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Abstract

We show how an information theoretic approach can quantify interference in a
simple imperative language that includes a looping construct. In this paper we
focus on a particular case of this definition of interference: leakage of information
from private variables to public ones in While language programs. The major result
of the paper is a quantitative analysis for this language that employs a use-definition
graph to calculate bounds on the leakage into each variable.
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1 Introduction

Quantifying interference is an important part of assessing covert channels
in security devices, and doing this is less well-established for programmable
components than for simple hardware components.
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Take the notion of interference [5,10] between program variables, infor-
mally the capability of variables to affect the value of other variables. Ab-
sence of interference (non-interference) is often used in proving that a system
is well-behaved, whereas interference can lead to mysterious (mis-)behaviours.
However, significant misbehaviours caused by interference will generally hap-
pen only when there is enough interference. Concrete examples of this are
provided by access control based software systems. To enter such a system
the user has to pass an identification stage; whatever the outcome of this
stage (authorisation or failure) some information has been leaked (in the case
of failure the search space for the right key has now become smaller). Hence
these systems present interference [5] so they are not “secure” in a qualitative
sense. However, common sense suggests to consider them secure if the inter-
ference is very small. This paper uses Shannon’s information theory [13] to
define a quantified notion of interference for a simple imperative language and
derives a program analysis based on this notion.

We briefly recall Shannon’s key definitions and use them to define a quan-
titative measure of the leakage into each variable at each program point for a
While language. We then use these definitions as the basis for a program anal-
ysis which derives bounds on the quantity of confidential information leaked
by a program.

In a previous paper [1] we sketched an information theory based program
analysis for a simple language without loops. The achievements presented in
this paper are:

Analysis structure and loops: The analysis is now graph and not syntax
based; this allows us to handle loops.

Equality tests: we analyse general equality tests (not just tests against a
constant, as previously).

Arithmetic expressions: we present a significantly improved analysis of
arithmetic operators which exploits their algebraic properties.

1.1 Related work

The work we describe in this paper is not the first attempt to apply informa-
tion theory to the analysis of confidentiality properties. The earliest example
of which we are aware is in Denning’s book [4] where she gives some examples
of how information theory may be used to calculate the leakage of confidential
data via some imperative language program constructs. However she does not
develop a systematic, formal approach to the question as we do in this pa-
per. Another early example is that of Millen [8] which points to the relevance
of Shannon’s use of finite state systems in the analysis of channel capacity.
More recent is the work of Gray [14], which develops a quite sophisticated
operational model of computation and relates non-interference properties to
information-theoretic properties. However, neither of these deals with the
analysis of programming language syntax, as we do here. Contemporary with
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our own work has been that of Di Pierro, Hankin and Wiklicky [9]. Their
interest has been to measure interference in the context of a probabilistic con-
current constraint setting where the interference comes via probabilistic op-
erators. They derive a quantitative measure of the similarity between agents
written in a probabilistic concurrent constraint language. This can be inter-
preted as a measure of how difficult a spy (agent) would find it to distinguish
between the two agents using probabilistic covert channels, with a measure
of 0 meaning the two agents were indistinguishable. Their approach does not
deal with information in an information-theoretic sense although the implicit
assumption in example 4 in that paper is that the probability distribution of
the value space is uniform.

By contrast, much more has been done with regard to syntax directed
analysis of non-interference properties. See particularly the work of Sands
and Sabelfeld [11,12]. However, we aren’t aware of any work which develops
an automatable analysis for the quantity of information (in Shannon’s sense)
which may be leaked by a program.

A paper on confidentiality properties which has recently come to the au-
thors’ attention, and which does use information theory, is [7]. Their definition
of ‘information escape’ is similar to our definition of leakage (sect 2.3), though
it does not appear to be equivalent. The focus of [7] is on the relationship be-
tween security properties and refinement, rather than analysing the quantity
of information leaked by a program. The connections with the work of the
current paper deserve further investigation.

2 Information theory and leakage analysis

2.1 The language

The language contains just the following control constructs: assignment, while-
statements, if-statements, sequential composition. The left hand sides of as-
signments are variable identifiers, the right hand sides are integer or boolean
expressions; while loops and if-statements involve boolean expressions in
the standard way. We do not fully specify the language of expressions but we
make the assumption that all expressions define total functions on stores. The
language is deterministic and so, for each program P , the semantics induces a
partial function [[P ]] : Σ → Σ, where Σ is the domain of stores. A store σ ∈ Σ
is just a finite map from variable names to k-bit integers (integers n in the
range −2k−1 ≤ n < 2k−1) and booleans.

We note that the primary interest in dealing with loops is not the possibility
of non-termination but the potential for an arbitrary quantity of information
to be leaked via iterations containing implicit information flows (an implicit
flow being one which is achieved via control flow rather than assignment from
confidential sources [4]).

Given a program P , a program point is either the special node ω (the exit
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point), or any occurrence in P of an assignment statement, if-statement or
while-statement. We call the top-most program point ι (the entry point).
The operational semantics is standard and defines a transition relation → on
configurations (n, σ), where n is a program point and σ is a store. A trace is a
sequence of configurations (n1, σ1) · · · (nj, σj) such that (ni, σi) → (ni+1, σi+1)
for 1 ≤ i < j.

2.2 Interference and information theory

We suppose that the variables of a program are partitioned into two sets, H
(high) and L (low). High variables may contain confidential information when
the program is run, but these variables cannot be examined by an attacker
at any point before, during or after the program’s execution. Low variables
do not contain confidential information before the program is run and can be
freely examined by an attacker before and after (but not during) the program’s
execution. This raises the question of what an attacker may be able to learn
about the confidential inputs by examining the low variable outputs. One
approach to confidentiality, quite extensively studied [5], is based on the notion
of non-interference, in our setting: whether or not a program leaks confidential
information. Here by contrast we address the question of how much may be
leaked.

We use Shannon’s information theory to quantify the amount of informa-
tion a program may leak and the way in which this depends on the distribution
of inputs. For a discussion of the information theoretic background to the cur-
rent work see our earlier papers [1,2]. Recall that Shannon’s theory is based
on the fundamental quantity H, variously known as information or entropy,
defined thus:

H(X)
def
=

∑
x

p(x) log
1

p(x)
(1)

where X is a random variable, p(x) is shorthand for P (X = x), the probability
that random variable X = x, and the sum is over the range of X. The
derived quantity of conditional entropy is H(X|Y )

def
=

∑
y p(y)H(X|Y = y),

where H(X|Y = y)
def
=

∑
x p(x) log 1

p(x|y)
and p(x|y) is the probability that the

random variable X = x given that random variable Y = y.

2.3 Random variables and program points

We define for each program point a random variable corresponding to observa-
tions of the value of the variable at this point. In particular, we are interested
in how much of the information carried by the high inputs to a program can
be learnt by observation of the low outputs, assuming that the low inputs are
known. Since our language is deterministic, any variation in the outputs is a
result of variation in the inputs. Once we account for knowledge of the pro-
gram’s low inputs, therefore, the only possible source of surprise in an output
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is interference from the high inputs. Given a program variable (or set of pro-
gram variables) X, let X ι and Xω be, respectively, the corresponding random
variables on entry to and exit from the program (assume termination for now;
this is relaxed below). We take as a measure of the amount of leakage into X
due to the program:

L(X)
def
= H(Xω|Lι)(2)

(where Lι is the random variable describing the distribution of the program’s
non-confidential inputs). We note that non-interference in this setting is just
the special case of 0 leakage. (We give a precise formal presentation of this
result, and more general discussion of why the definition is appropriate else-
where, see [2].)

The random variable for X at a program point n is defined to be such that
P (Xn = x) is the probability that X takes the value x given that control passes
through program point n. However n may be unreachable or for a given input
store σ, control may actually pass through n many times, with X taking differ-
ent values at different times. For these reasons, Xn is only defined for a subset
of the program points. Let t be a trace (n1, σ1) · · · (nj, σj) with n1 = ι. The
trace t decides nj if, for all traces which extend t, ni = nj implies i ≤ j. Given
a program point n, let ∆(n) be the set {(σ, σ′)|(ι, σ) · · · (n, σ′) decides n}. We
write p(n) for the sum of the probabilities of the domain of ∆(n):

p(n)
def
=

∑
(σ,σ′)∈∆(n)

p(σ)

∆(n) can be interpreted as a random variable on its domain but, in general,
we are interested in particular projections of ∆(n). In particular, the random
variable Xn has the same domain as ∆(n) and is defined just when p(n) > 0:

P (Xn = x)
def
=

∑
(σ,σ′)∈∆(n),σ′(X)=x p(σ)

p(n)

(X may be a vector of variables, in which case σ′(X) means the elementwise
application of σ to its elements). Note that Xn describes the values taken
by X immediately before execution of any instruction at n. The definition
of random variables Xn automatically extends to an analogous definition of
random variables En, where E is any expression in the language (En is the
random variable describing the values which E takes if evaluated at n).

We generalise the definition of leakage above (equation 2) as follows. Let n

be any program point. Then the leakage into E at n is Ln(E)
def
= p(n)H(En|Lι),

taking Ln(E) to be 0 when p(n) = 0. Note that, for programs which always

terminate, p(ω) = 1, so this generalises the previous definition with L(X)
def
=

Lω(X). The remainder of this paper is devoted to showing how bounds on
Ln(E) may be calculated.
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3 Analysing programs for leakage

This section presents the analysis, which has two main parts:

• A qualitative one (3.1–3.2): where we associate to the syntax of a program
a graph summarising its information flow connections.

• A quantitative one (3.3–3.6): where we provide bounds on the amount
(number of bits) of information leaked along this graph.

The section ends with the correctness result.

The graphs we use are a form of use-definition graph. We prefer these to
the syntax because they expose the structure we use to deal with loops. It
should be noted that loops are a significant hurdle in the analysis of leakage.
Consider the program in sect 3.1. A little thought shows that, for in taking
values in 0 ≤ i < 216−1, this program copies in to out via the variables high
and low, even though there is no assignment to low from high.

3.1 Use Definition Graphs

Given a program, the use-definition graph (UDG) is a directed graph whose
nodes are program points. If n is an occurrence of an assignment X = E we
call n a definition node and say that n defines X. A node n is called a use
for the variable Y if Y appears in the expression at n (that is, the boolean
expression of a control construct or the right hand side of an assignment).
There are two types of edges:

(i) data edges (n −→ p): there is a data edge from n to p iff there is a
non-empty path in the flowchart for the program starting from n and
reaching p without any definition of X intervening and n is a definition
of X or n = ι, and p is a use of X or p = ω;

(ii) control edges (n 99K p): there is a control edge from n to p iff n is either
a while or an if-statement and p is an assignment which occurs inside
that statement.

We write =⇒ for −→∪ 99K and =⇒∗ for its transitive-reflexive closure.

Consider the following example program:

int high = in;

int b = 15, low = 0;

while (b >= 0) {

int m = (int)Math.pow(2,b);

if (high >= m) {

low = low + m; high = high - m;

}

b = b - 1;

}

out = low;
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Figure 1, shows the data edges (a) and control edges (b) for this program.

b = b−1

high=in

(a) data edges (b) control edges

b=15 low=0

while (b>=0)

m=pow(2,b)

if (high>=m)

low=low+m

high=high−m

out=low

high=in

b=15 low=0

while (b>=0)

b = b−1

out=low

if (high>=m)

low=low+m

high=high−m

m=pow(2,b)

Fig. 1. UDG for a simple Java program

3.2 Source nodes

When calculating the quantity of information which has flowed into a variable
at a particular program point, we use the UDG to identify the other parts of
the program which make an immediate contribution; we call these the source
nodes for the given occurrence of the variable. In defining these source nodes,
we need to distinguish between those program points which lie inside a while-
statement and those which don’t; we write n 6∈ W to mean that n does not lie
within any while-statement. We need to make this distinction because of the
way our analysis abstracts away from the intricacies of possible cyclic flows of
information within loops: the approach within a loop (roughly speaking) is to
treat a UDG path in the same way as an edge is treated outside.

To understand the following definitions it will help to bear in mind that
a 99K b iff b lies within the control structure a (if or while).

Let n be a use of the variable X; there are two types of source node, the
control source nodes for X at n, denoted conn(X), and the data source nodes
for X at n, denoted datn(X). Wherever n occurs in the program, conn(X) is
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the set ⋃
m∈datn(X)

{m′ 6∈ W : m′ 99K m and m′ 699K n}

The definition of datn(X) varies according to whether or not n lies within a
while-statement:

(i) If n lies within a while-statement, let w be the outermost while con-
taining n, then datn(X) is the set: {m : w 699K m, ∃m′. w 99K m′ ∧
m −→ m′ =⇒∗ n}.

(ii) If n does not lie within a while-statement, then datn(X) is the set:
{m : m defines X, m −→ n}.

In the definition of conn(X), note that the restriction of m′ to points not
in any while-statement has the consequence that all control source nodes are
if-statements and that no control source node lies within a while-statement.
This is not because while conditions cannot influence control flow (they clearly
do) but because our analysis of loops is more pessimistic than our analysis of
if-statements.

Thus, the data source nodes for X at n are the assignments immediately
prior to n (or to the outermost while containing n); the control source nodes
are those if-statements which determine which (if any) of those assignments
actually occur (assuming that control passes through n).

Where it is not necessary to distinguish between data and control source
nodes, we consider the union: srcn(X)

def
= datn(X) ∪ conn(X).

Each internal node in the UDG (that is, every node except ι and ω) has
an associated expression: the right hand side for an assignment, the boolean
condition for a control statement; we call this the expression at n, written
E(n). It is often necessary to consider the set of all source nodes for all the
variables occurring in the expression at a node or one of its sub-expressions;
given any such expression E, we denote this set srcn(E):

srcn(E)
def
=

⋃
{srcn(X) : X occurs in E}

Fig 2(a) Illustrates the idea that for a definition inside a while loop, all the
source nodes lie outside the loop. It shows a typical set of source nodes for
the rhs of an assignment X=E at a program point p inside a loop.

Figure 2(b) shows a possible set of paths (obeying the existence constraints
of the definition above) to the assignment low=low+m from its data source
nodes. From this we can see that the rhs of the corresponding assignment
inside the loop in the example from sect 3.1 has associated the set of source
nodes {high=in, b=15, low=0}.

3.3 Demonic attackers

Until now we have (implicitly) assumed a probability distribution on the space
of initial stores which is independent of the choice of program. There are two
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out=low

(b)

Y1=E1          Yn=En

LOOP

X=E

NODES

high=in

b=15 low=0

while (b>=0)

m=pow(2,b)

if (high>=m)

low=low+m

high=high−m

b = b−1

(a)

Fig. 2. Calculating source nodes within loops

potential problems with this assumption:

(i) while it is reasonable to assume that some knowledge will be available
as to the distribution of the high inputs, it is likely that little or no
knowledge will be available about the low inputs;

(ii) the distribution for low inputs may actually be in the control of the
attacker; in this case it would be conservative to assume that the attacker
chooses Lι to maximise leakage.

We deal with both of these problems by constructing our analysis to give
results which are safe for all possible distributions on the low inputs. The
approach is, essentially, to suppose that the low inputs take some fixed (but
unknown) value λ. The safety of this approach is verified by proposition 3.1.
Note that we assume that the high inputs are not in the control of the attacker.
Thus we are modelling a situation in which the environment delivering high
inputs to the program is trusted, even though the program itself is not. This
is appropriate for example in the analysis of untrusted code which is to be
downloaded and run on a user’s computer, where the user is the owner of the
confidential data.

For each possible choice Lι = λ, we define pλ(n) to be the probability
that program point n is eventually decided (see sect 2.3) given that Lι = λ.

9



Clark, Hunt, Malacaria

Formally:

pλ(n)
def
=

∑
(σ,σ′)∈∆λ(n)

p(σ)/P (Lι = λ),

where ∆λ(n)
def
= {(σ, σ′) ∈ ∆(n) : σ(L) = λ}. Now we can define the random

variables at a program point given that Lι = λ: just when pλ(n) > 0, we

define Xn
λ

def
= Xn|Lι = λ. Finally, we can define the leakage into X at n given

that Lι = λ: Ln
λ(X)

def
= pλ(n)H(Xn

λ ), taking Ln
λ(X)

def
= 0 when pλ(n) = 0.

From here on, we assume that λ is fixed but make no assumption as to
its identity. This is conservative with respect to Ln(X), as shown by the
following:

Proposition 3.1 (∀λ.Ln
λ(X) ≤ a) ⇒ Ln(X) ≤ a

Note that, for all X ∈ L and for all λ, Lι
λ(X) = Lι(X) = 0. Furthermore,

when the high-security and low-security inputs are independent, Lι
λ(Y ) =

Lι(Y ) = H(Y ι), for all Y ∈ H.

3.4 Total versus partial random variables

The rules we present below are intended to derive bounds on the leakage into
a variable at a program point, given only assumptions on the entropy of the
confidential variables at the entry point. Such assumptions actually give very
limited knowledge of the distribution of input values and this means that a
direct calculation of the leakage at a program point is usually not possible. To
illustrate, suppose program point n is the assignment L = H in the following
program:

if (H < 0) then L = H else L = 1 fi

Now suppose that H and L are independent 32 bit variables and H(H) = 16.
To calculate directly the leakage into L we need to calculate Ln

λ(H), but this in
turn requires us to calculate both p(n), which is just the probability that the
condition (H < 0) evaluates to true, and the entropy of H given that (H < 0)

evaluates to true. But knowing only H(H) = 16 we cannot calculate either
quantity. In particular, H(H|H < 0) can take essentially any value between 0
and 31. (For the lower bound, let p(h) = 0 for the lowest (232 − 216) values
of h, p(h) = 1/216 for the rest. For the upper bound, let b = 231−a and
ab − (1− b)log(1− b) = 16; then let p(h) = 1/2a when h < 0, p(0) = 1 − b,
p(h) = 0 when h > 0.)

We deal with this difficulty by calculating bounds on the entropy of a
hypothetical random variable X̂n

λ which is defined everywhere. Let χn be the

characteristic function of the domain of ∆(n): χn(σ)
def
= 1 if ∃σ′.(σ, σ′) ∈ ∆(n);

χn(σ)
def
= 0 otherwise. Then X̂n

λ is defined to be a total random variable
such that Xn

λ = X̂n
λ |χn = 1. The X̂n

λ are defined in the proof of correctness
(theorem 3.2).
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3.5 Analysis rules

The basic analysis is given by the rules shown in table 1. For ease of exposition,
we assume the following:

(i) high variables (H1, H2, . . .) are only ever used as the rhs of assignments
of the form X = Hi, and then at most once

(ii) no high variable is ever assigned

Note that these assumptions are of presentational significance only, since once
Hi has been copied into X, the copy can be used and assigned freely.

A judgement n ` [E] ∼ a (where ∼ is one of ≤,≥, =) is to be read as
asserting that H(Ên

λ ) ∼ a. The initial assumptions for an analysis will be
given as special initialisation axioms for the high variables, each of the form:

n ` [Hi] ∼ a

where n is the first and only use of Hi. In all remaining judgements, two
things are implicit:

(i) E is either E(n) or a sub-expression of E(n)

(ii) E is not a high variable Hi

In rule [Max], bits(E) means the number of bits of storage determined by
the type of the expression E (for example, if E is boolean, bits(E) is 1; if E
is of Java’s int type, bits(E) is 32).

Note that, unlike the other rules, the conclusion of rule [Low] applies only
to variables, not arbitrary expressions, and applies only to program points
which do not lie inside any while-statement. Rule [DP] is so named because
it is essentially justified by the so-called Data Processing theorem of infor-
mation theory [3]: the quantity of information output by a function cannot
exceed the quantity input. Rule [Const] is really a special case of rule [DP]
but is stated separately for emphasis: constant expressions transmit zero in-
formation. As an example, consider how these rules can be applied at the
statement low=low+m inside the loop example from sect 3.1. If we assume
that in is uniformly distributed over 0 ≤ i < 216, it is easy to see, using the
rules, that we get a leakage of all 16 bits into low.

3.6 Correctness

Theorem 3.2 Suppose, for each initialisation axiom deriving n ` [H] ∼ a
and for all λ, that H(H ι

λ) ∼ a. Then, for each program point n, each sub-
expression E of E(n), and each λ, there exists a random variable Ên

λ such
that:

(i) En
λ = Ên

λ |χn = 1

(ii) whenever the rules in table 1 derive n ` [E] ∼ a, then H(Ên
λ ) ∼ a

Corollary 3.3 n ` [E] ≤ b implies Ln(E) ≤ b.

11
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[Min]
n ` [E] ≥ 0

[Max]
n ` [E] ≤ bits(E)

[DP]
n1 ` [E(n1)] ≤ b1, . . . , nk ` [E(nk)] ≤ bk

n ` [E] ≤
∑k

i=1 bk

srcn(E) = {n1, . . . , nk}

[Const]
n ` [E] = 0

srcn(E) = ∅

[Low]
p ` [E(p)] ≥ a

n ` [X] ≥ a
n 6∈ W, srcn(X) = {p}

Table 1
Analysis rules

The proof of part 2 of the theorem hinges on the following lemma:

Lemma 3.4 Let Ên
λ be as given by part 1 of the theorem. Then, if srcn(E) =

{n1, . . . , nk}, there exists a function f such that Ên
λ = f(Ê(n1)

n1

λ , . . . , Ê(nk)
nk

λ ).

Correctness of the rules in table 1 follows because the entropy of f(X)
cannot be greater than that of X (the so called Data Processing Theorem of
information theory [3]).

4 Refining the analysis of expressions

The rules in table 1 allow us to measure flows of information through the
program but in a crude way, analogous to plumbing pipes together. The
utility of an implemented analysis based on our approach will depend on its
sensitivity, i.e. on being able to establish tight as opposed to loose bounds on
the leakage of information. Although we are limited to the basic analysis rules
inside loops, outside loops these rules may be refined to exploit the properties
of the particular operators used in boolean and arithmetic expressions. The
discovery of these refined rules is an on-going project. In the remainder of this
section we present and justify improvements to the analysis of equality tests
and some arithmetic operations. The resulting rules may be found in table 2.
Note that these rules apply only outside loops.

4.1 Analysis of equality tests

In this section we develop a refined rule for analysis of tests of the form
E1==E2. The development reveals that calculating good lower bounds on
the entropy of expressions at intermediate points will sometimes enable the

12



Clark, Hunt, Malacaria

calculation of good upper bounds on leakage. Our development is motivated
by a simple observation: when the distribution of values for E1 is close to
uniform (high entropy) and the distribution for E2 is concentrated on just a
few values (low entropy), then most of the time, E1 and E2 will not be equal.

Suppose that X is a k-bit random variable and suppose that P (X = x) = q,
for some q; what is the maximum possible value for H(X)? We call this
maximum the upper entropy for q in k bits, denoted Uk(q). Since entropy is
maximised by uniform distributions, the maximum value possible for H(V ) is
obtained in the case that P (X = x′) is uniformly distributed for all x′ 6= x.
There are 2k − 1 such x′ and applying the definition of H (eqn. 1) gives:

Uk(q)
def
= q log

1

q
+ (1− q) log

2k − 1

1− q
(3)

As the following proposition shows, if P (X = Y ) = q, then Uk(q) is an upper
bound for the difference between H(X) and H(Y ).

Proposition 4.1 Given a k-bit random variable X and any other random
variable Y , let q

def
= P (X = Y ). Then H(X|Y ) ≤ Uk(q).

As an immediate corollary we have H(X) − H(Y ) ≤ Uk(q). Now the
quantity of interest (H(X==Y )) is just B(q), where

B(q)
def
= q log

1

q
+ (1− q) log

1

1− q
(4)

It is easily seen that B(q) is an increasing function of q in the region 0 ≤ q ≤ 0.5
and this is sufficient to justify the refined rule [Eq] for equality tests (see
table 2).

(We leave unstated the companion rule, justified by commutativity of =,
which reverses the roles of E1 and E2.) We note that [Eq] will give useful
results (that is, much less than 1) in the case that a is high and b is low, that
is, when E1 is known to contain a large amount of confidential information
and E2 is known to contain very little.

The way in which rule [Eq] can be applied is illustrated by the example
shown in fig. 3. This plots Uk(q) and B(q) against q for k = 4 and shows that
for a lower bound of (a− b) = 3.75, q is bounded by 0 ≤ q ≤ 0.25 (the precise
upper bound is slightly lower than this). To find a maximum for q, we need to
solve equations of the form Uk(q)− (a− b) = 0 and, for this, simple numerical
techniques suffice [6]. (Note also that B(q) + (1 − q)k is an upper bound for
Uk(q) and that this bound is very tight unless k is small.)

As an example, consider the program P :

Y = H; [p]if (Y == 0) then [n0]X = 0 else [n1]X = 1 fi; [n2]Z = X

Suppose that k = 32 and the input distribution for H is uniform. Thus we can
analyse the program starting with the assumption ι ` [H] ≥ 32. The basic
rules plus [Eq] are then easily seen to derive: p ` [Y == 0] ≤ ε where ε =
B(1/232) ≈ 7.8× 10−9. Thus, using [Const] and [DP], we derive n2 ` [Z] ≤ ε.
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Fig. 3. the upper entropy for q in 4 bits

[Eq]
n ` [E1] ≥ a n ` [E2] ≤ b

n ` [E1==E2] ≤ B(q)
q ≤ 0.5,Uk(q) ≤ (a− b), k = bits(E1)

[OpMax]
n ` [E1] ≤ b1 n ` [E2] ≤ b2

n ` [E1 � E2] ≤ b1 + b2

[Neg]
n ` [E] ∼ a

n ` [− E] ∼ a

[AddMin]
n ` [E1] ≥ a1 n ` [E2] ≥ a2 n ` [E1] ≤ b1 n ` [E2] ≤ b2

n ` [E1 + E2] ≥ max(a1, a2) − min(b1, b2)

[ZeroMult]
n ` [E1 ∗ E2] = 0

E2 = 0

[OddMult]
n ` [E1] ∼ a n ` [E2] = 0

n ` [E1 ∗ E2] ∼ a
E2 is odd

Table 2
Some Refined Analysis rules (outside loops only)

4.2 Analysis of arithmetic expressions

We can improve the analysis of leakage via arithmetic expressions by exploit-
ing algebraic knowledge of the operations together with information about
the operands acquired through supplementary analyses such as parity analy-
sis, constant propagation analysis etc. We consider unary negation, addition
and multiplication (−, +, ∗) on the twos-complement representations of k-bit
integers with overflow.

Unary negation is just a permutation and therefore easily seen to be an
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identity with respect to entropy, hence [Neg].

We use � to mean any binary operator. For random variables X, Y, Z with
Z = X�Y we know (by the Data Processing Theorem) that H(Z) ≤ H(X)+
H(Y ). This justifies [OpMax]. By itself, this rule gives no improvement over
[DP]. However, we can achieve improved lower bounds (and hence, via [Eq],
improved upper bounds) by exploiting the properties of + and ∗.

As is well known, + makes the set of k-bit numbers in twos-complement, a
cyclic additive group with identity 0 and generator 1. The key group property
which we exploit is that, whenever x = y + z, each of x, y, z is uniquely
determined by the other two. This is sufficient to establish the following
result, which in turn justifies [AddMin]:

Proposition 4.2 Let Z
def
= X + Y . Then

H(Z) ≥ max(H(X),H(Y ))−min(H(X),H(Y ))

Multiplication is less straightforward to analyse than addition as the al-
gebraic structure of the operation is more complex. However, when one of
the operands is a constant, we can sometimes establish good bounds on the
entropy of the output. For example, X ∗ 0 is always zero, thus H(X ∗ 0) = 0,
hence [ZeroMult]. In fact, this can be seen as a consequence of a more general
group property of ∗, namely that · ∗ n generates a subgroup whose order is
determined by the order of n.

In particular, the order of n is just that of the whole group (2k) whenever
n is odd. From this it follows that, for odd n, · ∗ n (like unary negation) is an
identity with respect to entropy. We note that, in this case, it is not necessary
to establish the value of n, only that n is constant (once the low inputs are
known) and that n is odd. Constancy is already captured by our analysis
(n ` [E] = 0) but a separate analysis would be required to establish parity.
These facts are sufficient to justify [OddMult]. Establishing a more general
formula, relating H(X), H(X ∗ n) and the order of n, remains a subject for
future work.

4.3 Correctness

Lemma 3.4, and hence theorem 3.2, extend easily to accommodate the addi-
tional rules in table 2. The key observation is that, in the cases where the
new rules apply, we know not just that the function f of the lemma exists,
but actually which function it is. The results above then justify the new rules
directly.

5 Further improvements to the analysis

Our analysis of if-statements is effectively distributed between the definition
of the UDG structure and the rule [DP]. As shown by the proof of correct-
ness (theorem 3.2), the essential principle is that, at a point n immediately
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following an if-statement in which X may be defined, X̂n
λ can be viewed as

function of B, Y and Z, corresponding to the condition and the values of X
at the end of the true and false branches, respectively. The Data Processing
theorem then implies that H(X̂n

λ ) ≤ H(B) + H(Y ) + H(Z). The weakness
of this approach is that it takes no account of the relative probabilities of
either branch being chosen. Bounds on the probabilities will in many cases
be available (provided, for example, by the analysis of equality tests). As an
example let P ′ be the program

Y = H; if (Y==0) then X = Y else X = 1 fi; Z = X;

This is semantically equivalent to P in the example of sect. 4.1 but the best
we can derive for P ′ is the totally uninformative: n ` [Z] ≤ 32. The problem is
caused by the statement X = Y. In isolation this would leak all the information
from Y into X but, in the context of this if-statement, it actually leaks no
information.

We can improve on such examples by using what we know about q, where
q is the probability that the condition evaluates to true. For equality tests (see
sect 4.1) we may have an explicit bound on q as a result of applying the [Eq]
rule. More generally, given n ` [B] ≤ b for a boolean expression B, we can
invert B(q) to find an upper bound on q or 1−q (though in this case, we don’t
know which). This can be used to tighten the upper bound derived in some
cases. In the example above, application of the [Eq] rule provides a bound on q
of 1/232. Since we know that H(X|B = 1) ≤ k for any k-bit variable X, we are
able to derive the much improved: n ` [Z] ≤ 32/232 + B(1/232) ≈ 1.5× 10−8.

6 Conclusions and future work

The work presented in this paper is the first time Information Theory has
been used in an automatable analysis measuring interference between variables
in a simple imperative language with loops. An obvious and very desirable
extension of the work would be to a language with probabilistic operators.

The authors would like to thank Peter O’Hearn and the anonymous re-
viewers for helpful comments on this work.
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