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SUMMARY 

Reinforced concrete (R/C) frame buildings designed according to older seismic codes represent a large part of the 

existing building stock worldwide. Their structural elements are often vulnerable to shear or flexure-shear failure, 

which can eventually lead to loss of axial load resistance of vertical elements and initiate vertical progressive collapse 

of a building. In this study, a hysteretic model capturing the local shear response of shear-deficient R/C elements is 

described in detail, with emphasis on post-peak behaviour; it differs from existing models in that it considers the 

localisation of shear strains after the onset of shear failure in a critical length defined by the diagonal failure planes. 

Additionally, an effort is made to improve the state of the art in post-peak shear response modelling, by compiling the 

largest database of experimental results for shear and flexure-shear critical R/C columns cycled well beyond the onset 

of shear failure and/or up to the onset of axial failure, and developing empirical relationships for the key parameters 

defining the local backbone post-peak shear response of such elements. The implementation of the derived local 

hysteretic shear model in a computationally efficient beam-column finite element model with distributed shear 

flexibility, which accounts for all deformation types, will be presented in a forthcoming paper. 

 

Keywords: Reinforced concrete structures; Substandard members; Hysteresis model; Shear response; Post-peak 

response; Axial failure  

1. INTRODUCTION 

Reinforced concrete buildings designed according to older seismic codes (or even without adhering to 

any code) represent a large part of the existing building stock worldwide. Transverse reinforcement in 

their structural elements is typically inadequate, widely spaced or poorly anchored, rendering them 

vulnerable to shear failure subsequent, or even prior, to yielding of their longitudinal reinforcement. 

Shear failure can eventually lead to loss of axial load capacity of vertical elements, through 

disintegration of the poorly confined concrete core and the consequent axial load capacity decrease 

[1], and initiate vertical progressive collapse of a building. This collapse type has been shown through 

post-earthquake reconnaissance to be the most common reason for R/C frame building collapse [2]. 

Thus, it is important to be capable of accurately and efficiently assessing the response of shear-

deficient R/C members to earthquake-induced actions, in order to evaluate their vulnerability and 

decide on necessary measures to be taken, such as implementing a retrofit scheme to increase their 

resistance.  

Modelling of an R/C member under lateral loading should consider all three components of 

deformation , i.e. flexural, anchorage slip and shear [3]. The former can be captured quite accurately 

by the available finite element models providing an accurate prediction of the hysteretic response of 

code-conforming members. Nevertheless, the other two deformation components readily become 

significant, when dealing with sub-standard members. It has been observed experimentally that in 

plastic hinge regions, shear strength decreases [4], [5] and shear deformations increase considerably, 

despite the fact that shear demand remains practically constant [3]. This impacts the response of 

flexure-shear critical members that fail in shear after experiencing flexural yielding. Several models 

have been developed to predict the maximum shear strength of a member and its degradation with 

ductility demand, accounting for the aforementioned interaction. Amongst them are the model by 



Priestley et al. [6], Sezen & Moehle’s model [7] and a more recent one based on statistical analysis of 

a large number of tests of  flexure-shear critical column specimens, by Biskinis et al. [8]. 

Tests on R/C members subjected to seismic loading are traditionally terminated shortly after the 

onset of shear failure, not shedding much light on their post-peak response. Nonetheless, there has 

been a recent shift of interest during the last two decades, producing a sizeable amount of data 

regarding the post-peak response of R/C elements, including the onset of their axial collapse. Some 

noteworthy experimental works are those by Moehle et al. (e.g. [1]) , Ousalem et al. (e.g. [9], [10]) 

and Yoshimura et al. (e.g. [11]).  

It has been experimentally observed (e.g. [12]–[14]) that deformations after the onset of shear 

failure tend to concentrate at a specific shear-damaged member region; in essence, this mainly 

corresponds to the relative rigid body displacement between the separated upper and lower parts of the 

column along the diagonal shear failure crack.  

Advanced, structural mechanics based, shear models like the Modified Compression Field Theory 

(e.g. [15]) or the softened truss and membrane models ([16], [17]), have proven to be rather accurate, 

but are limited to pre-peak shear behaviour. More recently, the Axial-Shear-Flexure Interaction 

approach was proposed [18], also considering the post-peak shear response. Nonetheless, these 

approaches involve high computational demand and do not capture the hysteretic response of R/C 

elements, hence do not readily lend themselves to use in seismic analysis of complex R/C structures. 

In the last two decades, there have been several macro-models aiming at modelling the cyclic 

lateral behaviour of sub-standard R/C elements, taking into account shear deformations and anchorage 

slip rotations (e.g. [3], [19]–[23]).  Some of them also extend into the post-peak domain of the 

response, even predicting the onset of axial failure of an element, i.e. the point where axial capacity 

reaches axial demand; after this point, axial shortening increases with simultaneous decrease of axial 

load capacity. This is a critical point in assessing the behaviour of an existing structure, especially 

when it comes to predicting the initiation and cascade of progressive collapse. These macro-models 

offer reasonable predictions of sub-standard R/C member response, but they often lack accuracy in the 

post-peak range, largely owing to the scarcity of experimental tests of specimens up to the onset of 

axial failure. For example, post-peak response has often been determined by the onset of shear failure 

and the onset of axial failure (e.g. [24], [25]), assuming that shear strength is completely lost at the 

latter point. However, there is experimental evidence that shear strength is not always zero at the onset 

of axial failure (e.g. [26]). Other studies (e.g. [19], [23]) assume that residual strength develops after 

shear failure without solid support by experimental evidence. These issues will be addressed later in 

this paper. Additionally, all these beam-column models are based on inter-storey drift ratios, despite 

the aforementioned observation that localised drift ratios at the shear-damaged regions are more 

representative of the actual response, since shear deformations tend to concentrate there after the onset 

of shear failure. 

In this study, a local hysteretic shear model is proposed. Its main conceptual novelty lies in the 

consideration of the afore-described localisation of shear strains in the shear-damaged region after the 

onset of shear failure. Additionally, it is attempted to advance the state of the art in shear response 

modelling one step further, by compiling a database of experimental results of shear and flexure-shear 

critical R/C columns - the largest of its kind -, investigating their post-peak response through statistical 

analysis and developing empirical relations for key parameters defining the local post-peak response 

of such elements. The hysteretic shear model will be incorporated into a computationally efficient 

member-type model for the full-range response of substandard R/C elements in a forthcoming paper*, 

with a view to accurately capturing the hysteretic response of shear-deficient members and structures. 

It is a flexibility-based, spread-inelasticity, phenomenological model, based on local deformations 

                                                      
* Zimos, D.K., Mergos, P.E. and Kappos, A.J., Modelling of R/C members accounting for shear failure 

localisation: Finite element model and verification, to be submitted to EESD, 2017. 



rather than inter-storey displacement, hence more objectively accounting for the interaction of 

inelastic flexural and shear deformations at a local level, including the gradual decrease of an 

element’s shear resistance, and more reliably predicting the location and extent of shear deformations, 

without relying on assumptions about the bending moment distribution.  

2. HYSTERETIC SHEAR MODEL DESCRIPTION 

The hysteretic shear model is formulated in terms of shear force V against shear distortion γ at section 

level and comprises of the V-γ backbone curve and the hysteresis rules determining the response under 

cyclic loading. Its initial V-γ backbone curve is defined disregarding interaction with flexure and can 

be used for elements that have not yielded in flexure, as well as for the elastic regions of members that 

have developed flexural yielding (Figure 1). This curve is defined by the shear cracking point where 

the nominal tensile principal stress exceeds the tensile concrete strength (γcr, Vcr), the onset of yielding 

of the transverse reinforcement, where the maximum shear strength is attained (Vmax, γst), and a 

plateau, where shear strains increase up to the onset of initiation of lateral strength degradation, i.e. the 

onset of shear failure (γsh,f, Vmax).  

Subsequently, a bi-linear descending branch is followed up to the onset of axial failure, having a 

breaking point at half the maximum strength and defined by the slopes of the two linear segments 

Spp,1×Vmax and Spp,2×Vmax respectively (Figure 1). This shape is chosen herein due to its simplicity and 

satisfactory correlation with the recorded experimental post-peak responses demonstrated in the next 

section. Furthermore, it can readily be converted to a linear descending branch by setting the slope of 

the second branch equal to the slope of the first.  

The descending branch is terminated at the point of onset of axial failure, where physical collapse 

of the member takes place. The definition of the onset of axial failure in this study is both 

deformation-based and force-based. More specifically, a column is considered to have failed axially 

(i.e. lost its bearing capacity), if the shear deformation limit corresponding to the onset of axial failure 

has been reached. This deformation limit is equal to γsh,f  plus the post-peak shear distortion up to the 

onset of axial failure γt,pp (Figure 1). However, if shear strength degrades to zero before this critical 

deformation is reached, the onset of axial failure is specified by the point where the descending branch 

meets the axis of shear deformations (i.e. point on the descending branch with zero shear strength).  

The initial V-γ curve is modified in plastic hinge regions to account for shear-flexure interaction. 

This is based on the current curvature ductility demand and the ensuing degradation of the “concrete 

contribution” to shear strength, resulting in an increase of the truss contribution. The parts of the 

backbone curve between the shear strength corresponding to flexural yielding (γy, Vy in Figure 1) and 

the onset of shear failure are affected to consider shear-flexure interaction (more details given in [3]). 

 
Figure 1: V-γ primary curve of the proposed shear model (without shear-flexure interaction). 

After the onset of shear failure, the assumption adopted in this study is that flexural and slip-

induced deformations do not increase further than their values at peak strength, i.e. the entire post-



peak displacement is attributed to shear deformations. This assumption has also been adopted in other 

similar models (e.g. [24], [25]) and is supported by experimental evidence (e.g. [27]).  

Furthermore, it has been previously established based on experimental observations (e.g. [12]–[14]) 

that deformations after the onset of shear failure tend to concentrate in a specific member length, 

called critical shear length, defined by the diagonal failure planes; the clear length of a column, Lcl, 

the critical shear length, Lcr, and the shear failure plane angle or herein termed critical shear crack 

angle, θsh, are illustrated in Figure 2. The localisation of post-peak shear strains in the critical length is 

herein termed shear failure localisation. In essence, it mainly represents the relative rigid body 

displacement between the discrete upper and lower parts of the column along the shear crack; this can 

be seen in the image of an actual experimental test of a shear-deficient R/C column in Figure 2 [28]. 

 

 

 
(a) (b) 

Figure 2: Illustrative sketch of the critical length in a shear-damaged column (a). Image of an actual experimental test 

of an axially failed shear-deficient R/C column (b) [28]. 

 

 

Figure 3: Hysteresis rules after the onset of shear failure. 

Following this approach, after the onset of shear failure, shear deformations will be expressed as: 
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where γ is the average shear strain in the critical shear length; γsh,f  is the shear strain at the onset of 

shear failure in the critical shear length; δpp is the post-peak lateral displacement; h is the height of the 

section. 

The hysteresis rules adopted in the pre-peak domain of the shear model are based on those of 

Ozcebe & Saatcioglu [4], with several improvements (presented elsewhere [3], [29]) for numerical 

stability in dynamic analysis, as done by other researchers in similar models [20]. Pinching, unloading 

and reloading stiffness deterioration, as well as cyclic strength degradation, are all accounted for. 

In the post-peak domain, the same hysteresis rules are generally applied [3], [4], [29]; however, 

some modifications are proposed here, to make them compatible with the response of specimens after 

the onset of shear failure, as shown in Figure 3 (showing the linear descending branch case, for the 

sake of simplicity; ΔV1,pos and ΔV1,neg denoting in-cycle strength degradation in the positive or negative 

direction, respectively; ΔVcyc,deg,i (i=1,2) denoting cyclic strength degradation). In-cycle strength 

degradation follows the aforementioned backbone descending branch(es), for instance Spp × Vmax in 

Figure 3. Post-peak cyclic degradation is accounted for as in [4], in line with the calibration of the 

post-peak descending branch (section 3.3), i.e. the end reloading point lies on the descending branch 

(Figure 3) and, subsequently, the response follows the defined descending branch slope(s). Pinching 

and reloading stiffness deterioration are accounted for using a bilinear reloading curve as in the pre-

peak domain [4], [29]. Nonetheless, the shear cracking strength, Vcr, which is the ordinate of the end 

point of the first reloading branch, degrades, unlike the pre-peak domain. Its degradation is 

proportional to the degradation of the end point of the second reloading branch (e.g. Vcr and V’
cr in 

proportion to Vmax and Vmax - ΔV1,pos - ΔVcyc,deg,1 in Figure 3). Were it not degrading, an end point of the 

second reloading branch with strength lower than the shear cracking strength would inevitably appear, 

leading to a negative stiffness of the second reloading branch. Unloading follows a linear branch with 

the same stiffness deterioration rules as in the pre-peak domain [29]. Shear strength degradation 

mirroring is also taken into account; this effectively means that once a certain amount of strength is 

lost in one loading direction, a higher strength cannot be reached in the other. For example, in Figure 

3, the descent starts from the onset of shear failure with Vmax on the positive side, followed by ΔV1,pos 

in-cycle degradation. The strength of the vertex point on the negative direction becomes -(Vmax - ΔV1,pos 

- ΔVcyc,deg,1). Similarly, the in-cycle degradation on the negative side (ΔV1,neg) is subtracted from the 

positive vertex point strength upon reloading on the positive side for the first time, and so forth. This 

assumption has been adopted in other similar models (e.g. [23]) and is supported by experimental 

evidence (e.g. [12], [1]).  

3. CALIBRATION OF HYSTERETIC SHEAR MODEL PARAMETERS IN THE CRITICAL 

SHEAR LENGTH 

The necessary parameters for the up-to-peak backbone curve have been presented in detail elsewhere 

[3].The key parameters that have to be defined to model the local post-peak shear response of an R/C 

element are the critical length of the shear-damaged region, hence the angle of the shear failure plane, 

the descending branch slopes after the onset of shear failure and the shear deformation at the onset of 

axial failure. 

Although a mechanics-based approach would in principle be preferable to obtain such parameters, 

it is currently not feasible considering the inherent uncertainty of the post-peak cyclic shear response, 

with a considerable effect of deformation history and experimental setup that usually cannot be 

accounted for, as well as the randomness of the succession of degrading phenomena taking place at a 

lower level. This fact is corroborated by the high variability in the results of similar models for the 

post-peak response of shear-deficient R/C elements (e.g. [30]) and the considerable variability 

produced (of the order of 30-50%) even for pre-peak parameters of R/C elements, even when 

employing very extensive databases [31]. Additionally, it is also corroborated by the adoption of 

empirical models even for the pre-peak response of existing structures in Eurocode EN1998-3 [31], 



[32] and, lastly, by the fact that even when trying to develop a mechanics-based model, shear 

deformations might need to be accounted for through an empirical correction factor [33]. 

3.1 Database compilation 

A large database of shear and flexure-shear critical elements, which were cycled well beyond the onset 

of shear failure or which had clear photographic evidence of their shear cracking, was compiled. It 

comprises 151 rectangular R/C columns, 68 of which have sustained flexure-shear failure and 83 shear 

failure prior to flexural yielding. To the best of the authors’ knowledge, it includes the largest 

collection of rectangular R/C columns cycled well into the post-peak domain after the onset of shear 

failure (116) and/or eventually failing axially (89). Their characteristics  in terms of longitudinal 

reinforcement ratio (ρl), transverse reinforcement ratio (ρw), stirrup spacing over effective depth (s/d), 

aspect ratio (Ls/d), maximum shear stress ratio (τmax/√fc) and axial load ratio (ν) (3 specimens in 

tension are presented separately) are summarised in Table 1. More details on the specimens of the 

database and their characteristics can be found in [34]. 

Table 1: Main specimen characteristics of the database. 

 Min Mean Max 

ρl (%) 0.16 2.25 4.76 

ρw (%) 0.08 0.38 1.59 

s/d 0.11 0.44 2.52 

Ls/d 0.90 1.94 4.29 

τmax / √fc 0.22 0.57 1.23 

ν (compressive) 0.00 0.27 0.80 

ν (tensile) -0.26 -0.15 -0.07 

 

 

 

(a) (b) 
Figure 4: Indicative extraction of critical shear crack angle (a) and descending branch curve (b) from experimental data 

[35]. 

The values of the inclined shear failure plane angle, herein termed “critical shear crack angle”, 

were obtained from available photographic documentation of specimens exceeding the onset of shear 

failure (for example, Figure 4a). It is noted that this angle does not correspond to the first shear cracks 

that appear on a specimen along the principal compressive stress trajectories, when the tensile strength 

of concrete is reached. These can be readily calculated according to structural mechanics principles 



and generally result in steeper angles than the experimentally observed ones [13]. The critical shear 

crack angle corresponds to an idealised inclined failure plane, which forms at shear failure, and is 

herein measured with respect to the longitudinal axis of the member. In shear critical specimens, either 

the major shear crack - if there was a clear one -, or the average inclination of the shear cracks was 

taken into account (e.g. Figure 4a). In the case of flexure-shear critical members with a fan-shaped 

crack pattern at the end-region, the steepest one (smallest angle) was taken into account - being 

considered equivalent to the inclination of the crack that would form in the intermediate region 

without prior development of flexural hinges [36] -, disregarding potential horizontal parts at the end 

due to flexural cracking. Furthermore, cracks parallel to the longitudinal axis were disregarded (in the 

average calculation), as they are usually caused by bond-split of the longitudinal reinforcement. In 

most cyclic tests, shear cracks appear in both directions with the characteristic X-pattern (e.g. Figure 

4a); in these cases the average of both directions is used. All the double-curvature experiments, as well 

as flexure-shear critical cantilever ones, were taken into account, since the few shear critical cantilever 

ones were observed to develop higher angle values due to corner-to-corner cracking, which might not 

be representative of an actual building column. Corrections were applied to account for the rotation of 

the specimen with regard to the direction of the photograph and the downward or upward perspective. 

Only specimens with at least 30% strength degradation were considered, in order to have a genuine 

descending branch response. Thus, traditional experiments performed up to 15% or 20% strength 

degradation, which constituted the overwhelming majority until recently, were excluded. The 

descending branch curve was obtained by the peaks of the first cycles at each displacement level of the 

post-peak domain (e.g. Figure 4b) as well as potential parts of in-cycle strength degradation of these 

first cycles, starting off from the point of maximum strength of the respective direction of the response 

(i.e. points B and A in Figure 4b). In the cases where shear strength degrades below zero, the 

intersection of the response with the zero-strength line is recorded as the displacement at the onset of 

axial failure. Otherwise, the maximum displacement developed by the specimen is conventionally 

defined as the one at onset of axial failure, although in some cases the actual onset of axial failure 

takes place during a load reversal. 

3.2 Critical shear crack angle  

The critical shear crack angle has often been assumed independent of column properties (e.g. 45o) in 

the process of developing a shear or axial resistance model (e.g. [6], [13]). As this angle affects 

(through Lcr) the modelling of the post-peak part of the shear force vs deformation curve, a realistic 

estimate of its value would be worthwhile, hence an appropriate expression for this angle was sought. 

There were 54 shear (S) and 34 flexure-shear critical (FS) specimens of the database, for which there 

was adequate data available to obtain the critical shear crack angle.  

Existing shear crack angle models were tested against the experimentally measured values, to select 

an appropriate one to use in the context of the current model [37]. Nevertheless, none was found to 

provide accurate estimates of the observed angles and account for all the influential parameters. 

Subsequently, correlations of this angle with design variables were investigated. Based on this dataset, 

several patterns emerged, the most important of which are presented here (Figure 5): 

• In line with structural mechanics principles, increasing axial load ratio (ν) tends to decrease the 

shear crack angle, since the trajectories of the principal compressive stresses - along which the first 

shear cracks will form – are oriented closer to the longitudinal axis of the member.  

• Transverse reinforcement ratio (ρw) is shown to have a positive correlation with the angle, although 

transverse reinforcement has hardly any influence on the principal stress trajectories prior to shear 

cracking, hence on the initial crack inclination. However, the angle of interest in the present model 

apparently includes the propagation of shear crack at varying angles, the angle change being 

significantly affected by the yielding transverse reinforcement. 

• Longitudinal reinforcement ratio (ρl) seems to play no role whatsoever in either case (S or FS). 



This is consistent with the mechanics of shear cracking, but contradicts previous studies (e.g. [36]) 

that have considered it an important parameter. 

• Aspect ratio (Ls/d) has a strong negative correlation in the case of shear critical elements, as 

expected, because of the influence on the trajectories of the principal compressive stresses. In 

flexure-shear critical elements, however, it has a slightly positive correlation, which is not in line 

with the previous observation. Although the first shear cracks form similarly to what was described 

for shear critical elements, the shear strains subsequently concentrate in the end-regions, where 

flexural yielding has already taken place. As the shear span (M/V) increases, the influence of 

flexure over shear becomes more pronounced, which probably leads to even “flatter” idealised 

critical shear crack angles, closer to the horizontal flexural cracks. 

• In general, FS members seem to have higher values of shear crack angle, the crack being confined 

in the end-region of the member that has yielded. Other important parameters that influence the 

shear crack angle, like cross-section shape and loading conditions, were beyond the scope of the 

current investigation, which was based on a database of only square/rectangular specimens and 

included mostly a double-curvature loading condition with forces acting at the ends of the 

members. 

  
(a) (b) 

  
(c) (d) 

Figure 5: Correlation of the measured shear crack angle with axial load ratio (a), transverse reinforcement ratio (b), 

longitudinal reinforcement ratio (c), aspect ratio (d), divided into shear (S) and flexure-shear (FS) critical specimens. 

Based on the aforementioned trends and significance tests of the predictor variables, various 

empirical relationships were explored. Through a step-wise predictor variable elimination procedure, 

10-fold-cross-validation [38] and optimisation using the Levenberg-Marquardt nonlinear least-squares 

algorithm (e.g. [39]), the best model developed was the following: 

 
 

0.0397

,1

min max0.33
ta 165 66.n 5

2.6
3 4

w conf o

sh

cl

h

L v

 
  




    


  (2) 

where h is the height of the cross-section; Lcl is the clear length of the member; β is a parameter that 

differentiates between shear and flexure-shear critical members, equal to 1.00 for S and 1.06 for FS 

elements; ρw,conf is the transverse reinforcement ratio normalised to the confined concrete area (stirrup 

spacing multiplied by the confined section width), introduced with its actual value (not in %); v is the 



axial load ratio. The minimum value is a geometrical limitation of the shear crack applying to columns 

with a very low aspect ratio, as also explained by Elwood & Moehle [13]. Were this limit not imposed, 

the angle could be lower than the angle of the diagonal connecting the two ends of the column (corner-

to-corner crack), essentially leading to an Lcr higher than the length of the column itself. 

Eq. 2 yields a mean experimental-to-predicted value of 1.00, a median of 0.98 and a CoV of 21.9% 

(Figure 6). It applies to specimens in the following range of parameters: -0.26 ≤ ν < 0.75, 0.08 < ρw,conf 

≤ 1.35 (%), 0.91 ≤ ρl < 4.28 (%), 330 < fyl ≤ 700 (MPa), 270 ≤ fyw ≤ 587 (MPa), 13.5 ≤ fc ≤ 86 (MPa), 

0.9 < Ls/d < 4.3, where fyl and fyw are the yield strengths of the longitudinal and transverse 

reinforcement and fc represents the concrete compressive strength. Figure 7 shows the values of the 

critical shear crack angle that Eq. 2 would result in, across the whole range of the relevant parameters, 

i.e. axial load and transverse reinforcement ratios, for shear and flexure-shear critical specimens. For 

values of parameters representative of common structures (i.e. 0.2 ≤ ν ≤ 0.3 and 0.2 ≤ ρw ≤ 0.6 (%)), 

angles of approximately 25o-30o and 30o-35o would be expected for S and FS specimens, respectively. 

 
 Figure 6: Shear crack angles measured experimentally against the ones predicted by Eq. 2. 

  
(a) (b) 

     Figure 7: Critical shear crack angle predicted by Eq. 2 along the range of potential axial load and transverse 

reinforcement ratios (normalised to confined concrete area), for shear (a) and flexure-shear critical specimens (b). 

3.3 Descending branch 

Shear failure initiation taking place in one direction was hypothesised to influence behaviour in the 

other direction, so the overall relation between the slopes of the descending branches in either 

direction was investigated more closely. According to the boxplot in Figure 8a, it seems that the 

difference is not really significant, with the majority of specimens ranging between 0.9 and 1.3, i.e. 

having approximately equal slopes in both directions. Therefore, the average of the response in the 



two directions was used to calculate the descending branch slope for each specimen. 

The shape of the post-peak descending branch has been investigated using the specimens in the 

database. Initially a non-linear branch was sought, which would be able to represent both concave and 

convex degradation curves. The relationship that was assumed was the following: 

    
,

max

1 ( )   
c

sh f

V
a

V
                                                          (3) 

where Vmax is the maximum shear strength that occurs at the onset of shear failure, V ≤ Vmax the 

strength at any loading level after the onset of shear failure and γ ≥ γsh,f  the corresponding average 

shear strain in the critical shear length (Eq. 1), a  a constant affecting the average slope and c the 

curvature of the descending branch curve. However, no strong correlation emerged between the 

geometric and loading parameters of specimens and the curvature of the curve. Therefore, the non-

linear curve concept was no further pursued. A noteworthy finding, nonetheless, was that shear critical 

specimens tended to have mostly convex post-peak responses, while flexure-shear critical specimens 

had a linear on average, with approximately equal number of convex and concave curve cases (Figure 

8b).  

Subsequently, modelling the descending branch with a linear segment was considered, taking into 

account its simplicity, its compatibility with the proposed shear model and its match with experimental 

results, the Coefficient of Determination (R2) of fitting a least-squares line to the experimental post-

peak response having an average value of 0.95 and a CoV of 7.4%.  

The linear descending branch herein is defined by fitting a least-squares line starting from the onset 

of shear failure. Were it defined by a line connecting the onset of shear and axial failure instead (e.g. 

[24], [25]), the energy dissipated by an element could be significantly under- or overestimated. For 

instance, in the case of the convex curve of Figure 4b, this would lead to an overestimation of the 

dissipated energy. The opposite would happen in concave curves; the deviation would generally be 

larger the farther away from a linear descending branch a specimen’s post-peak strength degradation 

is. 

    

(a) (b) 
Figure 8: Ratio of descending branch slopes in two “directions” of the response of the database specimens (a). 

Curvature of the descending branch (c) of the response of flexure-shear critical (FS) and shear critical (S) specimens of 

the database (b). 

A bilinear curve with a horizontal branch representing residual strength, assumed by previous 

studies (e.g. [19], [23]), was judged to be a viable choice for less than 10% of all specimens in the 

database. This suggests either that practically no residual strength is developed in shear critical R/C 

members (at least those with the characteristics of this database), or that axial failure occurs in most 

specimens before they reach their residual capacity; hence, such an approach was no further pursued. 

Nevertheless, a bilinear branch with two independent slopes was pursued, with the breaking point 

being at 50% strength degradation, as in Figure 1. This approach was believed to lead to a more 



accurate representation of the post-peak descending branch overall, as it is much more flexible and can 

represent linear, convex and concave responses, observed experimentally (Figure 8b). Only specimens 

with at least 80% strength degradation were used to measure the value of the slope of the second 

segment of their post-peak response, hence only 37 specimens were taken into account in this case.  

The proposed linear shear strength degradation relationship is the following: 

 
,
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V
S

V
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where Spp is a dimensionless parameter expressing the shear strength degradation normalised to Vmax 

per unit of post-peak shear strain and γ ≥ γsh,f  the corresponding average shear strain in the critical 

shear length (Eq. 1). The dimensionless slope value Spp will have to be multiplied by a specimen’s 

maximum shear strength and divided by its critical shear length to get the slope in units of force per 

length. 

It has been pointed out (e.g. in FEMA P440A [40]) that in-cycle strength degradation should not be 

confounded with cyclic strength degradation; this has also been shown experimentally, for instance by 

observing the apparent difference in the descending branch slope of identical specimens that were 

cycled following different loading protocols [10]. Therefore, they should be, and have been herein, 

treated separately. Specimens with at least 30% degradation in their total shear strength being 

attributed to in-cycle degradation were termed “quasi-monotonic” (QM), i.e. it was assumed that their 

strength degradation was mainly due to in-cycle degradation mechanisms, while the rest were 

considered “cyclic specimens” (CS). The former amounted to a total of 30, the latter to 86, i.e. a total 

of 116 specimens in the database were available - hereafter called “all specimens” (AS).  

• Empirical equations developed for QM will be more appropriate for modelling specimens with 

high in-cycle degradation due to the displacement history used (purely monotonic or cyclic with 

large displacement steps) or members of actual structures which are expected to exhibit very high 

in-cycle degradation, e.g. when subjected to near-field, pulse-like, ground motions.  

• CS will be most appropriate for cyclic tests with loading protocols with more than one cycles at 

each displacement level and small displacement steps, i.e. the typical cyclic quasi-static 

symmetrical loading protocols. 

• AS will be more appropriate for ‘scenarios’ wherein a mix of both types of strength degradation is 

expected, i.e. structures subjected to earthquakes, exhibiting both cyclic and in-cycle degradation. 

Based on these datasets, several patterns emerged examining the correlation of the descending 

branch slope (in a V/Vmax vs γ curve) with geometric, material and loading parameters (in Figure 9, the 

trends observed in the dataset AS are shown, being indicative of the other datasets, too): 

• Higher axial load ratio increases the shear strength degradation rate, as has been often noted in 

similar studies (e.g. [9]). 

• Increased longitudinal reinforcement leads to a decreased post-peak slope, mainly through the 

dowel action of the longitudinal bars, as well as carrying an (occasionally significant) part of the 

vertical load, hence reducing the damage inflicted on the crack interface during load reversals. It is 

noteworthy that the longitudinal reinforcement ratio divided by the ratio of the confined to the total 

cross-section area gives a better prediction than the unnormalised ratio, the latter being more 

common a variable in pre-peak models. This can be attributed to the fact that after the critical shear 

crack has formed at the onset of shear degradation, the effective concrete area is the confined one, 

as the unconfined cover concrete either has already spalled off within the member critical length or 

it does not actively contribute as resistance mechanism, due to substantial reduction in its strength.  

• Higher transverse reinforcement is beneficial, as expected; the transverse steel bars crossing the 

critical crack are one of the main shear resistance mechanisms.  

• The average diameter of longitudinal bars over the effective depth, Φl,ave/d, seems to play an 

important role, too, decreasing the degradation rate as it increases.  

• Aspect ratio was investigated, as it was considered important in a previous model (e.g. [41], but 



was found not to hold very high predictive strength. This is attributed to the fact that the 

localisation of shear strains in the critical length was considered, hence eliminating the effect of 

aspect ratio, which is pronounced when taking into account the inter-storey drift ratio and 

disregarding shear failure localisation. 

 

  
(a) (b) 

  
(c) (d) 

Figure 9: Correlation of slope of the linear post-peak branch of the AS dataset with axial load ratio (a), longitudinal 

reinforcement ratio (b), transverse reinforcement ratio normalised to confined concrete area (c), and average 

longitudinal bar diameter normalised to effective depth (d). 

Based on these trends and significance tests of the predictor variables, various potential predictive 

relations were explored. The final expressions were developed through a step-wise predictor variable 

elimination procedure, 10-fold-cross-validation [38] and optimisation using the Levenberg-Marquardt 

nonlinear least-squares algorithm (e.g. [39]). For a linear post-peak branch, where the entire post-peak 

response is taken into account, the following expressions are proposed (for QM, CS and AS 

specimens, respectively): 
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For the first segment of a bilinear post-peak branch, up to 50% loss of Vmax (Fig. 1), the following 

expressions are proposed (for QM, CS and AS specimens, respectively): 
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For the second segment of a bilinear post-peak branch, after 50% loss of Vmax (Fig. 1), the following 

expressions are proposed (for QM, CS and AS specimens, respectively): 
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Table 2: Summary of the main statistics of accuracy and variation of the relationships developed (Eq. 5-13). 

Eq. (5) (6) (7) (8) (9) (10) (11) (12) (13) 

R2 0.80 0.45 0.54 0.64 0.51 0.58 0.73 0.54 0.51 

mean 1.00 1.04 1.01 1.00 1.02 1.02 1.00 0.99 1.01 

median 0.97 0. 95 0.91 0.93 0.94 0.95 0.96 0.83 0.90 

CoV (%) 40.3 57.1 49.6 45.0 47.8 53.5 31.2 63.1 61.3 

 

Table 2 summarises the accuracy and variation statistics of the above presented relations (mean and 

median refer to the ratio of experimental to predicted values). Table 3 includes the size of the datasets 

used for the derivation of each expression as well as the ranges of the main parameters, inside which 

these models are valid. Regarding the parameters used, ρl is the longitudinal reinforcement ratio, 



introduced with its actual value (not in %); αconf is the ratio of the confined to the total cross-section 

area; τmax / √fc is the maximum average shear stress normalised to the square root of the concrete 

compressive strength; vl is the longitudinal reinforcement axial load ratio, i.e. the axial load divided by 

the axial capacity of the longitudinal rebars; Ls/d is the member aspect ratio; Φl,ave/d is the average 

diameter of longitudinal bars normalised to the effective depth (to avoid scaling issues); s/d is the 

spacing of stirrups over the effective depth of the cross-section. The lower threshold used in all 

equations is the value 4, corresponding to the lowest slope value encountered in the database. 

Scatter plots of experimental against predicted values of the descending branch are indicatively 

presented for some equations (Eq. 7, 9 and 11) in Figure 10. The scatter in some models is also 

influenced by the very high uncertainty inherent in post-peak phenomena, for instance, the history of 

demands and the randomness of the succession of degradation phenomena taking place at a lower 

level. This is obvious also in similar existing models that exhibit high variation (e.g. R2 of 0.6 in [30]). 

As expected, the models for QM specimens have lower variation compared to CS and AS in every 

case; this is due to the fact that in-cycle degradation in these specimens is captured via these models, 

while the slopes of CS specimens are substantially affected by the displacement pattern used for each 

test, leading to potentially lower or higher cyclic strength degradation, thus producing extra 

uncertainty. 

Table 3: Datasets and minimum and maximum limits of main design parameters defining the range of application of 

the proposed relationships. 

Dataset / 

No. of 

specimens 

v 
ρw,conf 

% 

Φl,ave/d 

[×10-3] 

ρl/αconf 

% 

fyl 

[MPa] 

fyw 

[MPa] 

fc 

[MPa] 
Ls/d 

Linear branch and first segment of bilinear branch (at least 30% degradation) 

QM / 30 [0.07, 0.60] [0.00, 0.85] [45, 75] [1.50, 5.45] [330, 700] [250, 590] [13.5, 86] [1.1, 3.8] 

CS / 86 [0.00, 0.80] [0.00, 1.60] [25, 140] [0.20, 6.50] [330, 540] [295, 560] [13.5, 86] [0.9, 4.3] 

AS / 116  [0.00, 0.80] [0.00, 1.60] [25, 140] [0.20, 6.50] [330, 700] [250, 590] [13.5, 86] [0.9, 4.3] 

Second segment of bilinear branch (at least 80% strength degradation) 

QM / 16 [0.15, 0.30] [0.12, 0.85] [46, 75] [2.20, 5.45] [330, 550] [355, 475] [22, 31] [1.1, 3.8] 

CS / 21  [0.05, 0.40] [0.08, 0.56] [45, 75] [1.65, 4.85] [340, 460] [290, 475] [18, 32.5] [1.1, 3.8] 

AS / 37 [0.05, 0.40] [0.08, 0. 85] [45, 75] [1. 65, 5.45] [330, 550] [290, 475] [18, 32.5] [1.1, 3.8] 

 

 
Figure 10: Values of post-peak descending branch slopes (dimensionless) measured experimentally (horizontal axes) 

against the ones predicted (vertical axes) using Eq. 7, 9 and 11 (from left to right).  

In Figure 11, the values of the descending branch slope predicted by Eq. 5 are plotted against the 

longitudinal reinforcement ratio, for different transverse reinforcement ratios, for a low and a high 

axial load ratio. It is obvious that the higher the axial load and the lower the reinforcement of the 



member, the steeper the slope of the descending branch is going to be, i.e. the higher the strength 

degradation after the onset of shear failure. For parameter values representative of common structures 

(i.e. 0.2 ≤ ν ≤ 0.3, 1.5 ≤ ρl ≤ 3.5 (%) and 0.2 ≤ ρw ≤ 0.6 (%)), the slope would have values between 10 

and 40 (this is unitless, as it is multiplied by the maximum strength to get the degradation of strength 

per unit of shear distortion, see Eq. 4). 

  
(a) (b) 

Figure 11: Descending branch slope (Spp) predicted by Eq. 5 along the range of potential longitudinal reinforcement 

ratios over relative confined concrete area, for different transverse reinforcement ratios over confined concrete area, 

for axial load ratios of 0.2 (a) and 0.5 (b). 

3.4 Onset of axial failure 

The axial load resistance degrades with lateral displacement reversals, due to gradual disintegration of 

the confined concrete core [1]; the onset of axial failure is defined at the point where axial load 

resistance and demand become equal, whereupon sudden decrease of axial load and increase of axial 

shortening take place. This constitutes a vital turning point in the non-linear response of the entire 

structure, since it signals the initiation of a process of loss of an individual vertical R/C element’s axial 

load support (i.e. of its bearing capacity) simultaneously with the redistribution of vertical loads to its 

neighbouring members, potentially initiating vertical progressive collapse. A subset of specimens of 

the database has sustained such failure; this was determined based either on the provided axial 

hysteretic response (i.e. occurrence of high sudden axial shortening and/or sudden loss of axial 

capacity) and/or on the explicit report of axial failure of a column by the respective authors. 

 

 
Figure 12: Residual shear strength normalised to the maximum shear strength at the onset of axial failure for the 

specimens of the compiled database. 

It has long been claimed, based on limited amount of experimental data (e.g. [11]), that the onset of 

axial failure occurs when shear strength degrades to zero (or becomes negligible); several post-peak 

models have been based on this assumption (e.g. [24], [25]). Nonetheless, experimental evidence 



shows that this cannot be taken for granted in all specimens. In fact, for many of them it is 

considerably misleading as shown in Figure 12, where the shear strength at the onset of axial failure is 

shown for the specimens that have sustained axial failure in this database; it is normalised by the 

respective strength at the onset of shear failure, to get the relative residual lateral strength. The 

ostensibly unrealistic values equal to or near 1.00 are in fact due to the specimens having undergone 

simultaneous shear and axial failure. Apparently, the shear strength of only a small fraction of the 

specimens has degraded to negligible values (10% or even 20%) of the maximum strength. 

Consequently, the assumption of zero strength at the onset of axial failure is certainly not 

experimentally sound; adopting it could potentially lead to high discrepancies i.e. much steeper 

descending branches and  consequent great underestimation of the energy dissipation capacity, 

especially in cases where axial failure initiates before significant shear strength degradation.  

  
(a) (b) 

  
(c) (d) 

Figure 13: Existing predictive relations for the lateral displacement at the onset of axial failure (vertical axis) applied 

in this database, against measured displacements (horizontal axis). Elwood & Moehle [13] (a), Zhu et al. [42] (b), 

Yoshimura [43] (c), and Ousalem et al. [10] (d). 

Therefore, a deformation-based criterion is sought, instead. Existing models predicting the lateral 

displacement at the onset of axial failure were applied in this extensive dataset of 89 specimens having 

sustained axial failure, to find the most accurate one to employ. The predictive ability of these models 

is shown in Figure 13. The models by Ousalem et al. [10] and Yoshimura [43] seem to exhibit very 

high scatter, in some cases overestimating and in other cases underestimating significantly the lateral 

displacement. Elwood & Moehle, and Zhu et al. models [13], [42] seem to capture the displacements 



on average better than the other models, but they also exhibit high scatter (mean 1.18 and 1.28, and 

CoV 73.4% and 75.7%, respectively). Most of these models ([10], [13], [42]) have been calibrated 

only to flexure-shear critical specimens and they are all based on rather limited datasets. 

To improve the accuracy of the predictions, a new deformation-based empirical model is developed 

in this study to capture the onset of axial failure of an R/C element. In line with the local shear 

hysteretic model described in the previous sections (Figure 1), the deformation parameter used is the 

average post-peak shear strain γt,pp in the critical shear length Lcr at onset of axial failure determined by 

the following equation: 
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where δax,f is the lateral displacement at the onset of axial failure, and δsh,f is the lateral displacement 

at the onset of shear failure. 

  
(a) (b) 

  
(c) (d) 

Figure 14: Correlation of total post-peak shear strain at the onset of axial failure (γt,pp) with axial load ratio (a), 

longitudinal reinforcement ratio divided by the percentage of confined area and multiplied by its yield strength (b), 

transverse reinforcement ratio multiplied by its yield strength (c) and maximum average shear stress ratio (d). 

Based on this dataset, the following patterns emerged, examining the correlation of the local post-

peak average shear strain with design, material and loading parameters (Figure 14): 

• Axial load ratio is a pivotal parameter, associated with decrease in member deformability, as has 

been noted in many similar studies (e.g. [9], [13]).  

• Higher longitudinal reinforcement is beneficial, increasing the post-peak deformability, as also 

observed in previous studies (e.g. [11]). Longitudinal bars take up part of the axial load, partially 

relieving the confined concrete core from damage inflicted during the displacement reversals. Also, 

it allows for redistribution of a higher percentage of the axial load from concrete to steel in later 

stages. 

• As expected, transverse reinforcement is beneficial, a fact underlined repeatedly in the past (e.g. 

[9], [13]). It confines the concrete core, allowing for higher bearing capacity and takes up a 



significant part of the shear force, decreasing the shear strength degradation of the member and the 

damage inflicted to the core along the shear failure plane. 

• The higher the maximum average shear stress at the point of maximum lateral loading, the lower 

the achieved deformation at the onset of axial failure. 

There are other influential factors, too, e.g. load path and failure type. As noted in the past (e.g. 

[1]), monotonic response leads to higher deformability than cyclic. Flexure-shear critical specimens 

(FS) seem to exhibit higher deformability on average, when contrasted with shear-critical ones (S).  

Based on these trends and significance tests of the predictor variables, various potential predictive 

relationships were explored. The final expression was developed through a step-wise predictor 

variable elimination procedure, 10-fold-cross-validation [38] and optimisation using the Levenberg-

Marquardt nonlinear least-squares algorithm (e.g. [39]): 
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where ρl, ρw,conf are introduced with their actual value (not in %). Eq. 15 yields a mean experimental-

to-predicted value of 1.01, a median of 0.77, a CoV of 84.0% and an R2 of 0.69, including all 

specimens. However, the inclusion of the specimens having a very low value of deformation (close to 

zero) results in extreme values; excluding the ones equal to or lower than 0.01, one gets the following 

values instead: 1.01, 0.85, 68.7% and 0.63. Despite the fact that the experimental-to-predicted ratios 

statistics are worse for γt,pp predictions lower than 0.01, this is not considered as a serious problem 

because in terms of absolute values the errors are small. This is also verified by the high R2 value 

achieved in both cases. The predictive ability of the expression, including all specimens, can also be 

seen in Figure 15. Its application is valid in the following range of parameters: 0.07 < ν < 0.66, 0.08 < 

ρw ≤ 1.35 (%), 0.15 < ρl ≤ 3.8 (%), 331 ≤ fyl ≤ 700 (MPa), 303 ≤ fyw ≤ 587 (MPa), 13.5 ≤ fc ≤ 33.6 

(MPa), 1 < Ls/d ≤ 4.25.  

 
Figure 15: Measured total post-peak shear strain at the onset of axial failure against the predicted one using Eq. 15. 

In Figure 16, the values of the total post-peak shear strain (γt,pp) predicted by Eq. 15 are plotted 

against the transverse reinforcement ratio normalised to the confined concrete volume (ρw,conf), for 

different longitudinal reinforcement indices (ρl/αconf,% × fyl), for axial load ratios (vl) of 0.25 and 0.5 

and for a maximum shear stress ratio (τmax/√fc) οf 0.25 and 0.75. The aspect ratio was set at the median 

value of the dataset (Ls/d = 1.65), as this parameter was found not to influence the result as much as 

the others. It is obvious that the higher the axial and shear loading and the lower the transverse and 

longitudinal reinforcement of the member, the lower its deformability, i.e. the lower the total post-



peak shear strain at the onset of axial failure. For values of parameters representative of common 

structures (i.e. 0.2 ≤ ν ≤ 0.3, 1.5 ≤ ρl ≤ 3.5 (%) and 0.2 ≤ ρw ≤ 0.6 (%)), the post-peak shear strain 

would have values between 5% and 20%. 

With the post-peak parameters calculated using the empirical equations proposed in this section, 

the hysteretic shear model described in section 2 can be defined. The implementation of the model in a 

beam-column element with distributed shear (and flexural) flexibility, which accounts for all 

deformation types of sub-standard R/C members, will be presented in a forthcoming paper. 

  

  
Figure 16: Total post-peak shear strain predicted by Eq. 15 along the range of longitudinal reinforcement ratios 

multiplied by the yield strength (over confined area) and transverse reinforcement ratios (over confined concrete area), 

for axial load ratios of 0.25 (top) and 0.5 (bottom) and maximum shear stress ratio of 0.25 (left) and 0.75 (right). 

4. CONCLUSIONS 

A hysteretic model was put forward herein, determining the pre-peak as well as post-peak shear 

response of an R/C member. It is a local hysteretic shear model, in that it accounts for the localisation 

of shear strains, after the onset of shear failure, in a critical length defined by the diagonal failure 

planes, namely shear failure localisation. Its backbone envelope and hysteresis rules are presented, 

with emphasis on the model’s post-peak domain, including issues pertinent to the cyclic and in-cycle 

strength degradation as well as pinching, unloading and reloading stiffness deterioration.  

Furthermore, to provide reliable predictions of the local post-peak response of shear critical R/C 

elements, a database of experimental results for shear and flexure-shear critical R/C columns – the 

largest of its kind – is compiled and empirical expressions for the key parameters of the backbone 

local post-peak shear response are developed. These parameters are: (i) the critical shear crack angle, 

hence the critical length wherein damage concentrates after the onset of shear failure, (ii) the 

descending branch of the curve after the onset of shear failure, for which separate expressions are 

proposed for a linear and a bilinear curve with breaking point at 50% shear strength degradation with 



independent slopes, as well as separate cases for monotonic and cyclic loading, and (iii) the 

deformation at the onset of axial failure.  

Noteworthy findings, additional to the expressions per se, are: 

• High axial load ratio, low transverse reinforcement ratio and pure shear failure were shown to 

result in steeper critical shear crack angles. For common structures, angles of approximately 25o-

30o and 30o-35o (with respect to the column longitudinal axis) would be expected for shear and 

flexure-shear critical specimens, respectively. 

• Initiation of shear failure in one direction has been shown not to affect considerably the 

degradation rate in the other direction, i.e. their descending branch slopes tend to be similar. 

• The data suggests either that practically no residual strength is developed in shear critical R/C 

members (at least those with the characteristics of this database) or that axial failure occurs in most 

specimens before they reach their residual capacity. 

• Higher transverse and longitudinal reinforcement content, as well as lower axial load are generally 

shown to reduce the post-peak shear strength degradation rate, i.e. milder descending branch slope, 

and lead to higher deformability. For common structures, the total post-peak shear strain would 

have values between 5% and 20%. 

• Shear strength has been typically considered zero at the onset of axial failure. It has been shown 

herein that this is not a valid assumption; its adoption could lead to high discrepancies by 

producing much steeper descending branches and great underestimation of the energy dissipation 

capacity, especially in cases where axial failure initiates before significant shear strength 

degradation. 

The local hysteretic shear model will be incorporated in a computationally efficient member-type 

model for the full-range response of substandard elements in a forthcoming paper, with a view to 

accurately capturing the response of shear-deficient R/C elements and structures. It is based on local 

shear deformations, rather than inter-storey displacements, thus more objectively accounting for the 

interaction of inelastic flexural and shear deformations, including the gradual decrease of an element’s 

shear resistance, and more reliably predicting the location and extent of shear damage, without relying 

on assumptions about the bending moment distribution (which generally changes during seismic 

loading). 
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