use of a fitting term for optimal segmentation is

illustrated in Fig. 3.6 with the help of four different cases. It can be observed from Fig. 3.4a -

3.4b that if the curve C is outside the actual object, then F1(C)>0 and F2(C) = 0, whereas

if the curve C lies inside the object bounds then two fitting components show opposite

behaviour i.e. F1(C) = 0 and F2(C)> 0. Moreover, in a case when the initial curve is both

inside and outside the object bounds, both components of the fitting term assume significant

values i.e. F1(C) > 0 and F2(C)> 0 as shown in Fig. 3.4c. In the last scenario, when the

curve C exactly lies on the actual boundaries of true object, it can be observed that both

fitting components approaches to zeros leading to overall fitting term F1(C)+F2(C)=0 i.e.

the fitting term becomes optimal (minimal) when the curve captures the true boundaries of

the object (see Fig. 3.4d). Similarly, the energy formulation of Yezzi et al. [65] employed
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the idea of maximal separation between two mean intensities of a piecewise constant image.

According to these models, the image based force F(c1,c2,C) becomes minimal at the object

boundaries leading to the optimal segmentation.

(a) Fitting>0 (b) Fitting>0 (c) Fitting>0 (d) Fitting=0

Fig. 3.4 Four different cases (curve positions) to illustrate the efficacy of Chan-Vese fitting
term in region based segmentation. It can be observed that the fitting error becomes minimal
for (d), where the curve captures the object boundaries accurately.

3.5 Related Work

Depending upon the underlying imaging modality (DSA, CT or MR), numerous techniques

have been proposed to investigate the blood filled structures in imaged data. In the con-

ventional DSA and MRA angiograms, the blood pool can be traced due to its distinctive

behaviour in the global histogram of the image, as blood voxels are assigned very low or

high intensities. Hence, the direct visualization of DSA data is possible with maximum

intensity projection (MIP) or volume rendering. In contrast, the precise segmentation of

specific anatomical structures in CTA is quite challenging due to the overlapping intensity

distribution. The blood-filled vessels in CTA data have intensity values that fall in the middle

of the global histogram (between intensity of lungs and bones). Consequently, application of

maximum intensity projection (MIP) or direct volume rendering does not yield reasonable

results for visual diagnosis. For instance, a MIP view is obstructed by bones and large blood

filled regions (left ventricle of the heart) resulting in hiding thin tubular vessels. In this sce-

nario, advanced visualization techniques like contrast adjustment and window levelling are

applied for visual emphasis of specific features. For a detailed analysis, the object of interest
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must be segmented in a first step, and focused investigation is performed subsequently. In

this section, we give a brief review of the literature addressing medical image diagnosis, with

a focus on the vessel and plaque segmentation in clinical CTA data.

3.5.1 Vessel Segmentation

Despite active research in the last decade, 3D vascular segmentation remains a challenging

task due to several reasons. The inter-patient variability is one of the most important factors,

and even for a specific patient, vessels are generally surrounded by complex anatomical

organs that makes segmentation very challenging. Moreover, due to the complexity of

medical data, like cardiac CTA or brain MRI, a particular segmentation method may not

produce very effective results and a mix of segmentation techniques are often applied to

extract the required structures, i.e. coronary vasculature in cardiac CTA. In this context,

a number of methods can be found in the literature addressing the vascular segmentation,

however automatic frameworks are least reported because of the complexity of problem. We

provide here a brief review of the vessel segmentation literature with a focus on CTA based

processing.

In literature, the majority of the CTA based vessel segmentation studies are related with

carotid artery segmentation. In contrast to the coronary vasculature, the carotid arteries

are larger vessels as well as their static nature leads to good image quality in CTA that

makes segmentation comparatively easier. Geodesic active contour curve evolution has been

used by Antiga et al. [80] for carotid arterial segmentation from CTA images. For efficient

implementation, sparse field representation [77] was used in curve evolution. Based on initial

seed points, surface grows iteratively like balloon as the curve evolves, whereas artefacts in

segmented surface due to collateral vessels were removed by applying a smoothing filter.

Andel et al. [81] proposed a medial axis extraction method for carotid arteries based on

gradient and image derivatives. The Canny edge filter in combination with a Hessian filter

was used to design the cost function. In the following stage, a minimal cost path search

mechanism was used for extracting the lumen centreline defining the progression of carotid

vasculature; however, surface extraction was not reported in this work. Based on the intensity
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similarity in CT imagery, a challenging task in evaluation of brain related CTA data is to

separate blood filled vessels from bones, both having high intensity values. In this context,

Harnandez et al. [82] used a combination of pixel segmentation and active contour based

evolution. In the first step, pixels were classified into bone and vessel based on a probability

density function. In the following stage, active contour deformation was applied to extract

the carotid vasculature.

Cheng et. al. [83] proposed a novel idea of 2D cross-section based boundary detection of

3D vessels. According to the proposed method, the vessel axis was computed in the first stage

using multi-scale Hessian analysis. In the following step, an active contour model was evolved

to detect the vessel boundaries under shape and size constraints for improved accuracy;

however, the main limitation of the method is the circular shape approximation of the vessels.

Consequently, the pathological lesions, vessel bifurcations and morphological abnormalities

may lead to inaccurate segmentation in this method. Boskamp et al. reported the use of a

region growing algorithm for vessel segmentation in CT and MR images. Initialized with

one or more manual seed points within the vessel, region growing segmentation was used to

delineate the complete vessel structure.

The criteria used for region growing mechanism was traditional intensity thresholding,

which leads to segmentation leakage in for noisy and weak boundary regions; however,

to minimize the impact of nearby non-vascular objects, connectivity-based pre-processing

was used. Likewise, Metz et al. [84] described a semi-automatic approach for tracking a

vessel centreline in CT data. Consequently, the proposed region growing method was used

in combination with bifurcation and leakage detection scheme. Accordingly, the proposed

method successfully minimizes the leakage problem in segmentation that usually occurs at

bifurcation points; however, provision of the manual seed points still poses a challenge for

automated segmentation.

Model based methods simplify the vessel extraction and representation problem by fitting

the shape of the vessel to a certain geometric model. These can be fast and intuitive but

the model usually has limitations in representing all possible shapes such as bifurcations

and irregular cross sections, which is often the case for diseased vessels. The construction
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of such models remains a difficult task as it is quite difficult to obtain the required training

data representing all possible variations. Feng et al. [85] applied a two-phase modelling

approach to segment the entire vascular structures from volumetric data. In the first stage,

a model deformed to fit the medial axis of the vessels, and the radius of the vessel was

estimated in a second stage of deformation. By interpreting the tubular structures as the

assembled cylindrical branches, their method can be used to segment the vessel with multiple

bifurcations. Similarly, Florez et al. [86] also presented a deformable cylindrical model

based algorithm to extract the vascular lumen from 3D MR images. They firstly applied

a fast skeleton method to estimate the centreline of the vessels in a coarse resolution, and

then, the model was initialized near the medial axis of the vessels. The model was evolved in

terms of the geometric constraints combined with image forces to capture the boundary of

the vessels. In a similar fashion, Worz et al. [87] employed a cylindrical model for the vessel

segmentation problem. In order to capture vessels of different vessel sizes, a parametric

intensity model was proposed in their work. However, the main limitation of this work

is approximation of vessel cross sections with a circle, which is not valid especially for

abnormal vessels showing some extent of remodelling.

Other researchers have explored the use of minimal cost paths as an alternative to vessel

segmentation. [88, 89] presents the application of this technique for extraction of vessels

in 2D and 3D images. The cost function generally incorporates image gradient (intensity

based information) or additional constraints for smoothness of the surface. By interpreting

the vessel size as 4th dimension, Li and Yezzi [90] adjusted the centreline position in an

augmented space. The additional constraint lead to an aligned and more accurate centre

point. However, the intrinsic nature of the minimal path technique which requires at least two

manual points for path calculation, makes it less automatic as initialization depends upon the

user input. Moreover, in the case of the left coronary artery, multiple seed points are required

for detection of complete arterial tree.

Wink et al. [91] reported a simple vessel extraction approach based on 2D contour

segmentation. An iterative process of determining centre point and corresponding vessel

boundary was performed to generate final segmented surface. Based on the centre point,



50 Image Segmentation: Background and Related Work

3D data was re-sampled and 2D orthogonal cross sectional slices were obtained in the

direction of the vessel. The achieved segmentation is not very effective due to the inherent

limitations of gradient based approaches i.e. sensitivity to noise. To address the gradient

based leakage of geometric contours, Nain et al. [92] proposed to integrate a shape prior

into the geometric active contours. Accordingly, they proposed to apply a local shape filter

representing geometric constraints. The shape filter was defined as a ball structure centred

at each point along the contour to be evolved with radius “r”. The filter calculates the

percentage of the voxels that are both within the ball and the region inside the contour. The

output of the shape filter becomes high if the current point resides inside a widening region.

On the other hand, the lower value of the filter’s output indicates that the current point is

within the vascular region. By combining the filter response with the level set formulation,

the proposed method was able to penalize leaks during curve evolution.

Yim et al. [9] employed tubular deformable model to reconstruct the vessel surface from

MRA images. The surface deforming process was carried on within a tubular coordinate

system, thus giving a convenient measure of the cross-sectional area of the vessels. However,

re-parametrization and vertex merging are needed to avoid problems of self-intersection of

the surface. In addition, this method only models single branches of the vessels, so in the

case of bifurcation, two branches are needed to be merged to form a Y-shaped structure as

illustrated in Fig. 3.5.

The conventional region based active contours models [65, 79] reported successful image

segmentation for weak gradient images; however, the intensity inhomogeneity associated with

medical images often lead to a problem of segmentation leakage. Intensity inhomogeneity

often occurs in medical images due to the acquisition hardware artefacts, partial volume

effect and different types of noise. In other cases, it also appears due to the nature of data i.e.

the non-uniformity of tissues leads to an increased inhomogeneity [93]. An effective way to

overcome the inhomogeneity problem is to approximate the image based energy Eext using a

fairly small region, so that image based curve evolving force can be derived using a local

intensity distribution. In this context, numerous algorithms have been proposed to employ

localized intensity statistics for an improved and realistic segmentation. The incorporation of
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(a) (b) (c) (d)

Fig. 3.5 Reconstruction of the vessel surface using a tubular deformable model from contrast
enhanced MRA images in [9]. (a) Original image of a carotid artery, (b) re-constructed
branch of the external carotid artery (ECA), (c) re-constructed branch of the internal carotid
artery (ICA). (d) the ECA and ICA are merged into a complete carotid model.

localized statistics in the image segmentation was first proposed by Brox and Cremers in [94],

where the piecewise smooth model of Mumford-Shah [95] was approximated by the local

means. As a solution to handle intensity inhomogeneity of medical images, Li et al. [66, 96]

proposed to utilize the localized regional information to segment the objects effectively. In

their method, the local intensity information was extracted by a Gaussian kernel function.

The fitting energy (local statistics) was then calculated at the each point of contour (falling

within the kernel) to compute an image based force; however, the main limitation of their

work is sensitivity to the initialization mask.

Yi et al. [97] proposed solution of leakage problem by a localized region growing

algorithm. Accordingly, a region grows in a local cube where the size of the cube was

determined dynamically with the help of an estimated diameter. A similar scheme of

controlled region growing was adopted by Tschirren et al. [98] as they incorporated fuzzy

connectivity criteria to minimize the leakage. Another related method was reported by

Lankton and Tannenbaum [16] which presented a framework that allowed localizing region

based energy functions for effective delineation of the object of interest. Accordingly, this

work proposed a novel method for localized region based segmentation by introducing a

radius-based kernel to define the localization scope. Successful results were presented for
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both 2D segmentation [16] and 3D coronary segmentation [99]; however, the initialization

sensitivity was explicitly emphasized. We have observed from experimentation that the

selection of the localization radius plays a critical role in this method. A large radius leads to

a global approximation resulting in erroneous segmentation, whereas a small radius makes

the evolving contour vulnerable to spurious local minima as illustrated in Chapter 4. Another

limitation of this method is the requirement for intelligent placement of the initial mask to

avoid converging to a local optima far from the desired solution.

More recent work has explored the use of hybrid energies (which combine local and

global image statistics) for vessel segmentation. Xu et al. [100] proposed the use of local

intensity statistics in a hybrid model for an improved segmentation. Accordingly, the authors

used global approximation of the image intensities in Chan-Vese energy model and the local

approximation in the mean separation energy model of [65]. An improved segmentation

was achieved by using a weighted contribution of two terms; however, the computational

cost increases two-fold. Moreover, the method was quantitatively evaluated only on 2D

images and no results were reported for complex 3D multi-scale images. Yin and Liatsis

[101, 102] proposed a hybrid energy model by integrating the global image behaviour in

the coronary evolution. In a pre-processing stage, voxels representing the air in the CTA

volume were normalized to obtain a two class representation. Next, using the assumption

of a constant background, a bimodal histogram was approximated with a Gaussian Mixture

Model. In the final stage, an explicit label image was derived using a cumulative distribution

function of the histogram to represent the global model of the CTA image. This method

works efficiently for images with a bimodal intensity histogram; however, it fails to handle

the significant variations in CTA data encountered in practice. For instance, the intensity

variation in the background makes this approach vulnerable as the label image misguides the

evolving contour. Another limitation is the pre-processing required for individual volumes as

the acquisition dependent parameters affect the quality of the CTA differently.
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3.5.2 Plaque Segmentation Review

The state-of-the-art imaging modalities (MRI, DSCT, MDCT) have emerged as promis-

ing tools for description of atherosclerotic plaques [103, 104], both in terms of the shape

quantification and intensity composition. Based on the fact that calcified plaques are easily

discernible in CTA, numerous methods have been proposed to automatically detect calcified

plaques with a reasonable accuracy [105–107, 13, 32, 108–111]. However, the detection

and segmentation of the non-calcified plaques in CTA is still a challenging problem, mainly

because of similar appearance (HU intensity values) to nearby blood and muscle tissues.

Consequently, there is limited literature [99, 10, 112, 11, 113] addressing the complex prob-

lem of non-calcified plaque detection, out of which the majority of papers have been clinical

pilot studies.

An automated framework for the quantification of manually identified soft plaques in

CTA was proposed by Clouse et al. [10]. From a dataset of 40 CTA volumes, a total of

49 major coronary segments (41 normal and 8 abnormal) were investigated to validate the

proposed quantification method. For precise quantification of the soft plaques, the authors

established correspondence between normal cross sections at the terminal sites of the plaque

region to approximate the outer boundary of the vessel. In the subsequent step, the mean

intensity value for the lumen was approximated using the intensity response in the mid of the

vessel. In a final step, all voxels having intensity value equivalent to lumen intensity, were

subtracted and those left over were labelled as non-calcified plaque.

The results demonstrated that CTA based soft plaque quantification was possible; however

the outcomes were based on a high degree of manual input i.e. intelligently selected coronary

segments were investigated in the study as illustrated in Fig. 3.6. Moreover, the prior

knowledge of plaque locations was an additional requirement as the quantification method

required information about normal cross sections on terminal sites for computing the plaque

volume.

An extension of this pilot study reported successful correlation between CTA analysis and

intravenous ultrasound (IVUS) plaque quantifications [114]. A total of 20 soft plaque effected

segments were identified from 12 multi-detector CT (MDCT) volumes for comparative
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Fig. 3.6 Non-calcified plaque quantification using manual detection of the plaque region
as proposed in [10]. Left shows an arterial segment with marked positions at different
points along the segment, the right shows the cross sectional views for three positions with
corresponding lumen-plaque annotations

.

Table 3.1 Distribution of 49 cross-sections used in [10]

Arterial segment Normal cross sections Abnormal cross sections

Proximal right coronary 10 0
Mid right coronary 7 1
Left main 4 1
Proximal left anterior descending 8 4
Mid left anterior descending 4 2
Proximal left circumflex 8 0

quantification. However, the main limitation of this work was the manual identification of

plaque lesions as the aim of the study was to correlate quantitative metrics of two imaging

modalities rather than the detection and segmentation of non-calcified plaques.

Renard and Yang [11] proposed a computationally efficient method that integrated the

plaque detection problem in the vessel segmentation framework. A coronary skeleton

based on eigenvalue analysis was used to segment the vessel (lumen and wall) in the first

step. To ensure the minimal impact of image local features on the centreline extraction

process, substantial pre-processing is done to suppress features like myocardial cavities and

calcified plaques i.e the high intensity calcified plaques voxels were manually normalized by
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assigning a low intensity value. The non-calcified plaques were detected in the second step

by comparing effective cross-sectional area of the lumen against vessel wall as illustrated in

Fig. 3.7. Encouraging visual results were presented for this computationally efficient method,

but no clinical validation was discussed in the paper. Moreover, the outcomes were reported

for a very small data sample (2 CTA volumes only) which makes the reproducibility difficult.

In addition, this method requires substantial pre and post-processing of the volumetric data.

Another concern is that results were only reported on an isolated vessel branch and no hint

was provided for treatment of multi-branch arterial tree containing several bifurcations.

Fig. 3.7 Plaque detection results for the first CTA volume of [11]. (a) extracted vessel of the
LAD artery in which a soft plaque is present, (b) cross sectional view showing lumen and
vessel wall for a segment of this artery, (c) corresponding intensity images of different cross
sections in (b), with the middle plane showing soft plaque, (d) effective cross sectional area
of the lumen (dotted-red), vessel wall (dashed-blue) and their difference (solid green). The
unexpected area metrics for middle plane indicates the presence of soft plaque.

Lankton et al. [99] proposed a novel method in which the soft plaque detection was

posed as an active contour segmentation problem. In this two stage detection process, the

coronary tree was extracted from the CTA volume in the first stage using mean separation

energy model [79]. In the subsequent step, two explicit surfaces derived from the original

segmentation (using erosion and dilation) were evolved simultaneously to encompass low

density soft plaques using the mean separation energy model of Yezzi et al. [65]. The



56 Image Segmentation: Background and Related Work

novel aspect of this work is the idea of simultaneous segmentations using localized intensity

information. Initially the interior region of the inside surface contains only the bright voxels.

As the contour is allowed to deform, it expands to capture more voxels containing blood

but does not expand into a bit darker non-calcified plaque voxels. Similarly the external

contour contains myocardium voxels initially, and it does not contract to accommodate the

soft plaque voxels from the boundary during evolution. This way soft plaques can be captured

in between two contours as neither will move into plaque voxels when driven by localized

means-separation energy. Simply, in case of absence of soft plaque (no inhomogeneity in

intensity values) these two evolving contours meet on the vessel wall, whereas deposition

of the plaque inside wall will stop contours at the boundary of vessel and they will remain

separate from each other. Moreover, this method casts the problem in a variational active

contour framework i.e. level set framework that operates directly on the raw imagery that

naturally handles branching vessels and benefits from the geometric properties of active

contours. Hence, this technique does not require any pre or post-processing of CTA data. A

total of 8 CTA volumes were investigated in this work and a detection rate of 88% against

manual annotations was reported; however, a requirement for the careful initialization of the

evolving surfaces has reduced the practicality of this method as illustrated in Fig. 3.8.

(a) Good initialization (b) Detection success (c) Different initialization (d) Detection failure

Fig. 3.8 Soft plaque segmentation using mean separation energy in bi-directional curve evo-
lution. (a, c) represents two explicit initializations (blue and green) based on morphological
operations, (b, d) shows corresponding plaque segmentations. Moreover, red annotations
show the expert based manual ground truth. It can be observed that an intelligent initializa-
tion of (a) leads to good segmentation in (b), whereas a vague initialization of (c) leads to
segmentation leakage in (d).
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The use of machine learning in soft plaque detection was first reported by Wei et al.

[112] where a linear discriminant analysis (LDA) was used to reduce the false positives in

a set of 120 pre-selected soft plaque candidates. This is a multi-stage process where the

detection of coronary vasculature is followed by a series of geometric analysis. The initial

segmentation of arterial tress is achieved by using MSCAR-RBG algorithm [115] which

extracts about 86% correct arteries with respect to standard 17-segment AHA coronary model

[4]. Subsequently, the incorrect arterial branches were eliminated / inserted interactively, to

ensure that accurate coronary arteries are to be passed to the plaque detection phase. In the

second stage, the plaque candidates were selected based on a combination of intensity and

geometric features. In the final stage, features including radius differential, mean, standard

deviation and skewness of the plaque candidates were used in a LDA classifier for soft plaque

detection. A total of 120 plaque candidate regions were chosen from 83 CTA volumes in this

study and a sensitivity of 92.5 percent was reported; however, the accuracy of the classifier

was mainly dependent upon NCP candidate selection criteria and machine learning was

employed only to optimize performance by suppressing false candidates.

Likewise, Tessman [113] proposed a learning based method for the classification of

coronary stenosis. In the first step, the pre-extracted coronary centreline was used to map the

vessel segment with a series of multi-scale overlapping cylinders to identify the sampling

points inside the segment. In the following step, the authors extracted image based features

at the sampled points including intensity, gradient magnitude, and the first order derivatives

to detect the high intensity calcifications. Moreover, global features including image mean,

entropy and variance were used in combination with Haar-like features to detect the low

intensity soft plaques. Accordingly, the detection accuracies reported were 94% and 79%

respectively for the calcified and non-calcified plaques, along with a high number of false

positives. The low detection rate for the soft plaques illustrate the fact that low-density based

soft plaques demand a more sophisticated system i.e. beyond stenosis based computations

are required to handle low intensity and the positive remodelling of the vessels. Another

interesting method for the automatic detection of vascular abnormalities was proposed by

Zuluaga et al. [116]. In this work, the authors formulated an unsupervised learning system
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for detecting abnormal cross-sections in a vascular tube using “density level detection-

DLD" technique of Steinwart [117]. Accordingly, the cross sectional images were discretely

sampled around the tube centreline in a first step to derive the feature set for discriminating

outliers from normal cross sections. In the second step, an unsupervised one-class SVM

model trained on normal cross sections was used to detect the outliers i.e. the cross sections

which violate the intensity pattern of normal class. The authors reported promising results

for 9 clinical CTAs with non-calcified plaque detection accuracy of 79.62%, however; the

correct selection of ρ (parameter identifying the anomaly concentration) is important for the

optimal results. Moreover, due to the one class unsupervised learning, a large number of

normal cross sections with identical intensity pattern are required to train the SVM classifier,

which is relatively difficult to achieve from clinical CTAs. Furthermore, the presence of

nearby structures severely affect the classification performance in this one-class abnormality

detection model.
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Fig. 3.9 Vessel wall based voxel map analysis used in [12]. (a, b) represents the intensity
based gradient at four layers of the vessel wall (from innermost to outermost layer) for plaque
effected segments of two CTA volumes. The abnormality of the gradient can be used as
plaque indicator at respective locations.

One automated method for the detection of non-calcified plaques was reported by Li

et al. [12] in which region growing coronary segmentation was followed with voxel based

detection analysis. Based on the assumption that lumen voxels have intensity value greater

than 160 HU, the region growing segmentation was used to segment the coronary vasculature
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in the first step. Subsequently, in the plaque detection step, the authors constructed a voxel

map of the vessel wall using morphological dilation and erosion. After generation of the

voxel map (dilation and erosion is done), the vessel wall was divided into four layers with

labels -1, 1, 2, 3 (from outer border of lumen to the outer border of wall). Next, the mean

intensity gradient at the internal and external interface of the vessel wall was computed and

all the abnormal fluctuations were associated with soft plaques as illustrated in Fig. 3.9.

This detection was based on the experimental evidence that the inner lumen intensity value

increases sharply as approaches close to the aorta (due to the high concentration), whereas

the intensity remains stable through out the vessel length at the outer vessel wall. Hence,

the violations of the intensity at vessel wall layers were associated with the non-calcified

plaques; however, no statistical data was provided for the plaque detection in the paper as

well as morphological erosion often leads to discontinuities in plaque affected segments.

Mirunalini et al. [13] reported fully automated framework for identification of coronary

artery plaques with a success rate of 97%. Accordingly, the plaque detection was achieved

by exploiting the discontinuities in the vessel; however, the paper did not explicitly mention

statistics for the non-calcified plaques which often remains significantly low in a comparison

to the calcification detection. Starting with the aorta localization in Gaussian convolved

image, the inter-branch connectedness was improved using the Sobel operator. In the final

step, the stenosis regions were detected by identifying the discontinuities in the centreline

of the segmented coronary tree as shown in Fig. 3.10b. Although the authors reported 97%

success rate for this approach, but the research was focused on stenosis detection problem as

well as based upon several manually selected thresholds.

3.6 Summary

It can be summarized that CTA based vessel segmentation and plaque quantification have

been challenging problems for the research community in recent years. A number of

algorithm have been reported in literature for vascular segmentation, with a basic difference

in the boundary detection principle. [80] employed seed based region growing method to
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(a) Segmented tree (b) Centreline skeleton

Fig. 3.10 Detection of plaques in coronary vasculature as proposed in Mirunalini et al. [13].
(a) Segmented coronary tree, (b) centreline representing plaque based discontinuities. The
nature of the plaque (calcified or non-calcified) can be identified using intensity threshold in
segmented tree of (a).

segment carotid arteries in CTA, whereas [82] proposed a 2-stage method in which pixel-

based classification is combined with region growing active contour. Likewise, Cheng

[83, 91] proposed the idea of 2D cross section-based boundary detection for construction of

3D vasculature in CTA. The cross-section boundary detection was based upon constrained

active contour; however, the circular approximation leads to erroneous segmentation for

bifurcation and lesion regions. In addition, [85–87] used cylindrical model to delineate

vessels in 3D volumes; however, the cylindrical model fails to handle the natural bifurcations

in the coronary vasculature. The intensity inhomogeneity problem was addressed in terms

of localized region growing segmentation in [94, 16, 96, 97]; however, the performance of

the segmentation algorithm heavily relies upon manually selected localization scope. For

improved segmentation, recent studies have reported the use of hybrid energy [100, 6, 102]

to overcome intensity inhomogeneity artefacts.

CTA-based non-calcified plaque quantification has been reported in the literature;however,

majority of the studies show segmentation over small datasets. Renard et al. [11] proposed a

2-stage plaque detection method using lumen area statistics; however, results were reported

for two CTA volumes only. A similar geometrical method for plaque segmentation and

quantification was reported in [10, 114];however, the non-calcified plaque was manually



3.6 Summary 61

selected in first stage and algorithm validates the quantification capability. A novel method

alleviating the need of geometrical analysis was proposed by Lankton et al. in which

plaque detection was achieved using energy minimization;however, the explicit initialization

reduced the applicability. Moreover, the results were reported for 8 CTA volumes and no-

quantification was performed. The use of machine learning was reported by Tessman et al.

[113], Zuluaga et al.[116] and Wei et al. [112]. Tessman and Zuluaga employed One-class

support vector machine to exploit intensity abnormalities; however, no radius information

was investigated. In contrast, Wei et al. stressed upon intensive pre-processing in terms

of topological soft gradient computation to optimal detect plaque affected patches using

Adaboost classifier.

To conclude, we presented a detailed background and the relevant literature in this chapter.

Starting with the basic image segmentation problem, we explored sophisticated methods used

for segmentation of anatomical structures in medical imagery. In addition, we compared the

parametric representation and implicit level set formulation in context of image segmentation

in this chapter. This is followed by a brief review of the vessel segmentation techniques

reported in literature, to familiarize the reader as this issue is investigated in Chapter 4. The

last section of this chapter presents a detailed review for state-of-the-art non-calcified plaque

detection methods to set the background for Chapters 5 and 6 of this thesis.





Chapter 4

Coronary Image Segmentation using a

Hybrid Image Energy

4.1 Introduction

In this chapter, we address the problem of coronary tree segmentation in a CTA volume. The

segmented tree is used subsequently in Chapters 5 and 6 for the detection and quantification

of non-calcified plaques, respectively. This chapter starts with the specifications of the clinical

dataset used in this work, followed by the manual ground truth construction.We then explain

the coronary segmentation process with an emphasis on geometrical vessel enhancement

and the intensity-based adaptive threshold computation. Next, we highlight the limitations

of the conventional localized energy-based segmentation model, which is followed by the

explanation of the proposed hybrid model. In the last section, we demonstrate the efficacy of

the proposed model with the help of both qualitative and experimental validation.

The first contribution in this chapter is the use of an adaptive intensity threshold for

improving the segmentation quality. The influence of the contrast medium in a CTA volume

was modelled by approximating the intensity histogram of the descending aorta with a

Gaussian-based approximation. We demonstrate the need of a volume-wise adaptive intensity

threshold using statistical and visual results. The second contribution of this chapter is

the formulation of a hybrid energy metric that couples an intensity-based local term with
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a discontinuity-based global model of the image for optimal segmentation. The proposed

hybrid energy-based model captures object boundaries accurately as the hybrid energy is

less attracted to the local optima solutions. Moreover, we demonstrate with the help of

experimental results that the hybrid energy provides robustness against the initialization and

localization radius simultaneously. After demonstrating the usefulness of the hybrid energy

on generic imagery, we apply the proposed model to solve an important clinical problem of

3D coronary segmentation. The segmentation is achieved using a level set formulation for

computational robustness, and a mask auto-correction feature was introduced for tracking

the emerging peripheries during the curve evolution for completeness of the coronary tree in

a 3D CTA volume. Finally, the proposed model is evaluated by comparing the segmentation

performance against the coronary segmentation model of Yang et al. [17]. The qualitative and

quantitative results demonstrate the effectiveness of the proposed framework with a consistent

mean sensitivity and specificity measures of 80% across the CTA dataset. Moreover, the high

degree of agreement with respect to the inter-observer differences demonstrates the proposed

algorithm has similar performance to expert clinicians.

4.2 Clinical Data

From a broader perspective, three different datasets have been investigated in this research.

The first dataset, which consists of 18 CTA volumes has been downloaded from the publicly

available database of the Rotterdam Coronary Artery Evaluation framework [18, 118]. The

Rotterdam CTA data comes from different sources and is based on different vendors as

illustrated in Table 4.1, whereas remaining two datasets are obtained from our clinical

partners.

The Second dataset, consisting of 12 CTA volumes was obtained from Guy’s and St.

Thomas’ Hospital, London which was acquired using a Philips iCT256 scanner. The image

was acquired using 256 slice/rotation with Ultravist370 contrast medium. In order to over-

come the heart motion, a perspective ECG gating technique was used, whereas a medium soft

re-construction kernel XCB was used in the filtered back-propagation slice reconstruction
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Table 4.1 CTA data specifications.

CTA Datasets Semmelweis Guy’s & Thomas Rotterdam dataset

Vendor Philips Philips Siemens Toshiba Philips
Vol Count 2 12 6 6 6
Institution Semmelweis Uni.(HN) City Uni. (UK) Erasmus Uni. (NL) Leiden Uni. (NL) Utrecht Uni. (NL)
CT Scanner Brilliance256 Brilliance256 Somatom Def. Aquillion One 320 Brilliance 64
Slice/Rotation 256x1 256x1 32x2 320x1 64x1
ECG Gating Perspective Perspective Retrospective Retrospective Retrospective
Reconstruction Kernel XCC XCB b26f b26f b26f
Contrast Medium Ultravist 370 Ultravist 370 Ultravist 370 Ultravist 370 Ultravist 370

algorithm. The mean resolution for this data set is 512 ∗ 512 ∗ 290, the inter-voxel distance

is 0.39 mm with slice thickness equal to 0.43 mm. Likewise, the third dataset consisting

of two CTA volumes was obtained from Semmelweis University Budapest, Hungary. The

CT scanning equipment for these two CTA volumes remain the same i.e. Philips iCT256;

however, the reconstruction kernel XCC was used in filtered back projection algorithm to pro-

duce sharp images. The mean resolution for this data set is 512 ∗ 512 ∗ 300, the inter-voxel

distance is 0.41 mm with slice thickness equal to 0.40 mm.This multi-platform dataset makes

the segmentation problem challenging as a CTA volume reflects the acquisition differences

in terms of acquisition time and amount of contrast medium injected; however, this serves as

a great platform to ensure generalization of the proposed method.

It is important to mention that the Rotterdam dataset provides ground truth for both the

vessel boundary and plaque inside individual segments of the coronary tree. The boundary

ground truth is provided in terms of 3D discrete contours (manual annotations representing

the vessel boundary) from start to end of the segment, whereas the plaque information is

provided in terms of plaque type and the precise position inside the coronary segment. In

contrast, the remaining two datasets do not provide information regarding vessel boundary;

however, they provide the adequate information regarding plaque in terms of plaque type and

the precise position of the plaque in abnormal segments.

4.2.1 Rotterdam CTA Data

Based on the fact that the focus of this chapter is effective segmentation of the coronary

vasculature in CTA volume, we explored only first dataset in this chapter. The motive behind
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using Rotterdam dataset in this chapter is the availability of the vessel boundary in terms of

3D discrete contours. Accordingly, the performance of the vessel segmentation algorithm is

assessed with respect to the manual boundary contours. However, for the subsequent chapters

addressing plaque detection and localization problem, we evaluated all three datasets as

plaque related ground truth information is available for all three datasets.

The detailed specification of the Rotterdam dataset is provided in Table 4.2 indicating

the important parameters including spatial resolution, the in-plane resolution and the slice

thickness. In order to make accurate computations of the lumen radius and area using oblique

slices in 3D space, we performed standard pre-processing to convert the input CTA data into

isotropic volumes such that the voxel size becomes identical in all three dimensions (see Table.

4.2). This is achieved by using tri-cubic interpolation [119]. This means that axial, coronal,

and sagittal sections are equal in terms of spatial resolution. The isotropic dimensions can

lead to accurate quantification of lumen and plaque using 2D oblique cross-sections in 3D

space. It should be mentioned that isotropic conversion employing downsampling can lead

to fast computation [120]; however, it leads to loss of useful information. Accordingly, we

performed up-sampling to retain the minimal voxel dimensions of input data.

4.2.2 Ground Truth Construction

The segment-wise [121] reference ground truth is provided in terms of 3D discrete contours

defining the lumen boundary along the length of the segment. Fig. 4.1 shows the lumen

boundary annotations from three independent experts who manually delineated the lumen

for two different coronary segments. It can be observed from Fig. 4.1a-4.1c that there occurs

a significant inter-observer mutual agreement for normal/healthy segments, whereas the

abnormal/diseased segments leads to a significant variation among the three observers (Fig.

4.1d-4.1f). This reduced inter-observer agreement in abnormal segments is associated with

the poor blood flow in the respective segments as the reduced concentration of the contrast

medium in the blood makes visual interpretation challenging even for expert radiologists.

This inter-observer variability is further explored in Chapter 6, in context of voxel-wise plaque

quantification. It should be mentioned that the main theme of the Rotterdam framework
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Table 4.2 Input Data CTA-Specifications

Serial #
Input Data Isotropic Data

CTA Title Dimensions Voxel Size (mm3) Dimensions Voxel Size (mm3)

01 DS00 512*512*304 0.40*0.40*0.45 513*513*342 0.403

02 DS01 512*512*296 0.28*0.28*0.40 592*592*473 0.253

03 DS02 512*512*299 0.30*0.30*0.40 524*524*399 0.303

04 DS03 512*512*297 0.40*0.40*0.45 513*513*334 0.403

05 DS04 512*512*279 0.40*0.40*0.45 513*513*314 0.403

06 DS05 512*512*324 0.40*0.40*0.45 513*513*365 0.403

07 DS06 512*512*261 0.35*0.35*0.40 600*600*348 0.303

08 DS07 512*512*313 0.30*0.30*0.40 517*517*418 0.303

09 DS08 512*512*286 0.36*0.36*0.45 471*471*322 0.403

10 DS09 512*512*336 0.35*0.35*0.40 600*600*448 0.303

11 DS10 512*512*253 0.40*0.40*0.45 513*513*285 0.403

12 DS11 512*512*289 0.39*0.39*0.40 667*667*385 0.303

13 DS12 512*512*560 0.39*0.39*0.25 504*504*351 0.403

14 DS13 512*512*560 0.42*0.42*0.25 550*550*351 0.403

15 DS14 512*512*640 0.38*0.38*0.25 493*493*401 0.403

16 DS15 512*512*512 0.36*0.36*0.25 673*673*458 0.283

17 DS16 512*512*480 0.42*0.42*0.25 512*512*480 0.423

18 DS17 512*512*560 0.42*0.42*0.25 673*673*458 0.283

[118, 18] is computation of lumen stenosis which often leads to vessel constriction; however,

the provision of the segment-wise lumen boundary (manual ground truth) makes this dataset

suitable for coronary segmentation problems.

4.3 Enhancement of Tubular Structures

The image segmentation process can be improved by employing prior medical knowledge

in the pre-processing stage. For multi-object images, shape priors are often used to track

specific objects having a known geometry. Accordingly, a shape constraint can speed up

the computation process by suppressing irrelevant objects quickly. For instance, to detect

circular objects in an image, it is suitable to suppress all the voxels that violate the circular

shape model in a first step followed by a level set-based segmentation for precise detection

of boundaries. This idea of suppressing irrelevant structures has been used effectively in
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Fig. 4.1 Manual ground truth for coronary segmentation based on three independent experts.
(Top) good agreement between the three observers for normal segment, (bottom) reduced
agreement for diseased segment.

medical images, with a focus on detection of a particular structure for clinical analysis.

An example in clinical context is the use of geometric shape features of tubular structures

to compute pixel-wise (voxel-wise in 3D space) vesselness for robust segmentation of the

vascular objects in an image.

A number of algorithms [15] have been proposed in the literature to enhance curvilinear

structures in medical images. These methods compute a vesselness response for each pixel to

measure the likelihood of the pixel to be a vascular structure, and they are usually operated in

a scale space to respond to vessels of different sizes. The core idea of the vessel enhancement

filter is eigenvalue analysis of the Hessian matrix, as eigenvalues can effectively reveal the

local geometric information of objects present in the image. In context of the coronary tree

segmentation in a 3D CTA volume, we performed eigenvalue analysis of the 3D Hessian

matrix [15] to exploit the local shape and geometric information as presented in Table 4.3.

The Hessian matrix is often used in structural analysis as it efficiently reveals the local

curvature using second order partial derivative of the image.
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Table 4.3 Different combinations of eigenvalues (|λ1|< |λ2|< |λ3|) with respective patterns.
(H=high, L=low, N=noisy, usually small, +/- indicate the sign of the eigenvalue).

Eigenvalues Interpretation

S no. λ1 λ2 λ3 Shape

1 N N N Noise
2 L L H- (bright) Plate-like structure
3 L L H+ (dark) Plate-like structure
4 L H- H- (bright) Tubular structure
5 L H+ H+ (dark) Tubular structure
6 H- H- H- (bright) Blob-like structure
7 H+ H+ H+ (dark) Blob-like structure

For enhanced visualization of the coronary vasculature, a contrast agent is often injected

intravenously before the cardiac CTA exam. Consequently, the background in the CTA image

comprising of air-filled lungs appears darker, whereas the blood vessels appear significantly

brighter due to the effect of the contrast medium. Referring to the combination (4) of Table

4.3, where λ1 is approximately zero and remaining two eigenvalues are negative numbers with

high magnitude 0 ≈ |λ1| ≪ |λ2|⩽ |λ3| ,∀λ2,λ3 < 0 , we computed the vesselness response

for individual voxels using Eq. 4.1.

Vo(x) =


0 if λ2 or λ3 > 0,{

1− exp
(
− R2

αt
2α2

t

)
exp

(
−

R2
βt

2β 2
t

)(
1− exp

(
R2

γt
−2γ2

t

))}
otherwise ,

(4.1)

where term Rαt distinguishes plate-shaped structures from tubular vessels and Rβt discrim-

inates blobs from other irregular shapes, and the term Rγt is used as a penalty to serve the

background noise in CTA. Moreover, αt ,βt and γt are constants that control the weights in

the overall vesselness measurement. The selection of these tuning parameters is generally

application dependent and requires a search to determine the optimal values. Moreover, the

variable size vasculature in the CTA volume is addressed with the multi-scale processing, i.e.
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the voxel-wise vesselness response is computed at different scales and the strongest response

is selected to generate the final vesselness measure as expressed in Eq. 4.2.

Rαt =
LargestCrossSectionArea/π

(LargestAxisSemiLength)2 =
|λ2|
|λ3|

, (4.2)

Rβt =
Volume/(4π/3)

(LargestCrossSectionArea/π)3/2 =
|λ1|√
|λ2λ3|

,

Rγt =

√
∑

1≤i≤3
λ 2

i .

The multi-scale approach refers to the application of the convolution kernel to identify

variable size structures in the image. In image processing, a kernel, convolution matrix, or

mask is a small matrix, which is often used for blurring, sharpening, embossing and edge

detection. For effective detection of variable-size objects, this work employs a Gaussian

convolution kernel which handles CTA noise effectively. After a series of experiments, we

computed the optimal values for the tuning parameters αt , βt and γt equal to 0.5, 0.6 and

220 respectively, whereas the multi-scale vesselness is computed at scale range of [1,...,6] to

address vessels of different sizes. Accordingly, the input image is convolved with a Gaussian

kernel at specific scales (standard deviation of the Gaussian kernel) to enhance potential

tubular structure of corresponding size. Readers are referred to [15] for detailed mathematical

model and optimization of the tuning parameters of multi-scale eigenvalue analysis.

It should be noted that application of the vesselness filter leads to detection of potential

tubular voxels, which can be further employed in active contour-based evolution for accurate

segmentation of the coronary vasculature. The justification of the multi-scale filter across

the complete CTA volume is visually illustrated in Fig. 4.2, which shows a rendering for

actual CTA volume and corresponding vesselness. It can be observed from Fig. 4.2b that

the multi-scale filter effectively suppress the non-vascular structure across CTA volume.

Accordingly, an active contour-based segmentation employing a subset of the image (see

Fig. 4.2b) can lead to fast and accurate segmentation of the coronary vasculature. Moreover,

the response of the vesselness filter for 2D axial slices of a CTA volume is shown in Fig.
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4.2d. The efficacy of vesselness filter is evident from the figure as the tubular structures are

well identified, whereas the surrounding tissues have been assigned a fairly low vesselness

measure.

(a) 3D CTA volume (b) 3D multi-scale vesselness

(c) 2D axial slice
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Fig. 4.2 Hessian-based vessel computation. (a) shows the complete CTA volume before
application of multi-scale vesselness filter, (b) represent the vesselness measure for the
complete 3D volume. (c) shows a 2D axial slice from the CTA volume, (d) represents the
2D vesselness measure for the respective slice. It can be observed that use of the multi-scale
vesselness filter results in background suppression and enhanced tubular structures across the
CTA volume.

Multi-scale computation has ensured that all the tubular instances are tracked irrespective

of the size as evident in the 3D vesselness figure. It can be observed from Fig. 4.2b (3D) and

Fig. 4.2d (2D) that the tubular structures have been assigned high vesselness in comparison

with the background; however, an inherent limitation of the Hessian-based multi-scale filter

is misclassification of the edges, i.e. edges are often assigned comparatively high vesselness

as well. These unwanted responses negatively affect accurate vessel segmentation in terms of
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segmentation leakage and increased false positive rate. This limitation becomes problematic

in cardiac CTA due to a number of step edges (heart chamber boundaries). This problem is

visually evident in Fig. 4.2b where it becomes extremely complex to delineate the coronary

vasculature solely on the basis of the vessel enhancement response. Consequently, we derive

additional intensity-based constraints to be employed in an active contour model for accurate

segmentation of the coronary tree.

4.4 Contrast Medium Approximation

The contrast affected (high intensity) blood appears brighter in the CTA volume which allows

a clinician to distinguish the coronary vasculature from the background as shown in Fig. 4.3a

- 4.3c. However, the diffusion of the contrast medium is non-homogeneous across patients as

it depends upon several factors including the type and amount of contrast medium, the total

scan time and the heart rate. Therefore, despite similar visual appearance of the blood filled

coronaries, there exists a significant difference in the blood intensity values for different

CTA volumes. Consequently, we proposed to improve the coronary segmentation process by

suppressing the non-coronary structures using intensity-based constraints in a pre-processing

step.

(a) LCA (b) LCA (c) RCA

Fig. 4.3 Coronary visualization with respect to the background on axial planes for three
different CTA volumes. It can be observed that due to the contrast filled blood, the coronary
vasculature appears brighter than the background for all three volumes.
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It is notable that choosing a fixed intensity threshold to differentiate blood voxels from

other structures in a CTA volume (low intensity tissues or high intensity calcifications)

often leads to inaccurate results as the fixed threshold lacks local image characteristics.

The selection of an appropriate intensity threshold become critical, especially when the

segmented coronary tree is to be evaluated for plaque analysis. For instance, Isgum et al.

[122] proposed an automated system for coronary calcification detection, in which all the

connected components of intensity value greater than 220 HU were interpreted as potential

calcified plaques. Similarly, Hong et al. [123] proposed a fixed threshold of 350 HU for

the segmentation of coronary calcified plaques in the contrast enhanced CTA. Accordingly

images with strong concentration of contrast medium will lead to increased false positives,

whereas a low concentration of the contrast medium may lead to missed calcifications for

these methods. Moreover, the segmentation of the blood-filled vasculature in CTA has been

reported by Harnandez et al. [82], Mohr et al. [124], Szymczak et al. [125], Yin et al. [101],

Yang et al. [126] and Cheng et al. [83]; but the impact of the externally injected contrast

medium has been little employed in the coronary segmentation process, as computing a

generic intensity threshold across patients is non-realistic. Consequently, we propose to

adaptively model the response of the contrast agent to derive the volume-specific intensity

range (HU range) for respective CTA volumes.

4.4.1 Aorta Segmentation

Since the blood flows into coronaries from the descending aorta, we segmented the aorta

in the first step to investigate the impact of contrast medium. The bright appearance of the

aorta in Fig. 4.4b reflects the presence of the contrast medium. For aorta segmentation, we

first applied an intensity threshold of 100 HU [127] to enhance the visualization of blood

voxels (i.e. to suppress the background consisting of lungs and soft tissues) as shown in Fig.

4.4a. Based on the circular appearance of the aorta in initial axial planes on caudal-cranial

axis, we applied a circular Hough Transform [69] based shape analysis in the subsequent

step to segment the aorta from the blood volume as shown in Fig. 4.4b. Iteratively, 2D
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segmentation is performed through axial slices until the aorta changes shape in terms of

circular deformations (see Fig. 4.4c), which reflects the origin of the coronary vasculature.

(a) Blood Mask (b) Circular Aorta (c) Shape Change

Fig. 4.4 Contrast medium approximation in a CTA volume. (a-b) background suppression
mask and initial aorta segmentation using an intensity threshold of 100 HU and circular
Hough transform. Aorta shape-change due to emerging coronary structure is illustrated in
(c).

4.4.2 Gaussian Fitting

Next, we computed the intensity histogram of the segmented aorta and the contrast medium

response is modelled using a Gaussian fitting. Fig. 4.5 shows the Gaussian approximation

for five CTA volumes where a significant variation in the mean values emphasizes the need

of an adaptive intensity threshold for accurate segmentation of coronary vasculature.

It should be noted that the Gaussian mean represents the intensity for blood-filled aorta;

however, the concentration of the contrast medium decreases as the blood flows towards distal

segments of coronary tree. Moreover, the vessel narrowing towards the distal end points

often result in the less diffusion and poor contrast. Thus, to take into account the intensity

drop towards distal segments, we estimate the adaptive intensity range RI for respective CTA

volume I as expressed in Eq. 4.3.

RI = {µI ±3σI} . (4.3)
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Fig. 4.5 Intensity distribution approximation for four CTA volumes. A significant variation
in the mean value validates the need of an adaptive intensity threshold.

where µI and σI represent the aorta-based mean HU and standard deviation for the respective

CTA volume. For a quantitative comparison, the Gaussian distribution parameters and

the derived intensity range for 18 clinical CTA volumes are presented in Table 4.4. A

significant variation in the Gaussian mean across CTA dataset validates the need of volume-

wise exclusive intensity threshold for accurate coronary segmentation. Moreover, the lower

boundary of adaptive intensity range is meant for suppressing the non-coronary voxels and

the upper boundary can be used to segment the calcified plaques (if any) in the arterial tree.

To overcome the limitations of the Hessian-based vessel enhancement, the CTA volume I

is filtered using constraints of Eq. 4.4 (intensity and vesselness combined) with Tf set equal

to 10−3 to identify potential candidates of the coronary vascular tree.

I(x) =

I(x) if Vo(x)> Tf and I(x) ∈ RI,

0 otherwise .

(4.4)
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Table 4.4 Volume-specific intensity range for CTA volumes

CTA Volume
Gaussian model Coronary intensity range (HU)

mean SD minimum maximum

DS00 418 27 337 499
DS01 942 62 756 1128
DS02 492 24 420 564
DS03 325 23 256 394
DS04 370 22 304 436
DS05 542 60 362 722
DS06 460 31 367 553
DS07 663 53 504 822
DS08 370 35 265 475
DS09 499 22 433 565
DS10 370 50 220 520
DS11 335 45 200 470
DS12 556 32 460 652
DS13 532 25 457 607
DS14 426 26 348 504
DS15 454 25 379 529
DS16 665 28 581 749
DS17 507 26 429 585
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4.5 Coronary Seed Detection

The seed detection process employed in this thesis is based on the work of Han et al. [14],

in which the authors combined the Hessian-based vesselness with a localized geometric

measure for accurate detection of the seed points. The localized geometric measure was

proposed to overcome the limitation of the Hessian-based vesselness against step edges in

a CTA volume and are often associated with the heart chambers. We further improved the

efficiency of the seed detection method by employing the adaptive intensity constraint for

minimizing the false positive detections. This additional processing in terms of geometrical

measure and the adaptive intensity constraint is necessary for the accurate seed detection, as

the subsequent arterial segmentation is based upon the seed points.

The first stage in seed selection is to select appropriate reference slice that contains

both left and right coronary arteries. This can be selected from a wide range of axial slices

centred on the middle of the CTA volume. This reference slice index (RSI) can be can be

modelled according to Eq. 4.5, where Cr is the constant and N represents the total number

of slices in given CTA image. Generally, the values of Cr ranging [0.4,...,0.6] ensure that

the selected slice contains all major branches of the coronary tree. In the following step, the

potential regions of interest (ROIs) are detected on the identified reference slice by discarding

open boundary objects. Subsequently, the potential seed point candidates are identified for

localized geometrical analysis by obtaining the centroid values of all ROIs.

Rindex =Cr ∗Nplanes. (4.5)

The localized geometrical analysis starts with the assumption that coronary arteries

appear as tubular structures along the patient axis (z dimension) in CTA volume and the

arterial geometry remains collateral through the consecutive slices for major segments

i.e. (LCA, LCX, LAD and RCA) appear as bright elliptic objects in axial slices. To test

this assumption mathematically, the vessel direction at potential candidate seed points was

computed in the first step using Hessian eigenvalues. In the subsequent step, three consecutive

planes orthogonal to the vessel direction are extracted as shown in Fig. 4.6a. Next, the
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shape similarity was computed by correlating shapes through these consecutive planes. In

this process, ray casting is performed on each plane in 16 uniformly sampled directions

based on respective centre points and boundary was detected using radial gradient. The

distance between the border point and the centre of the plane is interpreted as ray length in

corresponding direction. After sorting 16 ray lengths, highest and the lowest three measures

were discarded to avoid outliers. The remaining 10 ray lengths are arranged for every plane in

a 2D data structure representing the [plane][ray] index. For each ray index ray = [1,...,10], the

minimum values Bmin[ray] and the maximum values Bmax[ray] among the three ray lengths

plane are calculated. Accordingly, the normalized local vesselness measure Vc(x) of Eq. 4.6

is computed such that one defines an ideal tubular structure.

Vc(x) =
10

∏
ki=1

1
Bmax[ray(ki)]−Bmin[ray(ki)]+1

(4.6)

(a) Consecutive Orthogonal planes (b) Raywise Boundary distance

Fig. 4.6 Coronary seed detection as proposed in [14]. (a) Three consecutive planes orthogonal
to vessel direction used in cylindrical modelling of the vessel. Centre plane UV [0] passes
through point “A” i.e. the centroid of the region of interest, whereas two consecutive planes
(forward UV [1] and backward UV [-1]) are parallel to plane UV [0] at a parametric distance
of D units. (b) shows the plot for ray-wise boundary distance. It can be observed that for
a coronary structure, the min-max distance remains stable (blue), whereas as non-coronary
structure leads to unexpected distance values (red).

Fig. 4.6 shows the capability of the local geometric measure to distinguish vasculature

from non–tubular structures by investigating minimum and maximum value profiles for

two objects. For a vessel-based seed point, the radial border on three consecutive cross
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sections shows a stable change in radius in all directions i.e. minimum values remain closer

to maximum values. This small difference will lead to a high value assigned to geometric

feature Vc(x) in Eq. 4.6. In contrast, the non-vessel seed points will undergo through a

significant difference in minimal and maximal ray lengths, resulting in a small value of Vc(x)

approaching towards zero. In the subsequent step, the authors combined the response of

the local cylindrical model with the multi-scale vesselness to identify the potential coronary

segments. To avoid erroneous seed detection, the paper used a threshold-based classification

to label the candidates voxels x according to Eq. 4.7, where seedo(x) denotes the seed label

i.e. one denotes coronary seed and zero otherwise.

seedo (x) =

1 if Vo (x)≥ Tf and Vc(x)≥ Tg f ,

0 otherwise.
(4.7)

As proposed in [14] algorithm, we had chosen fairly small values for multi-scale vesselness

Tf = 10−3 and cylindrical response Tg f = 10−4 thresholds to ensure that all potential tubular

candidates are investigated in the seed detection process. It can be observed from Fig. 4.8b

that seed the detection process based on Eq. 4.7 incurs a number of false positives. This is

due to the fact that both geometrical filters had taken into account the shape features only.

As a result, the elongated heart muscles and the surrounding non-coronary vasculature have

been marked as the coronary segments which resulted in numerous false positive seeds. To

suppress the non-coronary seed points, we posed our intensity-based constraint in the seed

detection process and redefine Eq. 4.7 to obtain improved seed label seed
′
o as expressed in

Eq. 4.8. Equation 4.8 ensures that only those candidates seed points are retained in the final

set seed
′
o which satisfy the HU intensity criteria RI of the respective CTA volume. Fig. 4.8c

illustrates the efficacy of intensity-based constraint RI as the majority of the false positives
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has been eliminated.

seed
′
o (x) =

1 if Vo (x)≥ Tf and Vc(x)≥ Tg f and I(x) ∈ RI,

0 otherwise.
(4.8)
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Fig. 4.7 Coronary seed detection and mask initialization. (a) shows that the multi-scale model
[15] has assigned considerable vesselness to image edges. (b) represents the consequent
seed points with numerous false positives. (c) and (d) shows improved seed points and the
associated initialization mask for the region-based segmentation.

Next, we initialize a localized mask spanning over the region of 6 millimetres around

the detected coronary seed points as shown in Fig. 4.8d. A 6 millimetre neighbourhood is

selected as the coronary segments are well encompassed within the mask area on the axial

slice of a CTA image [128–131]. It is remarkable that if the reference slice is exactly the

axial cross section where respective coronary originates from the aorta, the complete tree can
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be segmented efficiently. But due to the condition that same reference slice to be used for

both seed points (Left & Right coronary artery), usually middle of CTA volume is chosen as

reference slice. The resultant reference slice ensures the seed produced works with for both

arteries; however, arterial information exists in both directions on the caudal-cranial axis

(towards aorta as well as arterial end points). This mid volume seed detection is apportioned

with the provision of bi-directional evolution mechanism i.e. the seed based initial mask

is evolved in both directions starting from the aorta to distal endpoints. In addition, false

positive seed points lead to disconnected structures which are removed using connectivity

filter in the final step.

4.6 Coronary Segmentation using Localized Energy

Once the CTA volume is effectively filtered (as expressed in Eq. 4.4) and the coronary seed

points are identified, the coronary tree is segmented using a 2D level set evolution based

on the localized version of the Chan-Vese [64] energy model. The initial mask, which is

centred on the seed point, evolves under the influence of image-based localized Chan-Vese

energy to capture the true boundary of the coronary structures. Because of the 2D nature

of the level set evolution, the evolved mask serves as an initialization to the adjacent axial

slices on the caudal-cranial axis to capture the respective coronary structures. The choice

of the image-based curve evolution energy in the level set formulation plays a decisive

role in the context of segmentation accuracy. For sharp images having significant object

borders, the edge strength is employed in a level set-based energy minimization process,

whereas the complex imagery with weak inter-object boundaries is often segmented using

regional intensity statistics for optimal object delineation. The conventional region-based

active contour models of Chan and Vese [79] and Yezzi et al. [65, 132] reported successful

object segmentation using region-based intensity statistics on a global scale; however, these

methods show poor performance for complex medical imagery due to underlying assumption

of piecewise constant intensity. This is further explained later in this section in the context of

the localized formulation for Chan-Vese energy model.
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To explain the coronary segmentation model used in this work, we start with the basic

Chan-Vese [64] segmentation model, in which image segmentation was interpreted as energy

minimization problem. Accordingly, the boundary fitting error was defined using image-based

energy functional F(c1,c2,C) in context of an energy minimization problem as expressed in

Eq, 4.9.

F(c1,c2,C) =
∫

inside(C)
[I(x)− c1]

2dx+
∫

outside(C)
[I(x)− c2]

2dx

+ γlength(C),

(4.9)

where I is an input image, C is the evolving contour (based on the initial mask), c1, c2

represent the global mean intensity for two regions (i.e. inside and outside the curve) and γ

is the regularization weight term to enforce contour smoothness. Eq. 4.9 defines the image

segmentation problem as mapping two regions (foreground and the background) by their

mean intensity values; hence, the optimal segmentation is achieved when the two regions

are best approximated with their global mean values. The mathematical formulation for this

energy minimization problem can be expressed by Eq. 4.10.

inf
c1,c2,C

F(c1,c2,C). (4.10)

The energy minimization problem expressed in Eq. 4.10 can be redefined using the level

set formulation as expressed by Eq. 4.11. In the level set representation, the unknown curve

C has been replaced with a signed distance function φ(x), such that the evolving curve C is

represented as zero level set C = {x | φ (x) = 0}. The detailed formulation, evolution and

discrete implementation of level sets is explained in Section 3.3.

F(c1,c2,φ) =
∫

Ω

Hφ(x)(I (x)− c1)
2 dx+

∫
Ω

(1−Hφ(x))(I (x)− c2)
2 dx

+γ

∫
Ω

δφ(x) |∇φ(x)|dx (4.11)
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Based on the signed distance representation, we used the Heaviside function Hφ(x) to select

the interior of the curve C, whereas the exterior region is selected using the complementary

equation (1−Hφ(x)). Moreover, the interface at the zero level set is obtained by using Dirac

delta function δ (φ). The δ (φ) is the derivative of the H(φ), which is 1 when φ(x) = 0 and

0 far from the interface. The mathematical representation for the Heaviside and Dirac delta

function is expressed by Eq. 5.5.

Hφ(x) =

1 if φ(x)≥ 0,

0 if φ(x)< 0.
, δφ (x) =

1 if φ (x) = 0,

0 otherwise .

(4.12)

Results for conventional Chan-Vese formulation are presented in Fig. 4.8a and 4.8c,

where it can be observed that the initial mask evolved using intensity statistics on a global

scale fails to capture the object boundaries successfully. This failure is based on the fact that

the medical data often suffers from intensity inhomogeneity due to the acquisition dynamics

and patient related movements. Accordingly, the global intensity statistics-based methods

result in significant leakage as shown in Fig. 4.8a and 4.8c.

To overcome the intensity inhomogeneity problem in medical imagery, a number of

improvements [66, 16, 96, 133] have been proposed for the Chan-Vese model with the

basic idea of “localized or constrained” regional intensity statistics for curve evolution.

Likewise, we employed the localization statistics in the energy minimization process by

using a neighbourhood selection mask. Accordingly, we use here a radius controlled (6

mm in this work) mask B(x,y) to select the localized neighbours as expressed in Eq. 4.13.

According to the equation, the selection kernel will be 1 when a spatial point y lies within

a region of radius RLocal centred at x, and 0 otherwise. The use of the localized regional

intensity statistics in the curve evolution avoids leakage outside the neighbours and pushes

the curve in a local context towards the boundaries of the object. The interaction of the

localization kernel with the evolving curve is graphically illustrated in Fig. 4.9, whereas the

mathematical equation for computing the localized mean intensity inside and outside the

curve (c1, c2 respectively) is expressed in Eq. 4.14. Moreover, the advantage of employing
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(a) Global statistics - Failure (b) Local statistics - success

(c) Global statistics - Failure (d) Local statistics - success

Fig. 4.8 Advantage of using localized region-based statistics over global intensity metric. (a,
c) shows over segmentation associated with the global mean values of two regions, whereas
(b, d) represents successful segmentation accomplished using localized intensity-based
deformation.

the localized intensity statistics is visually illustrated in Fig. 4.8b and 4.8d, where it can be

observed that object of the interest can be segmented precisely using localized evolution.

B(x,y) =

1 if |x−y|< RL,

0 otherwise.
(4.13)

c1(φ) =

∫
Ωy B(x,y)I(y)Hφ(y)dy∫

Ωy B(x,y)Hφ(y)dy
, c2(φ) =

∫
Ωy B(x,y)I(y)(1−Hφ(y))dy∫

Ωy B(x,y)(1−Hφ(y))dy
. (4.14)
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Fig. 4.9 Kernel function to illustrate the localized intensity model. Red shows the evolving
curve, whereas the blue represents the localized ball region B(x,y). For the current point
(green), the localized interior and exterior are shown as yellow and cyan.

The minimization problem expressed in Eq. 4.11 can be solved using Euler-Lagrange

formulation as derived in [64, 16]. The subsequent application of the gradient descent method

for an optimal deformation leads to Eq. 4.15.

∂φ

∂ t
(x) =δφ(x)

∫
Ω y

φ(y)B(x,y)
{
(I(y)− c1)

2 − (I(y)− c2)
2}dy

+ γδφ(x)div
{

∇φ(x)
|∇φ(x)|

}
, (4.15)

where γ is the weight assigned to regularization term and c1, c2 represents the localized

interior and exterior intensity mean values as expressed in 4.14. For a simple interpretation,

the image-based force responsible for the curve evolution can be identified by discarding the

regularization term of evolution Eq. 4.15. Accordingly, the localized curve driving force can
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be written as expressed by Eq. 4.16.

Flocal =δφ(x)
∫

Ωy
φ(y)B(x,y)

{
(I(y)− c1)

2 − (I(y)− c2)
2}dy. (4.16)

The localized energy handles the intensity inhomogeneity problem of medical data

successfully as illustrated in Fig. 4.8; however, the practical efficiency of Flocal depends

upon several factors including careful selection of the localization radius and the intelligent

placement of the initial mask. The sensitivity to the initialization makes this method fragile

as small perturbations in the initialization may lead to an undesirable solution. Fig. 4.10

presents two simple cases for synthetic images where the localized curve evolution fails to

handle small perturbations in the initial mask. To overcome the limitations of the localized

energy-based evolution, we propose to integrate the global model of the image in terms of a

discontinuity map for improved accuracy and robustness against initialization.

In the subsequent section, we explain the mathematical approach for a global model

(discontinuity map) and the formulation of the hybrid energy for improved segmentation.

Accordingly, we will show that the hybrid energy-based curve evolution will make the

segmentation process robust i.e. less sensitive to the initial placement of the mask and more

flexible against the localization scale.

4.7 Hybrid Energy Model for Improved segmentation

The localized model computes the image-based energy Eext from a radius constrained re-

gion, which often leads to convergence to a local optimum. Thus, to achieve the desired

segmentation, it requires a careful initialization, which is not always straightforward in the

case of complex medical structures. Consequently, we propose to overcome the limitation of

the localized energy model by integrating a global model of the image represented by the

discontinuity map in the segmentation process as expressed by Eq. 4.17. The integration

of the image global model in the curve evolution process will allow a certain amount of

flexibility in the placement of initial contour. In the case of a poor/far initialization, the global

term will push the contour towards the object boundary by suppressing the influence of local
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(a) Intelligent Initialization (b) Perturbations in Initialization

(c) Intelligent Initialization (d) Perturbations in Initialization

Fig. 4.10 The sensitivity of the localization model against the initial mask. (a) and (c) show
the segmentation result for a cautious initialization, that is, very close to the object boundaries.
On the other hand (b) and (d) shows the result when perturbations are introduced in the initial
mask. Blue is the initial mask and red is the final segmentation result.

optima. Moreover, a scalar weight β regulates the influence of the global term to achieve the

desired segmentation. A higher weight of the global term will push contour rapidly towards

the salient features derived from the global image, whereas a lower weight will allow the

localized statistics to fine tune the object boundaries.

Fhybrid =
{

Flocal +βFglobal
}
,

Fhybrid = δφ(x)
∫

Ωy
φ(y)B(x,y)

{
(I(y)− c1)

2 − (I(y)− c2)
2}dy+βFglobal. (4.17)

The global model of the image is based on the intensity discontinuities in the image.

Conventionally the gradient strength is used for defining an edge-map of an image; however,
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the gradient generally thickens the object boundary as shown in Fig. 4.11b. Thus, the

quality of the segmentation is compromised as the evolving contour stops away from the

true borders of the object. One possibility is the use of smaller gradient scale; however, the

selection of the optimal scale directly influences the segmentation quality. In contrast, the

Bayesian framework leads to sharp inter-class distinctions [17] inside an image as presented

in Fig. 4.11c. In this work, the Bayesian approach is preferred for the coronary segmentation

problem as the cardiac CTA data is generally approximated using a three class assumption

[17, 134, 102].

Based on the clinical interpretation of the cardiac CTA, we start with the assumption that

the histogram of the CTA volume can be well approximated using three classes (air filled

lungs, heart tissues and the blood filled structures). However, we applied a precautionary nor-

malization to suppress the calcifications (if any) in the CTA volume by clamping the intensity

against the upper threshold value of the respective RI intensity range. Next, we approximated

the individual peaks of the image histogram to obtain the Gaussian approximation for three

individual classes using Eq. 4.18.

p(I (x) | x ∈ ck) = N (d,µk,σk) =
1

σk
√

2π
exp

−(d−µk)
2

2σ2
k , (4.18)

where d = I(x) denotes the intensity levels in the volume I at position x, ck is the class

identifier and (µk,σk) represent distribution parameters of the respective class. In the

subsequent step, the overall histogram of the CTA is represented using a Gaussian mixture

model where individual peaks are mapped to a weighted Gaussian distribution as expressed

in Eq. 4.19.

p(d) =
3

∑
k=1

akN(d; µk,σk). (4.19)

Next, the expectation maximization [135] algorithm is iteratively applied to determine the

optimal distribution parameters for each class where the prior probability is set equivalent for

all three classes at the start. In the final step, Bayes’ rule is applied to obtain the voxel-wise

posterior probabilities (i.e. probabilities of a single voxel x with intensity value d, for three
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CTA Axial Slice Gradient Edge Map Probabilistic Edge Map

(a) (b) (c)

Fig. 4.11 Image discontinuity modelling based on two methods. (a) shows the 2D axial slice
with coronary segments. (b) shows the edge map obtained using gradient strength which
leads to thicker edges. (c) presents shows the probabilistic difference-based discontinuity
map with sharp edges.
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different classes).

Pr(x ∈ ck | I(x) = d) =
Pr(I(x) = d | x ∈ ck)Pr(x ∈ ck)

∑
n
τ=1 Pr(I(x) = d | x ∈ cτ)Pr(x ∈ cτ)

. (4.20)

where Pr (I(x)|ck) and Pr (x ∈ ck) represent the likelihood and the prior probability function

for three individual classes. To reduce the effect of noise, we applied anisotropic diffusion

as proposed by Perona and Malik [136]. A total of five iterations are applied to achieve

smoothed posteriors PrSmth with gradient modulus (Kappa) set equal to 30. In the subsequent

step, we derive the global model of the image as the squared difference of the two largest

posteriors for every pixel as expressed in Eq. 4.21. This encoding significantly enhances the

boundary between two classes as presented in Fig. 4.11c.

Iglobal =
{

Prsmth(x ∈ ck1)−Prsmth(x ∈ ck2)
}2

. (4.21)

Computation in Eq. 4.21 is based on the assumption that the boundary between two objects

can be detected using squared difference of two posterior probabilities [17]. Let us assume

that we have a bimodal image with class qin representing the object to be segmented, and

class qout representing the background. Then the boundary between object and background

can be computed as the squared difference of two posteriors. For our tri-modal CTA image,

the first peak represents the dark background, second peak defines the heart muscles and

the last peak represents blood filled structures. The dark background represents air-filled

lungs in CTA which is often located in outer field of view, whereas our discontinuity model

aims to separate blood-filled structures from the heart muscles. Accordingly, the posterior

probability for two higher classes is employed in the discontinuity computation.

By substituting the global force into Eq. 4.17, we obtain the hybrid curve driving force

as expressed in Eq. 4.22.

Fhybrid = δφ(x)
∫

Ωy
φ(y)B(x,y)

{
(I(y)− c1)

2 − (I(y)− c2)
2 +β

(
1

Iglobal(y)

)}
dy.

(4.22)
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Here β acts as a regularization constant, regulating the influence of the global component

in the overall evolution process. The selection of the global weight β is important as the true

boundary will be surpassed in distal segments due to a high influence of the global force.

On the other hand, segmentation obtained with very low values of β will produce results

similar to localization model of [16] due to less influence of the global term. Accordingly, we

evaluated different values for β in the normalized range [0, 0.01, 0.05, 0.10, 0.15, 0.25, 0.50,

0.75, 1.0] to determine the best global weight. Subsequently, experimental evidence shows

that the segmentation obtained with β less than 0.1 produces results similar to localization

model of [16], whereas setting β greater than 0.25 results in suppression of distal segments

due to very high influence of global term. This makes β = 0.15 a feasible choice for effective

segmentation of the coronary tree for our CTA dataset.

4.8 Iterative Mask Adjustment

The proposed model uses a self-adjusting model to handle the coronary segmentation in

the 3D CTA volume; however, this is not required for simple 2D images (synthetic and the

clinical CPR imagery used in validation tests). According to the self-correction approach,

the algorithm reconstructs the evolving contour after every iteration to follow the arterial

progression more precisely. This is based on the fact that the coronary tree comes out from

the descending aorta in general and splits into branches along the caudal-cranial axis. Hence

all the segments are well captured in the level set-based active contour evolution; however,

due to the wide inter-patient variability and 2D axial slice-based data acquisition in CTA,

some distal branches emerge away from the main trajectory and become a part of the tree as

axial slices are navigated. To address this issue, one possible solution is using a 3D level

set segmentation but it increases the complexity in terms of computational resources and

processing time. In contrast, we introduced an auto-correction feature in the mask to capture

the emerging peripheries during active contour-based evolution. The proposed method

reconstructs the mask in every iteration by scanning the neighbourhood of the trajectory on

a 2D axial slice. All the individual peripheries that satisfy the constraints (tubular shape
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(a) Peripheries pointed by ar-
rows

(b) Emerging peripheries missed
(c) Emerging peripheries cap-
tured

Fig. 4.12 Auto-correction feature of the mask to capture nearby emerging peripheries during
evolution. (a), emerging peripheries as pointed by arrows, (b) peripheries missed during
evolution before introducing the auto-correction feature. (c), emerging peripheries are
captured for complete tree extraction with the help of the auto-correction feature.

and adaptive intensity validation) are captured as shown in Fig. 4.12c -4.12c. This self-

adjustment feature offers improved accuracy and the computational robustness, whereas the

non-connected structures are automatically discarded using connected component analysis.

A primary drawback associated with the level set evolution is the processing time as

the curve evolution in a 2D space using signed distance functions require a large number

of computations. However, the key to minimize the processing time is to exploit the fact

that the curve changes position smoothly. Consequently, the area around the evolving curve

is to be evaluated for new position i.e. only a narrow band is to be investigated. For a fair

processing time, we employed the sparse field method of Whitaker [77] et al. to evolve

the curve as it promises an accurate but minimal representation of the evolving curve. In

addition to self-correction of the mask, we employed bi-directional evolution in this work

to extract the complete coronary tree. This is based on the fact that the coronary seed

points lie in the mid of the CTA volume. Accordingly, the initial mask is constructed and

evolution is performed in both directions of the caudal-cranial axis to capture proximal and

distal segments, respectively. Accordingly, the average time for segmentation of coronary

vasculature of a Matlab R2014b [137] on an Intel 3.4 GHz machine is 80 seconds.
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4.9 Results

4.9.1 Efficacy of the adaptive threshold

In this section, we demonstrate experimentally that adaptive modelling of the contrast medium

intensity can considerably improve the accuracy of the coronary segmentation, whereas the

use of a fixed intensity threshold across the dataset may decrease precision by capturing the

nearby non-coronary segments or missing the distal parts of the coronary tree. Accordingly,

the hybrid energy-based coronary segmentation was performed using two different intensity

thresholds. The comparative results reveal that the use of a fixed threshold i.e. 350HU

[123] leads to an erroneous coronary tree in terms of under/over segmentation, whereas the

proposed adaptive threshold ensures accurate segmentation by employing the influence of

contrast medium in the segmentation process. Moreover, the proposed segmentation shows a

greater corroboration with the manual annotations in the cross sectional analysis as explained

below.

CPR Based Analysis

Fig. 4.13 shows the segmented right coronary artery (RCA) of DS 01 (CTA volume 1)

using two different thresholds. It can be observed from Fig. 4.13b that the volume-specific

threshold (756HU) precisely tracks the main progression of the RCA from the aorta to

the distal endpoint with minimal peripheries, whereas the use of a literature-based [123]

fixed threshold 350 HU results in numerous side branches for the RCA (see Fig. 4.13a).

The efficacy of the adaptive intensity threshold is further investigated by constructing the

curve planar reformatted (CPR) images along three different axes as shown in Fig. 4.13c

- 4.13e. CPR visualization from three different views helps to evaluate if there exist any

intermediate peripheries for the segmented RCA. It can be observed that distinct views along

three different axes substantiate the fact that the right coronary artery is well segmented from

the aorta to the distal points using the adaptive intensity threshold. Moreover, it becomes

evident that the peripheries which appear to be a part of the coronary structure in Fig. 4.13a,
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(a) Use of fixed HU threshold (b) Use of adaptive HU threshold

(c) CPR along X-axis (d) CPR along Y-axis (e) CPR along Z-axis

Fig. 4.13 Visualization of segmented RCA of CTA volume1. (a) RCA obtained using fixed
intensity threshold of 350HU, (b) RCA obtained using adaptive threshold. (c-e) represent
CPR image along three axes to confirm the efficacy of adaptive threshold. It can be observed
from CPR images that RCA does not contain a large number of side peripheries as reflected
by fixed-threshold segmentation.

are not true coronaries but the "kissing" vasculature in close proximity which was captured

mistakenly by active contour during the evolution as illustrated in Fig. 4.15.

Cross-Sectional Analysis

The efficacy of the adaptive intensity threshold is also illustrated by comparing the two

segmentations in 3D space. Fig. 4.14a - Fig. 4.14b shows a zoomed version of the segmented

Left circumflex artery (LCX) branch of CTA volume 1 obtained using two thresholds. It

can be observed that the adaptive threshold (756 HU) results in a smooth segmentation (see

Fig. 4.14a), whereas the fixed threshold (350 HU) leads to over-segmentation in terms of
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expansion through disconnections of the LCX (see Fig. 4.14b). This is based on the fact that

the high concentration of the contrast medium misleads the evolving curve to capture the

nearby structures. This over-segmentation is further demonstrated using the orthogonal planar

analysis as shown in Fig. 4.14c. The impact of the over-segmentation can be clearly observed

by viewing the boundary points, as the fixed threshold-based segmentation shows incorrect

expansion of the vessel in a transparent cross sectional plane, in contrast to the response of

adaptive threshold-based segmentation. Moreover, five consecutive cross sectional planes are

shown in Fig. 4.14d -4.14f with the segmented boundary overlaid. It can be observed that

the adaptive threshold precisely captures the true boundary of the vessel by suppressing the

nearby vasculature, whereas the fixed threshold-based segmentation captures the adjacent

non-coronary structures that result in increased false positives.

(a) Normal LCX (b) Disconnected expansion (c) Planar Visualization

(d) Normal (e) Expanded (f) Expanded (g) Expanded (h) Normal

Fig. 4.14 Analysis for LCX branch of CTA volume 1. (a-b) LCX segmentation using adaptive
(756HU) and fixed (350HU) threshold values respectively. (c) illustrates the efficacy of
adaptive threshold as planar boundary points show over-segmentation for fixed threshold.
(d-h), 5 consecutive cross sections of LCX illustrating the over segmentation associated with
fixed threshold. Red is the fixed threshold segmentation contour and green is the adaptive
threshold result. Blue and yellow represent manual annotations.

The kissing vessel phenomena is further illustrated in Fig. 4.15 where it can be observed

that use of adaptive intensity threshold leads to true coronary vasculature segmentation by

suppressing non-coronary objects in close proximity.
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(a) Normal LCX (b) Expanded LCX

Fig. 4.15 Kissing vessel suppression. (a and b) represents an orthogonal slice in the middle
of LCX artery. It can be observed from (a) that true coronary peripheries are captured using
adaptive intensity threshold based segmentation (blue contours), whereas a fixed thresh-
old (red contours in b) captures nearby non-coronary vasculature leading to disconnected
expansion and increased false positives.

4.9.2 Statistical Quantification Metrics

We designed a Matlab-based framework to compare the obtained segmentation with respect

to the manual ground truth. For individual contours of the ground truth lumen, we computed

the plane normal (perpendicular to the medial axis) in the first stage. In the subsequent stage,

we extracted the corresponding orthogonal planes from the segmented tree and the lumen

boundary contours are identified as shown in Fig. 4.16. The first stage of the quantification

process is illustrated in Fig. 4.16a, in which 3D segmented contours are plotted against the

manual ground truth. Next, we projected the 3D contours on a 2D plane where two polygons

are interpreted as binary images as shown in Fig. 4.16b. In the final stage, we computed the

statistical measures including true positive, false positive, false negative with respect to the

reference contours. For a meaningful evaluation of the obtained segmentation statistics, we

employed efficiency metrics including sensitivity, specificity and Jaccard similarity index

[138] to compute the overlap between two segmentations (reference and the obtained). The

mathematical equation for obtaining the efficiency metrics are expressed by Eq. 4.23.
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Sensitivity =
T P

(T P+FN)
,

Speci f icity =
T N

(T N +FP)
,

Jaccard index =
T P

(T P+FP+FN)
, (4.23)

where TP denotes the true positive i.e. an intersection between two images, FP represents the

false positive i.e. part of the segmented image not present in the ground truth and FN denotes

the false negative i.e. part of the ground truth missed in the obtained segmentation. The

Jaccard index for ideal overlapping segmentation approaches to one, whereas two dissimilar

images results in Jaccard index of zero. It is important to mention that the Jaccard index (or

Intersection of Union) is preferred over the standard accuracy measure, as the latter includes

true negatives, which are abundant in vessel segmentation and can result in an artificially

high accuracy measure.

(a) 3D surface with overlaid
contours
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(b) 3D contours (c) Jaccard overlap

Fig. 4.16 Segmentation evaluation against the manual ground truth of Rotterdam dataset. (a)
shows the ground truth and the obtained segmentation contours overlaid on a 3D coronary
surface in the voxel coordinate system. (b) presents a visual comparison of obtained seg-
mentation with ground truth in the world coordinate system, whereas (c) shows the Jaccard
overlap computation for the corresponding 2D contours based on TP, TN and FN.
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4.9.3 Hybrid Segmentation Performance for 2D Images

As demonstrated in Fig. 4.10, the localization model successfully detect objects of interest

when the initialization is fairly close to the object boundary, whereas it fails to handle

perturbations because of the local optima problem. This shortcoming is further highlighted

in Figs. 4.17 - 4.18 to illustrate the effectiveness of the proposed hybrid method over the

localization model of [16] for 2D images (synthetic and clinical CPR respectively). It can

be observed that the localization model is trapped in a local optima leading to erroneous

segmentation for different initializations, whereas the hybrid method results in successful

segmentation for different initializations. Moreover, the weight regulating the influence of

the global term can be adjusted to obtain the desired segmentation according to the nature of

the image data or the initialization.

(a) (b) (c) (d)

Fig. 4.17 Performance of two segmentation methods for synthetic images. Blue and red
show the hybrid and localization segmentation respectively, whereas green represents the
initializations. The localization radius used for these results is 8 pixels.

We also investigated the robustness of proposed model against the localization radius.

Figs. 4.19 - 4.20 shows the response of the two methods when localization radius is decreased

from 8 to 4 pixels. It is evident that change in the radius degrades the performance of the

localized model leading to incorrect segmentation, whereas the proposed model successfully

delineates the object for the updated radius. We observed that there exists an inverse

relationship between localization radius and the global weight β . The smaller radius results

in less information for the energy optimization process requiring more influence of the global

term, whereas a large radius offers adequate intensity information, hence; less stimulus from
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(a) (b) (c) (d)

Fig. 4.18 Performance of two segmentation methods for clinical images. (a) and (b) show
right coronary of CTA volume 01 for two different initialization. (c) and (d) show right
coronary of CTA volume 02 for two different initializations. Green denotes the initialization,
whereas blue and red represent the hybrid and localized segmentation, respectively. The
localization radius used for these results is 8 pixels.

the global term is required. This correlation is to be investigated in a future study to make

the weight β adaptive against the localization radius and to define an image-based threshold

for the localization radius, as a very large radius leads to a global approximation of image

which is not suitable for medical data.

(a) (b) (c) (d)

Fig. 4.19 Performance of two segmentation methods for synthetic images. Blue and red
show the hybrid and localization segmentation respectively, whereas green represents the
initialization. The localization radius used for these results is 4 pixels.

4.9.4 Hybrid Segmentation Performance for 3D images

It becomes challenging to visually evaluate the segmentation quality in 3D space due to

viewing angle limitations as shown in Fig. 4.21a. Thus, we extracted 2D slices orthogonal

to the segment centreline at different points across the length of the vessel to illustrate the

effectiveness of the hybrid energy model over the localization method. Consequently, the
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(a) (b) (c) (d)

Fig. 4.20 Performance of two segmentation methods for clinical images. (a) and (b) show
right coronary of CTA volume 01 for two different initialization. (c) and (d) show right
coronary of CTA volume 02 for two different initialization. Green denotes the initialization,
whereas blue and red represents the hybrid and localized segmentation respectively. The
localization radius used for these results is 4 pixels.

lumen boundary based on orthogonal cross sections is compared with the manual ground

truth contour as illustrated in Fig. 6.8b - 6.8i. It is apparent from the figure that the curve

moving under the influence of localized energy (red) gets trapped away from the real lumen,

whereas the integration of the global force pushes the contour further to attain a more accurate

approximation (blue). The explicit push of the contour towards the lumen reduces the false

positives and leads to an improved accuracy of the segmentation.
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(a) 3D surface with cross sec-
tional intensity planes

(b) plane 4 (c) plane 6 (d) plane 8 (e) plane 10

(f) plane 12 (g) plane 14 (h) plane 16 (i) plane 18

Fig. 4.21 Coronary segmentation visualization. (a) shows the segmented 3D coronary tree
with overlaid centreline and two oblique cross sections. (b-i), Consecutive cross-sectional
planes for segment-12 of CTA volume 01. Green is the expert’s manual ground truth, blue
represents the hybrid energy segmentation and red shows the segmentation for localized
model [16].

Moreover, the statistical comparison of the two segmentation methods is presented in Fig.

4.22, where we plotted the respective false positive rate and the Jaccard index with respect

to the ground truth annotations for three representative volumes. To avoid bias towards a

particular expert, we compared the response of the two methods with three manual observers

individually and it can be observed that the hybrid model consistently achieves higher Jaccard

index in comparison to localization method of [16]. The mean results of complete dataset

reflecting the comparative performance of hybrid energy model with respect to the localized

segmentation are presented in Table 4.5.
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4.9.5 Hybrid Segmentation Performance in clinical context

Before presenting the mean performance of the two segmentation methods for the complete

Rotterdam dataset, we evaluated the performance of the hybrid segmentation in a clinical

context. From a clinical point of view, the coronary segments are divided into two classes

namely major and minor segments. The major class refers to proximal sections close to

the descending aorta, whereas the minor class refers to distal segments of the coronary tree.

Any abnormality or occlusion in the major segments is treated as a severe clinical threat

as the dependent branches are simultaneously affected resulting in considerable damage to

the heart tissues. In contrast, the abnormality associated with the minor segments are less

threatening as these segments do not affect other downstream segments. Fig. 4.23a shows

the mean performance of the hybrid energy model for Rotterdam dataset in the context of

major-minor segment classification. The box plot is used based on the fact that distributional

characteristics of different groups can be compared effectively. The high median value and

the compact distribution reflects that the overall accuracy is fairly high and consistent for

the major segments, whereas the reduced diffusion, poor contrast and narrower diameter in

minor segments results in reduced accuracy and high variability.

This relationship between the segmentation accuracy and segment position is further

investigated as shown in Fig. 4.24. It can be observed from Fig. 4.24a that the high

concentration of the contrast medium in the major segment of the coronary tree leads to

a good inter-observer agreement. Consequently, both segmentation models achieve an

adequate quality segmentation and the Jaccard index shows a marginal superiority of hybrid

model over the localization method in Fig. 4.24b. In contrast, a lower concentration of the

contrast medium in the minor segments results in the ambiguous appearance, which leads to

a significant inter-observer disagreement as shown in Fig. 4.24c. This results in an increased

false positive ratio for the localization model, whereas the hybrid energy moderates false

positives due to the influence of global term in curve evolution (see Fig. 4.22). Consequently,

the hybrid model shows a considerable improvement in the Jaccard index as plotted in Fig.

4.24d.
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Similarly, Fig. 4.23b shows the performance of the hybrid energy model using “healthy

versus diseased” criteria. It can be observed that the segmentation accuracy for the healthy

segments is high in comparison to the diseased segments. The variability observed for the

healthy class is unexpected, however this can be related to the immature plaques/lesions

present in different segments. As the ground truth classification (healthy versus diseased)

is done on the basis of visual inspection of the coronary tree, so there is a chance that

segments with insignificant abnormalities were placed in healthy class; however, it affects

the segmentation accuracy. On the other hand, the performance for the diseased class is

persistent as this class contain significantly abnormal segments.

The mean results for the two segmentation methods are presented in Table 4.5. The

Jaccard index (with respect to the manual annotations) shows that the hybrid energy achieves

better segmentation over the localization model of [16] for all types of coronary segments.

A considerable difference for the minor segments is related with the reduced false positive

(%) due to the increased push of global term in hybrid segmentation, whereas lower Jaccard

index value for the diseased segments reflect the complexity of segmentation. To validate

the statistical significance of the hybrid energy model, we performed a paired t−test by

employing results of the two segmentation methods. Accordingly, the null hypothesis

is rejected which indicates a significant difference in the mean of the two distributions.

Moreover, we obtained p values equal to 0.0014 for the false positive rate and 0.0001 for the

Jaccard index which indicates a statistically significant difference.

Table 4.5 Segment class-based Jaccard Similarity (%) for the two segmentation methods.

Segment type Radius
Local model Hybrid model

Jaccard% β Tf Jaccard%

Major 4 73.48 0.15 10−3 76.5
Minor 4 58.26 0.15 10−3 68.65
Healthy 4 68.21 0.15 10−3 71.62
Diseased 4 57.79 0.15 10−3 65.56
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4.9.6 Comparison with Existing Method

After validating the superiority of hybrid energy over the localized [16] segmentation, we

compared the performance of the hybrid model with the coronary segmentation algorithm of

Yang et al. [17], which implements an edge-based conformal factor in the curve evolution.

For comparative purpose, we start with the assumption that observer 2 of the Rotterdam

CTA framework is the typical ground truth representing the “true” lumen. Accordingly,

the segmentation statistics (sensitivity, specificity and Jaccard index) with respect to the

ground truth observer are computed in the first step. In the subsequent step, we evaluated the

segmentation accuracy of the two models with respect to the ground truth in relation with

remaining manual observers as shown in Fig. 4.25. It can be observed from Fig. 4.25a that

the higher true positive rate of the hybrid energy model leads to a higher sensitivity for all

investigated volumes whereas the reduced false positive rate results in comparatively better

specificity for the hybrid model. For the overall Jaccard overlapping index, it can be observed

from Fig. 4.25c that the hybrid method outperforms the [17] model with a consistent higher

index value. The complete statistical results are presented in Table 4.6 - 4.7.

Table 4.6 Statistical metrics (sensitivity, specificity and Jaccard Index) for volumes 00-08.

Metrics Methods
3D CTA Volumes

DS00 DS01 DS02 DS03 DS04 DS05 DS06 DS07 DS08

Sens (%)
Hybrid 76.08 97.61 81.06 82.70 87.50 77.88 87.59 84.33 88.84
Yang 70.49 62.34 52.54 71.43 66.31 60.49 49.27 54.62 55.73
Obs1 53.43 99.85 74.01 84.62 66.44 64.67 54.09 57.41 57.41
Obs3 75.10 93.79 85.00 88.01 86.13 80.31 89.37 84.07 87.18

Spec (%)
Hybrid 74.86 75.38 72.89 85.97 73.33 71.50 66.84 71.15 70.03
Yang 71.49 82.59 59.15 45.53 75.97 66.85 37.68 64.98 63.49
Obs1 59.50 70.49 71.39 78.26 72.63 71.45 66.89 69.57 70.46
Obs3 75.07 78.81 73.75 81.95 80.04 75.72 81.68 77.30 79.86

Jaccard (%)
Hybrid 60.21 66.78 59.26 73.26 61.25 56.86 50.35 57.44 56.19
Yang 55.43 58.49 47.18 39.55 57.61 50.14 47.52 49.29 48.25
Obs1 46.60 58.13 56.02 66.82 55.42 54.10 50.07 51.48 51.86
Obs3 60.04 71.18 58.99 68.55 60.43 58.72 62.34 58.57 56.04

Moreover, Fig. 4.26 represents the performance of two segmentation methods in the

context of the mean human agreement of 3 human observers. It can be observed from

the plot that the overall Jaccard index is dropped due to averaging against three manual
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Table 4.7 Statistical metrics (sensitivity, specificity and Jaccard Index) volumes 10-18.

Metrics Methods
3D CTA Volumes

DS09 DS10 DS11 DS12 DS13 DS14 DS15 DS16 DS17

Sens (%)
Hybrid 48.45 67.93 87.41 90.16 79.36 84.62 87.25 95.15 55.06
Yang 53.74 62.07 70.40 73.52 69.37 68.04 48.62 69.25 55.00
Obs1 48.91 52.72 72.79 74.47 72.64 70.08 64.90 51.93 61.34
Obs3 65.20 58.17 73.06 81.05 84.02 79.23 83.12 83.24 54.38

Spec (%)
Hybrid 59.97 69.05 78.14 78.92 75.25 76.22 70.95 66.91 55.00
Yang 48.14 46.28 44.42 88.40 76.54 79.64 41.63 70.68 55.00
Obs1 41.81 57.73 84.01 86.85 82.31 81.15 65.88 55.88 71.45
Obs3 69.19 62.49 86.96 94.12 83.39 77.70 75.09 79.76 64.10

Jaccard (%)
Hybrid 36.63 52.18 67.73 69.75 61.62 64.41 57.53 50.51 55.00
Yang 36.84 38.22 39.61 68.64 59.23 60.54 44.38 54.31 55.00
Obs1 35.40 46.12 65.75 68.49 64.63 62.49 49.16 45.36 53.43
Obs3 51.15 46.49 67.56 62.42 59.25 63.50 57.44 52.01 48.03

annotations; however, the comparative performance of the proposed model remains superior

to [17] model and shows a consistent inclination towards an inter-observer mean agreement.

However, it can be observed from the plot of Fig. 4.26 that there occurs a considerable dip

in Jaccard index value for CTA datasets 10 and 17 (for both segmentation methods as well

as the inter-observer mutual agreement). This unexpected drop is related to the structural

abnormalities of the coronary tree as shown in Fig. 4.27a. These aberrations in the coronary

tree make segmentation challenging even for the manual observers, as Fig. 4.27b -4.27c

shows a minimal agreement among three human experts.
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4.10 Summary

In this chapter, we demonstrated an efficient coronary segmentation method with the help

of qualitative and quantitative results. A limitation of the proposed method is the manual

selection of the appropriate weight β for the global term, as the true boundary is sur-

passed occasionally due to high influence of the global force. Subsequently, in the CTA

volume-based analysis, we evaluated different values for β from the normalized range

[0, 0.01, 0.05, 0.10, 0.15, 0.25, 0.50, 0.75, 1.0] to derive an empirical evidence for best

global weight. According to a series of experiments, the segmentation obtained with β less

than 0.1 produces results similar to localization model of [16] due to a very less influence of

global term, whereas setting β greater than 0.25 results in suppression of distal segments

due to a very high influence of global term. This makes β = 0.15,0.25 a feasible choice for

effective segmentation of the coronary tree.

It should be noted that the fully automatic segmentation of the coronary tree has been a

challenging problem so far and the current research is focused to minimize the human inter-

action. Several methods [139–141, 124, 142] have been proposed in recent years addressing

the automatic and semi-automatic segmentation of coronary lumen with a motivation of

stenosis detection; however, little attention has been paid on the negative remodelling of

coronary vessels. From a clinical point of view, negative remodelling signals the presence

of soft plaques which have been reported as most important indicator of heart attack and

stroke [50]. Subsequently, the coronary tree segmented in this chapter will be used in the

intensity-based investigation for detection and localization of non-calcified plaques in next

chapter.
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Fig. 4.22 Segmentation accuracy of two methods with respect to three individual observers of
Rotterdam dataset. Consistently low FP % and high Jaccard index value shows the advantage
of hybrid model over the localization [16] method.
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(a) Statistics for major - minor segments. (b) Statistics for healthy - diseased segments.

Fig. 4.23 The mean performance of the hybrid model for complete Rotterdam CTA dataset
in a clinical context. (a) shows higher accuracy for major segments in comparison to minor
branches, similarly (b) shows higher accuracy for healthy segments in comparison to diseased
branches.



4.10 Summary 109

36 38 40 42 44 46 48 50 52 54
30

40

50

72

74

76

78

80

82

84

86

88

90

(a) DS01 seg01

0 0.5 1 1.5 2 2.5 3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ja
cc

a
rd

 in
d
e
x

Obs1             Obs2             Obs3

 

 

Hybrid

Local

(b) Jaccard index

80
100

120 76777879808182

80

82

84

86

88

90

92

94

96

(c) DS01 seg12

0 0.5 1 1.5 2 2.5 3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ja
cc

a
rd

 in
d
e
x

Obs1             Obs2             Obs3

 

 

Hybrid

Local

(d) Jaccard index

Fig. 4.24 Performance of two segmentation methods for different segment types. Good
agreement among three manual observers (a) reflects the bright appearance of proximal
segments. (b) the reduced agreement among three human observers due to the ambiguous
appearance of distal segments. (c) and (d) represents the Jaccard index for two segmentation
methods w.r.t three individual observers.
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Fig. 4.25 Segmentation result for [17] and the hybrid segmentation method with respect to
observer 2 of the Rotterdam dataset.
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Fig. 4.26 Segmentation result for the mean human agreement, [17] and the proposed method
with respect to the average of three observers.
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Fig. 4.27 Illustration of the inconsistencies between manual observers. (a) A coronary
structure with an aberration, which complicates segmentation. (b) Clinical annotations for
lumen boundary for three observers (red, blue and green circles). (c) Magnification of the
boundaries. Notice the inconsistent decision of the observers whilst delineating the lumen.





Chapter 5

Detection and Localization of

Non-calcified Plaque Regions

5.1 Introduction

This chapter is focused on detection and localization of non-calcified plaques in the segmented

coronary tree. The early detection of coronary plaques is crucial as future cardiac events can

be avoided or at least delayed, by addressing the behavioural risk factors such as tobacco

use, unhealthy diet and physical routine[24]. From a clinical point of view, calcified plaques

represent the deposition of calcium inside coronaries, whereas Non-calcified plaques are

formed due to the presence of lipids, fat and cholesterol. Moreover, the non-calcified plaques

have been established as the most important indicator of acute coronary syndromes due to

their fragile nature [50]. The risk of sudden rupture has made soft plaques threatening in a

clinical context, i.e. for many individuals, sudden death becomes the first sign of soft plaque

in contrast to calcified plaques which often lead to disease symptoms at early stages. It

should be noted that calcified plaques can be identified easily in a CTA image based on the

high intensity value, consequently numerous methods have been reported with a reasonable

detection accuracy [105, 106, 143]. In contrast, non-calcified plaques (NCP) usually have a

lower intensity value and quite close to nearby heart tissues that makes the detection problem

challenging [33, 107, 144–146]. Moreover, the positive remodelling associated with NCP
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(also termed as soft plaques) amplifies the detection challenge as the diameter-reduction

based methods [105, 106, 143] fail to detect the presence of soft plaques. Consequently,

the high morbidity rate associated with non-calcified plaques has provided the impetus for

increased research on early detection of soft plaques to predict and avoid worst cardiac

events.

In this chapter, we start with the centreline extraction of the coronary vasculature, fol-

lowed with the detailed explanation of discrete radial profile based representation of the

coronary segments. In the subsequent section, we explain the support vector machine (SVM)

based analysis for detection and localization of non-calcified plaques. It is notable that along

with Rotterdam CTA dataset (18 CTA volumes of Table 4.2), two additional datasets (12

CTA volumes obtained from Guy’s and St. Thomas’s hospital, London and 2CTA volumes

obtained from Semmelweis University Budapest, Hungary) have been investigated in this

experiment. After obtaining the respective coronary centrelines, the orthogonal cross-sections

were computed for the second dataset and an expert was requested to label the cross sec-

tions as normal or pathological (soft plaque affected) using optimal window/level settings

(W/L=800/300). Moreover, the classification for both CTA datasets was validated with the

help of clinical quantitative coronary angiography (QCA) reports which was provided for

two datasets.

Our contribution in this chapter is an efficient methodology for explicit detection and

localization of the non-calcified plaques in clinical CTA. Accordingly, we demonstrate

that the abnormal intensity drops resulting from soft plaque inside coronary vessels can be

captured using concentric rings along the vessel centreline, which can be further employed

for NCP detection. The proposed model differs from the anomaly detection methods of

[113, 116] that the coronary tree is segmented in the first stage using a hybrid energy model

from Chapter 4 which reveals radius variations along the length of vessels. Consequently,

the radial information of the segment helps in tracing both positive and negative remodelling

associated with the soft plaques. Furthermore, the plaque detection is performed using

windowed statistics to uncover abnormalities in a relative context rather then evaluating

individual cross sections as proposed in [116]. Experimental results demonstrate that the
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proposed method achieves a good agreement (detection accuracy of 88.4% with respect to

manual annotations) and results in-line with anomaly detection methods of [113], [116].

In addition, the proposed model approximates the position and length of the non-calcified

plaques in the abnormal coronary segment with a good accuracy of 83.24% against manual

annotations. We believe that detected plaque terminal points can be used to design a fully

automated plaque quantification model as explained in Chapter 6. Likewise, Clouse’s et al.

[10] quantification can be automated using detected start and end positions for improved

performance. It should be noted that the explicit detection of soft plaques is a challenging

clinical problem. In this context, a number of local features proposed in [113] and [116]

fail to detect fragile, low-intensity soft plaques; hence, the detection rate for non-calcified

plaques is significantly lower then calcified plaque detections in [113] (i.e. 79.62% versus

94.05%).

5.2 Coronary Tree Skeletonization

The construction of the centreline from the segmented 3D coronary tree plays an important

role in the plaque detection process. We extracted the vessel centrelines from the segmented

tree using the sub-voxel thinning algorithm of Ultert et al. [147]. The accuracy of the

obtained centrelines is evaluated by computing the mean distance (deviation error) with

respect to the reference ground truth [118] as presented in Fig. 5.1. The visual comparison

for the complete coronary vasculature is presented in the left column of Fig. 5.1, whereas

the deviation error for individual segments (RCA, LCX, LAD and D1) is shown in the right

column.

Moreover, statistical results showing the mean deviation for the coronary vasculature in

the Rotterdam dataset is presented in Table 5.1. Accordingly, it can be observed from the

table that the deviation error for the major coronary segments is less than one millimetre with

respect to the reference centreline, except for dataset 09. The high deviation error in this

dataset is related with the floating plaque inside RCA, which leads erroneous centrelines.
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Fig. 5.1 Accuracy of the coronary centreline with respect to the reference ground truth [18]
for different CTA volumes. (Left column) obtained centreline overlaid with the ground truth
centreline, (right column) mean deviation of the obtained centreline in millimeters. It can
be observed that the coronary centreline has a mean deviation of about 1mm for the major
segments.
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Table 5.1 Centreline deviation in millimeters for coronary vasculature (for volume 00-17)

CTA Volume
Vascular Sections

Right Coronary
Artery

Left Main
Left Anterior Descending

Left Circumflex
Artery

Diagonal Branch
Artery

AHA Segment No {1,2,3,4,17} {5,6,7,8} {11,13,14,15} {9,10,16}
DS00 0.298±0.11 0.384±0.14 0.320±0.11 0.286±0.06
DS01 0.301±0.14 0.590±0.24 0.425±0.08 0.612±0.16
DS02 0.504±0.15 0.304±0.11 0.539±0.21 0.475±0.09
DS03 0.407±0.15 0.311±0.11 0.407±0.15 0.359±0.08
DS04 0.355±0.09 0.314±0.15 0.410±0.16 0.447±0.06
DS05 0.421±0.20 0.413±0.18 0.368±0.12 0.381±0.09
DS06 0.383±0.18 0.365±0.14 0.418±0.11 0.380±0.06
DS07 0.375±0.14 0.45±0.17 0.63±0.20 0.511±0.23
DS08 0.557±0.26 0.412±0.13 0.885±0.35 0.439±0.07
DS09 1.180±0.44 0.651±0.37 0.290±0.17 0.301±0.08
DS10 0.449±0.12 0.551±0.12 0.435±0.19 0.000±0.00
DS11 0.722±0.19 1.271±0.47 0.350±0.17 0.381±0.11
DS12 0.368±0.11 0.560±0.27 0.314±0.11 0.435±0.13
DS13 0.351±0.17 0.304±0.14 0.467±0.09 0.339±0.11
DS14 0.497±0.21 0.284±0.14 0.363±0.11 0.368±0.11
DS15 0.470±0.21 0.345±0.14 0.498±0.12 0.262±0.10
DS16 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00
DS17 0.421±0.18 0.305±0.20 0.409±0.13 0.410±0.08

5.3 Discrete representation of Coronary Segments

In the subsequent step, different branches of the coronary skeleton are labelled according to

the 17-segment coronary model of the American Heart Association (AHA) [4]. The segment

labelling is performed in this step as the plaque detection and quantification in this work is

performed on a per-segment basis. Next, the respective centrelines are used to extract the

orthogonal cross-sections to constitute the segment-wise cylindrical volume as illustrated

in Fig. 5.2. The statistical representation for the segment-wise cylindrical volumes are

explained in this section.

5.3.1 Mean Radial Profile

To investigate the intensity composition along the coronary segment, this work employed the

notion of the mean radial profile. We observed that this representation is effective to identify

the intensity abnormalities in 3D tubular vessels by comparing radial profiles of successive

2D cross sections along the vessel axis. To illustrate the advantage of mean radial profiles,

we obtained 2D cross sections along the length of the segment by substituting respective
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Fig. 5.2 Segmented coronary trees with overlaid centreline and two cross sectional planes.
The centreline is overlaid in black for the right coronary artery, whereas blue, red and green
represent the curved cylindrical approximations for coronary segments numbered 2, 7 and 8
respectively. A local cylinder with 6mm diameter well encompasses the coronary segments.

centreline points in Eq. 5.1.

nxyz · (x− cxyz) = 0, (5.1)

where cxyz represents a point at the centre of a planar patch and nxyz = [nx,ny,nz]
T represents

the normal of the plane which is computed using successive points of the centreline to

precisely follow the vessel orientation. In the subsequent step, we computed the respective

radial profiles by sampling the obtained cross sections along concentric rings according to

Eq. 5.2.

p[r,k] =
∫ 2π

0 I(r,θ ,qk)dθ∫ 2π

0 dθ
, (5.2)

where q denotes the segment centreline and qk defines the kth cross section of the centreline,

with k = [1, ...,Ns], where Ns is the total number of the cross sections in the coronary segment.

Moreover, I represents the image intensity, r = [1, ...,6mm] defines the sampling radius, and

θ defines the angle of a projecting ray. Fig. 5.3a shows the mean radial profiles for five

sequential cross-sections (k=5, 10, 25, 40 and 45) of the coronary segment. It can be observed

that the intensity is at its highest/maximum at the centre of a healthy cross section (i.e. k=5,
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10, 40 and 45) and decreases outwards as a smooth function of distance. In contrast, the

abnormal segments can be clearly differentiated based on an unexpected response of the mean

radial profile. This deviation is visually illustrated in Fig. 5.3b where two cross-sections are

displayed using optimal coronary display settings. High intensity in a normal cross section

results in a bright appearance (top), whereas presence of low density material results in a

darker appearance of the diseased cross section (bottom). Accordingly, this work employed

the concept of mean radial profiles to compute the segment intensity response along the

length of the segment.
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Fig. 5.3 Mean radial profile based intensity examination to detect abnormality in 3D vessel.
(a) shows radial profiles for five sequential cross sections to detect composition abnormality,
whereas (b) shows 2 cross-sections (normal and abnormal) using standard window level
settings i.e. [w/l = 800/300].

5.3.2 Cylindrical Modelling of Coronary Segments

To effectively use the radial profiles in plaque detection, we approximated the individual

coronary segments with a curved cylindrical model having a diameter of 6mm. The choice

of a 6mm diameter is feasible as several studies [128], [139], [148] show that the maximum

coronary diameter remains less than 6mm. Consequently, the circumference of our curved

cylinder serves as an external boundary between the coronary vessel and the background.

This is illustrated in Fig. 5.2 where three different coronary segments are mapped with

respective curved cylindrical models. This method of segment approximation is superior to
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Fig. 5.4 A schematic representation of the intensity composition for normal and abnormal
coronary cross sections. Left represents a normal cross section with adequate flow of blood,
whereas right shows a plaque leading to blood obstruction. Moreover, the dots represent the
discrete radial profiles obtained by sampling 8 concentric rings.

Clouse et al.’s [10] approach, where, a hard threshold of 0 Hounsfield units (HU) was used

to cut off the vessel from the background. Nearby calcifications and image reconstruction

artefacts often result in vessel borders that differ from 0 HU. Another advantage of our

cylindrical approximation is that it allows a certain amount of flexibility in the centreline

accuracy, as the mean response of the 6mm region can successfully model the segment

intensity distribution by overcoming the slight perturbations in the centreline. Next, we

used the approximated curved cylindrical model of respective coronary segments to obtain

the radial profiles. However, in context of the computational robustness, this work used a

discrete approximation of Eq. 5.2 to construct customized radial profiles along the length

of the segment. To maintain a trade-off between the computational load and the radial

profile accuracy, the discretization parameters are chosen as ∆r = 0.4mm, ∆θ = 22.5° and

∆q = 0.4mm. The sampling interval of 0.4 mm is used for the radial and cylindrical axes

due to the isotropic voxel size, whereas an angular spacing of 22.5° is used to project 16

rays onto the sampling plane. The chosen angular interval is fairly reasonable as the smaller

interval leads to increased processing time without improving the performance. Accordingly,

the customized radial profile is defined as expressed by Eq. 5.3.

v[ii,k] =
1
L

L

∑
t=1

I(rii,θt ,qk)∀ii,k, ii = 1, ...,8, k = 1, ...Ns, (5.3)
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where qk represents the kth cross sectional of coronary segment and Ns defines the total

number of points along the length of the segment. L denotes the total number of projected

rays, which is set equal to 16 in this model and the respective projection angle is computed as

θt = t
(

π

8

)
. Moreover, ii denotes the concentric ring number formed at radius rii = 0.4(9− ii)

mm. This formulation of rii reveals that the outermost ring is labelled as v1 and the innermost

ring is denoted as v8. This discrete approximation is illustrated in context of two cross

sections in Fig. 5.4 where it is apparent that the outer four rings (v1 to v4) generally define

the interface between lumen and external fat, while the inner four rings (v5 to v8) represent

the contrast medium affected blood.

This fact is further demonstrated in Fig. 5.5 where the intensity response of eight

concentric rings is plotted for the complete segment. It can be observed that irrespective

of the segment composition, the inner four rings reflect the impact of the contrast medium

in terms of high intensity, whereas the outer four rings represent comparatively lower HU

values related to the external boundary of the vessel. Moreover, Fig. 5.5 shows that healthy

segments lead to stable intensity responses for all the eight rings (see Fig. 5.5a) throughout

the segment length, whereas the presence of low intensity (soft plaques) results in significant

concavities for the inner four rings (see Fig. 5.5b). We observed that this considerable

disparity in the stability of the four inner rings can be used to differentiate coronary segments

into two classes i.e. normal and abnormal. Consequently, we derived the mean representation

(S) of the coronary segments by averaging the response of the four inner rings as expressed

in Eq. 5.4. It should be noted that the segment mean representation S is based on the four

inner rings, which minimizes the probability of erroneous plaque detection due to 6 mm

circular approximation of distal segments.

S[k] =
1
4

8

∑
ii=5

v[ii,k], ∀k, k = 1...Ns. (5.4)

To overcome the short term fluctuations in the mean representation of the coronary

segments, this work applied finite impulse response filter using a moving window technique.

Accordingly, the smoothed statistical representation of the coronary segment is obtained with
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Fig. 5.5 Mean intensity response for 8 concentric rings (v1 to v8) along the length of segment.
(a-b) represents two normal segments, whereas (c-h) shows six abnormal segments. It can
be observed that the mid of the lumen, (v8) exhibits high HU intensity, whereas a low value
of (v1) indicates a position away from the lumen centre. Moreover, the mean profile of the
coronary segment is obtained by averaging the four inner rings (v8) - (v5).
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the help of a moving mean and moving standard deviation operation as expressed in Eq. 5.5,

where Sz i.e. the size of the moving window is set equal to 3.

σs[k] =

√√√√ 1
(2Sz+1)−1

Sz

∑
i=−Sz

(S[k+ i]−µ[k])2,

µs[k] =
1

2Sz+1

Sz

∑
i=−Sz

S[k+ i], k = 1, ...,Ns. (5.5)

In addition, we constructed the segment radius profile Srad by computing the lumen radius

from the segmented coronary tree, to take into account the remodelling impact along the

length of the vessel. The radius along the segment is computed by detecting the vessel

boundary on respective cross sections, as illustrated in the Fig. 5.6. It can be observed

that the cross sections of the coronary segment representing the normal blood flow in the

vessel (no plaque is present) appears approximately circular in shape leading to a consistent

radius, whereas plaque related structural abnormalities can be traced by identifying shape

deformations, which leads to inconsistent radius values.

It is notable that different coronary segments have variable length, as defined in the

standard AHA coronary model (see Fig. 5.2 for a visual difference between segment 2,

segment 7 and segment 8). We apportioned the variable length of individual segments at

this stage with the help of spline interpolation to redefine the segments in terms of the fixed

length characteristic functions µ
′
s, σ

′
s and S

′
rad (each having 100 samples).

5.4 Non-Calcified Plaque Detection using SVM

5.4.1 Feature Based Representation for Coronary Segments

After obtaining the fixed length characteristic functions for coronary segments, we used an

SVM classifier [149] to differentiate the plaque affected segments from the normal ones.

An imperative pre-requisite for a learning-based classifier is the selection of appropriate

features from the data. Ambiguous features failing to discriminate two classes effectively

leads to poor accuracy, whereas distinctive features result in a promising classification. We
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Fig. 5.6 Radius computation using vessel cross sections. Left column represents consec-
utive cross sections from a normal coronary segment. Middle column shows consecutive
cross-sections from a segment undergoing negative remodelling, whereas a segment show-
ing positive remodelling of the vessel is shown using consecutive cross sections in right
column. For abnormality detection, the approximate radius can be computed using circular
approximation on respective cross-sections.
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(k) Abnormal-20 subsets
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Fig. 5.7 Subset based signal representation to reduce the dimensions of the feature vector. It
can be observed from a pair-wise comparison (row 1 versus row 2, row 3 versus row 4) that
both normal and abnormal segments can be adequately represented using reduced subsets.
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Fig. 5.8 Subset based signal representation to reduce the dimensions of the feature vector. It
can be observed that both (normal and abnormal) segments can be adequately represented
using 20 subsets.

identified the representative features of our data by analytical investigation before applying

the SVM model to ensure the computational robustness. As the motive of this work is to

detect plaque-based abnormalities along the length of the segment, we therefore, extracted

the features by splitting the characteristic functions µ
′
s and σ

′
s into m windows as expressed

in Eq. 5.6.

fµ [m] =
5

∑
n=1

µ
′
s[n+5(m−1)],∀m = 1,2, ...,20,

fσ [m] =
5

∑
n=1

σ
′
s[n+5(m−1)],∀m = 1,2, ...,20. (5.6)

The windowed, or sub-set based statistics, can effectively reveal the relative changes

along the length of the segment; however, the selection of m is critical, as it serves as a

trade-off between the the approximation error and the feature vector dimensions. To select

the optimal number of windows, we investigated the relationship between m and segment

approximation accuracy, as shown in Fig. 5.7. It can be observed that the quantization error

is inversely proportional to the number of windows, i.e. an increase in m leads to improved
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approximation of the segment profile s. Thus, to maintain a balance between the accuracy and

the feature vector size, we defined the number of windows (m) equal to 20. The choice of 20

windows is reasonable, as both normal and abnormal segments show that the approximation

error becomes steady at m = 20 as plotted in Fig. 5.8. Accordingly, Fig. 5.9 demonstrates

the discriminative capability of the extracted windowed features ( fµ and fσ ) to distinguish

the intensity patterns of two classes (see Fig. 5.9a - 5.9d).
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Fig. 5.9 Graphical representation for segment representative features. (a, c) define a normal
segment having stable mean and standard deviation, whereas (b, d) represent a soft plaque
effected segment.

Furthermore, two additional parameters, namely: mid-lumen intensity fmid and mean

radius frad are added to improve the performance of the SVM classifier. The mid-lumen

intensity through the vessel is acquired by modelling the intensity response of the innermost

concentric ring v8 through the length of the vessel as expressed in Eq. 5.7, whereas the mean

radius frad encoding the vessel remodelling impact is approximated in terms of m windows
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using radial profile S
′
rad as expressed in Eq. 5.8.

fmid[m] =
1
5

5

∑
n=1

v8[n+5(m−1)],∀m = 1,2, ...,20. (5.7)

frad[m] =
1
5

5

∑
n=1

S
′
rad[n+5(m−1)],∀m = 1,2, ...,20. (5.8)

Fig. 5.10a - 5.10d demonstrate the advantage of the additional features. Apparently fmid

replicates the distribution pattern of fµ ; however, it encodes the mid-lumen behaviour (i.e.

the concentration of the contrast medium) from ostium to the end of the segment. It should

be noted that a plaque present in the segment orifice (or even in the preceding segment) will

result in low HU intensity through the mid-lumen; hence, the segment should be classified

as abnormal but the stable mean and variance may lead to an erroneous classification in

terms of the normal region. In this context, the feature fmid ensures that the classifier takes

into account not only the intensity variations but the mid-lumen response of the segment for

effective classification.

In general, the radius obtained along the length of the segment conveys useful information

to the classifier as illustrated in Fig. 5.10c - 5.10d. It can be observed from Fig. 5.10c

that the segment radius decreases smoothly as a function of orifice distance for normal

segments, whereas the plaque effected segments undergo unexpected variations in radii

due to the positive or negative remodelling in the plaque affected area (see Fig. 5.10d).

This is further illustrated in Fig 5.11, in which it can be observed that the vessel boundary

(red contours) suffer through compressions at three distinct points along the length. These

compressions represent stenosis of varying degree (mild, moderate, severe) at respective

locations. Hence, the impact of the vessel stenosis can be clearly conveyed to the classifier

using radius frad (i.e. inset blue plot shows unexpected sharp dips for the stenosis regions).

The statistical results illustrate that integration of the mid-lumen intensity and the segment

radial information improves the classifier accuracy by approximately 11% as demonstrated

in results section. Next, we concatenate four feature sets fµ , fσ , fmid and frad to obtain a

feature based representation Xn for respective coronary segments with dimensions [1 x 80].
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Fig. 5.10 Graphical representation for segment representative features. (a) defines mid-lumen
intensity for a normal segment, whereas (b) shows the corresponding mid-lumen intensity
in an abnormal segment. Moreover, (c) represents the vessel radius pattern for a normal
segment, and (d) shows the radius obtained for three abnormal segments. It can be observed
that normal segments is characterized with high mid-lumen intensity and smooth decreasing
radius, whereas abnormal segment is related with low mid-lumen intensity and often suffers
with unexpected radius variations (+ve, -ve and hybrid vessel remodelling).

5.4.2 SVM Classification Framework

For an SVM based classification, our data consists of N feature vectors of the form Xn and

the associated binary labels Yn, defining the class of the vector as either normal or diseased.

The mathematical representation for classification data is as follows:

D =
{
(Xn,Yn) |Xn ⊆ Rdims,Yn ⊆ {0,1}

}N

n=1
. (5.9)

where N is the number of samples for the classifier and dims denotes the feature vector

dimension i.e set equal to 80 in our work. The use of support vector machines in binary

classification relies on quadratic optimization subject to linear constraints. The SVM model
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Fig. 5.11 Three-dimensional illustration of vessel stenosis. The coronary vessel is represented
by boundary contours (red). The corresponding radius of each contour is displayed in the
box as a solid blue line. Arrows point to three locations with stenosis of mild, moderate and
severe degree respectively, as reflected in reduction of the radius.

finds an optimal hyperplane by minimizing the norm of weights for ideal segregation;

however, a slack variable ε is often integrated to relax the constraints for a feasible solution

as expressed in Eq. 5.10.

min |w|2 +P
N

∑
n=1

εi, (5.10)

sub ject to :Yn
(
wT Xn +b

)
≥ 1− εn, εn ≥ 0, f or n = 1,2, ....N.

A penalty cost P regulates the influence of individual support vectors in the classification

as high value of P leads to a hard margin, whereas a very small value allows for frequent

violations of the constraints. After investigating values in the interval
[
10−5,105], we defined

P = 100 by adjusting the box-constraint parameter of the SVM classifier. Moreover, this

work used a non-linear radial basis Gaussian kernel for mapping data into a higher space

with sigma defined equal to one. Table 5.2 shows the detailed specification for SVM plaque

detection model including features and the respective tuning parameters. Accordingly, the
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SVM model classifies the test vector Xn into normal or diseased classes according to Eq.

5.11.

Ŷ (Xn) = sgn
(
wT Xn +b

)
. (5.11)

Table 5.2 SVM model for non-calcified plaque detection.

Feature space & accuracy

Parameter name Parameter type Intensity only Intensity plus radius

Windowed mean Discriminative feature 20 20
Windowed Deviation Discriminative feature 20 20
Mid-lumen intensity Discriminative feature - 20
Windowed radius Discriminative feature - 20
SVM Kernel Tuning parameter RBF RBF
Gaussian deviation [σ ] Tuning parameter 1 1
Penalty cost Tuning parameter 100 100

Feature vector dimensions N/A [1x40] [1x80]
Accuracy N/A 77.8% 88.4%

5.5 Non-Calcified Plaque Localization in Abnormal Seg-

ments

Segments classified as “abnormal” are further investigated for precise position of the plaque

in the vessel. The essence of the localization process is to identify unpredicted intensity dips

in the mean radial profile of the coronary segment. For tracking valleys in the mean profile

(S) of an abnormal segment, this work computed the intensity variation changes using a first

order derivative. It should be noted from Fig. 5.12 that the relative slope (shown in blue)

remains steady through the normal regions of the coronary segment, whereas the unexpected

intensity value drop associated with soft plaques lead to a significant transition in the slope

magnitude. In the subsequent step, we applied second order derivative analysis of Eq. 5.12 to

identify the local extrema points. This computation is based on the idea that a valley region

can be well characterized by pairs of adjacent maxima points as shown in Fig. 5.12.
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Fig. 5.12 Derivative based plaque localization in an abnormal segment. The black curve
represents segment mean profile and the blue curve shows the relative change in mean profile.
Moreover, red and green markers show the detected local extrema points.

After identifying the local extrema positions, we quantified the section-wise intensity

drop by computing the sum of the relative slope between successive maxima points. This

computation leads to the plaque affected section of the vessel, in terms of maximal depression.

Consequently, two maxima, encompassing the maximal intensity drop are marked as the start

and end positions of the lesion in the segment. To generalize the performance, an additional

constraint was posed directly in terms of an intensity threshold of 50 HU to ensure that a low

HU value inside the vessel was directly marked as plaque without requiring any additional

evidence.

f
′′
(s) =

 Minima at (s = p) if f
′
(s) = 0 & ∂ 2 f

∂ s2 > 0,

Maxima at (s = p) if f
′
(s) = 0 & ∂ 2 f

∂ s2 < 0.
(5.12)

5.6 Results

5.6.1 Plaque Detection Performance

Out of the available 32 CTA volumes, a total of 344 segments (200 normal, 144 abnormal)

are extracted in the first stage for validation of the SVM classifier. As the focus of this work

is non-calcified plaques, calcifications present in a neighbourhood are removed by assigning

a mean value before extraction. In the subsequent stage, the mean discrete HU profiles



5.6 Results 133

are generated for individual coronary segments. The performance of the SVM classifier

is presented in Fig. 5.13 where Leave One Out (LOO) cross-validation shows promising

results with a sensitivity of 93%. Furthermore, a positive predictive value (PPV) for the LOO

validation is 86.4% and a negative predictive value (NPV) is 91.9% making the overall soft

plaque detection accuracy equal to 88.4%.
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Fig. 5.13 Leave one out (LOO) validation for the SVM classifier. The overall accuracy
(around 88.4%) shows the effectiveness of the plaque detection method.

Next, we used the trained SVM classifier to investigate the impact of feature vector

dimensions on accuracy and the overall processing time. Accordingly, it has been observed

that the windowed mean and deviation based 40 features lead to a classification accuracy of

77.8%, where the addition of mid-lumen fmid and radius frad based features improved the

classifier accuracy by approximately 11%. Moreover, the comparative analysis demonstrates

that the further increase in the feature space dimensions shows only a marginal improvement

in the classifier accuracy, while the computational time increases significantly. These results

lead to the conclusion that the classifier performance becomes resistant to the feature vector

dimensions at a certain point due to the redundancy of features.

In this context, we also experimented with the feature selection techniques to automati-

cally select the optimal features in context of the plaque detection. However, based on the
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Fig. 5.14 Classification accuracy based on top ranking features for three different feature se-
lection techniques. Fisher method [19] shows comparatively better accuracy due to correlated
feature information.

fact that prior clinical knowledge has been employed to derive hand-crafted features in the

context of non-calcified plaque detection, it is less likely that feature selection techniques

will significantly reduce the dimensionality of the feature space. For the proof of concept,

we compared three different feature selection techniques including Relief-F [150], recursive

feature elimination [151] and Fisher [19] methods using a feature selection library [152]. To

illustrate the efficiency of these methods this work performed the classification using top

ranking features for three techniques as shown in Fig. 5.14. It can be observed that use of

the top 5 features leads to a minimal accuracy for all three techniques, whereas an increased

feature space lead to a continuous improvement in the accuracy of the classifier. This is

due to the window-based nature of the features, as increased windowed statistics allows the

classifier to make relatively improved decisions. From a comparative point of view, it can be

observed from Fig. 5.14 that the Fisher method [19] achieves higher accuracy as it employs

the correlation information to to rank the feature’s discriminative power.

After computing the classifier performance on integrated dataset, we evaluated the

efficiency of the classification model against three individual datasets to validate the repro-

ducibility on generic CTA data. Accordingly, we extracted test segments individually from

three datasets (66 from Rotterdam, 76 from St. Thomas and 36 from Semmelweis) and cross

validation results are presented in Fig. 5.15. It can be observed that the individual classifica-
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tion accuracy is consistent at around 85% across the data. Moreover, the classification results

of Fig. 5.15 can be interpreted based on the fact that a “significant intensity dip" helps the

classifier to achieve higher accuracy.
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Fig. 5.15 Plaque detection results for three individual datasets using individual statistics and
overall accuracy. It can be observed that SVM consistently achieves a plaque detection rate
higher than 80%.

In this context, the high sensitivity of the Rotterdam data can be related to the presence

of severe soft plaques in different coronary segments, whereas the lower accuracy for the

Semmelweis CTA dataset reflects less test data and the absence of severe plaque instances. It

should be noted that the detection of the immature (clinically graded as mild to moderate)

soft plaque becomes extremely difficult due to uncertain intensity profiles.

After comparing individual results, this work also compared the outcome with plaque

detection models of Wei et al. [112], Lankton et al. [99] and Tessmann et al. [113]

to establish a correlation with the reported literature. It should be noted that the overall

detection trend can be observed in Table 5.3 for different methods; however, a head to

head comparison is not possible with [112] and [99] as the results are based on different

quantitative metrics and datasets. For instance, the sensitivity reported by Lankton et al. [99]

is achieved using volume based processing, whereas Wei et al. [112] used 2mm long plaque

candidate regions. Moreover, the higher sensitivity reported in [113] is based on the fact

a good detection rate for the calcified plaques improved the overall detection accuracy. It
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is remarkable that specifically, in context of the explicit soft plaque detection, the reported

accuracy for [113] is 79.62%.

Table 5.3 Plaque detection - Comparison with Literature.

NCP Detection
Four Different Methods

Proposed Tessman Lankton Wei

Test Volumes 32 45 8 83
Classifier SVM AdaBoost Energy Minimization LDC
Target Plaques Soft Soft Soft Soft
FeaturesUsed 80 144 X 14
Dataset Used UserDefined UserDefined UserDefined UserDefined
Detection Target Coronary Segments Coronary Segments Plaque Regions Plaque Patches
Sensitivity 93 79.62 88 92

5.6.2 Plaque Localization Performance

SVM based identification of the abnormal segments is followed by the localization of the

plaque inside the vessel segment. In this experiment, we used abnormal coronary segments

of the Rotterdam CTA dataset only, as the manual ground truth for this dataset provides

the start and end positions of the soft plaques along with the segment status. The plaque

localization is illustrated in Fig. 5.16 where first and second order derivative analysis is used

to highlight the intensity concavities. The proposed model achieved encouraging results

as all substantial plaques are well localized; however, it slightly overestimates the plaque

position due to numerical dependence on the second order extrema points as demonstrated in

Fig. 5.16a - 5.16d.

The statistical accuracy for the plaque localization is evaluated by computing the Dice

similarity index between the ground truth and the detected plaque locations. The total number

of cross sections along the segment were represented using a binary vector where a zero

denotes normal cross section and one reflects the abnormality. The ground truth vector is

constructed using the start and end positions of the soft plaque from the manual ground

truth annotations, whereas the obtained plaque vector is derived from our detected plaque

positions. Fig. 5.17a demonstrates the efficacy of the plaque localization method with a mean

Dice index of 83.2% with respect to the expert annotations. Moreover, Fig. 5.17b presents
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Fig. 5.16 Plaque localization for four different abnormal segments of Rotterdam data. Green
is the detected region and red is the manual expert based ground truth. It can be observed that
the proposed method identifies the plaque region in the vessel with a slight over-estimation.
For each figure (a-d), the first row shows the section-wise first order intensity change between
consecutive maxima pairs, whereas the second row shows the detected plaque region.

the plaque length in millimeters where our obtained length is in correlation with the expert

based length. However, a trend of slight over-estimation can be observed which is due to the

numerical dependence on second derivative-based maxima points.
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Fig. 5.17 Plaque localization performance. (a) shows the localization accuracy using Dice
index (%) and (b) shows the plaque length with respect to the manual expert of Rotterdam.
(c-d) shows particular cases where the proposed method fails in precise localization of plaque
due to the relative decision made manually by human experts.

The shortcoming of the plaque localization method can also be observed in Fig. 5.17c -

5.17d as plaque length and Dice index both under perform for plaque effected segments of

CTA volume 6 and 11. The mismatch for these two volumes occurred due to the unexpected

length of the plaque (spanning over the complete segment) that leads clinician to make a

relative decision. This is visually illustrated in Fig. 5.17c where the human observer selected

the start and end positions of the plaque relative to the significant intensity drop and the

complete intermediate region is marked as plaque, whereas the proposed model results in

two individual plaque instances centred at the start and end of the actual plaque. Similarly,

the larger plaques that span across multiple segments are identified individually as our model

is operating on a per-segment basis.Extending the plaque detection and localization method

to handle cases when the plaque spans the entire length of the segment is a subject of future

work.
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5.7 Summary

In this chapter, we formulated a simple yet efficient framework for detection and localization

of the non-calcified coronary plaques. Based on abnormality detection, this model precisely

located the position and approximate length of soft plaque which can be used in fully

automated plaque quantification. The proposed model has been tested on three different

datasets and has produced consistent results, demonstrating its reproducibility for generic

CTA data. The overall accuracy of our plaque detection model is 88.4% against the manual

observer ground truth with a sensitivity of 93% and specificity of 80%. Moreover, the Dice

coefficient for plaque localization in diseased segments is 83.2% with respect to clinical

annotations. This work compared the detection results with earlier studies and found a good

agreement with the abnormality detection rate of Wei et al. [112], Lankton et al. [99] and

Tessmann et al. [113]. It can be concluded that finding plaque affected segments is useful

clinically, and could be used in a computer-aided detection system to alert a clinician to

segments with suspected soft plaque.

The limitation of the plaque detection method is low detection rate for immature non-

calcified plaques in the coronary tree. The immature non-calcified plaques does not exhibit

the characteristic intensity deviations in the early stage, hence the segment profile based

representation may overlook small intensity variations. However, all the developed substantial

plaques are well detected by this method. Another possible limitation for the detection method

is low performance for distal segments of the coronary tree. This is due to the fact that the

vessel diameter becomes narrower in distal segments, consequently, the proposed concentric

ring based representation of the segment may fail to model the true lumen. However, as

mentioned in context of coronary tree segmentation, clinically significant lesions are usually

identified in the main and proximal branches of the arteries, which can be well evaluated

by the proposed detection model. Moreover, it should be noted that plaques present in

the distal segments are less threatening as they lead to minimal muscular damage with no

fatalities. Likewise, the limitations of localization method include an under-estimation of

the long plaques in fully occluded segments. This limitation is based on the fact that the

manual annotation of the plaque region is performed in a relative context of lumen and
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the surrounding background. Especially, if there exist multiple low intensity lesions in

a close proximity inside coronary segment, the human expert, in general demarcates the

complete segment as plaque affected. In this context, the proposed method based on statistical

evaluation of the segment leads to under-estimation with respect to manual ground truth.



Chapter 6

Segmentation and Quantification of

Non-Calcified Plaques

6.1 Introduction

This chapter extends the plaque localization process for a more accurate estimation in terms

of voxel-wise plaque segmentation. Based on the output of Chapter 5, where we identified

the abnormal coronary segments along with the plaque terminal positions i.e. the start and

end position of the non-calcified plaques, we derive voxel based features in this chapter for

segmentation and quantification of the plaque. We start this chapter with a brief description

of the coronary artery evaluation framework (a Matlab based framework designed in this

work for visualization, analysis and expert based interactive demarcations) of the coronary

vasculature. In the subsequent step, we describe the voxel-wise ground truth formulation

for plaque, based on the boundary annotation of Rotterdam experts. This is followed by

an inter-observer variability analysis, as three manual experts leads to a significant amount

of agreement/dis-agreement for normal/abnormal segments of the coronary tree. The inter-

observer variability is explained in this section as the segmentation results are compared with

respect to three observers in the last section of this chapter. Next, we present an analysis of

the vessel wall in context of the non-calcified plaques, as NCPs generally lead to compressed

lumen and increased thickness of the vessel wall.
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In the subsequent section, we explain the hand crafted voxel-wise features including

2-class posteriors, signed distance function, spatial neighbourhood information and bimodal

histogram based customized fuzzy label. This is followed by support vector machine (SVM)

based problem formulation of the voxel-wise classification, which is subsequently followed

by experimental results. In the results section, we present the classifier performance using

statistical metrics of Sensitivity, Specificity and Accuracy, as well as we present the plaque

quantification results using Lumen and Plaque area metrics with respect to three manual

observer. In addition, we used Bland-Altman plot to establish the correlation of obtained

results with individual observer’s approximations.

Our primary contribution in this chapter is an efficient methodology for precise quantifi-

cation of the non-calcified plaques with a human-equivalent accuracy. To achieve this, we

have an additional contribution, which is the design of an automated tool (Coronary Artery

Evaluation Framework CAEF) for analysis and investigation of the segmented coronary tree.

The CAEF framework allows the user to visualize the segmented coronary tree both in 2D

and 3D space for a detailed investigation. Moreover, it allows user to construct customized

visualization using maximum intensity projection, re-sampled oblique cross-section and

multi-planar reformations for individual coronary segments. Moreover, the notable feature

in CAEF is the provision of manual annotation, in which user can manually annotate the

vessel components i.e. lumen and the plaque. It should be mentioned that CAEF can be

used efficiently to construct expert based manual ground truth, which is often required in the

quantification stage.

The second strength of this chapter is an efficient method for the vessel wall analysis in

context of the non-calcified plaques in coronary tree. It is important to mention that the vessel-

wall analysis alone can be used as a plaque-detection phenomena in the segmented coronary

tree; however, we employed wall thickness in the plaque-quantification process in this

research. The last contribution in this chapter is formulation of a SVM framework for voxel-

wise plaque classification in segmented coronary tree. Experimental results demonstrate

that the proposed method achieves a good agreement with human observers. It is important

to mention that a number of studies [114, 153–162, 145] have been reported in context of
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the non-calcified plaque quantification: however, the main focus in these studies was to

demonstrate the capability of CTA imaging to capture the non-calcified plaque. Accordingly,

non-calcified plaque lesions were manually selected in the first step, and plaque quantification

results were compared with the outcome of ultrasound imaging to establish relation between

two imaging modalities.

6.2 Ground Truth Construction

6.2.1 Interactive Framework

In context of qualitative and quantitative analysis of the coronary vasculature, we started

with the “reference” ground truth formulation. Accordingly, we developed a Matlab based

framework (Coronary Artery Evaluation Framework CAEF) for analysis, interpretation and

manual annotation of the coronary vasculature. The designed framework allows user to

visualize the segmented coronary tree both in 2D and 3D space as illustrated in Fig. 6.1.

The extracted 3D surface is shown with planes overlaid at different locations along the

length of coronary tree, whereas orthogonal (oblique cross sections), 2D curved planar and

straightened curved planar images are obtained using the centreline of the coronary tree.

Moreover, the CAEF framework allows the user to switch coronary segment according to

AHA model [4] as well as user can perform manual adjustments in window and level setting

for optimal visualization of grey scale images in a clinical context.

Fig. 6.2 illustrates the capability of the CAEF framework for differentiating calcified and

non-calcified plaques in coronary vessels. The calcified deposition are easily discernible in

the CTA due to high attenuation values, whereas the isolation of soft plaques is challenging

due to ambiguous texture, however the CTA window setting can be customized to identify

the soft plaques. This becomes evident in the figure as (left) displays a significant calcified

plaque in the lumen and (right) shows a mixed plaque i.e. a non-calcified plaque in immediate

vicinity of a calcification.

Fig. 6.3 demonstrates the user interaction in CAEF for manual annotation of the region of

interest. Based on the optimal CTA display settings [23] and input from a qualified clinician,
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Fig. 6.1 Coronary visualization in CAEF. The basic visualization feature allows the coronary
analysis using 3D surface, curved planar reconstructed images and cross sectional views.

CAEF can be used for manual demarcations of the coronary lumen, calcified and the non-

calcified plaques. Accordingly, CAEF generates a spline interpolated based boundary using

manually placed discrete points. Moreover, a pseudo-colour feature in Fig. 6.3 allows experts

to isolate non-calcified plaques accurately using the customized intensity thresholds, since

the visual evidence in the grey scale becomes ambiguous for non-calcified plaque effected

regions. Accordingly, customized intensity thresholds can be used to effectively annotate

the lumen and calcification present in the cross sections. The manual annotations (ground

truth for region of interest) are stored in an internal database with appropriate component tag

(lumen or plaque), and are used as the “reference” in the plaque quantification process. The

use of an annotated boundary to segregate two components is illustrated in Fig. 6.4. It can be

observed that user manually annotates the boundary for lumen (top row), and non-calcified

plaque (middle row), and the CAEF combines the annotation to define the vessel.

In addition to visual analysis of segmented coronary tree and manual ground truth

formation, the CAEF framework is capable of automatic quantification of the segmented tree

with respect to the manual ground truth. Based on the dimensions of the manually defined

ground truth (Rotterdam data provides 3D lumen boundary contours), subsequent processing
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Fig. 6.2 Coronary plaque analysis in CAEF. Customized display settings (window/level pre-
set) allows the visualization of calcified (bright) and non-calcified plaques (dull) appearance.

Fig. 6.3 Pseudo-color based coronary analysis and interactive lumen demarcation feature in
CAEF.

is performed to quantify the automated segmentation against manual ground truth. In case of

3D space, the segmentation contours are projected first on a 2D plane and polygonal statistics

are computed for individual plane across the length of segment. The similarity results are



146 Segmentation and Quantification of Non-Calcified Plaques

(a) Lumen (b) Lumen (c) Lumen (d) Lumen

(e) Plaque (f) Plaque (g) Plaque (h) Plaque

(i) Vessel (j) Vessel (k) Vessel (l) Vessel

Fig. 6.4 User based interactive annotation for lumen and plaque in sequential cross sections of
the coronary vessel. The first row shows the user based boundary for lumen, the middle row
shows the visually delineated plaque and the last row shows the overall vessel on respective
cross section (combination of the lumen and plaque). Moreover, for first two rows the red
points are control points for the spline, which is blue, whereas for the last row the blue curve
defines the lumen boundary and red shows the delineated plaque in the last row.

presented using two similarity measures including Dice coefficient and the Jaccard similarity

index on per-segment basis.

6.2.2 Rotterdam Data-based Annotations

Despite an interactive framework for the manual annotation of coronary vasculature, it

becomes challenging to obtain the ground truth for a number of non-calcified plaque instances.

This is based on the fact that the clinical experts have to spend a fair amount of time in the

interactive investigation. Subsequently, we used the available lumen ground truth of the

Rotterdam experts to derive the voxel-wise plaque ground truth indirectly as explained in

this section. In the first step, we identified a number of soft plaque instances (segments)

from the existing data for which the Rotterdam manual annotations are provided. It is
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Table 6.1 Non-calcified plaque effected segments in the Rotterdam CTA data

Segment ID
Plaque Specifications

Segment Type Plaque Type Plaque Grading Stenosis(%)

DS1 seg6 Proximal Non-calcified mild 20
DS2 seg6 Proximal Non-calcified mild 25
DS4 seg1 Proximal Non-calcified Severe 65
DS4 seg2 Proximal Non-calcified Moderate 51
DS5 seg2 Proximal Non-calcified Moderate 57
DS5 seg8 Distal Non-calcified Moderate 45
DS7 seg2 Proximal Non-calcified Severe 71
DS7 seg3 Proximal Non-calcified Moderate 41
DS9 seg2 Proximal Non-calcified Moderate 51
DS11 seg7 Proximal Non-calcified Mild 22
DS15 seg2 Proximal Non-calcified Moderate 53
DS15 seg3 Proximal Non-calcified Mild 22
DS15 seg14 Distal Non-calcified Moderate 45

important to mention that due to wide inter-patient variability, it is quite possible clinically

that certain segments of the AHA-17 segment coronary model do not exist for a specific

patient. Moreover, the manual demarcations of lumen boundary for all the existing segments

are not required in general, as the distal segments are not associated with severe clinical

threats. Hence, to maintain a balance between the manual annotation exercise and the clinical

effectiveness of the study, the proximal segments of the coronary vasculature are generally

investigated, as occlusion in proximal segments lead to fatal consequences in clinical practice.

Accordingly, we identified the target segments from the Rotterdam CTA data i.e. the soft

plaque effected segments having lumen boundary demarcations (in terms of 3D discreet

contours) as defined in the Table 6.1.

The visual detection and manual demarcation of the non-calcified plaque is very challeng-

ing for human experts and often leads to significant inter-observer disagreement due to the

ambiguous appearance of similar intensities in CTA volume. Consequently, the non-calcified

plaque is generally estimated indirectly by exploiting relative deformations of lumen diameter

in clinical practice. The lumen diameter variation is illustrated in Fig. 6.5a - 6.5b (top row)

in which the lumen boundary undergoes significant diameter reductions during the length
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Fig. 6.5 Lumen boundary annotations for two non-calcified plaque effected coronary seg-
ments. Black contours represent manual annotations for lumen boundary in 3D space, (red)
contours define “ideal” (plaque-free) vessel boundary for the plaque effected region of the
coronary segment.

of the segment indicating non-calcified plaque instances at respective locations. Based on

the fact that the plaque localization process of Chapter 5 leads to the precise position of the

non-calcified plaque for respective coronary segments, we approximated the “ideal” vessel

(red contours) for the plaque affected region using two “normal” cross sections (immediately

before and after the plaque region) as shown in Fig. 6.5c -6.5d. In the subsequent step,

the annotated lumen (black contour) is subtracted from the approximated ideal vessel (red

contour) and the remaining voxels in the ideal region are identified/labelled as ground truth

plaque voxels.
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For mathematical representation (boundary based representation) of the coronary segment,

we define a tubular model Tmodel

[
CP,θ

′
cs

]
, where CP denotes the centreline of the segment

and θ
′
cs defines the corresponding cross-section based information. Accordingly, the cross-

section based information for complete segment is defined using an [Ns] by [m] array, where

Ns represent the total number of points in the segment centreline and m denotes cross-section

related parameters. For model based representation of vascular structures, a tubular model

with circular cross-sections is frequently used [163–166, 9] in the literature. In the circular

tube model, the cross sectional information θ
′
cs for respective points of the centreline CP

is presented using the centre and the diameter or radius information. However, vessels are

elastic bodies which can accommodate local deformations of the lumen due to changes

in the blood flow and intra-luminal pressure within the artery. Such deformations cannot

be accurately represented using circular cross sections. Hence, we used an elliptical cross

sectional tube model to approximate the vessel boundary which provides sufficient degrees

of freedom to accommodate the potential deformations and facilitates accurate estimation of

the vessel cross section.

Fig. 6.6 Visual illustration for the tubular model of the coronary segment. The successive
boundary contours along the length of the segment are defined using elliptical approximations.
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The elliptical model based representation of the coronary segment is illustrated in Fig.

6.6. Accordingly, for the ith point of the centreline CP, we define the parameter vector

θ
′
cs(i) using an ellipse model as

[{
a(i),b(i),Cxyz(i),Rxyz(i)

}
≈ Exyz(i)

]
, where a(i) and b(i)

represent the lengths of the major and minor axes of the current ellipse, Cxyz(i) denotes the

centre of the ith ellipse of segment, and Rxyz(i) defines orientation information for ith ellipse

in 3D space.

The mathematical formulation (parametric representation) for a 3-dimensional ellipse is

expressed by Eq. 6.1, where Exyz denotes circumference of the ellipse, Cxyz is the centre of

the ellipse, a, b represent the lengths of the major and minor axes, respectively, Rxyz denotes

the orientation information of the ellipse in 3D space and t
′

is the angular parameter varying

between 0 to 2π . Moreover, the minimum distance of an arbitrary point, P = [Px,Py,Pz]
T to

the circumference of the ellipse can be found using Eq. 6.2.

Exyz =


Cx

Cy

Cz

+Rxyz.


a.cos(t

′
)

b.sin(t
′
)

0

 , where,Rxyz = R1R2R3. (6.1)

R1 =


cos(α) sin(α) 0

−sin(α) cos(α) 0

0 0 1

 , R2 =


1 0 0

0 cos(β ) sin(β )

0 −sin(β ) cos(β )

 , R3 =


cos(γ) sin(γ) 0

−sin(γ) cos(γ) 0

0 0 1

 .

distt = min
t

| P−Exyz |2=

∣∣∣∣∣∣∣∣


Px

Py

Pz

−


Cx

Cy

Cz

−Rxyz


acos(t

′
)

bsin(t
′
)

0


∣∣∣∣∣∣∣∣
2

. (6.2)

For ellipse based modelling of the coronary segment, we approximated the manually

annotated lumen boundaries using best fitting ellipses on respective cross sections of the

coronary segment. Accordingly, the best fitting ellipse for lumen boundary contour on
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respective cross section is obtained using non-linear least square fitting. Let

Bi = [(p1x, p1y, p1z),(p2x, p2y, p2z),(p3x, p3y, p3z), ...,(pmx, pmy, pmz)]
T ,

be the manually annotated boundary points on ith cross section (or can be obtained by slicing

the vessel surface with the help of perpendicular plane at the ith point of the centreline CP).

Accordingly, the best fitting ellipse, for which the sum of the squares of the distances to the

given points is minimum can be found by minimizing Eq. 6.3 as proposed in [6, 167].

m

∑
j=1

∣∣∣∣∣∣∣∣


p jx

p jy

p jz

−


Cx

Cy

Cz

−Rxyz


acost j

bsint j

0


∣∣∣∣∣∣∣∣
2

= min. (6.3)

After obtaining the elliptical model Tmodel

[
CP,θ

′
cs

]
of the coronary segment, we used

two “normal” ellipses adjacent to the lesion region i.e (immediately before and after the

plaque region) to derive the parameters for ideal ellipse (plaque-free vessel) through the

plaque effected region as illustrated in Fig. 6.7. It should be noted that in order to model

the ideal plaque-free vessel at ith point of the centreline, we employed the ellipse orientation

information from the current fitted ellipse i.e. Rxyz(i), whereas the major-minor axis lengths

for ideal ellipse are derived from two “normal” ellipses. This customized modelling for

plaque-free ellipse ensures that the progression and local orientation of the vessel is retained

at ith point in 3D-space; however,the lumen diameter shrinkage associated with non-calcified

plaque is reversed at current point.

Moreover, based on the fact that vessel tends to become narrower towards the distal

segments, we computed the elliptical axes length for plaque effected region using Eq. 6.4.

According to Eq. 6.4, the axes length for ideal vessel in the plaque effected region can be

linearly interpolatedcomputed as a function of distance from start to end of the plaque region.

Hence, the parametric variable f regulating the major-minor semi-axis length is computed

as a ratio of distance from start of the plaque to the total length of the plaque region as
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Fig. 6.7 Estimation of ideal vessel boundary for plaque effected region of coronary segment.
Black contours represent manually annotated lumen boundary in the plaque effected region,
red shows the estimated ideal (plaque-free) vessel boundary based on two normal (upper and
lower) cross sections.

f = di
dtotal

,∀ f ∈ [0,1].

Exyz(i) =
{

a(i) b(i), Cxyz(i), Rxyz(i)
}
, (6.4)

where

ai = (1− f )as + f ae,

bi = (1− f )bs + f be.

Here Es and Ee represent two normal ellipses adjacent to the plaque region. Accordingly,

Es =
{

as bs, Cxyz(s), Rxyz(s)
}

defines the upper normal ellipse i.e. immediately before

the start of the non-calcified plaque and Ee =
{

ae be, Cxyz(e), Rxyz(e)
}

represents the

lower normal ellipse i.e. immediately after the end of the plaque region.

After deriving the ideal ellipses for the plaque effected region, we subtract the manually

annotated lumen region, which results in “reference” ground truth plaque voxels. The process
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Fig. 6.8 The ground truth estimation for plaque-effected cross-sections using lumen boundary
annotations of manual expert. The top and bottom rows show two normal slices at the start
and end of the plaque region, whereas the middle row represents a severely effected plaque
cross section. The first column shows an ideal vessel, the middle column shows the manually
annotated lumen and the right column shows derived plaque. The colorbar represent HU
intensity for respective cross-section.

of obtaining plaque ground truth is further illustrated in Fig. 6.8 where lumen boundary

contours are used effectively in plaque identification process. Fig. 6.8a shows expert

based lumen boundary annotations for right coronary artery of CTA volume 4. It can be

observed that due to the presence of a non-calcified plaque, the lumen shrinks in the proximal

section and overcomes the diameter reduction after passing the plaque lesion. To estimate

the “reference” plaque voxels for this segment, we started with the plaque localization

methodology of Chapter 5 to identify the terminal positions of the lesion section. In the

subsequent step, the ellipse representing two “normal” contours (immediate before and after

the plaque) are used to compute the ideal vessel parameters for effected section. In the final
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step, the annotated lumen is subtracted from the ideal vessel leading to isolated plaque voxels

as illustrated in illustrated in Fig. 6.8b to 6.8j. The top and bottom row represents normal

cross section, i.e. the normal plaque-free lumen is subtracted from the ideal vessel, whereas

the middle row represents the case for a plaque effected lumen cross section. Moreover, the

left column of the figure represents the ideal vessel at respective cross sections of the segment,

the middle column shows the manually annotated lumen and the right column represents

the remaining pixels to be interpreted as non-calcified plaque. It can be observed from the

figure that lumen annotations are closely corroborating the expected vessel behaviour for

two normal contours (top and bottom row), whereas the middle row the representing plaque

effected contours appears significantly altered. Consequently, the right column demonstrates

that a substantial plaque exists between the two normal cross-sections. To further validate

this voxel detection method, we have added the colour bar in respective cross sectional

images. It can be observed that for normal cross section (top, bottom) the colour bar assumes

high intensity values reflecting the presence of contrast medium in the lumen, whereas the

middle row shows significant low intensity reflecting the presence of low-density plaques. It

is important to mention that the the 3D contours in this figure represent manual annotations

of the Rotterdam framework experts; however, we can compute the soft plaque pixels for

a generic vessel boundary by detecting surface intersection points on orthogonal planes

(normal to the vessel centreline).

6.2.3 Inter-Observer Variability Statistics

The performance of our plaque segmentation algorithm is assessed by comparing our lumen-

plaque results against the ground truth described in Section 6.2.2. To avoid biasing towards

a specific human expert’s opinion, the Rotterdam CTA data provides manual annotations

from three independent experts for respective segments of the coronary tree. It should

be noted that three observers are requested to perform lumen annotation using the same

environment (i.e. identical orthogonal planes at a fixed distance along the segment) to ensure

maximal correlation. Based on the fact that three different observers are performing the lumen

annotation, a certain amount of variability is naturally expected. Accordingly, we performed
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an inter-observer agreement analysis in this section to understand the inter-observer variability

range for our plaque segmentation algorithm.

(a) Observer. 1 (b) Observer. 2 (c) Observer. 3
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Fig. 6.9 The mutual agreement of three manual experts for a mild plaqued coronary segment.
(a-c) reflects the lumen contours i.e. manual annotations by three experts in black colour,
with plaque affected region shown in red, blue and green respectively (d) shows an overlap
graph for relative visual comparison, whereas the cross sectional area for three experts is
plotted in (e). A good correlation in the lumen area reflects a good agreement in vessel
boundary annotations.

A detailed investigation of the manual annotation reveals that the mutual agreement

among three observers is strongly dependent upon the segment location (proximal versus

distal) and type of plaque (mild versus severe) present. In general, the proximal segments

close to the aorta have large diameter as well as greater concentration of the contrast medium

filled blood, whereas vessel diameter and contrast medium concentration decreases in the

distal segments as a function of distance. Consequently, the proximal segments appear

brighter, allowing the human observer to place sharp annotations of the lumen boundary,

whereas an ambiguous appearance of the distal segments poses difficulty in true demarcation
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of the lumen. Likewise the extent of the plaque also plays an important role in the visual

demarcations, as a severe plaque demands a very careful annotation of the lumen boundary,

whereas a mild plaque rarely causes a significant compression of the lumen. This segment

based mutual agreement problem is visually illustrated in Fig. 6.9 (segment having a mild

plaque) and 6.10 (segment having a severe plaque).
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Fig. 6.10 The mutual agreement of three manual experts for a severe plaqued coronary
segment. (a-c) reflects the lumen contours i.e. manual annotations by three experts in black
colour, with plaque affected region shown in red, blue and green respectively (d) shows an
overlap graph for relative comparison, whereas the cross sectional area for three experts is
plotted in (e). A high variability in the lumen area reflects a reduced agreement in vessel
boundary annotations.

Fig. 6.9 represents the lumen demarcations for proximal segment (segment 6, CTA

volume1, Rotterdam Data). The top row shows lumen boundary contours in black colour for

three human experts, with colours (red, blue, green) representing the lesion region i.e. section

effected with mild non-calcified plaque. It can be visually noted that three observers follow

similar trend and there are no unexpected or sharp deviations in the lumen boundary through
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out the segment. Moreover, the mild nature of the non-calcified plaque does not affect the

mutual agreement in the lesion region and the exert based contours (red, blue and green)

shows a reasonable correlation. This correlation of three observers is further investigated by

overlaying three observations (see Fig. 6.9d) and cross-sectional area analysis (see Fig. 6.9e).

It can be observed from Fig. 6.9e that the cross sectional lumen area remains static and close

to each other for three observers through out the length of segment.

Likewise Fig. 6.10 represents the luminal demarcations for a distal segment (segment 3,

CTA volume7, Rotterdam Dataset). Accordingly, the top row shows a significant variability

in the lumen demarcations of three observers for a severely plaqued segment. Observer 1,

annotates the affected lumen to a very narrow passage due to the potential plaque, whereas

observer 2 and observer 3 have shown a reasonable lumen through the plaques effected

section. This dis-agreement also becomes apparent in the cross-section based area plot (see

Fig. 6.10e) in which observer 1 based lumen area touches almost zero-line for the plaque

effected sections.

For a statistical comparison, we computed the Jaccard overlap percentage and area-wise

mutual agreement of three manual observers as presented in Table 6.2. It can be noted

from the table that proximal segment affected with mild non-calcified plaque, achieves

higher mutual agreement in terms of both Jaccard overlap and the area-based correlation.

In contrast, the distal segment affected with severe non-calcified plaque shows decreased

Jaccard overlap as well as reduced area-correlation among independent observers. This

inter-observer variability allows a certain degree of freedom for our plaque segmentation

algorithm. This is based on the fact that, in principle, it is expected that the algorithm

segmentation accuracy should fall within the range of three manual experts.

Table 6.2 Jaccard overlap and area based agreement for two segments

Expert pair
Overlap based agreement % Area based agreement%

Mild Severe Mild Severe

Obs (1 vs 2) 70.29 40.41 91.41 62.05
Obs (1 vs 3) 76.74 43.92 90.04 31.42
Obs (2 vs 3) 84.92 53.29 92.94 51.77
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6.3 Vessel Wall Analysis for Healthy Vessels

The non-calcified plaque segmentation algorithm is based on the assumption that the input

data (vessel) comprises of two components (i.e. blood lumen and the non-calcified plaque);

however, the initial segmented tree violates this basic assumption. This is due to the fact

that the vessel segmentation algorithm based on the hybrid energy model includes the vessel

wall, i.e. the interface of the lumen with the background in the CTA. Hence, the vessel wall

must be identified and removed in a pre-processing step before applying the non-calcified

plaque segmentation algorithm. Accordingly, we started with the segmented coronary tree

and computed the vessel wall thickness for normal segments using ray-projection technique

in the respective CTA. In the subsequent step, the vessel wall (outer interface of the lumen

with the CTA background) is removed from the segmented tree to investigate lumen and

non-calcified plaques.

The wall thickness computation process starts with the cylindrical model of Section 5.2,

in which the a coronary segment is approximated using 6 millimeters based cylindrical model

(see Fig. 5.2 for cylindrical approximation of segment 2, 7 and 8). Based on the fact that 6-mm

represents the maximum possible expansion (diameter) of coronary vessel, the background

data is often included in the circular approximation. This phenomena is illustrated in the

first column of Fig. 6.11 where the 6mm circle shows a dark black appearance around the

circumference. This is followed by a homogeneous intensity distribution in a circular pattern

around the centre of the circle, and then the lumen intensity remains stable and significantly

higher in the middle passage. Accordingly, we used a three class Gaussian Mixture Model

(GMM), followed with the Bayesian posterior’s computation to classify the tubular segment

voxels into three classes as illustrated in Fig. 6.11. It can be observed from the second

column of the figure that background is generally well identified by “class-1” as first peak of

the histogram corresponds to the low intensity regions that appears dark-black in the 6 mm

circle of first column. Likewise, “class-2” defining vessel wall is represented in the middle

column where a ring pattern circumscribing the lumen can be clearly visualized. Class-3

representing lumen is visually shown in column 4 of the figure where a stable pattern can be

observed for normal cross sections along the length of the segment.
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Fig. 6.11 Vessel wall analysis based on 3-class approximation of 6mm cylindrical model of
DS4 seg1. The first column shows a 6mm region on the cross-sectional plane, the second
column represents the background of vessel that comes inside 6mm, the next two columns
shows the vessel wall and lumen respectively. These cross sections represent the normal
section of the segment.

Interestingly, in case of an abnormal (plaque effected cross-section), the 3-class approx-

imation reflects the abnormality in terms of deviation from the normal patterns of vessel

wall and lumen. The non-calcified plaque in general assumes intensity value comparatively

lower than the blood lumen and close to the myocardial tissues. Hence, our 3-class approx-

imation assigns the existing non-calcified plaque voxels to “class-2” i.e. the vessel wall.

Consequently, the vessel wall shows an unexpected increase in thickness for non-calcified

plaque-effected sections with a significant reduction in lumen as illustrated in Fig. 6.12.

After identifying the vessel wall, we employed a ray-projection technique to compute the

vessel wall thickness for the arterial cross section as illustrated in Fig. 6.13a - 6.13c. It should

be noted that GMM based vessel wall leads to circular pattern of voxels around the lumen;

however, the thickness varies around the circumference. Accordingly, the ray-projection

method leads to a mean thickness value for the vessel wall. Based on the centre of the
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Fig. 6.12 Vessel wall analysis based on 3-class approximation of 6mm cylindrical model of
DS4 seg1. The first column shows a 6mm region on the cross-sectional plane, the second
column represents the background of vessel that comes inside 6mm, the next two columns
show the vessel wall and lumen respectively. These cross sections represent the plaque
affected section of the segment.

lumen, we projected 36 rays outward with an angular interval of 10 degrees and compute

the ray-wise thickness of the vessel wall, which is averaged to define the wall thickness for

respective cross section. The visual observation of Fig. 6.12 is statistically validated in Fig.

6.13c, i.e. the abnormal vessel wall leads to significantly high value for wall thickness. This

phenomena is further illustrated using wall thickness plots for two plaque effected segments

as shown in Fig. 6.13d and 6.14d. It can be observed that the lumen (black) remains stable

as we move away from the orifice, with a stable wall thickness (red) along the length of

the segment. However, the plaque effected region shows an unexpected reduction in lumen

coupled with an unexpected increase in the wall thickness.

6.4 Features for Pixel-Based Segmentation

As the mean value for vessel wall thickness has been computed for the respective CTA

volumes, the first step is to eliminate the vessel wall of the segmented coronary tree. This

wall removal has been achieved by subtracting the wall voxels (average thickness equal to

0.65mm). After removing the vessel wall from the segmented tree, it is expected that the
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(d) Lumen area versus wall thickness plot

Fig. 6.13 Computation of the Vessel Wall thickness for coronary segment DS4 seg1. (a-c)
shows the ray-projection to compute the mean thickness of the vessel wall, (d) represents
the graphical comparison between lumen area and the normalized vessel wall thickness to
reflect the anomalous lesion area. Cross sectional representing normal segment (a and c)
leads to stable vessel wall, whereas abnormal cross section leads to expansion of the vessel
wall based on low density soft plaques.

leftover is true lumen and non-calcified plaque (if any). Accordingly, we extract hand crafted

discriminative features capable of differentiating voxels as lumen or non-calcified plaque.

For voxel-wise discriminative features, we employed the spatial neighbourhood information,

optimized 2-class GMM based posteriors, signed distance function, distance from the arterial

orifice, pixel distance from the centreline and image histogram based customized fuzzy label

as explained in this section.

6.4.1 Two-Class Posterior Probability

It is notable that the non-calcified plaques present inside coronary vasculature do not follow

any particular shape or structure; hence, the use of shape-prior information is not very

effective for NCP segmentation. Consequently, the extensively investigated feature in
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(d) Lumen area versus wall thickness plot

Fig. 6.14 Computation of the vessel wall thickness for coronary segment DS15 seg2. (a-c)
shows the ray-projection to compute the mean thickness of the vessel wall, (d) represents the
graphical comparison between lumen area and the normalized vessel wall thickness to reflect
the anomalous lesion area. Cross sectional thickness representing normal segment (a and c)
leads to a stable vessel wall thickness, whereas an abnormal cross section leads to expansion
of the vessel wall based on low density soft plaques.

context of non-calcified plaque segmentation is the intensity distribution in the vessel, as the

plaque region undergoes an unexpected drop relative to the normal blood HU distribution. To

exploit the intensity fluctuation associated with the non-calcified plaques, we applied a two-

class Gaussian Mixture Model (GMM) on the plaque effected section of the segmented vessel

as illustrated in Fig. 6.15. Fig. 6.15a shows a plaque effected section of the coronary vessel,

such that black contours define narrowed lumen, overlaid with the ideal vessel contours (red)

for the lesion section. It can be observed from the figure that the lumen shrinks significantly

leading to a certain amount of the non-calcified plaque in this region of vessel. In the

subsequent step, we computed the intensity histogram for the plaque effected section with an

expectation of two peaks representing plaque and lumen respectively as shown in Fig. 6.15b.

Next, the bimodal intensity histogram of plaque effected section is approximated using a

two-class Gaussian Mixture Model (GMM), followed with the application of the Expectation
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Fig. 6.15 Two-class approximation for the plaque effected section of the coronary segment
DS4 seg1. (a-b) shows the plaque effected boundary and respective bimodal intensity
histogram, (c) represents two class Gaussian Mixture Model and respective HU intensity
peaks. In (a), black contours define the narrowed lumen and red contours define the ideal
vessel for the lesion section.

Maximization (EM) algorithm for optimal representation of two classes. Fig. 6.15c shows

the GMM approximation, with the first class defining low density non-calcified plaque and

second class representing the blood lumen.

(a) Ideal vessel (b) GMM based Lumen (c) GMM based Plaque

(d) Ideal vessel (e) GMM based lumen (f) GMM based plaque

Fig. 6.16 Estimation for lumen and plaque using two-class GMM for DS4 seg1. The top
row represents a normal cross-section, i.e. at the immediate start of the non-calcified plaque
region, and the second row represents the cross-section in the mid of plaque region. The left
column shows a 2D intensity based cross-section of the coronary vessel, whereas the middle
and the right columns respectively show the two-class GMM based lumen and non-calcified
plaque.
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After obtaining the EM based optimal distribution parameters, we used a Bayesian

modelling approach to compute the posterior probabilities for the two classes respectively

as represented in Fig. 6.16. The left column represents the cross sectional view for an ideal

vessel (plaque free vessel), the middle and right columns represents two-class GMM based

lumen and the plaque voxels respectively. It can be observed that top row (start of the plaque)

shows the two-class lumen close to the ideal vessel with a minimal plaque, however the

second row reflecting the middle of the plaque region shows significantly reduced lumen

along with an expanded plaque. Moreover, the relative position of the lumen and plaque

validates the clinical fact that non-calcified plaque generally sticks with the vessel walls

leading to Napkin Ring signs [168].

(a) Ideal vessel (b) GMM based Lumen (c) GMM based Plaque

(d) Ideal vessel (e) GMM based lumen (f) GMM based plaque

Fig. 6.17 Estimation for lumen and plaque using two-class GMM for DS9 seg2. The top
row represents a normal cross-section, i.e. at the immediate start of the non-calcified plaque
region, and the second row represents the cross-section in the mid of plaque region. The left
column shows a 2D intensity based cross-section of the coronary vessel, whereas the middle
and the right columns respectively show the two-class GMM based lumen and non-calcified
plaque.

In contrast, the two-class GMM model for the plaque affected segment of DS9 shows

poor performance as illustrated in Fig. 6.17. The first column shows the ideal vessel for

two cross-section, the second column represents GMM-based lumen and the third column

shows non-calcified plaque respectively. For the top row i.e. the normal cross-section, it is
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expected that the lumen should fill the expected vessel boundary with minimal plaque on

the outer circumference; however Fig. 6.17b - 6.17c shows that lumen voxels are pushed

towards vessel boundary with plaque residing in the centre of cross section. Likewise, the

abnormal cross-section of second shown in second row demonstrates a similar response

of the two-class GMM. This ambiguous response of two-class GMM for certain plaque

affected segments emphasises the need of additional investigation for quantification of the

total non-calcified plaque. Subsequently, we derive additional features including spatial

neighbourhood response, customized fuzzy label and a number of distance measures as

defined here.

6.4.2 Signed Distance Function

In addition to the two-class GMM based posteriors, we derived an additional feature “Com-

pound Distance” based on the ground truth lumen and the ideal vessel boundary. As illustrated

in Fig. 6.7, the ideal vessel boundary can be overlaid on the lumen annotations of the human

experts, which leads to the plaque estimation in the affected region. This visual demonstra-

tion can be represented mathematically using a signed distance function, i.e. use of lumen

boundary based distance metric to differentiate the lumen and plaque inside the vessel. In

principle, when there is no plaque, the annotated lumen overrides the ideal vessel boundary

with a consistent (+ve) distance sign. In contrast, the presence of the plaque leads to a

narrower lumen boundary inside vessel leading to bi-directional distances, i.e. positive for

the inward lumen voxels and negative for the outer plaque region voxels.

In a mathematical context, the signed distance function (or oriented distance function) of

a set Ωs determines the distance of an arbitrary point x from the boundary of Ωs as expressed

by Eq. 6.5. The ± sign in Eq. 6.5 indicates the relative position of the arbitrary point i.e.

whether x is inside or outside the Ωs. The function assumes positive value for the points

inside Ωs and decreases in value as x approaches the boundary, where the signed distance

function becomes zero. Likewise, the function of Eq. 6.5 assumes increasing magnitude as

the point moves away from the boundary; however, the distance sign becomes negative to
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reflect the outward positioning of the points.

Sd f (x) =

+d(x,∂Ωs) i f x ∈ Ωs,

−d(x,∂Ωs) i f x ∈ Ωc
s,

(6.5)

where ∂Ωs denotes the boundary of Ωs. Accordingly, we constructed a signed distance

function (SDF) such that the distance on the lumen boundary is zero, the distance from

boundary to inward lumen in positive and distance from the lumen boundary to ideal vessel

boundary is assigned a negative sign along with the Euclidean distance as the magnitude.

This signed distance based interpretation of the voxels can certainly help the SVM classifier

in improving the accuracy, since the classifier learns the voxel’s characteristics in the training

stage. The advantage of employing the signed distance function is illustrated in Fig. 6.18

where normal and plaque-effected cross sections are visualized.

Fig. 6.18 shows two normal cross-sections (i.e. immediately before and after the plaque

region) in the first row (a, b), whereas an abnormal cross section from the mid of the

plaqued region is presented in the second row (c). Moreover, the blue contour represents the

“reference” ground truth lumen and the magenta contour denotes the ideal vessel boundary

for the respective cross section. It can be observed from Fig. 6.18a-6.18b that, for normal

cross-sections of the vessel, the “reference” ground truth lumen overlaps the ideal vessel

boundary, and the distance map shows positive distances towards the inner lumen. However,

for an abnormal cross section of the vessel, the “reference” ground truth lumen (blue) appears

significantly compressed with respect to the ideal vessel boundary (magenta) as illustrated in

Fig. 6.18c. Accordingly, the shrinkage of the lumen leads to the outward distance (negative

distance) with respect to the lumen boundary. Moreover, to justify the effectiveness of the

signed distance function, we have presented the applicable colour maps for respective signed

distance distance functions. It can be observed from the respective colour bars that normal

cross-sections employ positive values (i.e. lumen only), whereas abnormal cross-section

employs both positive and negative values, reflecting the presence of non-calcified plaques.
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(a) Normal cross-section immediately before
plaque
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(b) Normal cross-section immediately after plaque
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Fig. 6.18 Use of signed distance function (SDF) to discriminate the lumen and the plaque. (a,
b) represents two normal cross-section i.e. at the start and end of the plaque region, whereas
(c) represents a cross-section from the mid of the non-calcified plaque region. For a normal
cross-section (a, b), the lumen (blue) overrides the ideal vessel boundary (magenta) with
all (+ ve) distances, whereas for an abnormal cross-section (c), the lumen (blue) becomes
significantly narrower than the vessel boundary (magenta) leading to (-ve) distances.

6.4.3 Spatial Neighbourhood Information

Along with the intensity based investigation, spatial neighbourhood information (connec-

tivity) is generally employed in object detection algorithms. The neighbourhood of a pixel

can be used effectively for operations such as morphology, edge detection, median filter,

etc. Many computer vision algorithms allow the user to employ an arbitrary (3 by 3, or

5 by 5 square, circular or disk) neighbourhood for optimized performance; however, the

neighbourhood selection is generally application dependent, i.e. neighbourhood weights
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employed for sharpening an image may not work at all for smoothing and vice versa. Neigh-

bourhood processing algorithms typically create a new image by computing new pixel value

as a function of not only the corresponding old pixel value, but also its neighbouring old

pixel values. This phenomena allows the user to overcome unexpected spikes by normalizing

the output with respect to the regional response of the input image.

In image processing and image recognition, pixel connectivity is the way in which pixels

in two-dimensional (or voxels in three-dimensional) images relate to their neighbours and

the neighbourhood around a pixel/voxel is termed as "window" or "mask". The non-zero

entries in a "convolution kernel" form one kind of neighbourhood; however, the non-zero

values are chosen according to the nature of the task. For a simple two-dimensional image,

a middle pixel can have a maximum of eight neighbouring pixels, which increases to 26

neighbours in 3-dimensional space since a 3D voxel is surrounded by the two additional

planes. This spatial neighbourhood structuring is illustrated in Fig. 6.19, where a central

voxel (red) is surrounded by its 26 neighbouring voxels. The purple voxels connected with

green lines represent the eight neighbours on the same plane, whereas grey voxels connected

by magenta lines denotes two additional planes.

The spatial neighbourhood based information can play an important role in differentiating

plaque voxels from the lumen i.e. the SVM classifier can employ the neighbourhood

behaviour of a particular voxel to label as one of two possible classes. As an example, we

consider a particular voxel in 3D space along with its 26 neighbouring voxels. If the majority

of the neighbours are labelled as “lumen”, there is a high probability of being lumen for the

current voxel. Likewise, if the majority of the neighbours belong to “plaque” class, more

likely it is that the current voxel also represents “plaque”. Hence, the neighbourhood based

information can effectively help to improve the performance of the SVM classifier.

6.4.4 Fuzzy Labelling

As the intensity composition is the major indicator of the non-calcified plaques in coronary

vasculature, we derived an additional "fuzzy label" feature based on the image intensity

to differentiate the two classes. This intensity based feature is derived using bimodal
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Fig. 6.19 Neighbourhood processing for a reference voxel. The reference voxel (red) along
with local neighbours in 3D space, blue cubes represents 8-neighbours and grey cubes
represent remaining neighbours to form a total of 26 neighbours in 3D space.

histogram of the plaque effected region as shown in Fig. 6.20, which reflects the expectation

maximization based distribution parameters for two classes. We employed the two peaks of

the histogram to derive a customized fuzzy label as a function of distance from the bimodal

peaks. For mathematical computation of the fuzzy label, we let µp and µl represent the peak

HU value for plaque and lumen classes respectively such that µl > µp . Accordingly, the

fuzzy label at current location (i, j,k) is computed as expressed by Eq. 6.6.

Flabel(i, j,k) =


0 if I(i, j,k) =≤ µp,

1 if I(i, j,k) =≥ µl,

Ii, j,k−µp
µl−µp

otherwise,

(6.6)
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Fig. 6.20 Class-wise HU intensity peaks for lumen and plaque based on 2-class approximation
of plaque affected region of the coronary segment DS4 seg1.

where, the current voxel intensity I(i, j,k) is derived using [3x3x3] square neighbourhood

window of Eq. 6.7 to suppress possible noise and unexpected spikes.

Ii, j,k =
1

27

{
1

∑
mx=−1

1

∑
my=−1

1

∑
mz=−1

I(i+mx, j+my,k+mz)

}
. (6.7)

According to Eq. 6.6, when the current voxel intensity is less than or equal to first peak of the

histogram, a constant value of zero is assigned. Similarly, for the values greater than or equal

to the second peak of histogram, a fixed label of one is assigned. However, voxels assuming

the intermediate values are labelled as a function of the difference between two peaks. A

voxel value close to the first peak is more likely to be a part of the plaque, whereas a voxel

falling close to the second peak is comparatively a stronger candidate of the lumen class.

The effectiveness of the fuzzy label is graphically illustrated in Fig. 6.21 where three

cross sectional slices are presented. The first row represents orthogonal cross sections at three

different locations of the segment, overlaid with the ideal vessel boundary, whereas the second

row shows corresponding fuzzy labels based on Eq. 6.6. The greyscale images are processed
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Fig. 6.21 Voxel-wise fuzzy labelling bimodal histogram of the plaque affected section of
the coronary segment DS4 seg1. The fuzzy value close to zero represents the likelihood of
plaque, whereas value close to one represents the lumen.

in a first step to ensure that the background (anything outside the ideal vessel boundary

magenta color) is suppressed. Apparently, the three greyscale images appear normal due to

similar visual appearance; however, the first and third columns represent normal plaque-free

cross-sections and the middle column shows a cross-section from a plaque affected region.

The intensity based non-calcified plaque of the middle column can be easily identified using

the fuzzy label function of the second row. For a meaningful interpretation of the fuzzy

label display, the colour bar has been appended along with the images. It can be observed

that the fuzzy label for normal cross sections (left and right column) assumes higher values

throughout the vessel boundary, indicating that all the intensity values are centred around

the second peak of the histogram and there is no plaque present. In contrast, the fuzzy label

display of the middle column shows that majority of the voxels in the ideal vessel boundary



172 Segmentation and Quantification of Non-Calcified Plaques

assumes low values (inclined towards zero), except few central voxels. Consequently, low

fuzzy values reflect the presence of low intensity values centred around the first peak of the

histogram i.e. non-calcified plaque with a significantly reduced lumen.

6.4.5 Distance Functions

After deriving intensity based features for effective differentiation of plaque from the lumen

voxels, we employed some prior knowledge in the context of the clinical interpretation of the

non-calcified plaques. In general, the concentration of the contrast medium decreases in the

distal segments of the coronary tree i.e. the lumen voxel intensity decreases as the blood flows

away from the orifice. Accordingly, the low intensity voxels of the distal segments should

not be confused as plaque by the SVM classifier. Therefore, an additional input in the feature

space is the distance of the current plane from the ostium of the segment. Subsequently,

the plane voxels are replicated with the distance metric before using voxel-wise classifier.

Likewise, based on clinical knowledge, we expect NCPs to be inclined towards the walls of

the vessel. In context of the voxel-wise segmentation, we employed an additional feature

i.e. the distance of the voxel from the centreline of the vessel as expressed by Eq. 6.8.

Accordingly, the central voxels are assigned low distance values and outer voxels assume

higher distance measures. It should be noted that the derived features do not operate or yield

productive results in stand-alone, but an appropriate combination of different features allows

the SVM classifier to learn the lumen and plaque patterns accordingly.

D3d(i, j,k) =
√

(Cx − i)2 +(Cy − j)2 +(Cz − k)2. (6.8)

6.5 Voxel-wise Classification

The use of a SVM for voxel-wise classification is explained in this section. It should be noted

that the voxel-wise classification of non-calcified plaque is a challenging task as it becomes

complex to derive discriminative features due to limited information. Consequently, features

employed in this work are driven in a first (preprocessing) step to represent the specific
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voxel in the context of its neighbourhood for optimal differentiation of plaque effected

voxels from the normal ones. In total, we have computed eight features to be used in the

SVM classifier including voxel intensity, fuzzy label, two-class posterior probability, spatial

neighbourhood based voxel function and a variety of distance functions (distance from vessel

ostium, distance from the ground truth lumen and distance from the centreline). In the

subsequent step, we concatenate individual discriminative features to derive a N-by-dims

feature space for the SVM classifier as expressed by Eq. 6.9, where X
′
n defines the feature

vector for an individual voxel and Y
′
n defines the associated binary label. Here, N is the

number of SVM samples (voxels) and dims represent the feature vector dimension for the

SVM classifier. Accordingly, the total samples N is set equal to the number of voxels in

respective segment and the dimension of the feature space dims is set equal to number of

hand crafted features i.e. eight.

D
′
=
{(

X
′
n,Y

′
n

)
|X

′
n ⊆ Rdims,Y

′
n ⊆ {0,1}

}N

n=1
, (6.9)

where X
′
n represents the features described above. The SVM model finds an optimal hy-

perplane by minimizing the norm of weights for ideal segregation of input data into two

classes as expressed by Eq. 5.10. The penalty cost P regulating the influence of individual

support vectors is defined equal to P = 100. It is important that a high value of P leads

to hard margin with strict classification criteria, whereas very small value allows frequent

violations of the constraints. Moreover, we used a non-linear radial basis Gaussian kernel for

mapping data into a higher dimensional space with sigma defined equal to one. Table 6.4

shows the detailed specification for SVM plaque segmentation model including features and

the respective tuning parameters.

For training of the SVM classifier, we employed the voxels of the non-calcified plaque

affected segments of Table 6.3, using respective feature vectors and the corresponding

binary labels. As the vessel wall already has been removed for the segmented coronary

tree, therefore the binary labels represent two possible states of the voxel (zero=lumen,

one=non-calcified plaque). After training the SVM model on the plaque affected segments
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Table 6.3 Non-calcified plaque effected segments in the Rotterdam CTA data

Segment ID
Plaque Specifications

Segment Type Plaque Grading Voxels

DS1 seg6 Proximal mild 201*201*31
DS2 seg6 Proximal mild 201*201*45
DS4 seg1 Proximal Severe 201*201*68
DS4 seg2 Proximal Moderate 201*201*64
DS5 seg2 Proximal Moderate 201*201*61
DS5 seg8 Distal Moderate 201*201*85
DS7 seg2 Proximal Severe 201*201*50
DS7 seg3 Proximal Moderate 201*201*90
DS9 seg2 Proximal Moderate 201*201*36
DS11 seg7 Proximal Mild 201*201*55
DS15 seg2 Proximal Moderate 201*201*65
DS15 seg3 Proximal Mild 201*201*90
DS15 seg14 Distal Moderate 201*201*80

of particular CTA volumes, we evaluated the SVM performance on a per-segment basis as

detailed in Results section. It is important to mention that the SVM model trained using

the laque affected segment of a particular CTA volume, performs well for the remaining

segments of the particular volume; however, it under-performs for coronary segments coming

from other CTA volumes. This leads to the conclusion that SVM training is required using

at least one coronary segment of a particular CTA volume before investigating remaining

segments unless a generalized SVM model is designed.

6.6 Results

The performance of the SVM classifier is evaluated using classification metrics including true

positive (TP), true negative (TN), false positive (FP), false negative (FN) respectively. True

positive refers to a lumen voxel identified as normal (lumen) by the SVM classifier, whereas

false negative status refers to a lumen voxel identified as abnormal (plaque) by the classifier

model. Likewise, true negative refers to a plaque voxel identified as abnormal (plaque) by the

SVM classifier, whereas false positive refers to a plaque voxel identified as normal (lumen)
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Table 6.4 SVM model for voxel-wise plaque segmentation.

Specifications for feature space

Parameter name Parameter type dimension/value

2-class posterior probability Discriminative feature 2
Signed distance function Discriminative feature 1
Spatial neighbourhood Discriminative feature 1
Fuzzy label Discriminative feature 1
Distance functions Discriminative feature 3
SVM Kernel Tuning parameter RBF
Gaussian deviation [σ ] Tuning parameter 1
Penalty cost Tuning parameter 100

Feature vector dimensions N/A [1x8]

by the classifier model. For a meaningful interpretation of the classification statistics, we

employed the computed metrics (TP, FP, FN and TN) to derive sensitivity, specificity and the

accuracy metrics as expressed by Eq. 6.10

Sensitivity =
T P

(T P+FN)
, Speci f icity =

T N
(T N +FP)

,

Accuracy =
T P+T N

(T P+T N +FP+FN)
. (6.10)

6.6.1 Classification Statistics for Volume-Specific SVM Model

Before computing the mean accuracy of the SVM classifier with respect to the manual

annotations of non-calcified plaques, we performed a 10-fold cross validation of the SVM

model for respective plaque effected segments. Accordingly, the total number of samples

(voxels) in plaque effected segments are divided into ten groups using random indexing

method in Matlab. In the subsequent step, nine groups are used to train the SVM model

and remaining one group is used as the test data. Subsequently, results are validated against

ground truth labels as presented in Table. 6.5. This evaluation was extended by employing

additional samples (voxels) from other segments of the same coronary tree. It has been

observed that the increase in sample space leads to similar validation results with mean

values of 92.40%, 83.70% and 91.16% for sensitivity, specificity and accuracy respectively;
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however, the training and validation time significantly increases with each additional segment

(on average, one segment leads to an addition of 201 by 201 by 50 voxels). Moreover, the

consistent performance across different sample sizes is based on the fact that additional voxels

come from same coronary tree, i.e. the SVM model is well aware of intensity characteristics

of two classes due to training on plaque effected segments of specific CTA volume.

Table 6.5 10-Fold cross validation performance of SVM classifier.

Segment
Classification Statistics

Sensitivity% Specificity% Accuracy%

DS1 seg6 94.11 88.23 93.30
DS2 seg6 93.50 87.59 92.61
DS4 seg1 92.04 87.30 91.45
DS4 seg2 91.95 83.33 90.72
DS5 seg2 93.56 82.19 91.92
DS5 seg8 90.49 86.41 89.86
DS7 seg2 93.72 86.95 92.78
DS7 seg3 91.95 78.94 90.01
DS9 seg2 90.66 82.35 89.13
DS11 seg7 90.90 81.08 89.49
DS15 seg2 93.89 80.64 92.21
DS15 seg3 92.06 86.95 91.37
DS15 seg14 92.30 76.08 90.29

Mean 92.40 83.70 91.16

After performing the 10-fold cross-validation for the voxel-wise SVM classifier, we

obtained the qualitative and quantitative results with respect to the human observers. The

quantitative performance of the SVM based plaque segmentation algorithm is presented in

Table 6.6, which shows mean performance against three manual experts. It can be observed

from the table that, for the majority of the plaque affected segments, the SVM classifier

delivers very good performance in terms of sensitivity, specificity and the overall accuracy.

However, at certain occasions the performance drops in terms of the specificity, i.e. the

plaque voxels are misclassified for certain instance. This misclassification can be related

to the mild and unstable nature of the non-calcified plaque, i.e. the intensity drop is not

significant enough to force the classifier to label the voxel correctly as plaque.
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6.6.2 Classification Statistics for Generalized SVM Model

The classification results presented in Section 6.6.1 shows impressive performance for the

voxel-wise SVM model; however; the model requires training on at least one plaque affected

segment of the coronary tree to produce optimal classification results on the remaining

segments of the respective tree. This limitation is associated with the fact that the different

CTA volumes exhibit different behaviour in terms of contrast medium based blood intensity

as illustrated in Table. 4.4. Since hand-crafted features used in the SVM classification

process employ either direct intensity information or intensity distribution based explicit

features, the inter-patient intensity variability becomes problematic in clinical practice. For

instance, SVM model trained on a CTA volume having high concentration of the contrast

medium, may classify the normal voxels of another volume as plaque-effected due to lower

intensity; even if the second volume has overall low intensity due to the less dose of contrast

medium or patient heart-beat.

To minimize the impact of the inter-patient intensity variability, we used the idea of

generic SVM model (i.e. applicable across the CTA dataset). Accordingly, we performed

normalization of the CTA data in a pre-processing step to represent all volumes in a fixed

HU range [0-255]. Based on the normalized range, the intensity values lower than zero are

mapped towards zero, whereas intensities greater than 255 are shifted toward the higher end

of the normalized intensity range. Moreover, the intermediate values are adjusted to retain

the true response of the image as illustrated in Fig.6.22.

The figure presents the effectiveness of the intensity normalization process for two CTA

volumes i.e. the first row presents a case for CTA volume 01 and the second row justifies

the normalization process for CTA volume 04. A side by side comparison of the CTA axial

images reveal that despite of the intensity transformation, the axial image conveys complete

information i.e. without any major artefacts in visual appearance (see Fig. 6.22a & 6.22c for

CTA volume 01 and Fig. 6.22e & 6.22g for CTA volume 04).

Statistically, the overall behaviour of an image is presented using the intensity histogram.

Before illustrating the effectiveness of the intensity normalization in context of the SVM

classifier, we first compare the histogram of two original CTA volumes. It can be observed
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Fig. 6.22 Intensity range normalization in CTA. The top and bottom row show CTA volume
01 and 04 respectively. It can be observed that the intensity normalization shifts the overall
distribution into a fixed range of [0, 255]. However, the image information is retained
adequately as shown by visual images for actual and normalized volumes.

from the two histograms that there exists a significant variability in the intensity distribution

for two CTA volumes, i.e. multi-modal histogram of volume 01 shows lumen peak intensity

centred around 900 HU (Fig. 6.22b), whereas histogram of volume 04 defines the lumen

peak intensity centred around 450 HU (Fig. 6.22f). From a clinical point of view, two

intensity peaks define the normal lumen distribution in respective CTA volumes, however the

SVM model trained for CTA volume 01 may interpret low intensity of CTA volume 04 as

non-calcified plaques. Consequently, we transformed respective intensities in a normalized

range of [0, 255] to minimize the impact of absolute voxel value in the SVM classification.

It can be observed from the transformed histograms that the distribution of the intensity

has been mapped into normalized range for two CTA volumes (see Fig. 6.22d and 6.22d).

Subsequently, plaque affected segments from different normalized volumes were used in

retraining of the volume-specific SVM model to obtain a generic SVM model for greater

reproducibility i.e. for application across the CTA dataset. From a theoretical point of view,

the generic classifier should perform well for all CTA volumes in the dataset; however,
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the practical performance is marginally decreased due to the loss of information during

normalization process.

Table 6.6 Volume-specific SVM model.

Segment Classifier performance statistics

Sensitivity% Specificity% Accuracy%

DS1 seg6 99.62 97.75 99.60
DS2 seg6 99.96 83.37 99.01
DS4 seg1 99.98 93.73 99.18
DS4 seg2 99.86 78.48 97.76
DS5 seg2 98.25 97.22 98.11
DS5 seg8 99.41 72.97 97.60
DS7 seg2 99.93 97.88 99.81
DS7 seg3 99.96 75.93 99.71
DS9 seg2 94.61 90.89 93.02
DS11 seg7 99.99 71.28 99.53
DS15 seg2 99.95 87.53 98.83
DS15 seg3 99.99 51.65 99.06
DS15 seg14 X YY ZZ

Mean 99.34 83.45 98.45

Table 6.7 Generic SVM model.

Segment Classifier performance statistics

Sensitivity% Specificity% Accuracy%

DS1 seg6 88.74 80.66 88.54
DS2 seg6 90.26 80.31 89.20
DS4 seg1 88.07 83.74 87.42
DS4 seg2 89.17 85.06 88.66
DS5 seg2 88.99 81.58 87.79
DS5 seg8 87.97 81.43 86.96
DS7 seg2 89.43 80.06 87.81
DS7 seg3 83.44 76.03 82.04
DS9 seg2 88.29 92.64 90.29
DS11 seg7 90.26 71.89 87.52
DS15 seg2 89.41 82.31 88.79
DS15 seg3 89.09 83.35 88.73
DS15 seg14 X YY ZZ

Mean 88.59 81.59 87.86

The performance of the generic SVM classifier based on normalized intensity is presented

in this section. For this experiment, the train and test data for the SVM classifier comes

from multiple plaque-effected segments of different CTA volumes. It is important to mention

that due to a fixed intensity range, the normal lumen in all CTA volumes is defined using

high intensity (inclined towards 255), whereas the non-calcified plaque in all volumes are

represented using intermediate value on a scale of [0, 255]. After selecting appropriate

number of sample voxels (collection of plaque and normal voxels from different segments of

different CTA volumes), we performed 10-fold cross-validation test. According to the results,

the performance is lower than the response of the volume-specific SVM classifier with a

mean sensitivity, specificity and accuracy equal to 88.54%, 79.62% and 86.25% respectively.

In the subsequent step, we evaluated the performance of the generic SVM classifier

with respect to manual observers for plaque affected segments as presented in Table 6.7.

In this experiment, the generic SVM model was used to segregate lumen-plaque voxels in

plaque affected segments. It can be observed from Table 6.7 that the overall performance

of the classifier (sensitivity, specificity and accuracy) has dropped in comparison to the

response of the volume-specific SVM model of Table 6.6. This is based on the fact that

SVM model for Table 6.6 was trained/tested specifically for respective CTA volumes, hence
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testing achieves higher accuracy for the plaque affected segments of respective volumes and

an under-performance for other CTA volumes. In contrast, the SVM model for Table 6.7 has

been trained on normalized data coming from multiple CTA volumes, hence testing achieves

a reasonable accuracy for the plaque effected segments of different CTA volumes.

6.6.3 Lumen/Plaque Area Metrics

In this section, we present the performance of plaque segmentation algorithm with respect to

three independent experts of the Rotterdam framework. For every plaque-affected instance of

Table 6.1 we present here both qualitative and quantitative results using lumen and segmented

plaque area metrics. This plaque area computation is based on the fact that the total plaque

burden can be a more important indicator than the stenosis degree in coronary arteries as

proposed in [169]. Accordingly, we start with the visual demonstration (Fig. 6.23a - 6.23c)

of “reference” ground truth lumen contours to justify the nature (extent) of the plaque present

in the respective segments as it has been validated earlier that, for mild nature plaques, three

independent observers show a good agreement for lumen boundary, whereas severely affected

plaque leads to reduced agreement for the lumen boundary.

The lumen contour plot is followed with the cross-section based lumen and plaque area

analysis as shown in Fig. 6.23d - 6.23e. For a comparative purpose, we overlay the output

of our plaque segmentation algorithm (the lumen and plaque area obtained using the SVM

classifier) with respect to three human experts. It can be observed that both lumen and

segmented plaque area remains stable within the range of three human expert agreement,

which makes our algorithm a fair choice for plaque segmentation. In addition to the visual

comparison of the lumen-plaque area, we performed a statistical (quantitative) comparison

using Bland-Altman plot as illustrated in Fig. 6.24. In this section, we compared the

obtained lumen and plaque area with three independent observers with an expectation of

good correlation with three observers respectively.

It is important to mention that for mild to moderate plaques, there is a good interobserver

mutual agreement. Accordingly, the Bland-Altman plot for the segments affected with

mild plaque shows a good correlation with the all three observers simultaneously due to
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Fig. 6.23 Lumen - plaque analysis w.r.t. manual observers for DS1 seg6. (a-c) lumen contours
for three observers, (d-e) plots obtained cross-section based area for coronary lumen and
non-calcified plaque respectively, with respect to annotations of three manual experts. Black
is proposed method, whereas red, blue and green represent three observers.

consistency among the observers. In contrast, the severe plaques lead to reduced interobserver

mutual agreement due to the ambiguity in visual demarcations. Hence, it becomes impossible

for the segmented output to follow all three observers simultaneously. Consequently, the

Bland-Altman plot for such cases demonstrate a good correlation with one or two observers

while having bias towards others.

Likewise, Fig. 6.24 - A.12 show the plaque quantification performance of the proposed

algorithm using lumen-plaque area statistics and the Bland-Altman plots. It can be observed

from figures that the performance of the plaque quantification algorithm remains stable

and within the approximate range of three human experts. An interesting case is shown in

Fig. 6.31 - 6.32 which represents the floating non-calcified plaque in segment2 of dataset

09. It can be recalled from Chapter 4 (Fig. 4.27a - 4.27c) that the floating nature of the

non-calcified plaque leads to reduced interobserver agreement and comparatively lower
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Fig. 6.24 Cross-section based analysis along the length of the segment with respect to three
individual experts for DS1 seg6. Left (a, c, e) represents the obtained lumen area, whereas
obtained plaque area is presented in right column (b, d, f). Both lumen and plaque area
shows a good correlation and the Bland-Altman plots reflects an agreement within the 95%
confidence interval.

segmentation accuracy for dataset 09. Consequently, the plaque quantification output shows

a considerable shift against one or more human observers.
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Fig. 6.25 Lumen - plaque analysis w.r.t. manual observers DS4 seg1. (a-c) lumen contours
for three observers, (d-e) plots obtained cross-section based area for coronary lumen and
non-calcified plaque respectively, with respect to annotations of three manual experts. Black
is obtained area, whereas red, blue and green represent three observers.

6.7 Summary

In this chapter, we performed voxel-wise quantification of coronary non-calcified plaque

using support vector machines. Based on the normal coronary segments, we computed the

vessel-wall thickness in a first step. In the subsequent step, we removed vessel wall from

the segmented tree and employed a Gaussian Mixture Model to compute intensity based

features. In the final step, the hand-crafted intensity based features are used to classify voxels

into lumen or plaque. According to the experimental results, it is shown that the automated

plaque segmentation method achieves an accuracy equivalent to the human experts with

mean sensitivity, specificity and accuracy equal to 88.59% ,81.59% and 87.86%, respectively.
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A limitation for the voxel-wise plaque quantification method is under-estimation of non-

calcified plaque in mild-affected segments of the coronary tree. As the voxel-wise features

employed in SVM classification relies on intensity distribution of two classes (lumen and

the non-calcified plaques), the mild plaque voxels can be interpreted as lumen. Another

limitation of the current method is dependence upon the accuracy of the plaque localization

method. The plaque localization method of Chapter 5 leads to the start and end position of

the non-calcified plaque, which leads to voxel-wise plaque ground truth. Accordingly, an

erroneous plaque location can result in inaccurate quantification of non-calcified plaques.
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Fig. 6.26 Cross-section based analysis along the length of the segment with respect to three
individual experts for DS4 seg1. Left (a, c, e) represents the obtained lumen area, whereas
obtained plaque area is presented in right column (b, d, f). Both lumen and plaque area
shows a good correlation and the Bland-Altman plots reflects an agreement within the 95%
confidence interval.
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Fig. 6.27 Lumen - plaque analysis w.r.t. manual observers for DS4 seg2. (a-c) lumen contours
for three observers, (d-e) plots obtained cross-section based area for coronary lumen and
non-calcified plaque respectively, with respect to annotations of three manual experts. Black
is obtained area, whereas red, blue and green represent three observers.
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Fig. 6.28 Cross-section based analysis along the length of the segment with respect to three
individual experts for DS4 seg2. Left (a, c, e) represents the obtained lumen area, whereas
obtained plaque area is presented in right column (b, d, f). Both lumen and plaque area
shows a good correlation and the Bland-Altman plots reflects an agreement within the 95%
confidence interval.
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Fig. 6.29 Lumen - plaque analysis w.r.t. manual observers for DS7 seg2. (a-c) lumen contours
for three observers, (d-e) plots obtained cross-section based area for coronary lumen and
non-calcified plaque respectively, with respect to annotations of three manual experts. Black
is obtained area, whereas red, blue and green represent three observers.
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Fig. 6.30 Cross-section based analysis along the length of the segment with respect to three
individual experts for DS7 seg2. Left (a, c, e) represents the obtained lumen area, whereas
obtained plaque area is presented in right column (b, d, f). Both lumen and plaque area
shows a good correlation and the Bland-Altman plots reflects an agreement within the 95%
confidence interval.
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Fig. 6.31 Lumen - plaque analysis w.r.t. manual observers for DS9 seg2. (a-c) lumen contours
for three observers, (d-e) plots obtained cross-section based area for coronary lumen and
non-calcified plaque respectively, with respect to annotations of three manual experts. Black
is obtained area, whereas red, blue and green represent three observers.
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Fig. 6.32 Cross-section based analysis along the length of the segment with respect to three
individual experts for DS9 seg2. Left (a, c, e) represents the obtained lumen area, whereas
obtained plaque area is presented in right column (b, d, f). Both lumen and plaque area
shows a good correlation and the Bland-Altman plots reflects an agreement within the 95%
confidence interval.
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Fig. 6.33 Lumen - plaque analysis w.r.t. manual observers for DS15 seg2. (a-c) lumen
contours for three observers, (d-e) plots obtained cross-section based area for coronary lumen
and non-calcified plaque respectively, with respect to annotations of three manual experts.
Black is obtained area, whereas red, blue and green represent three observers.
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Fig. 6.34 Cross-section based analysis along the length of the segment with respect to three
individual experts for DS15 seg2. Left (a, c, e) represents the obtained lumen area, whereas
obtained plaque area is presented in right column (b, d, f). Both lumen and plaque area
shows a good correlation and the Bland-Altman plots reflects an agreement within the 95%
confidence interval.





Chapter 7

Conclusion and Future Work

7.1 Introduction

This chapter concludes the proposed research and includes some recommendations for

possible extensions of this work in future. The aim of this research has been the design of

an automated system for detection, localization and quantification of non-calcified coronary

plaques in cardiac CTA images, which could assist clinicians in the diagnosis of coronary

heart disease.

It is important to mention that the explicit emphasis of this work is on the non-calcified

plaques, since high intensity calcifications can be detected easily due to their bright appear-

ance in CTA. In this context, this work has two main objectives. First, the development of an

automated segmentation framework dedicated to the extraction of the coronary arteries in 3D

contrast enhance coronary CT images. Second, the design of a reproducible plaque analysis

method to detect, localize and quantify non-calcified plaque in the segmented coronary tree.

The proposed framework is capable of producing a reliable estimation of the non-calcified

plaques in the segmented coronary tree. Additionally, the proposed model can be operated in

an automated fashion, which minimises the interaction from users and reduces the inter and

intra-user variability in the quantification of non-calcified lesions.

Followed by this introduction, the remaining sections of this chapter are organised

as follows: in section 7.2.1, we present the conclusions related to the coronary artery
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segmentation techniques of Chapter 4. In section 7.2.2, the conclusions drawn from Chapter

5 are presented, i.e. algorithmic performance for detection and localization of non-calcified

plaques. In the subsequent section, we present the voxel-wise plaque quantification method

of Chapter 6. This is followed by a brief summary covering major contributions of this thesis.

The possible extensions of this research and recommendations for future work are discussed

in Section 7.5.

7.2 Conclusions

In context of the overall findings of the thesis, we present a brief chapter-wise conclusions in

this section as follows:

7.2.1 Coronary Segmentation using Hybrid Image Energy

This chapter addresses the segmentation of coronary vasculature in 3D CTA volume. In the

first part of this chapter, we demonstrated that adaptive modelling of the contrast medium

intensity can considerably improve the accuracy of the coronary segmentation. In contrast,

the use of a fixed intensity threshold across the dataset may decrease segmentation accuracy

by capturing the nearby non-coronary segments or missing the distal parts of coronary

tree. Subsequently, in the second part, we presented an efficient framework for image

segmentation and demonstrated its efficacy for coronary delineation in a 3D CTA volume.

In the proposed model, an image discontinuity model is combined with a localized active

contour segmentation which achieves better overlap with manual annotations. The proposed

method is less sensitive to the local optima problem which helps in reducing false positives

as well as it allows a certain degree of freedom for initialization. The capability to address

the variations in initial mask and localization radii simultaneously, makes our algorithm

a feasible choice for the coronary segmentation. In the context of time complexity, we

employed the sparse field method of Whitaker [77] to accurately evolve the curve using

minimal representation.



7.2 Conclusions 197

A limitation of the proposed method is the manual selection of the appropriate weight

β for the global term in hybrid energy formulation, as the true boundary is surpassed

occasionally due to high influence of the global force. According to a series of experiments,

the segmentation obtained with β less than 0.1 produces results similar to localization model

of [16] due to very small influence of global term, whereas setting β greater than 0.25 results

in suppression of distal segments due to very high influence of global term. This makes

β = [0.15−0.25] a feasible choice for effective segmentation of the coronary tree.

We also found that the Jaccard accuracy rates of the proposed method tend to decrease

when approaching the distal and small segments of the arteries. However, clinically significant

coronary lesions are usually identified in the main and proximal branches of the arteries,

which can be well defined by the proposed model. Nevertheless, we can conclude that our

technique is able to delineate the vessel boundaries in clinically important coronary segments

with a level of variability similar to those obtained through manual segmentation. It should

be noted that the fully automatic segmentation of the coronary tree has been a challenging

problem so far and the current research is focused to minimize the human interaction. Several

methods [139–141, 124, 142] have been proposed in recent years addressing the automatic

and semi-automatic segmentation of coronary lumen with a motivation of stenosis detection;

however, little attention has been paid to the negative remodelling of coronary vessels, which

has been addressed in subsequent chapters of this thesis.

7.2.2 Detection and Localization of Non-calcified Plaque Regions

In this chapter, we proposed an efficient method for detection of the non-calcified plaques

inside the segmented coronary tree using support vector machines (SVM). The innovative

aspect of this work is statistical representation of coronary segments which leads to SVM

based segregation of the abnormal segments. Moreover, this model precisely locates the

position and approximate length of the non-calcified plaque in abnormal segment, which can

be used in fully automated plaque quantification as explained in subsequent chapter. The

overall accuracy of our plaque detection model is 88.4% against the manual observer ground

truth with a sensitivity of 93.2% and specificity of 80.3%. Moreover, the Dice coefficient for
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plaque localization in diseased segments is 83.2% with respect to clinical annotations. The

proposed model was tested on three different CTA datasets individually and has produced

consistent results, demonstrating its reproducibility for generic CTA data. In addition to

manual ground truth comparison, we also compared our outcome with reported literature,

and found very good agreement with plaque detection models of Wei et al. [112], Lankton et

al. [99] and Tessmann et al. and [113].

The limitations of this work include an under-estimation of the long plaques in fully

occluded segments and the low detection rate for the minor coronary segments due to the

reduced diameter. This limitation is based on the fact that the manual annotation of the

plaque region is performed in a relative context of lumen and the surrounding background.

Especially, if there exist multiple low intensity lesions in a close proximity inside coronary

segment, the human expert, in general demarcates the complete segment as plaque affected.

Accordingly, the proposed method based on statistical evaluation of the segment leads to

under-estimation with respect to manual ground truth. Another limitation of the proposed

method is decreased detection rate for distal segments of the coronary tree. This is due to

the fact that the vessel diameter becomes narrower in distal segments, consequently, the

proposed concentric ring based representation of the segment fails to model the true lumen.

However, as mentioned in context of coronary tree segmentation, clinically significant lesions

are usually identified in the main and proximal branches of the arteries, which can be well

evaluated by the proposed detection model. Moreover, it should be noted that plaques present

in the distal segments are less threatening as they lead to minimal muscular damage with no

fatalities.

7.2.3 Segmentation and Quantification of Non-Calcified Plaques

In this chapter, we extended the localization analysis for voxel-wise quantification of the

non-calcified plaque in abnormal segments. We started with the formulation of voxel-wise

ground truth using plaque positions detected in Chapter 5. In the subsequent step, vessel wall

analysis was performed to compute the wall-thickness for normal coronary segments, which

is found to be around 0.6mm for proximal segments. In the subsequent step, the plaque
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effected region was investigated using a binary SVM classifier to differentiate lumen and non-

calcified plaque voxels. Statistical quantification metrics shows a significant correlation with

manual ground truth with a mean sensitivity, specificity, and accuracy of 88.59%, 81.59%,

87.86% respectively. After statistical evaluation of voxel-wise SVM classifier, we computed

voxel based lumen and plaque area for respective segments and found a good agreement with

respect to human experts.

7.3 Ethical Implications for the Automated Decision Frame-

work

There is much emphasis in current Western healthcare systems on respect for autonomy; this

is not to say that patients should be forced to make autonomous decisions (even if that were

possible), but that they should be offered the tools needed for making such decisions [170].

A doctor cannot expect all her patients to have wide ranging clinical knowledge, and she

must decide how much knowledge is required for a particular patient to be equipped to make

a particular decision (paternalism). As the complexity of the medical condition increases the

difficulty of giving the necessary information will increase; the range of treatments available,

and the pros and cons of each may confuse patients. To avoid this, the doctor might decide

that beneficence requires her to offer only a restricted range of treatment options that she

deems most appropriate in the prevailing circumstances. It is important to mention that

whatever balance is chosen between autonomy and paternalism, the patient trusts his doctor

to decide what information he should receive, and to provide that information accurately.

Where a decision support system (DSS) is involved in the process, it will have an important

effect on the working of the doctor-patient relationship. Decision making in the doctor-patient

relationship will inevitably be a balance between the patient’s right to control his or her own

life (“autonomy”) and the doctor’s duty to choose and prescribe the best course of treatment

for the patient (“paternalism”).

The design and implementation of DSSs should take into account the effect of the system

on overall patient care. This research leads to a framework for automated diagnosis of the
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non-calcified coronary plaques. In context of DSS, it can be used as an effective tool to

enhance the clinician’s diagnosis ability, however it does not suggest the possible care and

medication. It is important to mention that the plaque analysis framework is designed merely

as a diagnosis tool, able to detect the potential abnormalities; however, the interpretation

of the results lie with the experienced cardiologist. The software will point out regions that

are suspected of soft plaques, but the cardiologist will have the ultimate responsibility of

analysing the data. In conclusion, the eventual incorporation of this plaque analysis tool into

normal practice will depend on many factors, among them the most important is education

of doctors regarding use and potential abuse. Moreover, the plaque detection accuracy of

the software is around 88.4%, making the framework a reasonable diagnosis tool; however,

the immature plaques may be missed in this framework at early stages. These undeveloped

plaques does not pose severe clinical threat; however, for suspected patients, the clinician

can advise a new CTA exam after a certain amount of time for investigation of possible false

negatives.

7.4 Contributions of this Thesis

The contributions of this research, i.e., those that form the basis of the thesis, are to be

found in two main areas, associated with the segmentation of the coronary vasculature

and quantitative plaque analysis in the segmented tree, described in Chapters 4, 5 and 6,

respectively. Specifically, the contributions of this thesis are summarised as follows:

We demonstrated that adaptive modelling of the contrast medium intensity can con-

siderably improve the accuracy of the coronary segmentation. In contrast, the use of a

fixed intensity threshold across the dataset may decrease precision by capturing the nearby

non-coronary segments or missing the distal parts of coronary tree. The usefulness and

originality of these contributions is reflected in the promising results validating a signifi-

cant improvement in segmentation accuracy which have produced two journal publications

[39, 40].
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Moreover, we introduced a hybrid energy formulation that integrates the local intensity

and a probability based global discontinuity map of the image. The proposed hybrid energy

based model captures object boundaries accurately as the hybrid energy is less attracted

to the local optima solutions. Accordingly, the hybrid energy provides robustness against

the initialization and localization radius simultaneously. Furthermore, we introduced an

auto-correction feature for the mask, which captures the emerging peripheries during the

evolution process. The superiority of the proposed model is illustrated by comparing the

segmentation performance against manual ground truth and the coronary segmentation model

of Yang et al. [17]. This chapter leads to a journal publication [41].

After coronary tree segmentation, we extended our work for detection and localization

of the non-calcified plaques using discrete radial profiles in clinical CTA. We demonstrated

that the abnormal intensity drops resulting from soft plaque inside coronary vessels can be

captured using concentric rings along the vessel centreline. Subsequently, we employed a

machine learning framework (support vector machine) for segregating non-calcified plaque

affected coronary segments from normal sections. The plaque detection is performed using

the windowed statistics to uncover abnormalities in a relative context rather then evaluating

individual cross sections as proposed in [116]. Experimental results demonstrate that the

proposed method achieves a good agreement (detection accuracy of 88.4% with respect to

manual annotations), and in-line with anomaly detection methods of [113], [116]. It should

be noted that the explicit detection of the soft plaques is a challenging clinical problem.

In this context, a number of local features proposed in [113] and [116] fails to detect the

fragile low-intensity soft plaques; hence, the detection rate for the non-calcified plaques is

significantly lower then the calcified plaque detections in [113] (i.e. 79.62% versus 94.05%).

This chapter leads to two quality publications [42, 43].
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7.5 Future Work

7.5.1 Automated Selection of Global Weight

Although the proposed hybrid energy formulation leads good results for coronary segmen-

tation in clinical CTA; the selection of the global weight β is based upon an empirical

investigation in this study. Accordingly, we evaluated different values for β from the nor-

malized range [0, 0.01, 0.05, 0.10, 0.15, 0.25, 0.50, 0.75, 1.0] to determine the best global

weight. Subsequently, based upon a series of experiments, we observed that the segmentation

obtained with β less than 0.1 produces results similar to localization model of [16] due to

less influence of global term, whereas setting β greater than 0.25 results in suppression of

distal segments due to very high influence of global term. A possible extension for this work

could be the automatic selection of the global weight β with respect to the localization radii

to fully automate the segmentation framework. A possible way is use of the machine learning

to regress β based on hand-crafted features.

7.5.2 Quantification of Functional Significance of Atherosclerotic Le-

sions

Coronary CTA has strengths in excluding the presence of significant coronary diseases;however,

it performs less well in terms of its positive predictive accuracy, often resulting in unnecessary

catheterisation. This is mainly because coronary occlusions, with no significant effects on the

function of coronary circulation, cannot be distinguished from those associated with a higher

risk of developing myocardial ischemia by means of static coronary CT images. Fractional

Flow Reserve (FFR), a technique measuring pressure differences between a stenotic artery

and its normal proximal segments, is the current golden standard for diagnosis of myocardial

ischemia [171].

Complications associated with the conventional invasive FFR procedure, however, restrict

its application to a certain groups of patients with hypertension and hypercholesterolemia.

Recent advances in image-based blood flow analysis have provided a non-invasive alternative
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for the assessment of the functional significance of the coronary lesions. Preliminary research

suggested that diagnostic results obtained from virtual FFR based on coronary CT angiograms

have a high degree of correlation with conventional FFR [171]. Through the application

of Computational Fluid Dynamics (CFD) in simulating blood flow in the cardiovascular

system, haemodynamic parameters, such as velocity, stress/pressure as well as shear stress

distribution, can be estimated in silico, which could provide the clinician with essential

information in determining the associated risk for a patient. Functional information, obtained

from a patient specific geometric model of the artery, may potentially enhance the diagnostic

capability of standard coronary CT in high risk patients, without changing the imaging

protocol. The framework presented in this thesis allows the construction of patient-specific

models of coronary arteries, which in turn could be used as a starting point for analysing the

fluid mechanical properties of blood flow in the coronary circulation.

7.5.3 Clinical Validation of the Proposed Segmentation Framework with

Invasive Standards

In this research, the accuracy and capability of the proposed system was quantified by com-

paring the segmented arteries and non-calcified plaque with manual delineation respectively,

which lacks validation with an invasive standard such as cardiac catheterisation or intra-

vascular ultrasound. In order to determine the true clinical applicability of the proposed

framework, a comparison of the diagnostic results obtained through the proposed algorithms

with the actual diagnosis based on standard invasive procedure is required to carry out a

per-vessel and per-patient basis.

7.5.4 Deep Learning Based Plaque Segmentation

Another possible extension of the current work can be replacement of the hand-crafted

features with a convolutional neural network (CNN) to take maximal advantage of machine

learning procedures; however, this requires a large repository of CTA data. We believe this
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can serve as an important step forward towards the automated quantification of the soft

plaques, which have been identified as the major reason of fatal cardiac events.
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Fig. A.1 Lumen - plaque analysis w.r.t. manual observers for DS2 Seg6. (a-c) lumen contours
for three observers, (d-e) plots obtained cross-section based area for coronary lumen and
non-calcified plaque respectively, with respect to annotations of three manual experts. Black
is obtained area, whereas red, blue and green represent three observers.
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Fig. A.2 Cross-section based analysis along the length of the segment with respect to three
individual experts for DS2 seg6. Left (a, c, e) represents the obtained lumen area, whereas
obtained plaque area is presented in right column (b, d, f). Both lumen and plaque area
shows a good correlation and the Bland-Altman plots reflects an agreement within the 95%
confidence interval.
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Fig. A.3 Lumen - plaque analysis w.r.t. manual observers DS5 Seg2. (a-c) lumen contours
for three observers, (d-e) plots obtained cross-section based area for coronary lumen and
non-calcified plaque respectively, with respect to annotations of three manual experts. Black
is obtained area, whereas red, blue and green represent three observers.
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Fig. A.4 Cross-section based analysis along the length of the segment with respect to three
individual experts for DS5 seg2. Left (a, c, e) represents the obtained lumen area, whereas
obtained plaque area is presented in right column (b, d, f). Both lumen and plaque area
shows a good correlation and the Bland-Altman plots reflects an agreement within the 95%
confidence interval.
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Fig. A.5 Lumen - plaque analysis w.r.t. manual observers for DS5 Seg8. (a-c) lumen contours
for three observers, (d-e) plots obtained cross-section based area for coronary lumen and
non-calcified plaque respectively, with respect to annotations of three manual experts. Black
is obtained area, whereas red, blue and green represent three observers.
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Fig. A.6 Cross-section based analysis along the length of the segment with respect to three
individual experts for DS5 seg8. Left (a, c, e) represents the obtained lumen area, whereas
obtained plaque area is presented in right column (b, d, f). Both lumen and plaque area
shows a good correlation and the Bland-Altman plots reflects an agreement within the 95%
confidence interval.
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Fig. A.7 Lumen - plaque analysis w.r.t. manual observers for DS7 Seg3. (a-c) lumen contours
for three observers, (d-e) plots obtained cross-section based area for coronary lumen and
non-calcified plaque respectively, with respect to annotations of three manual experts. Black
is obtained area, whereas red, blue and green represent three observers.
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Fig. A.8 Cross-section based analysis along the length of the segment with respect to three
individual experts for DS7 seg3. Left (a, c, e) represents the obtained lumen area, whereas
obtained plaque area is presented in right column (b, d, f). Both lumen and plaque area
shows a good correlation and the Bland-Altman plots reflects an agreement within the 95%
confidence interval.
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Fig. A.9 Lumen - plaque analysis w.r.t. manual observers for DS11 Seg7. (a-c) lumen
contours for three observers, (d-e) plots obtained cross-section based area for coronary lumen
and non-calcified plaque respectively, with respect to annotations of three manual experts.
Black is obtained area, whereas red, blue and green represent three observers.
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Fig. A.10 Cross-section based analysis along the length of the segment with respect to three
individual experts for DS11 seg7 . Left (a, c, e) represents the obtained lumen area, whereas
obtained plaque area is presented in right column (b, d, f). Both lumen and plaque area
shows a good correlation and the Bland-Altman plots reflects an agreement within the 95%
confidence interval.
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Fig. A.11 Lumen - plaque analysis w.r.t. manual observers for DS15 seg3. (a-c) lumen
contours for three observers, (d-e) plots obtained cross-section based area for coronary lumen
and non-calcified plaque respectively, with respect to annotations of three manual experts.
Black is obtained area, whereas red, blue and green represent three observers.
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Fig. A.12 Cross-section based analysis along the length of the segment with respect to three
individual experts for DS15 seg3. Left (a, c, e) represents the obtained lumen area, whereas
obtained plaque area is presented in right column (b, d, f). Both lumen and plaque area
shows a good correlation and the bland-altman plots reflects an agreement within the 95%
confidence interval.
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