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Abstract

This article investigates formal properties of a family efrean-
tically sound flow-sensitive type systems for tracking mfiation

flow in simple While programs. The family is indexed by the icieo
of flow lattice.

By choosing the flow lattice to be the powerset of program-vari
ables, we obtain a system which, in a very strong sense, sugssu
all other systems in the family (in particular, for each peoyg, it
provides a principal typing from which all others may be méel).
This distinguished system is shown to be equivalent to, ghou
more simply described than, Amtoft and Banerjee’s Hoayke -
dependence logic (SAS'04).

In general, some lattices are more expressive than others. D
spite this, we show that no type system in the family can getési
results for a given choice of lattice than the type systentliat
lattice itself.

Finally, for any program typeable in one of these systems, we
show how to construct an equivalent program which is typesih
simple flow-insensitive system. We argue that this geng@@i@ach
could be useful in a proof-carrying-code setting.

Categoriesand Subject Descriptors  D.3 [PROGRAMMING LAN-
GUAGES, F.3.1 LOGICS AND MEANINGS OF PROGRAMS
Specifying and Verifying and Reasoning about Programs;.2F.3
[LOGICS AND MEANINGS OF PROGRAMSemantics of Pro-
gramming Languages—Program analysis

General Terms Languages, Security, Theory

Keywords flow-sensitivity, information flow, non-interference,
static analysis, type systems

1. Introduction

This article investigates formal properties of a family avit
sensitive type systems for tracking information flow.

The analysis of information flow in programs has received con
siderable attention in recent years due to its connectitimtprob-
lem of secure information flow [SMO03]. The classic end-taten
confidentiality policy says that if certain data in a systemansid-
ered secret from the perspective of a certain observer atstem,
then during computation there should be no information flamf
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that data to that observer. Denning and Denning [DD77] oee
the use of program analysis to statically determine if tHerina-
tion flow properties of a program satisfy a certain confidsityi
policy.

Most of the more recent work in this area (see [SMO03] for an
overview) has been based upon the ussegfurity type systents
formulate the analysis of secure information flow, and toiaid
rigorous proof of its correctness.

We will focus, like many works in the area, on systems in which
secrets are stored in variables. Secuietyelsare associated with
variables, and this describes the intended secrecy of thiets.
The simplest instance of the problem involves two secueitglls:
high (1) which denotes secrets, and low) (vhich denotes public
data. A partial ordering.. C H, denotes that the only permitted
information flow is fromr to H. The security problem is to verify
that there is no dependency between the initial value of tgke h
variables (the secret to which the program has access),hand t
final value of the low variables (the outputs which are visitn
the public).

With respect to the treatment of variables, one featurernbat
all recent type based systems is that theyflag-insensitiveThis
means that the order of execution is not taken into accoutitan
analysis. One simple intuition for the notion of flow-insigngy
[NRH99] is that an analysis is flow-insensitive if the resuior
analysingC; ; C» are the same as that f6k, ; C4. In this respect
the analysis of [VSI96] (which can be viewed as a reformatati
of Denning and Denning’s original analysis) is flow-insénsi
In particular flow-insensitivity of this style of type systemeans
that if a program is to be typed as “secure” theerysubprogram
must also be typed as “secure”. So for example the triviadizm
l := h ; | := 0 whereh contains a secret, and the final value of
[ is low (publicly observable) is considered insecure beeahs
subprograni := h is insecure.

More generally, flow-insensitivity uses a single abst@tiiin
this case a single security level) to represent each variabthe
program. Flow-sensitivity, on the other hand, increasesi@cy
by providing a different abstraction at each program point.

Although there are a number of empirical/experimental yanal
ses of the relationship between flow-sensitive and flowrisiize
program analyses (see e.g. [CH95]), there has been véeydigt-
cussion of this dimension in connection to information flaveky-
sis.

In this article we investigate flow-sensitive typings fories
ple While language. We present a family of semantically sloses
curity type systems (parameterised by the choice of flovickgtt
which allow the type of a variable to “float”, assigning diéat
security types at different points in the program (Sectipn 2

Although this type system is extremely simple, it turns umeo
surprises. Our main results are the following:



¢ Although we can freely choose an arbitrarily complex flow lat
tice, there is a single “universal” lattice, and hence alging
type system, from which all other typings in all other instes
can be deduced. In fact, all possible typings in all posddite
tices can be obtained from one principal typing in the urgaer
lattice. From the principal typing, we can construct both th
strongest (smallest) output typing for a given input typiand
the weakest (largest) input typing for a given output typifige
universal lattice is the powerset of program variables.

For the universal lattice, we show that the type system isvequ
alent to Amtoft and Banerjee’s Hoare-like logic for progrde:
pendence [AB04], which is expressed in terms of input-\deia
output-variable independence pairs. Because our forionlat
based on dependence rather than independence, it is arguabl
simpler and admits a more straightforward correctnessfproo
without the need to resort to a non-standard trace semantics

In general, some lattices are more expressive than others. F
example, in contrast to the two-point latticeC H, a single
derivation in the type system for the universal lattice aeni

tify fine-grained inter-variable dependencies of the fornmiay
depend on the initial value a@f but not onz". Despite this vari-
ation in expressiveness, we establish in Section 6 an fiater
completeness” result which shows that no type system in the
family can give better results for a given choice of lattibart

the type system for that lattice itself.

Finally in Section 7 we show that for any program typeable
in an instance of the flow-sensitive system, we are able te con
struct an equivalent program which is typeable in a simpie-flo
insensitive system. The translation is given by a secuyipe-
directed translation, introducing extra variables. Théneral
approach could be useful in a proof-carrying-code settingrer

Ski
®TOF T {skip) T
. I-E:t
A }
S T (= B} Tz — pU{]
S p"F{Cl}FI p}—F/{C’Q}F”
e
a pkET{Cy;Co} T
(TEB:t pUtET{CHT i=1,2
pFT{if EC; Co) I
IFE:t pUtFT{C}T
While P {C}

pk I {while EC}T

Sub -
p2 Iy {C} )

p2 Ep1, Do C Ty, T E T

Table 1. Flow-Sensitive Type Rules

L before the assignment agdhas typet, then after the assignment
2 must be considered to have type

The flow-sensitive system we define is a family of inference
systems, one for each choice of flow latti€¢where£ may be any
finite lattice). For a comman@', judgements have the form

pF.T{C} T’
wherep € £, andT, T are type environments of typéar — L.

producer is free to work in a more permissive system and use
the translation to provide more easily checked code.

1.1 Related Work

A number of authors have presented flow-sensitive informnati
flow analyses e.g. [CHHOZ2]. Those close in style to a typeesgst
formulation include Baatreet al [BBL94], who present a system
very similar to that of [ABO4], except that all indirect flovese
handled in a pre-pass. Andrews and Reitman describe a simila
logic [AR80] but did not consider semantic soundness.

In the treatment of information flow analysis of low level eod
(e.g., [GS05, HS05]), flow-sensitivity arises as an esakodimpo-
nent to handle single threaded structures such as stackgisel
ters, since obviously stacks and registers cannot be &skagfixed
type throughout program execution.

The transformation we present in Section 7 is relatedito
gle static assignme(BSA)[CFR"89], although the perspective is
quite different. We discuss this further in Section 7.6

2. A Family of Type Systems

We work with a simple While language with the usual seman-
tics. Program variables are drawn from a finite Sat. A flow-
insensitive type system, such as that in [VSI96], has thevidhg
form: each variable is assigned a fixed security level. Wissiga-
ing an expression to a variable= F, all variables inE must have
an equal or lower security level. When assignments takeeplac
loops or conditional branches, to avoid indirect inforroatflows
the level ofx must be at least as high as the level of any variable in
the branching expression.

To allow types to be flow-sensitive, we must allow the type of a
variable to “float”. For example, taking the two-point flowitiee,
when assigning an expression to a variable- y+x, if « has type

scribes the security levels of variables which hold befoecation

of C, thenI” will describe the security levels of those variables
after execution ofC. The typep represents the usual “program
counter” level and serves to eliminate indirect informatftows;
the derivation rules ensure that only variables which enirup”)
with types greater than or equal tomay be changed bg'. We
write -2 T {C} I"to meanl.; F. I' {C} I'. We drop theC
subscript from judgements where the identity of the latiscelear
from the context or is not relevant to the discussion.

In some of the derivation rules we wrife- E : ¢ to mean that
expressiort has type assuming type environmeht Throughout
this paper the type of an expression is defined simply by tpitia
lub of the types of its free variables:

PHE:tifft= || T'(x).
zefv(E)

This is consistent with the typings used in many systemsjgho
more sophisticated typing rules for expressions would Issibée
in principle.

3. Semantic Soundness

The type systems satisfy a straightforward non-interfezezondi-
tion: only changes to inputs with typest should be visible to out-
puts with typet. More precisely, given a derivatior T {C} T,
the final value of a variable with final typet = T’(z), should
depend at most on the initial values of those variapledth initial
typesI'(y) C ¢. Following [HS91, SS01, HR98] we formalise this
using equivalence relations.

Definition 3.1. Let R and S be equivalence relations on stores. We
say that progranC mapsR into S, writtenC' : R = S, iff, for all
o,p, if (C,o) | o’ and{(C, p) || p' thenoc R p =o' S p'.



We note that this is a partial correctness condition: itvedlo
C to terminate orns but diverge onp, even wherno R p. This
reflects the fact that the type systems take no account of dys w
in which the values of variables may affect a program’s teation
behaviour. GiverI* : Var — £ andt € L, we write=r , for the
equivalence relation on stores which relates stores whilegual
on all variables having typg ¢ in environment’, thus:c =r p
iff Ve.I'(x) C t = o(z) = p(x).

The formal statement of correctness for a derivationT” {C'}
I'" has two parts, one asserting a simple safety property mglati
to p (as described in Section 2) and the other asserting the non-
interference property.

Definition 3.2. The semantic security relation =z T’ {C} T"
holds iff both the following conditions are satisfied:

1. Forallo,0’,z, if (C,0) | ¢ andT’(x) 2 p, theno'(z) =
o(z).
2. Forallt € £,C: (=ry¢) = (=r,t)-

As with ., we suppress thé€ subscript where possible. We
write =, ' {C} T"tomeanl, . I' {C} I (note that
condition 1 is vacuous fgs =_1).

Theorem 3.3(Semantic Soundness) . T {C} IV = p =,
r{cyr.

The proof for condition 2 of the semantic security relation
depends on condition 1, but not vice versa. Proof of comlifio
is by an easy argument thit(x) 2 p implies thatC' contains
no assignments te. Proof of condition 2 is by induction on the
derivation.

The reverse implication, semantic completeness, dogkold,
as shown by the following:

def

Example 3.4. Consider the progran€ = if (h == 0) (I :=

h) (I := 0). This is semantically equivalent fo:= 0 so it is

clear that = I' {C} T holds for arbitrary I". However, for
I'(h) = B, I'(l) = L, withL C B, J I' {C} T, because
'k (h == 0) : 7 and the assignments tdorceI” () J H.

4. The Algorithmic Type System

In this section we introduce a variant of the typing rules inick

the weakening rule (Sub) is removed and folded into the If and
While rules. The result is a system which calculates the Iestal
I such thatp . T {C} T'. The Skip, Assign and Seq rules are
unchanged. The replacement If and While rules are shown-in Ta
ble 2. The rules are deterministic: given an input type emrinent
exactly one derivation is possible for any givén (Well, almost.
The While rule allows the chaifiy, I';, - - - , T}, to be extended ar-
bitrarily by appending unnecessary repetitions of thetlilve may
assume that is chosen minimally.)

Theorem 4.1(Algorithmic Correctness)For all £ and for allC":

1. For all p, T, there exists a uniquE’ such thatp 7 T {C} T
and furthermore, the corresponding functigtf (p,I") — T”
is monotone.

2. 1fpF, T {C} T thenAZ (p,T) C T,

3. Ifpky: T {C}T"thenp, T {C} T".

Corollary 4.2. A% (p,T) is the least” such thap . I {C} T".

Proof of Algorithmic Correctnes®roof of part 1 of the theorem
is by induction on the structure of the command. The interest
ing case iswhile £ C. By induction hypothesisA$ is well-
defined and monotone. It follows that the sequerdtds;, I's, . ..
andL,Ty,I'Y,... may be constructed & F ('), F(T), ... and

r, r
]
i
Fé’l Fé’l’
/] |
S Ty

Figure 1. Construction of a Minimal While Typing

1,G(1),G*(L),..., with ' andG being monotone functions de-
rived from AS; thus these sequences form the ascending chains
shown in Figure 1. The chains have finite height because the la
tices are finite, thus is guaranteed to exist such tHg,, = I,
and it is then immediate that,, = I",, for all m > n. Put more
succinctly, the While rule specifids, as an iterative construction
of the least fixed point of a monotone function on a finite ¢a&tti

The proofs of parts 2 and 3 of the theorem are then by straight-
forward inductions on thge . T {C'} T derivation and the struc-
ture of C, respectively. |

In Section 7 we adapt this version of the type system to define a
program transformation which allows the use of conventiired-
type systems in place of the flow-sensitive ones.

5. A Limiting Case: Dependency Analysis

Given the correctness condition, it is clear that the tystesys de-
fined above are calculating dependency relationships leetywso-
gram variables. Intuitively, we might expect to gain the trjo®-
cise dependency information by choosing the flow latit&/ar),
which allows us to consider arbitrary sets of variablesl@ding
the singleton sets) as distinct types. In Section 6 we egpiode-
tail this question of precision, with some slightly surprgsresults.
Section 6 also formally establishes the special status etyhe
system forP(Var); anticipating this, we introduce some terminol-

ogy.

Definition 5.1. Theuniversal latticds the flow latticeP (Var) of
sets of program variables. Thmiversal systens the correspond-
ing type system.

In this section we show that the universal system is equitvate
(is, in fact, the De Morgan dual of) Amtoft and Banerjee’s Hpa
style independence logic [AB04].

For notational clarity when comparing the universal sysiéth
other choices of’, we letA, A’ range over type environments just
in the universal system (thus, A’ : Var — P(Var)).



(DEE:t putH T{CHT i=12 ., o
pH T {if ECy Co} T Coe
F’-"E:ti util—“F'- C F/-/ 0<:<
While— L A O0sisn I, =T/Ur, I, =T,

p T {while £ C} T,

Table 2. Flow-Sensitive Type Rules: Algorithmic Version

5.1 Comparison with Amtoft-Banerjee Hoare Logic

In [ABO4], Amtoft and Banerjee define a Hoare-style logic for
deducing independence relationships between variabl¥ghite
programs. Judgements in the logic have the form

GrT{C}T

whereG € P(Var) andT, T’ € P(Var x Var). The idea is
roughly as follows. Suppose thétis preceded by some previous
computation on the store. We will refer to the value of a \ada
before this preceding computation as @sginal value. Then a
pair [z#y] in T’ represents an assertion that the value affter
C' is independent of the original value gf assuming that all the
independence pairs i are valid for the preceding computation.
For ease of comparison, rather than sets of independence pai
T, we present the logic in terms of mappings V' : Var —
P(Var) (this depends simply on the setisomorphiBifd x B) =2

A — P(B)). Thus Amtoft-Banerjee (AB) judgements in our
presentation have the form

GFV{C}V

The AB derivation rules are shown in Table 3. The orderigs
pointwise reverse subset inclusion, thus:

V1 X V. iff Vo € Var.Vi(z) 2 Va(z)

Note that the ordering used @his justC, not <.

The relationship between the AB logic and the universal sys-
tem is straightforward: for each there is a correspondirlg such
that V(z) is the complement of\(z). Where the universal sys-
tem derives sets of dependencies, the AB logic simply defive
complementary set of independencies. (An AB context(sebn
the other hand, corresponds directly to aenesetp in aP(Var)-
derivation.) We use the following notation:

def

def

V, whereV(z) = Var — A(x)
A, whereA(z) = Var — V(z)

< B

Clearly this is an order isomorphisrﬁ = AandA; C A, iff
A1 = Ao, etc.

Theorem 5.2. The AB logic and the universal system are De
Morgan duals. That isG = A {C} A’ is derivable in the
universal system ifff - A {C'} A’ is derivable in the AB logic.

The proof amounts, essentially, to showing that each AB rule
is the dual of the universal system counterpart. This is miteq
literally true, since the way some AB rules are formulateiiidsun
the potential for implicit weakening, which must be madeliekp
using Sub in the correspondirfg(Var)-derivation. For example,
consider the second side condition on the rule IfAB. If westate
this in its contrapositive form

Fzefv(B)wgV(z) =weq
it is easily seen that the two side-conditions together arhtmu

G'2Gu |J Vi (1)

zefv(E)

Note that any subderivation concluding at a premise to IfABiw
G’ strictly greater than required by (1), can have an instarfce o
SubAB added at the end to maké = G U U,cp (s V()
With this caveat, the side condition for IfAB is equivalentthe

If premise in the universal system. Similar observationglapo

the side conditions for AssignAB and WhileAB.

6. Internal Completeness

In this section we explore a fundamental relationship betwaif-
ferent members of our family of flow-sensitive type systeFf.
simplicity of presentation, we consider only “top-levelping
judgements, ie, those of the forrr T' {C} T (see Section 6.3
for further remarks on this point). We start by formalisindey
notion: the sense in which one typing can be viewed as sulogumi
another (possibly in a different lattice). Givéh T : Var — L,
we refer to a paif” {-} I as anC-typing. If + T" {C'} T’ we say
that typingl" {-} I" is derivable forC.

Definition 6.1. An L;-typing 'y {-} T} is said to subsume an
Lo-typingT2 {-} T% iff, for all command<’”
':Ll Iy {C} r‘,1 = ':ﬁz Iy {C} F,2

Note that this is @aemantianotion of subsumption: one typing
subsumes another precisely when the non-interferenceegiyop
specified by the former is stronger - satisfied by fewer pnogra
than that specified by the latter. As we shall see (Theorenths
type systems actually faithfully reflect this semantic tielaship.

As defined, subsumption appears difficult to verify, since it
quantifies over all possible programs. In fact, it sufficesampare
the order relationships between the two pairs of type enwirents:

Theorem 6.2. £1-typingT'y {-} T} subsumeZ.-typingT> {-}
I iff, for all 2,y € Var:

Iy () CT1(y) = Ta(w) T Ta(y)

Proof. For theonly if direction we show the contrapositive. As-
sumerl(z) C TI'i(y) andT2(x) Z Ts(y). We must find some
commandC such thatf=,, T'v {C} T} but =z, T2 {C} Ts. Let
{z1,...,2n} = Var — {y} and letC be the program
y:=x;21:=0;---32,:=0
(the use of0 here is arbitrary, any constant will do). It is then
easy to verify that” : (=r,:) = (=r;.) holds for allz but
C': (=ry,s) = (=ry,) fails for s = T3 (y).
For theif direction, assume

(Al) Ti(z) CTi(y) = Ia(z) CI(y)

(A2) o, T {C} T
We have to show, for alb € L, C' @ (=rys) = (=ry.)-
Supposes =r,,s p and (C,o) | o and(C,p) | p' and
I'5(y) C s. We must shows'(y) = p'(y). Now, for anyz,
I2(z) C Th(y) = Ta(z) C s = o(z) = p(x). Hence, by
(A1), I'i(z) C I'i(y) = o(z) = p(x), thuso =r,: p, Where
t = I (). Hence, by (A2)¢" =, , ', henceo’(y) = ¢'(y) as
required. a



if Vy.Yw € V'(y).

r#y=weV(y)
r=y=>wgGAVzev(E)w € V(z)

GFV {Co} V"

AssignAB ;
GFV{z:=E}V
GFV{C}V
SeqAB {1}
AR G'+V{C}V i=1,2 if
GFV{if EC, Co} V'
G'+-V{C}V i
WhileAB ey i

G+ V {while E C} V

G F VL {C} V)

SubAB
Ga F V2 {C} V4

GFV{C ;Ca} V"

GCqE

and w¢ G = Ve tv(E)w e V(z)

GCG

and w ¢ G = Vr e v(E)w e V(z)

G2 CG1,V2 X V1,V XV,

Table 3. Amtoft-Banerjee Hoare Logic

This result shows that the semantic content of a judgement
T {C} I'is uniquely determined by the set of pafi(s:, y)|T'(z) C
I(y)}: the smaller this set, the stronger the non-interferenop-pr
erty. In fact, these pairs are precisely the dependendmsed by
the typing: if ['(z) C T'(y) then the final value of after execut-
ing C may depend othe initial value ofz. Alternatively, we may
consider the contrapositive form of Theorem 6.2, which shgs
Iy {-} T’} subsume§, {-} T iff

Ia(z) Z Ta(y) = Ti(z) Z T (y)

This allows us to understand a typing in termsimdependence
relations (as used by Amtoft and Banerjee). The larger the se
{(z,y)|T(x) Z I'(y)}, the stronger the non-interference property:
if T'(z) Z T (y) then the final value of after executing” must be
independent ofhe initial value ofz.

Now suppose we have af);-typing which subsumes afi-
typing, and suppose we find that tife-typing is not derivable
for C in the Lo-type system. Will it ever be possible to verify
the soundness of th&,-typing for C indirectly, by deriving the
subsumingC;-typing in the £, -system instead? We might expect
this to happen in the case thét has more points, and is therefore
able to make more refined dependency distinctions, tharCon-
sider the examples shown in Figure 2, wherés the four point
lattice depicted. It can readily be verified that tR¢Var)-typing
subsumes th&-typing and both judgements are derivable. How-
ever, thel judgement simply assignsthe most conservative typ-
ing in £, whereas thé(Var) judgement captures the fact that the
final value ofy may depend on both andz, but not on the initial
value ofy. Could it be, that as part of a derivation for some larger
program, this fine-grained derivation fgrenables us to derive a
P(Var)-typing subsuming ai-typing which cannot be derived in
the simplerC-system? Surprisingly, the answer is No, as confirmed
by the following theorem.

Theorem 6.3 (Internal Completeness)if £;-typingT; {-} T
subsumeso-typing T2 {-} T5 and F,, Ty {C} T7, then
bz, T2 {C} T

Before we can prove the theorem, we need to develop some

further machinery. As an additional benefit of this develepm
we find that, for each comman, there is a principal typing from
which all others can be obtained.

6.1 Monotone Renaming of Types

This section establishes a key technical result used inrhef pf
the Internal Completeness theorem. Roughly speaking,ethatr
says that we can take any derivation and, by consistenthmérgy
the security types, obtain a new one. The notion of renansng i
very general and allows us to translate a derivation for droéce

of lattice into a derivation for a different lattice; we regguionly
that the renaming function be monotone. GilenVar — £, and

a renaming functiorf : £1 — Lo, we write f*(I") : Var — Lo

for the pointwise extension gfto I, thus f* (') (z) & f(T'(x)).

Lemma 6.4 (Monotone Renaming)Let f : £; — L2 be mono-
tone. Therp -, T' {C} I = f(p) b, f7(T) {C} f~(I).

Proof. By induction on the height of thé, -derivation. We present
the Assign and While cases by way of illustration.

We have arC; - derivation of the form:
I'be, Bt
pte, T {z:=E} T’

Case: Assign

wherel” = I'[x — p LI t]. We can construct afi»- derivation:
F (D) by, Bt
f®) Fe, f1(0) {z:=E} f*(D)[z — f(p) Ut]

It suffices to show thaf* (T')[z — f(p) Ut'] C f*(T) (since we
can then use Sub). By the definitions,(I") [z — f( Ut (y) =
FH(I")(y) forally # x and it remains to shovi(p)Ut' C f(pLit).
Now by monotonicity off we have

) =f @

= || A f( ] T
yEfv(E)

yEfv(E)
Finally, using this and monotonicity gfagain, we have (p)Ut’ C
f)Uft) E flput).
Case: While We have arC, - derivation of the form:
Phey Eit pUthe, D{C}T
pke, I'{while EC} T

By induction hypothesis we hayép LI t) ., f*(T') {C}
As in the Assign case, we hayé(T') ., E : ¢’ andf(p) Ut

().
=



[z: {z},y: {y},2: {z}]

[x:M,y:L,z:N]

Fp(var)

Fc

[z: {z},y:{z, 2},2: {2}]

[x:M,y:H,z:N]

0)

z) (y:

ifz (y:=2) (y:=0)

ifz (y:=

Figure 2. Example Derivations

f(put), allowing us to construct:
flout) be, f7(I) {C} f7(I)
fr@) b, Bt fp)ut e, f1(I) {C} £7(I)
f(p) e, f7(T) {while E C} f(T)

6.2 Canonical Derivations

Given the Monotone Renaming lemma, we might hope to prove
the Internal Completeness theorem by a construction foitalde
monotone renaming function to translate e derivation into an
Lo-derivation for the subsumed typing. However, since an @ppr
priate construction is not immediately obvidusve go via an in-
direct route. We begin our detour by showing how to produge an
given derivationt, T" {C} T from a particular form of derivation

in the universal system. To do this we construct, for eaclcehof

I', anabstract interpretatiofCC77] which is given by gair of
monotone renaming maps:

Definition 6.5. GivenT' : Var — L, we define the mapsr :
P(Var) — L and~vr : £L — P(Var) by:

def

ar(X) = || T (3)
wt) ¥ {e|T(z)Ct} 4)

These maps enjoy a special status. Recall [DP90] that a $5aloi
Connection (GC) betweefl; and£; is a pair of mapsa, v) with
a: Ly — Lo, v : L2 — Ly and such thaty(s) C ¢ <=
s C v(t). Key properties of a GC are that -y are both monotone,
ao~y Cid, v o« Jid, a preserves joins ang preserves meets.
Furthermore, the two component maps uniquely determina eac
other, thus:

a(s)

[1{t s Sy} (5)
(1) | [{sla(s) £t} (6)

Lemma 6.6. For anyT" : Var — L, the pair{(ar,~r) is a Galois
Connection betweeR(Var) and L.

Our first use of these renaming functions is, givenZatyping
I {-} T, to construct a typing in the universal system which
subsumes it. A centrabte is played by the particuld?(Var) type
environment which maps eaahto the singleton{z}. We denote

this environment by\,. Thus, for allz € Var, Ag(x) def {z}.
Lemma6.7. Ag {-} 77+(T"’) subsume§ {-} T

Proof. AssumeAy(z) C yr(I'(y)). We must show thaf' (z) C
I (y). SinceAg(z) = {x}, the assumption is juat € yr (I (y)),
hencel'(z) C T (y) by definition ofyr. O

It turns out that the two related typings stand or fall togetffor
anyC, the one is derivable if and only if the other is.

1Though we can read it off easily enough once we have the ptoisf.

f(s) = LH{T2(2)|T1 (2) E s}

Lemma 6.8(Canonical Derivations)
FeT{C}T < F Ao {C}AE(T)

Proof. The proof makes essential use of the Monotone Renam-
ing lemma. For the= direction, Monotone Renaming gives-
o (T) {C} ~£(T). It then suffices to show thahg C ~£(T),
since appending a single use of Sub then gives the requiredde
tion. To showA, C ~+(I") we must show: € yr (T'(x)) for all z,
and this is just’(z) C I'(z).

For the< direction, Monotone Renaming givés ot (Ag) {C}
of (4 (I")). Now, by (8),ar({z})) = [t | = € ()}
[t | T(z) C t} = I'(z), thusar(Ag) = I'. By standard prop-
erties of a GCof-(7¢+(I')) T T'. Thus the required derivation
follows by appending a single use of Sub. |

Now we can prove the theorem stated at the start of Section 6.

Proof of Internal Completenesésssume £;-typing Ty {-} T}
subsumesCy-typing T2 {-} T5 and +., T1 {C} Ti. We
must show ., T's {C} T'% which, by the Canonical Derivations
lemma, is equivalent to

= Ao {C} 1, (T2) )

Furthermore, again by the Canonical Derivations lemmagegie
tence of our assumed derivation is equivalent to

= Ao {C} 11, (T1)
It thus suffices to show
7;‘1 (Fll) C 7;2 (Fé) 9

and append a single use of Sub to derive (7) from (8). To shpw (9
we must showl; (y) C Ty (z) = T2(y) C T's(x), and this is just
the assumed type subsumption, so we are done. |

®)

As we noted above, the use of Galois Connections above is
a form of abstract interpretation, and is reminiscent of shely
of completeabstract interpretations [CC79, GRS00]. We have not
explored these connections deeply, but a key differenceldvou
appear to be in our use of a different GC for each choic&,of
rather than a single GC relating all-derivations to counterpart
derivations in the universal system.

6.3 Principal Typings

As an additional corollary of the Canonical Derivations teey we
find that, for each command, there is a typing derivable fat'
from which all others can be inferred, namely

F Ao {C} Ac

whereA¢ is the smallesf\’ such that- A, {C} A’ (recall that,
by Corollary 4.2, this exists and is given b&g(vﬂr)((ﬂ, Ay)). The
Canonical Derivations lemma shows that derivability of giwen

Fc. T {C} I is equivalent toVz.Ac(z) C 4£(I(x)), which
unpacks to:

y€Ac(z) =T(y) CT'(z) (10)



In fact, we can show thah, {-} A¢ is aprincipal typing for C,
in the sense defined by Wells [Wel02]. Transposed to oumsgptti
Wells makes the following definitions:

e A pre-order on typingsl'y {-} T1 < I's {-} T iff VC. +
e Principal typings: typingl'y {-} T is principal for C' iff

I {C} F’l,and FI's {C} P’g =1 {} Fll <TIy {} PIQ
Theorem 6.9(Principal Typing) Ao {-} Ac¢ is principal for C.

Before proving the theorem we state an easy lemma about sub-

sumption:

Lemma 6.10. If Ty {-} '} subsume§s {-} Iy andT’ C I'},
thenl'y {-} T” subsume¥, {-} T.

Proof of Principal Typing.By definition of Ac, F Ay {C} Ac.
Suppose T' {C} T'. We must show, for alC’, + A, {C'}
Ac = F T {C'} T'. So suppose- Ay {C'} Ac. By Internal
Completeness, it suffices to show thay {-} Ac subsumes
' {}T.ByLemma6.7A, {-} 77-(T"’) subsume¥ {-} T’ so, by
Lemma 6.10, it suffices to shotkc C ~1+(I'). By the Canonical
Derivations lemma (using- T {C} T”), F A {C} 4¢(I), so
by definition of A, Ac T A4 (T7). O

As noted earlier, we have restricted attention to typingyg:d
mentsp - T' {C} T with p =_1. While this is appropriate when
we wish to consider whole programs, it does not allow us tdyapp
our principal typings result compositionally. We beliehe results
above extend straightforwardly to the general case, thategybe-
ing to adjoin a “program counter variable” ¥ar, so the universal
lattice become® (Var + {pc}).

6.3.1 Polymorphism

The principal typing result above suggests that we shouldbbe
to view typings in the universal system as polymorphic, imso
sense. In fact, this can be done quite directly: we may take an
isomorphic view ofP(Var) which shows typings in the universal
system to be polymorphic in the standard sense of typesvimgpl
type variables. Assume given a set of type variall&&ar = Var,
ranged over by3. Assume also some particular 1-1 mapping be-
tween the two sets: we writé, for the type variable associated to
program variabler. In this view, A, is a type environment which
assigns a unique polymorphic varialle to eachz. The applica-
tion of ar to Ap in the proof &) of the Canonical Derivations
lemma amounts to an instantiation of the type variablesadyce
I'. In generalar interprets a sef” of type variables as the lub of
the interpretations of its elements. Thus, in this viewetyn the
P(TVar) lattice can be thought of as formal lubs, which can be
interpreted as elements in any latti€eby fixing an interpretation
I for eachg.

As above, letA ¢ be the smallesf\’ such that- Ay {C} A'.
It can be shown that fixing® and calculatingx (Ac¢) gives us
AZ(L1,T), ie the smallest” such that - T {C} T'. More
interestingly, Ac may also be used in the reverse direction, to
calculate the greatedt such that = T {C} I for a givenI".
The idea is to construct an interpretatién TVar — £ which

“unifies” A¢ andI”, in the sense that
ar(Ac(z)) CT(x) (11)

for all z, wherea (T) = | ;.. 1(3). The greatesf satisfying
this equation for alk is given by

1(8) = [ (T (x) | B € Ac(x)} (12)

2For this purpose, we view our family as a single type systensisting of
the disjoint union of all its members.

The hope is that taking'(z) < I(3.) should then give us the
greatestl” such that = T {C} T’. This is borne out by the
following:

Proposition 6.11. GivenI : Var — L, let I be defined as in (12).
ThenI'(z) & 1(3.) is the greatest such that I {C'} T,

Proof. By the Canonical Derivations lemma, it suffices to show that
theT" defined is the greatest such that

F Ao {C} A1 (I) (13)

Firstly, we show that (13) holds by showing that(I’(z)) 2
Ac(z) for all z. Suppose3, € Ac(z), then we must show that
I'(y) = I(By) C I'(x). This holds becausg, € Ac(z) implies
I (x) belongs to the set over which the meet is taken in (12).

It remains to show that, (I') 3 A¢ = I C T'. We
show the contrapositive, so suppdsé Z T'. Thus, by (12), for
somez, 3, € Ac(z) andTl'(z) Z TV(z), thusB; € Ac(z) but
Ba & yri (I (2)).- 0

7. Transformation to Fixed-Types

We have seen that floating types enable more programs to ed typ
than a standard fixed-type approach. In this section we shatv t
if a program is typeable in the floating type system, theneter
an equivalent program which is typeable in a traditionaldixgpe
system. We show this by construction: we extend the typeesyst
so that it alsogeneratesuch a program. Take as an example the
following valid judgement for the flow lattice C H, and the type
environment" = [{: L,k : H|:

LET {l:=h;l:=0;h:=0;l:=h} T

A traditional security type system would not be able to handl
this example because the levelidifecomes temporarily high, and
then the level ofh becomes low. To systematically transform the
program to make it typeable by a fixed-type system, we reptese
each variable by a family of variables, one for each elemént o
the flow lattice. The idea is that at any point in the compotati
we will be working with one particular member of the family.
Whenever we need to raise the type of a variable froto ¢ in
the original program we represent this in the transformedjam
by performing an assignment tooveinformation fromz; to x,
and by henceforth working with, .

Using this idea, the above program can be represented by the
following:

ly := hu;ly := 05 hy := 051, := hy,
whereh, and h,,, for example, are distinct variables. The initial
inputs! andh are here represented hyandh, respectively. In a

flow-insensitive security type system the program is deeseedre
becausé, (andh,) only ever contain “low” information.

7.1 Fixed Variables

To discuss fixed types more precisely it is convenient taohice
a new class of such type-indexed variables into the language

Definition 7.1. For any given lattice of typeg, define the set of
fixed variablesF Var, to be the set of type-indexed variables

FVar & {2, | z € Var,t € L.}

To distinguish the fixed variables from the “ordinary” valikes we
will henceforth refer to the variables iWar asfloating variables

So, for example, if we are working in the two-level flow lagtic
then for each floating variable, we have in addition two fixed
variablesz, andxy.



We will now extend the language with fixed-type variables.
Their dynamic semantics is just as for floating variables. ahée
going to present a transformation by adapting the algoiither-
sion of the type system, but first we must extend it to coveidfixe
type variables: we extend the rule for expressions and adie éar
fixed-type assignment. We do not extend the type envirorsrtent
cover fixed variables since their type is given by their index

Let fv(E) denote the free floating variables (as before), and
defineffv(E) to denote the free fixed variables of expression
(and similarly for commands). Then the typing of expression
the extended language is given by

L] ¢

TE:tifft= || T'(z) U

zefv(E) zreffv(E)
The fixed type rule is simply:
FE:s sCt pCt

Fixed-Assign P T {m = B} T
It is straightforward to extend the soundness argumentadora-
pass fixed variables.

Note that if we restrict our attention to programs with noefre
floating variables fiy(C') = @), then type environments are re-
dundant. We will use metavariabl® to range over commands
with no free floating variables. We will writ¢ - D to denote
p F* ' {D} T for arbitrary I'. It should be straightforward
to see that derivations of this form correspond exactly tivee
tions in e.g. Volpano, Smith and Irvine’s system [VSI96]darther
Denning-style analyses, although we will not prove thigrfally.

7.2 Translation

Now we present the translation as an extension of the tygersys
(algorithmic version) to judgements of the form

pre T {C~ D}T

(we do not decorate for this system since the form of the judge-
ments readily distinguish them from the previously defings-s
tems). First we need some basic constructions and notations

Definition 7.2.
1. For any type environmenisandI”, letT" := I'” denote the set
{zs =21 | T(z) = 5,T(z) = t,5 # t}

2. LetS be a set of variable to variable assignment statements. We

say thatS is independenif for any distinct pairw := = and

y := z1in S, the variablesw, z, y and z are all distinct. For in-
dependenp, all sequentialisations are semantically equivalent
and we letS represent the command obtained by some canoni-
cal (but unspecified) sequentialisation.

Lemma 7.3. I' := IV is an independent set of assignments

Thus we will writeI" := I" to denote the command obtained by
some canonical sequentialisation of the assignments.

Definition 7.4. For any type environmeri, let E* denote the
expression obtained by replacing each floating variabie E with
the fixed variabler; wheres = T'(x).

With these definitions we are ready to introduce the traioslat
The rules are presented in Table 4.

The basic idea of the translatipn~, T {C ~» D} T" is that
for any program point inD corresponding to a point id’, for
each variabler, only one member of the familyz, }:c . will be
“in play”. The type variables in play at any given program rgoi
are given by the type environment at that program point. $o fo
example ifl’(z) = s thenz, will be the z-variable in play at the
beginning of the execution dp.

Example 7.5. Since a type derivation is structural in the syntax,
for any derivation we can associate a type environment vatthe
program point. Consider the example derivation shown iruFég:

in the central column we write the environment update (nathan
the whole environment) yielding the environment after pinaggram
point in the corresponding sub-derivation, and on the righhd
side we write the translated program. The example uses e fo
point lattice introduced previously (Figure 2).

It remains to establish two properties of the translatesiser

¢ Correctnessthey should be semantically equivalent to the orig-
inal terms, and

e Static Soundnesshey should still be typeable.

7.3 Correctness

Correctness means that the input-output behaviour of thgram
and its translation should be the same. We refer to thieasantic
equivalenceSince the original programs operate on floating vari-
ables, and the translation operates on fixed variables, ve¢ con-
struct a suitable relation between them.

Definition 7.6. Leto range over floating variable stores and |et
range over fixed variable stores. Then for each type enviesrin
we define the compatibility relation as

o ~r p <= Yz € Var.o(z) = p(2r())

Theorem 7.7(Translation Correctness)
If p=T {C ~ D} I" then for allo andp such thatr ~r p,

* (Cio) Yo' =3 (D,p) I p'ando’ ~r: p’
e (D,p) | p = 30’'.(C,0) | o’ andc’ ~r: p

Proof. See Appendix A.1. |

7.4 Static Soundness

The fact that the translated programs are equivalent tortgaals

ensures that they have the same security properties, sorge-n
terference is an extensional property. Here we show, mgreéfsi
icantly, that the translated program is also typeable — amzkst

only contains fixed variables this means that it is typeabk¢on-

ventional fixed type system.

Lemma 7.8(Expression Soundnesslf I' - E : t then ET : ¢
Follows directly from the definitions.

Theorem 7.9 (Static Soundness)lif p = T' {C ~» D} T” then
pkED

Proof. See Appendix A.2. O

7.5 Complexity

The transformation increases program size by adding assigrs

of the formI” := TI'. These assignments arise whenever, in the
flow-sensitive system, a variable changes its level. Siheeohly
way that a variable can change its level is through an assighm
the size ofl” := I' is bounded by the numbeut) of assignment
statements in the original program. The number of such assig
ments that are added to the program is proportional to thebeum
(b) of conditional and while statements. This gives us a bound o
O(ab), i.e., quadratic in the program size. This upper bound g tig
as shown by the following program, where we use the two-point
lattice, and initiallyk is the only variable assigned type

if y1then
if yo then

if y,, then

if hthenz; :=0;---;2, :=0



Skip-t
PO T {skip ~ skip} T

I'HFE:t s=pUt
pkT{z:=E~szs:= E'} T[z — 5]

Assign-t

*p}—F{C’l'\»Dl}F’ p'_FI{CQ’\’)DQ}FH

Seq m
pET {C1;Cy~ D1; D2} T

THFE:t pUtFT{Ci~D;}T; i=12 P
If-t - I =T, uT%
prET{if ECy Cy~sif BT (Dy ;T :=T4) (Da; TV :=T)} I

_ NFE:t; put;FI;{C~ DT} 0<i<n , , . , ,
While-t - To=T, T, =T/Ul, Thyy =14
pF T {while E C ~ T, :=T ; while E'» (D,, ; T}, :=T1)} T,

Table 4. Translation to fixed types

Initial typing: {[w : L;z : M;y : N; z : H|}

Code Environment changé¢ Translated code
ifr=0theny:=y+ Lw:=2| [y— H;w — H| if zyy = 0then yy := yu + 1; Wy := 2u
else yy := y; wu 1= wy,

while z > 0 while zy > 0

z:=z4+w Zu ‘= Zu + Wy

r:=x—1 Ty =Ty — 1

zi=ux [z — M] Zn i= Tu

Zn 1= Zu

Figure 3. Example translation derivation

where the one-armed conditional is just shorthand for aitiondl tion that there is no need for a flow-sensitive analysis orogiam
with skip in the else branch. The above program is typeable, where in SSA form, since there is only one program point that caminfl
in the final environmenty; . . . x,, have typea. Writing X, := X, ence the type of a variable.
for the sequence of assignments, := z1.;- - - ; Tnu = Tn., the Our transformation is however rather different from SSAeTh
transformed program is: transformation we have described uses a flow-sensitiveysisah
if y1. then prderto construct the transformed program, whereas Sme '
if 21 then is to avoid the need to perfo_rm more com_plex analyses in the fir
L place. Thus our transformation approach is perhaps naestiag
if y,.. then when viewed from_ a c_Iassic compiler-con_struction persi_pect
i‘f Ry then 21y = 0: - 2y == 0 Howeve.r, gppllcatlons such as security are not dlrgctlg-rel
else X, = X, Y vant to optimisation and compilation. In a moblle-codel_ﬂ_gtta
else X, := X, g:ode consumer may demand _that the code can be verified to sat-
isfy some information-flow policy. Furthermore, in orderhave
else X, = X, a small trusted computing base, a small and simple typemyiste

) ] ) preferable. Transformations of the kind presented hereterest-
It seems |Ik6|y that there is a mor(_e_premse bound based on thEing in this setting because they allow the code produceréhetits
depth of nesting of loops and conditions, and that such blps/ U of constructing well-typed code in a more expressive syseith-
are unlikely in practice. out requiring the code consumer to verify code with respethis

7.6 Relation to Single Static Assignment more complex systefn

Our transformation introduces additional variables, dns addi-

tion is performed in such a way that a flow-insensitive arialys 8. Conclusions
on the transformed program achieves the same effect as a flow-
sensitive analysis on the original. Viewed in this way, aans-
formation has a similar effect to transformationsiagle static as-
signment form(SSA) (see e.g. [App98]). Single static assignment
is used in the compilation chain to improve and simplify data 3The result of the SSA transformation is not an executablgrpra, since
analyses. It works by the introduction of additional vaksbin it contains the so-calleg-nodes at all join-points, so SSA would be un-
such a way that every variable is assigned-to exactly onoeeS  suitable for this purpose. However, [ADVRFO1] proposes difsocode
there is only one assignment per variable, it follows by twts representation based on SSA.

We have presented and investigated the formal propertia@$ash-
ily of semantically sound flow-sensitive type systems facking




information flow in simple While programs. The family is incl [CH95] Paul R. Carini and Michael Hind. Flow-sensitive imece-
by the choice of flow lattice. dural constant propagation. RLDI '95: Proceedings of the
The key results we have shown are that: ACM SIGPLAN 1995 conference on Programming language
) o ) . design and implementatippages 23-31. ACM Press, 1995.
* Foraglv_en program, all derlvat_lon_s inall mem_be_rs ofthe!l)am_ [CHHO2] D. Clark, C. Hankin, and S. Hunt. Information flow for
can be inferred from the derivation of a principal typing in Algol-like languages. Journal of Computer Languages
the universal system (ie, the type system for the flow lattice 28(1):3-28, April 2002.
P(Var)). [DD77] D. E. Denning and P. J. Denning. Certification of prags
e The universal system is equivalent to Amtoft and Banerjee’s for secure information flowComm. of the ACMRO(7):504—
Hoare-style independence logic. 513, July 1977.
e Each member of the family is “complete” with respect to the [DP90] B. Davey and H. Priestleylntroduction to Lattices and
whole family, in that no member can be used to validate more Order. Cambridge University Press, 1990.
L-typings than theC-system itself. [GRSO00] Roberto_ Giacgbazzi, Fran_cesco Ra_nzato, and Fseace
. . L Scozzari. Making abstract interpretations complétACM
e Given a flow-sensitive type derivation for a program, we can 47(2):361-416, 2000.

Systematlca_lly tl_’ansform It t_o produce asema“t'ca!'YWB”t [GSO05] S. Genaim and F. Spoto. Information Flow Analysis for
program which is typeable in a simple flow-insensitive syste Java Bytecode. In R. Cousot, editdoc. of the Sixth
Possible avenues for future work include extending the flow- International Conference on Verification, Model Checking
sensitive systems and program transformation to richegraro- ‘L‘”d Abslt\;a‘:t 'r.‘te(r:pretat'on %’MCA' 05)’0:'%%8322820'(.
ming languages and deriving more precise complexity regaft ecture Notes in Computer Sciengages 346-362, Pars,

. France, January 2005. Springer-Verlag.
the program transformation. . .
[HR98] N. Heintze and J. G. Riecke. The SLam calculus:
programming with secrecy and integrity. Rroc. ACM
Acknowledgments Symp. on Principles of Programming Languagpages
Many thanks to David Clark for participation in discussioms 365-377, January 1998. _
this work, and for suggesting the worst-case complexityrgla. [HS91] S. Hunt and D. Sands. Binding Time Analysis: A New
Discussions with Sruthi Bandhakavi and Daniel Hedin orratte PEFESPIG_CIU‘S IIrPt_roceedéngSs of ”19 ABCM den;pos'um
tive formulations of Amtoft and Banerjee’s system were igakt on Fartial Evaluation and semantics-based Frogram
| ner) Y Vere 1o Manipulation (PEPM'91) pages 154—164, September 1991.
arly useful. Thanks to Josef Sveningsson for drawing otenat X
- - - ACM SIGPLAN Notices 26(9).
tion to the connection to SSA, and to Niklas Broberg for gyste [HS05] D. Hedin and D. Sands. Timing aware information
sbuppqrtWWﬁ alsodbtineflted from con;ments and suggestions fro flow security for a JavaCard-like bytecode. First
ennis Vvalter and the anonymous referees. Workshop on Bytecode Semantics, Verification, Analysis
and Transformation (BYTECODE '052005. To Appear,
References ENTCS.
[ABO4] Torben Amtoft and Anindya Banerjee. Information flow [NRH99]  F. Nielson, H. Riis Nielson, and C. HankitRrinciples of
analysis in logical form. I'BAS 2004 (11th Static Analysis Program Analysis Springer-Verlag, 1999.
Symposium), Verona, ltaly, August 20@élume 3148 of [SM03] A. Sabelfeld and A. C. Myers. Language-based infdioma
LNCS pages 100-115. Springer-Verlag, 2004. flow security. IEEE J. Selected Areas in Communications
[ADVRFO1] Wolfram Amme, Niall Dalton, Jeffery von Ronne, can 21(1):5-19, January 2003.
Michael Franz. SafeTSA: A type safe and referentially [SS01] A. Sabelfeld and D. Sands. A per model of secure
secure mobile-code representation based on static single information flow in sequential programbligher Order and
assignment form. 1I8IGPLAN '01 Conference on Program- Symbolic Computatiqrii4(1):59-91, March 2001. Earlier
ming Language Design and Implementatipages 137-147, version in ESOP’99.
2001. [VSI96] D. Volpano, G. Smith, and C. Irvine. A sound type ystfor
[App98] Andrew W. Appel. Modern Compiler Implementation in secure flow analysisJ. Computer Security4(3):167-187,
Java Cambridge University Press, Cambridge, 1998. 1996.
[AR80] G. R. Andrews and R. P. Reitman. An axiomatic appraach [Wel02] J. B. Wells. The essence of principal typings. Aroc.
information flow in programsACM TOPLAS$2(1):56-75, International Colloquium on Automata, Languages and
January 1980. Programming volume 2380 ofLNCS pages 913-925.
[BBL94] J.-P. Baiatre, C. Bryce, and D. Le Btayer. Compile-time Springer-Verlag, 2002.
detection of information flow in sequential programs. In
Proc. European Symp. on Research in Computer Segurity
volume 875 ofLNCS pages 55—73. Springer-Verlag, 1994.
[CCT7] P. Cousot and R. Cousot. Abstract interpretationnfied
lattice model for static analysis of programs by constorcti
or approximation of fixpoints. IfProc. ACM Symp. on
Principles of Programming Languagepages 238-252,
January 1977.
[CCT79] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. Ii€onference Record of the Sixth
Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languagepages 269-282, San Antonio,
Texas, 1979. ACM Press, New York, NY.
[CFRt89] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark K.

Wegman, and F. Kenneth Zadeck. An efficient method of
computing static single assignment form. 16th Annual

ACM Symposium on Principles of Programming Languages

pages 25-35, 1989.



A. Proofs from Section 7
A.1 Translation Correctness

In proving the theorem we will make use of the following simpl
lemmas:
LemmaA.l. If o ~r pthen

1. (I":=T,p) | p' whereo ~r p’
2. [Elo = [E"]p

Proof. 1. From definition 7.2, the effect & := I" on statep can
be written as

p' = plrrie) = plare)) | @ € Var]

(note that we have ignored the conditibx) # I''(z) in the
definition of I’ := T since these are just identity updates). So
we have for alle € Var

o(z) = p(zr))
= plr/ (@) — plar@) | © € Var|(zr ()
=p'(zr (@)
and hencer ~ p’ as required.

2. Straightforward from the definitions.
O

Proof of Translation Correctnes$Vle argue by induction on the
derivation in a standard big-step semantics. For collastiof in-
dependent assignments of the fofth:= I we somewhat improp-
erly treat them as if they are evaluated in a single atomiz. $iée
illustrate the first part of the theorem, although most staesin
fact reversible, so the proof in the other direction is egaky the
same. We focus on the more interesting cases.

Suppose thap = T {C ~ D} T, ¢ ~r p and thatC, o) |
o’. We prove that D, p) |} p’ wheres’ ~r. p’' by induction on
the derivation of(C, o) |} ¢’ and cases according to the last rule
applied:

We have a derivation of the form
I'EE:t s=pUt
pFT {z:=E~ z,:= E'} Tz &
Suppose thafE]o = V, and hence that
(x:=E,0) | oz — V].
By LemmaA.1,[E"]o = V and hence
(xo == E",0) | oz — V].

Case: Assign

Case: While There are two cases according to the value of
the conditional. We just show the harder case where thetigsios
the derivation has the form:

[E]loc =true (C,o) o’ (while EC,o’) | o”
(while E C,0) |} o”
We have a translation derivation of the form
N-E:t; pUt; T {C~ D;} T
pF T {while EC ~T':=T ; while E* (D ;T :=T")} T’
wherel', = T, I'i,, = Iy ur, I, =TI, andl’ =
I,,I'" =T, D = D,. Henceforth leti”, denote the subterm

while ET (D ; TV :=T"). Assume that ~r p. We are required
to show that

0<i<n

(I'":=T; Wp, p) || p”" whereo ~p: p”

We assemble the following facts in order to construct a déon
for this claim. From Lemma A.1(1) we get

(I'":=T,p) | p1 whereos ~ps p1 (14)
and from Lemma A.1(2)
(EF,,pl) | true. (15)

From the induction hypothesis for the subderivationdowe have

(D, p1) | p2 whereo’ ~rir pa, (16)
and from Lemma A.1(1),
<F/ = FN, p2> U ps whereo’ ~r/ P3 a7)

Finally from the premises of the typing judgement, we alseeha
the weaker judgement:

pFT' {while EC~T':=T;Wp} T’

Now we apply the induction hypothesis for the second evelnat
premise, with respect to this judgement, to obtain

(Wp, ps) | p” wheres” ~ps p” (18)
Finally from these facts we construct the required deratwhich
is given in Figure 4. |

A.2 Static Soundness

The proof is by induction on the structure of the translatienva-
tion, making use of the following simple weakening lemmas:

Lemma A.2.

e If p- Dandp’ C pthenp’ - D

e lfp* T {C} I'" thenforallz, I'(z) # I'(z) = p E IV (z)
Proof. The first item is a straightforward induction on the deriva-
tion, and we omit the details.

The second item is also by induction on the derivation. We
present the three key cases.

The conclusion of the rule is:
pF*T {z:=E} Tz +— put]

The initial and final type environment only differ (poteriyain x
and we see immediately that_ I''(z) = p LI t.

Case: Assign

Case: If. The rule provides a derivation of the form
pUtH*T{C;}T; i=1,2 T"=T,UT%

pF*T{if ECi Co} T
The induction hypothesis gives, foe= 1, 2,

Va.I(z) # If(z) = p C Ij(z)

So suppose that for some particutarve havel'(z) # I (z). Since
" = I UT% we must havé'(x) # T(x) for eitheri = 1 ori = 2
(or both). It follows from the induction hypothesis thatC T';(z)
for this, and hence that C T} (x) U T'5 () as required.

Case: While
INFE:t

The rule provides a derivation of the form
pUt, F* T {C}TY 0<i<n

p T {while £ C} T,

whereTy = T, T'i,;, = Ty UT, I, = I',. The induction

hypothesis gives, fob < i < n, I'/(z) # I'i(z) = pUt; C

I (2).
Assumel';, (z) # T'(z). Now suppose that; (z) = T';(z) for

all - with 0 < i < n: we show that this contradicts the assumption

(ie we show that it entail§”, (z) = I'(z)) by induction onn. The
base case is immediate sinEg = T, so considem = k + 1.




(16) (17)
(15) (Dyp1) b p2 (" :=T",p2) U p3 (18)
(14) (B",p1) | true (DT :=T",p1) I ps (Wb, ps) 4 o
(I":=T,p) | p1 (Wb, p1) I p"

(I'" := T ; while E" (D; T :=T"),p) § p’

Figure 4. Concluding derivation, While case, Theorem 7.7

By construction,I',;(z) = T'}(z) U I'(z) so, by supposition,
Ieri(z) = Ti(z) U T(z). But by IH I, (z) = T'(z), hence
T (z) =T(2).

We have shown thalf;, (z) # T'(z) implies the existence of
somei such thafl/ (z) # I';(z) so, by the induction hypothesis,
pUt; C T (), hencep C Ty (x). But, as illustrated in Figure 1,
I} C I',, holds for alli, so we are done. O

Proof of Static Soundnes¥Ve give a couple of illustrative cases.
Case: Assign-t The derivation is of the form
I'HFE:t s=pUt
pkT{z:=E~zs:= E'} T[z — 5]

From Lemma 7.8 we have that E* : ¢, and thup F zs :=
E" follows directly from the Assign-fixed axiom.

Case: While-t Assume the last rule in the inference has the

form:
TjFE:t; pUt;FT;{C~ DT/ 0<i<n

pk T {while EC ~T':=T; while E” (D;T":=T")} I

wherel'y, =T, I';,, =T/ UTl, I, =0, andlY =1, T =
"' D= D,.

Since the translation system is a conservative extensidneof
type system, we have a derivatipr-* T' {while E C} T”, and
hence by Lemma A.2 that

Va.I'(z) #T'(z) = p C T'(z).

this, together with the fact th&t = I’ means that every assignment

inI" := I'is typeable, and hence that
pEI:=T (19)

Similarly with the subderivatiop Ui t,, - T’ {C ~ D} T we
get, using Lemma A.2 that

VoI’ (z) £#T"(z) = pUt, CT(z).
and in the same manner as above we can conclude that

pUt, FTV:=T". (20)
Furthermore, Lemma 7.8 gives
FEY it (1)
and the inductive hypothesis gives us
pUt, - D. (22)
Putting this together we obtain the concluding derivation
(22) (20)
(21) pUtn F D pUt, IV :=T"
(19) FEY :t, pUty D ;T :=T"
pFT =T pF while EY (D ;T :=T1")

pHT’:=T;while E' (D;T':=T")



