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Notation 

Roman Letters: 

U  the velocity in the conventional RANS domain 

UI  the velocity in the Euler domain 

pI   the pressure in the Euler domain 

g    the acceleration induced by gravity 

UD  the complementary velocity in the viscous domain 

UD
t  the final relaxed velocity in the transition zone of the viscous domain  

UD
Target  the target velocity in the transition zone of the viscous domain  

pD   the complementary pressure in the viscous domain 

t  time 

k  turbulent energy 

UI
in the velocity induced by incident waves 

t the vector  

n the vector  

w the relaxation coefficient 

xpoint the x coordinate of points in the transition zone 

xboundary the x coordinate in boundary 1 or boundary 2 

Ltr the length of the transition zone 

B the width of the structure 

l   the height of the structure 

L the length of the structure 

d  the initial draft of the structure 

h  the water depth of the structure 
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Hw wave height 

k   wave number 

A wave amplitude, half of wave height 

FS the wave load in the horizontal direction 

Fh the wave load in the vertical direction 

M moment induced by waves 

T wave period 

fB non dimentional wave frequency 

Re Reynolds Number 

LC the length of the conventional RANS domain 

HC the width of the conventional RANS domain 

LE the length of the Euler domain 

HE the width of the Euler domain 

LV the length of the viscous domain 

HV the width of the viscous domain 

nLC the number of division per wave length far away from the structure in the horizontal     

direction in the conventional RANS domain 

nLE the number of division per wave length far away from the structure in the horizontal     

direction in the Euler domain 

nLV the number of division per wave length far away from the structure in the horizontal     

direction in the viscous domain 

nBC the number of division per width of the structure in the horizontal direction in the 

conventional RANS domain 

nBE the number of division per width of the structure in the horizontal direction in the Euler 

domain 
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nBV the number of division per width of the structure in the horizontal direction in the viscous 

domain 

nHC the number of division per wave height in the vertical direction in the conventional 

RANS domain 

nHE the number of division per wave height in the vertical direction in the Euler domain 

nHV the number of division per wave height in the vertical direction in the viscous domain 

Δt the time step 

REM the relative average error 

Err the average error over ten wave periods 

B2 the top width of the submerged bottom-standing structure 

B3 the bottom width of the submerged bottom-standing structure 

d2 the water depth of the submerged bottom-standing structure 

fa 1
st order amplitudes of wave loads 

ub the velocity of the mesh motion 

UI
m the velocity of the moving structure 

UI
n the velocity in the neighbour cell of the moving structure 

T0 the ceasing time in forced rolling 

f the wave frequency 

LP the length of the wave propagation before the Euler domain 

LEH the head part of the Euler domain 

LER the rear part of the Euler domain 

fN the natural frequency of the structure 

 

Greek Letters: 

ρ'   the density of the fluid in the Euler domain 
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ρwater  the density of water 

ρair  the density of air 

γ'  the volume fraction of fluid in the Euler domain 

γ  the volume fraction of fluid in  the viscous domain 

γI
in the fraction volume induced by incident waves 

γt  the final relaxed volume fraction of fluid in the transition zone of the viscous domain 

γTarget the target volume fraction of fluid in the transition zone of the viscous domain 

μt the total viscosity 

μf the fluid viscosity 

μa the turbulence viscosity 

μf
water  the viscosity of water 

μf
air     the viscosity of air 

ε turbulent dissipate rate 

σ the parameter related with the coordinates of the points in the transition zone 

λ wave length  

Γb the diffusion coefficient in mesh motion 

α0 the roll amplitude of forced rolling  

α   the roll angle  

ψ(M) 1st order of moment due to forced rolling 

ψ  1st order of roll amplitude  
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Abstract 

Wave-structure interactions play an important role on the design and maintenance of coastal 

and offshore constructions. Computational Fluid Dynamics (CFD) is a convenient tool for 

analyzing wave-structure interactions in costal and offshore engineering. The potential model 

and the viscous model are traditional mathematical models for wave-structure interactions, 

which have disadvantages in computational robustness, when they are applied individually. 

Therefore, recently, more and more multi-model methods are used for coupling the viscous 

model and the potential model together. So far, in the existing multi-model methods, the 

surface-piercing structure only exists in the viscous domain so that the viscous domain should 

be large enough. In order to improve the computational efficiency, some multi-model 

methods are developed, where the structure is considered in both viscous domain and Euler 

domain.  

Firstly, by function-decomposition method, an Euler-viscous hybrid model is proposed. 

Comparing with the other function-decomposition hybrid models, a surface-piercing structure 

exists in both a large Euler domain and a small viscous domain. By this, the reflection, 

diffraction, and radiation waves from the structure can be considered in both two 

computational domains. Therefore, the computational efficiency can be enhanced remarkably. 

To couple the Euler model and the viscous model, complementary RANS equations are 

deduced, with complementary turbulence models. Corresponding boundary conditions are 

also developed for coupling. A relaxed scheme is proposed for damping the viscous effects 

and keeping free surface consistent. For wave interactions with moving structures, the 

transition of total forces acting on the structure from the viscous domain to the Euler domain 

is used to guarantee the same motion of structures in two domains.  

Secondly, the function-decomposition Euler-viscous hybrid model is extended by domain-

decomposition method. Then, function-decomposition method and domain-decomposition 

method are coupled together. The wave generation and propagation is solved in a potential 

domain. By this, the computational efficiency for wave-structure interactions in a large real 

wave tank can be improved.  

Computational robustness of Euler-viscous hybrid model for surface-piercing wave-structure 

interactions are studied by some cases. It is found that the size of the viscous domain, the 

length of transition zone, and mesh resolution can affect computational precision. 

Computational efficiency is mainly affected by the size of the viscous domain. For extended 

Euler-viscous hybrid model, the distance before reaching the inlet boundary of the Euler 

domain plays a crucial role on computational accuracy and efficiency. Validations are done 
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by comparing numerical results based on hybrid models, conventional RANS model and 

experimental results. It is shown that hybrid models own the same computational accuracy as 

the conventional RANS model. Furthermore, the computational accuracy can be improved 

remarkably. In some cases, more than 85% CPU time can be saved. 

The hybrid models are applied to simulate wave interactions with a structure subjected to 

seabed effects. By comparing with numerical simulations based on the conventional RANS 

model, it is indicated that hybrid models can be also used on complex computational domain. 

Some properties of wave interactions with a floating structure subjected to a submerged 

structure are found by numerical simulations. 
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Chapter 1 Introduction 

1.1 Background 

Waves are one of the most common features of the ocean and can be generated by many 

factors, e.g., wind, earth quake, and heat-transfer. Thus, marine engineering structures such as 

bridges, ships, and oil platforms are unavoidably subjected to ocean waves, especially the 

floating structures. As a matter of fact, wave-structure interactions play a crucial role in the 

design, manufacture and operation of floating structures in the ocean.  

 

(a) A fixed structure interacts with waves 

(http://www.cnblogs.com/ovspianist/archive/2010/10/31/1865438.html) 

 

(b) A moving structure interacts with waves 

(http://shipsbusiness.com/parametric.html) 

  Fig. 1Fig. 1.1.1 Wave-structure interactions  

Due to that, the wave-structure interaction problems have attracted extensive attentions. Since 

the fixed cylinder structures, such as supporting pillars of bridges or jack-up rigs are widely 

adopted in the ocean engineering practices, on which the wave loads must be considered. One 

approach to calculate the wave loads is to use empirical formulas, e.g., the Morison’s 

equations (Morison, 1950). These empirical formulas are based on linear or weakly non-linear 

wave-structure interaction theories and are only accurate when the nonlinear effects are 

neglectable. (MacCamy and Fuchs, 1954; Newman, 1996) However, they become less 
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accurate and cannot be applied when the non-linear effects are significant. Whereas, the fact 

that ocean waves in reality consist infinite wave components with different periods and 

amplitudes, renders the problem to be highly non-linear as wave-wave interactions cannot be 

neglected. In addition, the non-linear effects of the reflection and diffraction waves induced 

by the cylinders further increase the degrees of the complexity of such a problem (Faltinsen, 

1993). Therefore, the empirical formulas can only be used in very limited situations.  

 

(http://www.nola.com/business/index.ssf/2012/01/cruise_bookings_in_new_orleans.html) 

Fig. 2Fig. 1.1.2 the ship disaster due to complex topography  

Apart from the fixed structures, the moving structures, such as buoys, floating oil platforms, 

and ships are more desired in ocean engineering, and their safety against waves needs to be 

accessed. For instance, during the design of the naval architecture, the resonance should be 

avoided by examining the frequency of the incident waves over the natural frequency of the 

floating structure. If the two frequencies are very close, the resonance will occur and the 

motions of the structure will be enhanced, which can cause damages to the ship. Another 

aspect to be examined is the roll motion, which is the rotation of a vessel about its 

longitudinal axis. A rolling floating structure under incident waves is shown in Fig. 1.1.1(b). 

In some harsh sea state, the excessive roll motion can be induced, especially when resonant 

behaviour happens. Sometimes, the roll angle can reach more than 20 degrees (Na et al., 

2002). Thus, wave interactions with moving structures have also received great attentions. 

However, waves interacting with moving structures are more complex comparing with those 

in the fixed condition, mainly due to the non-linear interactions between incident waves and 

structures with six degrees of freedom, and the non-linear interactions between incident 
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waves with radiation, reflection and diffraction waves. Furthermore, it is recorded that the 

ship disaster can happen under the complex topography, shown in Fig. 1.1.2. The effects of 

bottom topography on propagation of the incident waves cannot be neglected (Fochesato, et al. 

2003), thus the motions of floating structures will also be affected (Grilli, et al. 2001). 

Therefore, the dynamic motions of the moving structures are difficult to be predicted. 

 

 Fig. 3Fig. 1.1.3 A rolling floating structure under incident waves 

In order to study the structure-wave interactions, laboratory experiments and Computational 

Fluid Dynamics (CFD) are adopted as two main methods. The former requires a big wave 

basin and is very time consuming, e.g., the work done by Chaplin, et al. (1997). Besides, the 

bottom topography is difficult to be made in the experiments, while the cost is high. Thanks 

to the recent development of computer science, CFD software has been widely used in the 

study of wave-structure interactions. Two mathematical models are often used in the 

numerical simulations including the potential model and the viscous model. In the potential 

model, due to simple control equations and less independent unknowns, the computational 

efficiency is high. However, the viscous effects are neglected in the potential model, which is 

important in the study of wave-structure interactions because the local viscous effects cannot 

be overlooked, especially in this research, where cases of Reynolds Number Re>10000 are 

considered. Unlike the potential model, the viscous model takes the viscous effects into 

account by solving the Reynolds Averaged Navier-Stokes (RANS) equations. Nevertheless, 

more computational resources are required due to complex control equations, independent 

unknowns, and large number of computational nodes.  

To overcome drawbacks of each individual model, some hybrid numerical models are 

developed. In the hybrid models, the viscous effects are only considered in the local area 

close to the floating structure, while the potential model is applied in a larger computational 

domain far away from the floating structure. Hence, both the computational efficiency and the 

computational precision can be guaranteed.  

Researchers have proposed many different hybrid numerical models. Specifically, those 

hybrid models can be classified into domain-decomposition models and function-

decomposition models. Each model has its own advantages and disadvantages and one cannot 

Incident waves 

Vortex shedding 

structure 
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simply justify which model is superior. In this thesis, a new function-decomposition model is 

proposed. Finally, the function-decomposition model is hybrid with a domain-decomposition 

model.  

1.2 Aim and Objectives of the study 

The study aims to develop new hybrid numerical models based on open-source CFD toolbox 

OpenFOAM. In the new function-decomposition model, the corresponding complementary 

RANS equations, boundary conditions, transition zones, and new computing procedure are 

proposed. The structure can be considered in both the Euler domain and the viscous domain. 

By doing so, the computational efficiency can be enhanced. In addition to that, the function-

decomposition model can be extended to couple with a potential model by the domain-

decomposition method. Then, the computational efficiency can be future improved.  

The main tasks are, 

1. Derive the complementary RANS equations by function-decomposition method 

for calculating complementary velocity and pressure in the viscous domain. 

2. Propose boundary conditions for complementary RANS equations to keep the 

total velocity and total pressure the same as those by conventional RANS 

equations. 

3. Develop transition zones for dissipating the viscous effects to cancel the 

complementary velocity and make sure the free surface consistent on the 

boundaries. 

4. Design the computing procedures for the function-decomposition model to solve 

the complementary RANS equations and the Euler equations. 

5. To further improve the computational efficiency, the function-decomposition 

model is extended to couple with the potential model by using the domain-

decomposition method.  

6. Apply these hybrid models to simulate two-dimensional surface-piercing fixed 

and floating structures interacting with incident waves over complex topography. 

1.3 Structure of the paper 

Hybrid numerical models are reviewed and the corresponding discussion is carried out in 

Chapter 2. In Chapter 3, a new function-decomposition based Euler-viscous hybrid model is 

developed for simulating wave interacting with fixed a surface-piercing structure. More, 

specifically, formulas of complementary RANS equations are proposed, as well as the new 

boundary conditions, transition zone techniques, and computing procedures. Then, the new 

Euler-viscous hybrid model is validated by simulating waves acting on a two-dimensional 

fixed surface-piercing structure. In Chapter 4, the convergence property of the Euler-viscous 

hybrid solver are investigated by simulating wave-fixed structure interactions. Chapter 5 

studies effects of variable bottom topography on the interaction between waves and fixed 

surface-piercing structure by the new Euler-viscous hybrid model. In Chapter 6, the dynamic 
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mesh is introduced to the new function-decomposition based Euler-viscous hybrid model for 

simulating waves interacting with moving structures. Then, in Chapter 7, the convergence 

properties of the new Euler-viscous hybrid model with dynamic mesh is studied by simulating 

the forced rolling and roll damping of a floating structure. Chapter 8 presents the extension of 

the new function-decomposition based Euler-viscous hybrid model hybrid with a potential 

model by the domain-decomposition method, of which the convergence properties are 

investigated and validated. Chapter 9 presents the applications of the extended Euler-viscous 

hybrid model to study the effects of complex topography on wave-induced roll motion of a 

floating structure. Finally, the conclusion is drawn and the recommendations are given in 

Chapter 10. 

1.4 Originalities in the research 

The research contains two originalities. Firstly, new function-decomposition hybrid methods 

are developed for surface-piercing wave-structure interactions. Secondly, multi-model 

methods including potential, Euler, and viscous models are developed by function-

decomposition method and domain-decomposition method together. 
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Chapter 2 Literature review and discussions on previous 

works 

Potential models and viscous models are traditional numerical models for simulating wave-

structure interactions, and each category has its own advantages and disadvantages. The most 

significant feature of the potential model is that it’s more efficient and precise for simulating 

wave propagation in a large physical domain. However, the viscosity is neglected, which 

plays a crucial part in the wave-structure interactions (used by Chen, et al. 2014). On the other 

hand, the viscosity, vorticity, and wave breaking can be simulated in the viscous model. 

However, large mesh resolution is required leading to low computational efficiency. 

Therefore, in recent years, hybrid numerical models are proposed. In the hybrid model, the 

potential model often covers a large computing domain for wave generation and propagation, 

while viscous model is just applied in a small domain surrounding the floating structure. By 

doing so, both the computational efficiency and accuracy can be guaranteed (e.g., Vukčević, 

et al. 2016). For more details, a literature review about potential models, viscous models, and 

hybrid models is given below. 

2.1 literature review of traditional numerical models 

2.1.1 The potential model 

For the potential model, the velocity potential and free surface elevation are the only 

unknown variables. The Laplace equation about the velocity potential can be discretized and 

solved by numerical methods such as Boundary Element Method (BEM) (used by Grilli, et al. 

1989), Finite Element Method (FEM) (Wu, Ma, and Eatock, 1998), and Finite Difference 

Method (FDM) (Engsig‐Karup, et al. 2012). According to the free surface and body surface 

boundary conditions, the potential model can be classified into linear/high-order models and 

fully nonlinear models. The linear/high-order models (Newman, 1977) have been  widely 

used for engineering and research porpoises. However, they are only accurate in limited 

conditions, e.g., small incident waves and small body motions.  

To overcome those limitations, Fully Nonlinear Potential Theory (FNPT) models are 

suggested and many researchers have done valuable works on developing the FNPT models 

for simulating wave-structure interactions. For example, a time marching procedure proposed 

by Longuet-Higgins, and Cokelet (1976) is used to update the wave elevation and the velocity 

potential. The free surface is tracked by a mesh moving controlled method based on mixed-

Euler-Lagrange scheme. By using FNPT models, Markiewicz, et al. (2003) and Koo (2007) 

investigate wave interactions with fixed structures. For waves interacting with moving 
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structures, relevant works have been done by Yan and Ma (2007) for simulating steep waves 

interacting with a two-dimensional floating structure, Bai and Eatock (2009) for simulating 

waves interacting with fixed and floating flared structures, Wang et al.(2011) for simulating 

the resonant motion of two two-dimensional floating structures.  

From these works, it is found that FNPT models are accurate and efficient, supposed that the 

boundary of the structure is smooth and the viscous effects are insignificant. Nevertheless, the 

FNPT models have several drawbacks. Firstly, the viscosity cannot be directly considered in 

FNPT models, although artificial viscosity may be imposed on the free surface (Chen and Lu, 

2009) or the body surface condition (Yan and Ma, 2010). Therefore, both the hull friction and 

vortex force related with viscous effects cannot be well estimated by the potential model 

unless benchmarking experimental studies are carried out to identify the above-mention 

artificial coefficients (Kharif, et al. 2008). Secondly, the roll motion induced flow separation 

increases the effects of vortices. (Yi, et al.  2005) To predict the vortex forces, discrete vortex 

methods (Seah and Ronald, 2003) are used in FNPT models. In their numerical model, the 

vorticity field is assumed to be a collection of discrete vortices of finite core size and the 

position of the separation point must be known in advance. Nevertheless, this assumption is 

not suitable for complex geometry. Thirdly, FNPT models cannot simulate wave breaking, 

which is often observed near the structure in reality. However, the viscosity, vorticity, and 

wave breaking are important in modelling wave-structure interactions. Therefore, the 

potential model is not sufficient. 

2.1.2 The viscous model 

For viscous models, the viscosity is considered in Navier Stokes (NS) equations. The NS 

equations and continuity equations can be numerically solved by two methods including the 

mesh-based method and the meshless method. The former discretizes and solves NS 

equations and the continuity equation by FDM (Chorin, 1965), FVM (Patankar, 1980), and 

FEM (Girault, 2012) methods. The free surface can be captured by a convective equation such 

as Marker and Cell method (MAC) (Harlow and Welch, 1965), Volume Of Fluid (VOF) 

method (Hirt and Billy, 1981), Level Set method (Sussman et al. 1994). By using the surface 

capturing method, the wave breaking can be considered in modelling wave-structure 

interactions. Park, et al. (2001) investigated waves and currents acting on a fixed vertical 

truncated cylinder. Yang, et al. (2006) simulated motions of floating LNG carrier with fully or 

partially filled tanks with effects of waves. Carrica, et al. (2007) studied the interaction 

between ship and head waves, where wave breaking and extreme motions of the ship could be 

simulated. The green water on the deck and the sloshing in the tank can be simulated 

simultaneously. Panahi, et al. (2006) studied the cylinder entry problem. More works by using 
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the free surface tracking method to study the ship hydrodynamics can be found in 

Alessandrini and Delhommeau, (1999) and Garcıa and Oñate, (2003).  In the family of 

meshless methods, SPH (Omidvar, et al. 2012), MPS (Sueyoshi, et al. 2008) and MLPG (Ma, 

2005) have been attempted.  Detailed review can be found from the cited papers above and 

will not be given here. However, due to the pressure evaluation (Molteni and Colagrossi, 

2009), meshless method can only be used for some simple wave-structure interactions. Thus 

the meshless method will not be employed in the research.  

Even though the viscous effects can be considered, the efficiency of the viscous model is 

often lower than the potential model, especially for modelling interactions between waves and 

moving structures. The reasons are: firstly, at least three independent unknowns including two 

velocity components and pressure should be solved in two-dimensional NS equations, 

comparing with potential model which only requires finding velocity potential and free 

surface elevation. Besides, the turbulence model should be used in the viscous model so that 

some more control equations must be considered. Furthermore, the disadvantage about 

efficiency is more obvious for wave-structure interactions in a large computing domain, 

especially when the dynamic mesh based method is used. Last but not least, to capture vortex 

shedding, the mesh surrounding the structure must be refined, which makes the computation 

more time consuming. For example, Veer and Fathi (2011) used the commercial CFD 

software StarCCM+ to simulate the roll damping of a FPSO with bilge keels. In their research, 

the Volume of fluid (VOF) method was used to capture the free surface. The mesh was 

refined around the free surface and bilge keels. Even though the coarse mesh was used away 

from the hull, 2.7 million cells grid was used, which was very computing resource consuming. 

2.2 Literature review of hybrid numerical models 

From the review about the conventional numerical models used in the simulation of wave-

structure interactions, it can be seen that the potential model and the viscous model have their 

own advantages and disadvantages. By using the potential model, both efficiency and 

accuracy are high in the large-scale domain for wave generation and propagation. However, it 

is difficult to take viscous effects and vortex shedding into account. While by using the 

viscous model, the viscous effects can be considered in the vicinity of the floating structure. 

Nevertheless, the efficiency is low for the large computing domain. In recent years, to 

combine advantages of the potential model and the viscous model together, some potential 

viscous hybrid numerical models are established. In these hybrid models, the potential model 

is used in a large-scale domain for wave generation and propagation. The viscous model is 

only applied in a small-scale domain surrounding the floating structure. By using those hybrid 

models, both the computational precision and the computational efficiency can be guaranteed. 
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(a) The computational domain for the domain-decomposition model 

 

(b) The computational domain for the function-decomposition model 

Fig. 4Fig. 2.2.1 The hybrid numerical models 

The potential viscous hybrid models can be classified into two groups depending on the 

coupling method. One is called domain-decomposition method (or zonal method), and the 

other is called function-decomposition method (or velocity-decomposition method) 

(Rosemurgy et al. 2012). In the domain-decomposition method, the potential model and the 

viscous model are applied separately in two domains including the potential domain and the 

viscous domain, respectively, described in Fig. 2.2.1 (a). Hence, a matching boundary exists 

between the potential domain and the viscous domain. Sometimes, for data exchange, an 

overlapped area can be used to replace the matching boundary. In the function-decomposition 

method, the potential solution covers the whole domain and the viscous model is only used in 

a small domain surrounding the floating structure. Thus, in the function-decomposition 

method, the viscous domain is often overlapped by the potential domain, shown in Fig. 2.2.1 

(b). In the viscous domain, by decomposing velocity (sometimes also pressure) into the 

viscous part and the potential part, the viscous components are solved by the viscous model 

with potential components explicitly from the potential solution. 

2.2.1 Hybrid numerical models based on domain-decomposition method 

The domain-decomposition model came up from the Prandtl’s boundary layer theory 

(Schlichting, 1968). In the boundary layer theory, the domain can be divided into two parts. 

Specifically, one is a thin viscous layer around the body where the viscous effects play the 

key role, and the other is away from the boundary layer where the flow is potential. In the 

Potential Domain Viscous Domain 

structure 

Potential Domain 

Viscous Domain 

structure 

Potential Domain 

Matching  

Boundary 
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boundary layer, NS equations are simplified into the boundary layer equations. The method 

can be used to calculate the displacement thickness around the body in order to correct the 

potential solution outside the boundary layer. The boundary layer theory is widely used in 

aeronautics since 1960 (Dolling, 2001) as well as ship hydrodynamics. However, the 

boundary layer theory is not suitable if the boundary layer thickness is large, especially when 

the vorticity separation exists. When it happens, the NS equations cannot be simplified. To 

overcome this issue, the NS equations or RANS equations with the turbulence model are 

often used in the viscous sub domain, which not only contains the body, but also the wake 

area including vortices separation. That whether the feedback of the viscous solution is 

considered in the potential domain, classifies domain-decomposition models into the weak 

hybrid model and the strong hybrid model. 

2.2.1.1 The weak domain-decomposition hybrid models 

For the weak domain-decomposition hybrid model, the potential solution is used to initiate 

and supply the boundary condition of the viscous domain. The data transfer is just one 

direction from the potential domain to the viscous domain. Thus, the weak hybrid model is 

also called one-way hybrid model. The influence of the viscous solution on the potential 

solution is not considered. 

The waves shoaling and breaking near shore has been studied by using weak hybrid domain-

decomposition models. For example, Guignard, et al. (1999) and Lachaume, et al. (2003) 

developed a weak FNPT NS-VOF hybrid model. In the domain-decomposition hybrid model, 

the wave generation and propagation was done in the FNPT domain. Then, close to wave 

breaking, the NS-VOF model was initiated by the FNPT solution. After that, the velocity on 

the lateral matching boundary in the NS-VOF domain was supplied by the FNPT solution. 

Later, the hybrid model was extended by Biausser, et al. (2003, 2004) for modelling a three-

dimensional solitary waves breaking on a slope. In this case, the FNPT solution was just used 

to initiate the NS-VOF domain. The no flow boundary condition was applied so that the 

matching boundary was far away from the sea shore. However, a large computing domain 

was used. Gilbert, et al. (2007) studied nonlinear-wave-forced sediment transport by coupling 

FNPT and NS-LES model. In the hybrid model, a numerical wave tank was established based 

on the FNPT model. The NS-LES domain was wrapped by the FNPT domain below the free 

surface. The FNPT solution provided the gradient of the dynamic pressure for the NS-LES 

solver, which was just regarded as a source term in momentum equations. Yan and Ma (2010) 

studied the interaction between the wind and the freak wave by using a model coupling 

QALE-FEM (a FNPT model) and StarCD (a NS-VOF model). The inlet boundary of the NS-

VOF model was transiently specified by the simulation results of QALE-FEM. In the 
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simulation, the NS-VOF domain should be long enough to avoid the effects of reflection 

waves on the FNPT domain. 

The weak hybrid domain-decomposition model is also employed to model wave-structure 

interactions. Corte and Grilli (2006) studied the extreme wave slamming on a fixed cylinder. 

In the research, the extreme waves were generated by a FNPT model. Then the NS-VOF 

domain was initiated and the boundary conditions in the NS-VOF model were specified by 

the FNPS solution. Finally, the cylinder slammed by extreme waves was simulated in the NS-

VOF domain. However, to minimize the effects of the reflection waves on the FNPT model, 

the simulation in the NS_VOF domain cannot last long. 

As mentioned above, it indicates that the weak hybrid model is very effective if the viscous 

domain has little effect on the potential domain. However, such effect can be significant. For 

example, the reflection waves from the floating structure and the radiation wave due to the 

motion of the floating structure in the viscous domain will affect the incident waves in the 

potential domain. To achieve sufficient accuracy, one must use a damping zone near the 

interface between two domains to remove the reflection and radiation waves caused by the 

structures. Otherwise, simulation time in the viscous domain must be short (Guignard, 1999; 

Lachaume et al. 2003; Biausser et al. 2003, 2004; Corte and Grilli 2006; Gilbert et al. 2007), 

or long computational viscous domain should be applied so that the simulation terminates 

before those waves reach the  interface (Yan and Ma, 2010 ). 

2.2.1.2 The strong domain-decomposition hybrid models 

To improve the weak hybrid domain-decomposition models, some strong domain-

decomposition hybrid models are proposed and the floating body induced reflection and 

radiation waves in the viscous domain can be considered in the potential domain. The data 

transfer exists in two directions between the viscous domain and the potential domain. Thus, 

the strong domain-decomposition hybrid model is also called two-way hybrid model. The 

effects of the viscous solution on the potential solution are gain on the velocity potential or 

the normal derivative of it on the boundary condition of the potential solver. To achieve that, 

the overlap zones are used for data transfer between the potential domain and the viscous 

domain, which can be classified into the fixed mode (Sitanggang, et al. 2008; Kim, et al. 2010; 

and Guo et al. 2012) and the moving mode (Sriram, et al., 2014). In the overlap zone, one 

domain’s boundary exists in the other domain’s interior. By doing so, the boundary conditions 

are easily updated by the interpolation of corresponding values in the overlap zone. 

The strong domain-decomposition hybrid model has been used for the simulation of offshore-

to-coastline wave propagation. Sitanggang (2008) developed a Boussinesq and RANS-VOF 
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hybrid model, where the solitary waves or tsunami was generated by the Boussinesq model. 

Then, those waves propagated into RANS-VOF domain. Finally, wave breaking and shoaling 

happens in RANS-VOF domain. Kim, et al. (2010) proposed a strong FNPT and NS-VOF 

hybrid domain-decomposition model for simulations of random waves and similar strong 

domain-decomposition model was used by Guo et al. (2012). To simulate the wave breaking 

in seashore, Sriram, et al. (2014) developed a strong domain-decomposition model coupling a 

FNPT solver and a viscous solver called Improved Meshless Local Petrov Galerkin method 

with Rankine source solution (IMLPG_R). 

Strong domain-decomposition models are also used for the simulation of wave-structure 

interactions. Campana and Lalli (1992) simulated a submerged foil moving forward under 

free surface, where the free surface was simulated in the FNPT domain, while the foil and its 

wake were simulated in the RANS domain. A matching surface between two domains existed 

for data transfer on the boundary and an iterative procedure was required at every time step. 

Then, the same problem was studied by Iafrati and Campana (2003), where an overlapped 

zone was used to couple the potential domain and the viscous domain, based on Schwarz 

method (Widlund and Toselli, 2005). It was found that the iteration can be reduced, 

comparing with the matching surface used by Campana and Lalli, (1992). 

1Table 2.2.1 The category of the literatures about domain-decomposition method 

Domain-decomposition models Without a structure With a structure 

Weak domain- decomposition 

hybrid model 

Guignard et al. (1999),  

Lachaume et al. (2003) 

Yan and Ma (2010) 

Biausser et al. (2003, 2004)  

Gilbert et al. (2007) 

Corte and Grilli (2006) 

 

Strong domain-decomposition 

hybrid model 

Campana and Lalli (1992)  

Iafrati and Campana (2003) 

Kim et al. (2010) 

Guo et al. (2012) 

Sitanggang (2008)  

Sriram et al. (2014) 

Zhang et al. (2013, 

2014, 2015) 

Colicchio et al. (2006, 

2010). 

Greco et al. (2007) 

 

In addition, the strong domain-decomposition hybrid models are also used to simulate 

interactions between waves and surface piercing floating structures. For example, Colicchio et 

al. (2006, 2010) and Greco, et al. (2005) developed a FNPT and NS-Level Set domain-

decomposition hybrid model to study green water on the deck of a ship. Zhang et al. (2013, 



32 

 

2014, 2015) developed a FNPT and RANS domain-decomposition hybrid model to study 

solitary waves impacting on a fixed cylinder. 

From the above, it is found that by using the overlap zone, the two solvers can provide the 

boundary conditions for each other more conveniently. However, in strong domain-

decomposition hybrid methods, the iteration between the potential domain and the viscous 

domain is often required, which affects the computational efficiency. 

In summary, the mentioned literatures related with domain-decomposition models can be 

divided into two groups. One is with the floating structure, and the other is without the 

floating structure, described in Table 2.2.1. It can be seen that only a few works contain the 

floating structure. In these works, the surface-piercing structure is fixed. Even though strong 

coupling models can be used so that the effects of the viscous domain on the potential domain 

can be considered, the iteration is needed, which will reduce the computational efficiency. 

Thus, the function-decomposition model is proposed in order to avoid those drawbacks 

2.2.2 Hybrid Numerical models based on the function-decomposition method 

The function-decomposition method (also called velocity-decomposition method) is based on 

velocity decomposition, by which velocity is decomposed into different parts. Different 

mathematical models are used for solving different parts of velocity. The function-

decomposition model is firstly used in the computing acoustics (Morino, et al. 1999 and 

Hafez, et al. 2007). In recent years, the function-decomposition method is also used in CFD. 

For wave-structure interactions, potential-viscous function-decomposition method is often 

used in the simulation. 

In the potential-viscous function-decomposition model, the total velocity 𝑼total  can be 

decomposed into two parts including the potential part 𝑼pot related with the gradient of the 

velocity potential 𝛻𝜙 and the viscous part 𝑼vis, described as 

𝑼total = 𝑼pot + 𝑼vis = 𝛻𝜙 + 𝑼vis                                                                                    (2.2.1) 

In the computing domain of the potential-viscous function-decomposition method, the 

potential model is used in the potential domain for 𝑼pot. In the viscous domain, the potential 

solution is used as the potential part explicitly. Meanwhile, the viscous parts including 𝑼vis  

are the only unknowns, which are solved by the viscous model. The viscous domain is often 

wrapped by the potential domain. The overlapped area is the whole viscous domain, where is 

also the final solution. 
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In order to study wave-induced sediment transport, some researchers (Grilli, et al. 2008; 

Harris and Grilli, 2010, 2012) developed a complementary NS-LES model by decomposing 

both the velocity 𝑈𝑖  and the pressure 𝑝 into an incident part (𝑈𝑖
𝐼 for incident velocity and 𝑝𝐼 

for incidnet pressure) and a perturbation part ( 𝑈𝑖
𝑃  for perturbation velocity and 𝑝𝑃  for 

perturbation pressure) as 𝑈𝑖 = 𝑈𝑖
𝐼 + 𝑈𝑖

𝑃 and 𝑝 = 𝑝𝐼 + 𝑝𝑃. And the original NS-LES equations 

are changed into the complementary NS-LES equations, i.e., 

𝜕𝑈𝑖
𝑃

𝜕𝑥𝑖
= 0                                                                                                                               (2.2.2) 

𝜕𝑈𝑖
𝑃

𝜕𝑡
+ (𝑈𝑗

𝐼 + 𝑈𝑗
𝑃 −

𝜕𝜐𝑇

𝜕𝑥𝑗
)

𝜕𝑈𝑖
𝑃

𝜕𝑥𝑗
+

1

𝜌

𝜕𝑝𝑃

𝜕𝑥𝑖
= −𝑈𝑗

𝑃 𝜕𝑈𝑖
𝐼

𝜕𝑥𝑗
+ (𝜐 + 𝜐𝑇)

𝜕2𝑈𝑖
𝑃

𝜕𝑥𝑗𝜕𝑥𝑗
+

𝜕𝜐𝑇

𝜕𝑥𝑗
(

𝜕𝑈𝑖
𝐼

𝜕𝑥𝑗
+

𝜕𝑈𝑗
𝐼

𝜕𝑥𝑖
+

𝜕𝑈𝑗
𝑃

𝜕𝑥𝑖
)                                                                                                                             (2.2.3) 

In (2.2.3), the incident part including 𝑈𝑖
𝐼  and 𝑝𝐼 is explicitly provided by the FNPT solver. In 

the complementary NS-LES equations, the independent unknown variables are 𝑈𝑖
𝑃and 𝑈𝑖

𝑃. It 

was concluded by Grilli, et al. (2008) that the hybrid FNPT complementary NS-LES model 

can avoid the numerical instability that existed in the domain-decomposition method.  Later, 

Janssen, et al. (2010) hybrid an FNPT model and a complementary NS model for the 

simulation of wave breaking, where the complementary NS equations were solved by using a 

particle based Lattice Boltzmann model. 

Kim, et al. (2005) developed a complementary RANS model based on the function-

decomposition method. By decomposing the total velocity and the total pressure, the original 

RANS equations were changed into the complementary RANS equations, which were similar 

as those proposed by Grilli, (2008). By the complementary RANS model, the uniform flow 

passing a wing section was studied. The velocity potential was obtained from a potential 

model with the domain covering the wing section. However, it was found that the 

complementary RANS model cannot provide computing savings. Besides that, it was 

indicated that the computing domain could be reduced, if viscous effects were involved in the 

potential solution. Rosemurgy, et al. (2012) applied the similar coupling numerical method 

for predicting the resistance of the ship. A free surface Green function (FSGF) was used to 

calculate the potential velocity. The RANS equations with 𝑘 − 𝜔 SST turbulence model were 

used for the viscous domain. The boundary condition of velocity was determined by the 

FSGF model. In the coupling model, only a linear free surface condition was used on the free 

surface. Subsequently, Edmund, et al. (2013) used viscous potential velocity instead of the 

potential velocity, while traditional RANS equations were used in the computing domain. 

Even though the function-decomposition method was not used directly in control equations, 
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the boundary condition on the inlet and far-field boundary can be considered to satisfy the 

velocity decomposition method by 𝒖 = ∇𝜙 + 𝒘  and 𝒘 = 𝟎  (𝒘  is the viscous part of the 

velocity). 

Some researchers (Ferrant, et al. 2008, 2013; Luquest, et al. 2003, 2004, 2005, 2007; Monroy, 

et al. 2009, 2011; Gentaz, 2004) developed a complementary RANS solver for free surface 

piercing problems. The corresponding complementary RANS equations were similar as those 

developed by Grilli, et al. (2008). The difference was that the free surface piercing was 

considered in the simulation. Thus, the free surface tracking method should be considered. In 

this model, the free surface is tracked by moving mesh under the kinematic free surface 

boundary condition and the dynamic free surface boundary condition is described as 

𝜕ℎ

𝜕𝑡
+ 𝑢1

𝜕ℎ

𝜕𝑥1
+ 𝑢2

𝜕ℎ

𝜕𝑥2
= 𝑢3                                                                                                   (2.2.4) 

𝑃 − 𝜌𝑔ℎ + 2𝜌(𝜐 + 𝜐𝑡)
𝜕𝑢𝑖

𝜕𝑥𝑗
𝑛𝑖𝑛𝑗 = 0                                                                                   (2.2.5) 

{
(𝑛𝑗𝑡1𝑖 + 𝑛𝑖𝑡1𝑗)

𝜕𝑢𝑖

𝜕𝑥𝑗
= 0

(𝑛𝑗𝑡2𝑖 + 𝑛𝑖𝑡2𝑗)
𝜕𝑢𝑖

𝜕𝑥𝑗
= 0

                                                                                                     (2.2.6) 

In the above equations, 𝑛𝑖 are components of the normal vector 𝒏 pointing outside of the free 

surface.  𝑡1𝑖  and 𝑡2𝑖  are components of the two tangential vectors 𝒕1  and 𝒕2 . The wave 

elevation ℎ  is along 𝑥3 . By decomposing the velocity 𝑢𝑖 , the pressure 𝑃 , and the wave 

elevation ℎ as 𝑢𝑖 = 𝑢𝑖
𝐼 + 𝑢𝑖

𝐷 , 𝑃 = 𝑃𝐼 + 𝑃𝐷 , and, ℎ = ℎ𝐼 + ℎ𝐷 , the complementary kinematic 

free surface boundary condition is described as 

𝜕ℎ𝐷

𝜕𝑡
+ 𝑢1

𝐷 (
𝜕ℎ𝐷

𝜕𝑥1
+

𝜕ℎ𝐼

𝜕𝑥1
) + 𝑢2

𝐷 (
𝜕ℎ𝐷

𝜕𝑥2
+

𝜕ℎ𝐼

𝜕𝑥2
) − 𝑢3

𝐷 = 𝑢3
𝐼 −

𝜕ℎ𝐼

𝜕𝑡
− 𝑢1

𝐼 (
𝜕ℎ𝐷

𝜕𝑥1
+

𝜕ℎ𝐼

𝜕𝑥1
) − 𝑢2

𝐼 (
𝜕ℎ𝐷

𝜕𝑥2
+

𝜕ℎ𝐼

𝜕𝑥2
)                                                                                                                                      (2.2.7) 

The complementary free surface dynamic condition in the normal direction is obtained as 

𝑃𝐷 − 𝜌𝑔ℎ𝐷 = 𝜌𝑔ℎ𝐼 − 𝑃𝐼 − 2𝜌(𝜐 + 𝜐𝑡)(
𝜕𝑢𝑖

𝐼

𝜕𝑥𝑗
+

𝜕𝑢𝑖
𝐷

𝜕𝑥𝑗
)𝑛𝑖𝑛𝑗                                                    (2.2.8)  

The complementary surface dynamic conditions in the tangential directions are gain as 

{
(𝑛𝑗𝑡1𝑖 + 𝑛𝑖𝑡1𝑗)

𝜕𝑢𝑖
𝐷

𝜕𝑥𝑗
= −(𝑛𝑗𝑡1𝑖 + 𝑛𝑖𝑡1𝑗)

𝜕𝑢𝑖
𝐼

𝜕𝑥𝑗

(𝑛𝑗𝑡2𝑖 + 𝑛𝑖𝑡2𝑗)
𝜕𝑢𝑖

𝐷

𝜕𝑥𝑗
= −(𝑛𝑗𝑡2𝑖 + 𝑛𝑖𝑡2𝑗)

𝜕𝑢𝑖
𝐼

𝜕𝑥𝑗

                                                                     (2.2.9) 
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In the function-decomposition model, the potential parts including the potential velocity 𝑢𝑖
𝐼 , 

the potential pressure 𝑃𝐼 , and the potential wave elevation ℎ𝐼  are provided from the potential 

wave propagation model. Two kinds of potential models are used in the function-

decomposition method including the stream function wave model and the high order spectral 

model. It should be noted that the two potential models are just about waves without the 

floating structure, which means the reflected wave is not considered in the potential solution. 

On the far field boundary, the diffracted velocity 𝑢𝑖
𝐷 is set as 𝑢𝑖

𝐷 = 0  with a stretching of the 

grid. By this, the wave reflections can be prevented and the diffracted wave field decays to 

zero far from the structure. Nevertheless, the domain cannot be reduced efficiently, because 

the reflected waves by the floating structure are not contained in the potential solution.  

Alternatively, Kenton, et al. (2003) and Huijsmans, et al. (2005) developed a potential viscous 

function-decomposition hybrid model to study the roll motion of a floating structure. In their 

method, the total velocity 𝒖 can be decomposed into two parts including the gradient of the 

velocity potential ∇𝜙 and the viscous velocity 𝒖𝑅, described as 

𝒖 = ∇𝜙 + 𝒖𝑅                                                                                                                     (2.2.10) 

The conventional NS equations can be changed from  

∇ ∙ 𝒖 = 0                                                                                                                            (2.2.11) 

𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ ∇)𝒖 = −

∇𝑃

𝜌
+ 𝜈∇2𝒖 + 𝒈                                                                                   (2.2.12) 

into 

∇ ∙ 𝒖𝑅 = 0                                                                                                                          (2.2.13) 

𝜕𝒖𝑅

𝜕𝑡
+ ((∇𝜙 + 𝒖𝑅) ∙ ∇)𝒖𝑅 + (𝒖𝑅 ∙ ∇)∇𝜙 = −

∇𝑃𝑅

𝜌
+ 𝜈∇2𝒖𝑅                                            (2.2.14) 

𝑃𝑅 = 𝑃 + 𝜌
𝜕𝜙

𝜕𝑡
+

1

2
𝜌(∇𝜙 ∙ ∇𝜙) − 𝜌𝑔𝑧                                                                              (2.2.15) 

In equations (2.2.12) and (2.2.14), υ is the viscosity of fluid. From above, it can be seen that 

in Kenton’s model, only the velocity is decomposed. Unlike Grilli, et al. (2008), Kim, et al. 

(2005), and Ferrant, et al. (2013), the pressure 𝑃 is not decomposed. Nevertheless, a new 

pressure 𝑃𝑅 is used here containing the effects of the potential solution. In the hybrid model, 

∇𝜙 is obtained from the strip method, which is based on the 2D potential theory. Thus, the 

viscous part is just solved in several 2D domains. However, the mean free surface obtained in 

the strip method is used in the complementary NS domain. Therefore, only linear free surface 

boundary condition is applied. Due to the viscous effects, the hydrodynamic forces on the 
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ship section are different in two solvers, which means that the feedback of the viscous 

solution should be considered. Therefore, in every time step, an iterative process is required to 

obtain the final motion and hydrodynamic forces.  

In summary, based on that whether the floating structure is considered in both the potential 

and the viscous domains, the works related with the function-decomposition model can be 

classified in Table 2.2.2.Ta 

From Table 2.2.2, it can be seen that most works are related with submerged structures. Even 

though some researchers (Ferrant, et al. 2008, 2013; Luquest, et al. 2003, 2004, 2005, 2007; 

Monroy, et al. 2009, 2011, Gentaz, L. et al. 2004) did simulations about the surface piercing 

floating structures, the floating structures were not considered in the potential domain. Thus, 

the reflection waves and radiation waves induced by the floating structures did not exist in the 

potential domain. So, the viscous domain must be large enough to contain the reflection and 

the radiation waves. Only Kenton, et al. (2003), Huijsmans, et al. (2005) and Rosemurgy, et al. 

(2012) considered the floating structure in both the potential domain and the viscous domain. 

Nevertheless, only linear free surface boundary condition was used.  

2Table 2.2.2 The category of the literatures about velocity decomposition method 

 Potential model 

With the structure Without the 

structure 

 

 

Viscous 

model 

with 

the 

structure 

 

 

With the 

free 

surface 

piercing 

 

Linear 

Incident 

waves 

Kenton et al. (2003)  

Huijsmans et al. 

(2005) 

 Rosemurgy et al. 

(2012) 

 

None 

 

 

Non 

linear 

incident 

waves 

None Ferrant et al. (2008, 

2013) 

Luquest et al. 

(2003, 2004, 2005, 

2007) 

Monroy et al. 

(2009, 2011) 

Gentaz et al. (2004) 

Without the free 

surface piercing 

 

Kim et al. (2005)  

Edmund et al. 

(2013)  

Grilli et al. (2008) 

 Harris and Grilli 

(2010, 2012) 

Janssen et al. 

(2010)                 
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Moreover, so far as the author knows, domain-decomposition models and function-

decomposition models are used independently in numerical simulations. By those hybrid 

numerical models, high computational efficiency and high computational precision are 

obtained. As a matter of fact, it can be imaged that if the domain-decomposition model and 

the function-decomposition model were combined, the computational efficiency could be 

further enhanced. 

Thus, in this research, an Euler-viscous function-decomposition hybrid model is proposed, 

which is used to model interaction between waves and surface-piercing structure. The 

difference between the new function-decomposition hybrid model and the other existing 

models lies in that the floating structure exists in both the Euler domain and the viscous 

domain. So, the diffraction and reflection velocity due to the floating structure can be 

considered not only in the viscous domain, but also in the Euler domain. By doing so, the 

computational efficiency can be significantly improved. Furthermore, the function-

decomposition Euler-viscous hybrid model is extended to be hybrid with a potential model by 

using the domain-decomposition method. The wave generation and propagation is modelled 

in the potential domain. By combing the function-decomposition method and the domain-

decomposition method, the computational efficiency of the proposed model can be further 

enhanced.  

2.3 Literature review of OpenFOAM for wave-structure interactions 

OpenFOAM is a powerful tool for the simulation of wave structure interactions. Many 

validations have been done for wave structure interactions by the comparison between the 

simulation results and hydrodynamic experiments. Gatin et al. (2018) validated the green sea 

simulations. Chen’s study (2014) indicated that OpenFOAM can be used for simulating non-

linear waves and structure interactions accurately to 4th order harmonic capture. Besides wave 

fixed-structure interactions, Chen (2016) also simulated free rolling of a floating structure in 

regular waves. Chen’s research (2018) showed that OpenFOAM is capable to tackle wave 

induced fluid-structure interactions. Bruinsma et al. (2016) indicated that 6DOF motion of a 

floating structure under waves can be predicted accurately by OpenFOAM. Hu et al. (2016) 

simulated extreme waves and wave-structure interaction by OpenFOAM and the simulation 

results matched well with the experimental results. Higuera et al. (2013) implemented specific 

boundary condition for piston-like wave generation module and active absorbing wave 

module, which are validated by theoretical results and experimental results. 

OpenFOAM has been used for the simulation of wave structure interaction in ocean 

engineering and ship engineering. In ocean engineering, some researchers studied Wave 

Energy Converters (WEC) by OpenFOAM. Palm et al. (2016) computed the motion of a 
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floating WEC coupled with mooring analysis. Sjökvist et al. (2017) simulated point-absorbing 

WEC in extreme waves. Iturrioz et al. (2015) simulated an Oscillating Water Column(OWC) 

and validated the numerical results with laboratory experiments. Vyzikas et al. (2016) 

investigated the behaviour and the performance of OWCs in different alternative design 

concepts. Schmitt et al. (2015) used studied OWC in significant wave. Ransley et al. (2017) 

simulated a WEC device called Wave star in extreme seas and shows good quality of 

numerical results comparing with the experimental results. In ship engineering, Jiang et al. 

(2018) studied wave resonance in the narrow gap between two non-identical boxes.  Moradi 

et al. (2016) studied the effects of water depth on the resonance of trapped water between two 

bodies. Liu et al. (2017) did an accurate numerical study of a floating offshore wind turbine 

system. A numerical simulation of a flexible barge (Seng et al., 2014) is done and validated 

by corresponding experiments. Sigmund et al. (2018) investigated the added resistance of 

different ship types in short and long waves by numerical simulations (OpenFOAM), which 

matched well with the experiment results. Lavrov et al. (2017) investigated viscous unsteady 

properties of three different sections of a container ship. 

For simulating wave structure interactions, wave generation and absorption are two important 

aspects, which can be achieved by two techniques including free surface capturing method 

and free surface tracking method. In OpenFOAM, free surface capturing method is often used 

for wave generation and absorption, in which the phase of fluid is represented by a scalar 

called phase volume ranging from 0 to 1. Specifically, the phase volume of water is 1 and the 

phase volume of air is 0. For wave generation, the phase volume and velocity can be 

prescribed in the boundary, based on wave theories. Many modules have been developed for 

prescribing the incident waves, among which waves2Foam (Jacobsen, 2012) is a popular 

third-party module that have been validated by many researchers for wave-structure 

interaction (Jose, 2017; Sjökvist, 2017; Palm, 2016; Hu, 2016; Chen, 2018; Teng, 2017;  

Bruinsma, 2016; Sun, 2016; Moradi, 2016; Vyzikas, 2016; Ransley, 2017). Besides 

prescribing incident waves on boundary, dynamic mesh is often used to simulate the real 

wave maker (Martínez-Ferrer, 2018; Sigmund, 2018). Similar as wave generation, 

waves2Foam can also supply wave relaxation zone for wave absorption. By simulating real 

wave makers, dynamic mesh is also used for absorbing waves actively (Higuera, 2013). 

Although dynamic mesh can be used for wave generation and absorbing, numerical instability 

is often induced. Thus, incident waves prescribing and wave relaxation zone is chosen for 

wave generation and absorbing. Finally, waves2Foam is used in the research for wave 

generation and absorption.  
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Chapter 3 An Euler-viscous hybrid model for interaction of 

a surface-piercing fixed structure with waves 

In this section, an Euler-Viscous hybrid solver is developed by the function-decomposition 

method for the simulation of wave-fixed structure interactions. The Euler-viscous hybrid 

solver contains two parts. One part is a two-phase Euler solver, where the viscous effects are 

neglected. The other part is a so called complementary RANS solver (two-phase), in which 

viscous effects and turbulence are considered. In fact, the complementary RANS solver is 

derived from the conventional RANS solver, by functionally decomposing both velocity and 

pressure into the Euler components and complementary components. In the complementary 

RANS model, the Euler components are explicit from the Euler solution. The complementary 

components are unknown independent variables. Correspondingly, complementary turbulence 

models are proposed by the function-decomposition method. For the Euler-viscous hybrid 

model, an interpolation process is required for the data transition from the Euler domain into 

the viscous domain. Besides that, special boundary conditions should be proposed in the 

viscous domain for the complementary RANS solver. In addition, a transition zone scheme is 

used for dissipating the viscous effects at the boundaries of the viscous domain. Furthermore, 

the transition zone is also applied to keep the free surface consistent. Finally, a solution 

procedure is established for the Euler-viscous hybrid model. 

3.1 The mathematical formulations 

Two kinds of solvers are described in detail. Firstly, the conventional two-phase Euler solver 

is given. Secondly, the complementary two-phase RANS solver is derived from the 

conventional RANS solver. The corresponding complementary turbulence model used in the 

RANS solver is also discussed. 

3.1.1 The governing equations of the two-phase Euler solver 

The two-phase Euler solver is used in the Euler domain. Both viscous effects and turbulent 

effects are neglected in the model.  The governing equations of the Euler solver is described 

as below 

∇ ∙ (𝐔I) = 0                                                                                                                         (3.1.1) 

𝜕(𝜌′𝐔I)

𝜕𝑡
+ (𝐔I ∙ ∇)(𝜌′𝐔I) = −∇(pI) + 𝜌′𝒈                                                                          (3.1.2) 

In these equations, UI is the velocity and pI is the pressure. ρ' is the density of the fluid in the 

Euler computing domain, which is calculated by ρ'=γ'·ρwater+(1- γ')·ρair. ρwater and ρair are 

density of water (1000kg/m3) and air (1kg/m3). γ' represents the volume fraction of the fluid in 
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the Euler domain, which is 1 and 0 for water and air respectively.  g is the acceleration 

induced by gravity.  

The free surface is captured by VOF (Volume of Fraction) model (Weller, H. G. 2002), where 

the volume fraction of fluid is the only unknown variable as γ'. The governing equation of the 

VOF model is shown as below 

𝜕𝛾′ 

𝜕𝑡
+ ∇ ∙ (𝛾′ 𝐔I) = 0                                                                                                          (3.1.3) 

3.1.2 The governing equations of the two-phase complementary RANS solver 

In the viscous domain, the complementary RANS equations are derived from the 

conventional RANS equations, where both viscosity and turbulence are considered.  

The basic idea of the complementary RANS equations stems from decomposing of the 

unknown variables in the conventional RANS equations. By the function-decomposition 

method, both the velocity and the pressure can be divided into two components including the 

Euler component and the complementary component, which is described below 

𝐔 = 𝐔𝐈 + 𝐔𝐃                                                                                                                       (3.1.4) 

p = pI + pD                                                                                                                         (3.1.5) 

In equation (3.1.4) and equation (3.1.5), UI and pI is the solution of the Euler solver described 

before. Both UD and pD are the unknown variables in the complementary RANS equations. 

By decomposing the velocity U into the Euler part UI and the complementary part UD, the 

continuity equation is changed from ∇ ∙ (𝐔) = 0  into 

 ∇ ∙ (𝐔I) + ∇ ∙ (𝐔D) = 0                                                                                                     (3.1.6)                                                                              

Then, similarly, by decomposing of velocity and pressure, the conventional momentum 

equation is changed from 

𝜕(𝜌𝐔)

𝜕𝑡
+ (𝐔 ∙ ∇)(𝜌𝐔) = −∇(p) + 𝜌𝒈 + ∇ ∙ (μt∇𝐔)    

into 

𝜕(𝜌𝐔D)

𝜕𝑡
+ [(𝐔I ∙ ∇) + (𝐔D ∙ ∇)](𝜌𝐔D) − ∇ ∙ (μt∇𝐔D) +

𝜕(𝜌𝐔I)

𝜕𝑡
+ [(𝐔I ∙ ∇) + (𝐔D ∙

∇)](𝜌𝐔I) − ∇ ∙ (μt∇𝐔I) = −∇(pI) − ∇(pD) + 𝜌𝒈                                                           (3.1.7)                                                           
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In the complementary momentum equations, μt is the total viscosity, which is described as μt= 

μf+μa. μf is the fluid viscosity, calculated by μf=γ·μf
water+(1-γ)·μf

air. μf
water and μf

air are viscosity 

of water and air. μa is the turbulence viscosity, determined by the turbulence model. γ 

represents the volume fraction of fluid in the viscous domain, which is 1 and 0 for water and 

air respectively. ρ is the density of the fluid, which is gain by ρ=γ·ρwater+(1- γ)·ρair. 

Even though 
𝜕(𝜌′𝐔I)

𝜕𝑡
+ (𝐔I ∙ ∇)(𝜌′𝐔I) = −∇(pI) + 𝜌′𝒈  can be found in Equation (3.1.1), 

those terms including
𝜕𝜌𝐔I

𝜕𝑡
, (𝐔I ∙ ∇)(𝜌𝐔I) , −∇(pI) , and 𝜌𝒈  cannot be cancelled. That’s 

because the free surface is different in the Euler domain and in the viscous domain, especially 

around the floating structure. In the two-phase model, the density is determined by the free 

surface. Thus, the density in the Euler domain is different from that in the viscous domain.  

The free surface in the viscous domain is also tracked by the VOF model, which is described 

as below 

𝜕𝛾

𝜕𝑡
+ ∇ ∙ [𝛾(𝐔I + 𝐔D)] = 0                                                                                                 (3.1.8) 

In equation (3.1.7), the turbulence viscosity μa is determined by the turbulence model. In the 

complementary RANS model, the turbulence model is also derived from the conventional 

turbulence model by decomposing the velocity. Taking Re Normalisation Group (RNG) k 

epsilon model for instance, by dividing the velocity U into UI and UD, the conventional RNG 

k epsilon turbulence model (Yakhot, V., 1992) for the incompressible flow can be changed 

from  

∂k

∂t
+ ∇ ∙ (𝐔k) = ∇ ∙ [(μ +

μt

σk
) ∇k] + G − ε  

∂ε

∂t
+ ∇ ∙ (𝐔ε) = ∇ ∙ [(μ +

μt

σε
) ∇k] + (C1ε − R) ∙ G ∙

ε

k
− C1ε ∙

ε2

k
  

into 

∂k

∂t
+ ∇ ∙ [(𝐔𝐈 + 𝐔𝐃) ∙ k] = ∇ ∙ [(μ +

μt

σk
) ∇k] + G − ε                                                         (3.1.9) 

∂ε

∂t
+ ∇ ∙ [(𝐔𝐈 + 𝐔𝐃) ∙ ε] = ∇ ∙ [(μ +

μt

σε
) ∇k] + (C1ε − R) ∙ G ∙

ε

k
− C2ε ∙

ε2

k
                        (3.1.10) 

In the complementary RNG k epsilon model, some constants are described as below 

σk =0.7194, σε =0.7194, C1ε =1.42, C2ε =1.49. G  is defined as  G =
1

2
μ

t
∙ |∇(𝐔𝐈 + 𝐔𝐃) +
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[∇(𝐔𝐈 + 𝐔𝐃)]T|
2

.  R  is determined by R =
η∙(1−η/η0)

1+β∙η3 , η =
∇(𝐔𝐈+𝐔𝐃)+[∇(𝐔𝐈+𝐔𝐃)]

T

ε
k  , η0 =4.38, 

and β=0.012. 

3.2 The numerical method 

In the research, the open-source computational fluid dynamics software OpenFOAM is used. 

In OpenFOAM, the finite volume method is used for the space domain discretization. The 

governing equations are discretized in space domain over the control volume. The 

unstructured mesh (Jasak, H. et al. 2007) is used in OpenFOAM. Furthermore, the control 

volume can be arbitrary polygon volume, which cannot be overlapped with neighbour control 

volumes.  

Momentum equations including (3.1.1) and (3.1.7) can be multiplied on both sides over a 

small control volume. Then, by Gauss’s theorem, the integration over a control volume can be 

changed into the integration over surfaces of the control volume (Gauss scheme). After that, 

temporal terms including 
𝜕(𝜌𝐔D)

𝜕𝑡
, 

𝜕(𝜌𝐔I)

𝜕𝑡
, and 

𝜕(𝜌′𝐔I)

𝜕𝑡
 are discretized by fully implicit scheme 

(Euler scheme). Convective terms including [(𝐔I ∙ ∇) + (𝐔D ∙ ∇)](𝜌𝐔D) , [(𝐔I ∙ ∇) +

(𝐔D ∙ ∇)](𝜌𝐔I) , and (𝐔I ∙ ∇)(𝜌′𝐔I)  are discretized by high order upwind scheme 

(limitedLinearV shceme). Diffusive terms including ∇ ∙ (μt∇𝐔D)  and ∇ ∙ (μt∇𝐔I)  are 

discretized by central scheme (linear scheme). Finally, momentum equations are transformed 

into linear equations as 

Ac
U𝐔c + ∑ An

U𝐔nn = 𝐒c
U                                                                                                       (3.2.1) 

In linear equations (3.2.1), Uc is the unknown velocity (UI for the Euler solver and UD for the 

complementary RANS solver) at the control volume c. Un is the unknown velocity at 

neighbour volumes of the control volume c. AU
c and AU

n are coefficients related with flux 

terms, convective terms on the faces of the control volume c and temporal terms. SU
c is the 

source term, which is related with the known velocity terms, pressure terms, and temporal 

terms. Then, by solving a series of linear equations on all of control volumes, momentum 

equations are solved and unknown velocity can be obtained.  

By using half-discretized momentum equations, the flux on the faces of a control volume can 

be represented by an equation with the divergence of pressure. Then, the equation of pressure 

is constructed by the continuity equation, in which the total flux is zero. By using the central 

scheme (linear scheme), the divergence of pressure is discretized. Finally, the linear equation 

related with pressure is obtained as 

Ac
p

pc + ∑ An
p

pnn = Sc
p
                                                                                                         (3.2.2) 
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In equation (3.2.2), the unknown independent variable is pI for the Euler solver and pD for the 

Euler-viscous hybrid solver. The linear equation can be formed by pc at the control volume 

with pn at the neighbours of the control volume. Ap
c and Ap

n are coefficients for pD
c and pD

n, 

respectively. In OpenFOAM, pressure is collocated with velocity, at the centre of the control 

volume. The problem induced by the collocated pressure (Vuorinen, et al. 2014) and velocity 

can be solved by Rhie-Chow method (Kärrholm, 2006).  

The PISO algorithm (Morgan and Zang, 2011) is used for solving the hybrid equation of 

momentum equations (3.2.1) and pressure equation (3.2.2). More details can be found in 

Morgan and Zang (2011), which is omitted here for brevity. 

 

(a) The Euler computing domain                               

 

(b) The viscous computing domain 

 

 (c) The overlap of the Euler computing domain and the viscous computing domain 

Fig. 5Fig. 3.3.1 The computational domain for the Euler-viscous hybrid model 

Floating 

structure 

The Euler domain 

The viscous domain 

The free surface 

Floating 

structure 

upper 

Boundary1 Boundary2 

bottom 

upper 

inlet outlet 

bottom 

Floating 

structure 



44 

 

3.3 The computational domain for the Euler-viscous hybrid solver 

The mathematical formulations are described in section 3.1. Comparing with the conventional 

RANS solver, the Euler-viscous hybrid solver contains two models including the two-phase 

Euler model and the two-phase complementary RANS model. Correspondingly, an Euler 

domain and a viscous domain are used for the Euler model and the complementary RANS 

model, respectively. The Euler model is solved in a large computing domain, which is shown 

in Fig. 3.3.1 (a). Comparing with the Euler domain, the viscous domain is smaller for the 

complementary RANS model, which is shown in Fig. 3.3.1 (b). Free surface is captured in 

both two domains. Besides that, a fixed structure exists in both the Euler domain and the 

viscous domain.  

It is shown in Fig. 3.3.1 (c) that the Euler domain and the viscous domain are overlapped. 

During the simulation, the solution of the two-phase Euler model can be transmitted into the 

viscous domain. Furthermore, the overlapped zone is the whole viscous domain. It should be 

noted that the floating structure exists in both domains, which is different from the other 

function-decomposition methods proposed so far. By doing this, the reflection and diffraction 

waves induced by the floating structure can be considered in the Euler domain, hereafter be 

transmitted into the viscous domain. Therefore, the size of the viscous domain can be reduced 

remarkably.  

3.4 The boundary conditions 

The boundary conditions play a crucial role in the numerical simulation. By using the suitable 

boundary conditions, the reasonable simulation results can be obtained. Because two 

computational domains are used for the Euler-viscous hybrid solver, the boundary conditions 

are more complex than those for the conventional RANS solver. Especially in the viscous 

domain, the boundary conditions should be treated appropriately.  

3.4.1 The boundary condition in the Euler domain 

In the Euler domain, the boundary conditions of the velocity 𝐔I and volume fraction α′ are 

described on different boundaries as below. 

On the inlet boundary, UI and γ' should be set by incident waves, which is described as 

𝐔I = 𝐔in
I , and 𝛾′ = 𝛾in

𝐼                                                                                                         (3.4.1) 

UI
in and γI

in are velocity and volume fraction provided by analytical wave solutions depending 

on incident wave conditions, e.g., the first order stokes wave solution for modelling small 

steepness waves or the fifth order stokes wave solution for moderate steepness waves. 
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On the rigid boundaries such as bottom and structure, the wall boundary condition should be 

satisfied, i.e., the slip wall boundary where the fluid particle cannot go through the wall. 

Specifically, the velocity 𝐔I can be divided into the tangential part (𝐔I ∙ 𝐭)𝐭 and the normal 

part (𝐔I ∙ 𝐧)𝐧  on the boundary and the normal part (𝐔I ∙ 𝐧)should be zero on the rigid 

boundaries. In addition, the normal gradient of the tangential part (𝐔I ∙ 𝐭)𝐭 should be zero, as 

well as the gradient of volume fraction γ'. Finally, the boundary condition on the bottom, 

structure and wall boundary is described as 

𝐔I = (𝑼𝑛𝑏𝑟
𝐼 ∙ 𝐭)𝐭  and 

∂𝛾′

∂𝐧
= 0                                                                                             (3.4.2) 

where 𝑼𝑛𝑏𝑟
𝐼  is the velocity on the neighbour volume of the boundary. Thus, 𝐔I is set by the 

tangential part of  𝑼𝑛𝑏𝑟
𝐼 . 

On the upper boundary, UI and γ' are determined by the direction of the flux, which is 

described as below 

{

𝜕𝐔I

𝜕𝒏
= 0 (𝐔I ∙ 𝑺𝑓 > 0)

𝐔I =  (𝒏⨂𝒏) ∙ 𝑼𝑛𝑏𝑟
𝐼  (𝐔I ∙ 𝑺𝑓 < 0)

  and {

𝜕γ′

𝜕𝒏
= 0 (𝐔I ∙ 𝑺𝑓 > 0)

γ′ = 0 (𝐔I ∙ 𝑺𝑓 < 0)
                                                (3.4.3) 

In (3.4.3), the flux on the boundary is 𝐔I ∙ 𝑺𝑓, where 𝑺𝑓 is the area vector with the magnitude 

of area and normal direction. As flux flows into the upper boundary ( 𝐔I ∙ 𝑺𝑓 < 0), the 

velocity is equal to the normal part of the velocity in the neighbour volume of the boundary, 

while only air can flow into the neighbour volume (γ′ = 0). On the contrary (𝐔I ∙ 𝑺𝑓 < 0), the 

normal zero gradient should be satisfied for both the velocity 𝐔I and volume fraction γ'.  

On the outlet boundary, the wall boundary condition should be satisfied with the help of the 

relaxation zone, which is often used in the numerical wave tank. The relaxation zone is used 

for absorbing the diffraction waves by damping the velocity and volume fraction, which is 

achieved in waves2Foam.  

3.4.2 The boundary condition in the viscous domain 

In the viscous domain, the boundary conditions are related with those in the Euler domain. 

The complementary velocity UD, and volume fraction γ should also be defined.  Besides, 

since the turbulence is considered in the viscous domain, the boundary conditions of 

turbulence should also be considered.  

On the boundaries far away from the floating structure such as boundary 1, boundary 2, upper, 

and bottom, the viscous effects must be zero, due to the dissipation of the viscous effects. 
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Therefore, the complementary velocity UD should be set as zero. Apart from that, to keep the 

free surface consistent in two computational domains, the volume fraction γ is the same as 

that (γ') in the Euler domain. Finally, the boundary condition can be described as 

𝐔D = 𝟎 and γ = γ′                                                                                                              (3.4.4) 

For the turbulence model, taking k-ε two-equation model for instance, due to the dissipation 

of the viscous effects, the turbulence should be small and fully developed. Therefore, far 

away from the floating structure, zero normal gradient boundary condition is applied, which 

can be described as 

∂k

∂𝐧
= 0 and 

∂ε

∂𝐧
= 0                                                                                                               (3.4.5) 

On the fixed structure, the total velocity should be zero, which satisfies the no slip boundary 

condition in the viscous domain. Therefore, 𝐔 = 𝐔I + 𝐔D = 𝟎  should be guaranteed. 

Meanwhile, the volume fraction should also fulfil zero normal gradient condition. Thus, the 

boundary condition is described as 

𝐔D = −𝐔I  and 
∂γ

∂𝐧
= 0                                                                                                         (3.4.6) 

For the turbulence model, the wall function is used on the fixed structure, which can be the 

same with that used for the conventional RANS solver.  

3.5 The relaxing zone and the transition zone  

For the simulation of wave-structure interactions, the relaxing zone is always employed by 

using the conventional RANS mode, which is mainly used to, firstly, damp the reflection 

waves from the structure, and, secondly, absorb waves at the end of the wave basin. Similarly, 

the relaxing zone is also required by the Euler solver for such purposes, i.e., to generate 

incident waves and damp the reflection waves close to the inlet boundary, meanwhile,  absorb 

waves close to outlet boundary. Details about the relaxing zone are omitted here for brevity, 

since it is not the focus of this study. 

In the viscous domain, in order to dissipate the viscous effects, the transition zone is applied 

far away from the floating structure. With the transition zone, the viscous effects can be 

diminished to zero, while the free surface in the Euler domain and in the viscous domain can 

remain consistent. The details of the transition zone are described in the subsections below. 
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3.5.1 The transition zone in the viscous domain 

Two transitional zones are distributed in two zones close to two ends of the numerical wave 

tank including boundary 1 and boundary 2, as shown in Fig. 3.5.1. In the transition zone, both 

complementary velocity UD and volume fraction γ are relaxed by blending the simulation 

values with target values, which is described as 

{
𝐔D

𝑡 = 𝐔D
𝑇𝑎𝑟𝑔𝑒𝑡 ∗ (1 − 𝑤) + 𝐔D

0 ∗ 𝑤

𝛾𝑡 = 𝛾𝑇𝑎𝑟𝑔𝑒𝑡 ∗ (1 − 𝑤) + 𝛾0 ∗ 𝑤
                                                                         (3.5.1) 

In the formula (3.5.1),  𝐔D
𝑡 and 𝛾𝑡 are the final relaxing results at the current step t; 𝐔D

0 and 

𝛾0 are simulation values before transition; 𝐔D
𝑇𝑎𝑟𝑔𝑒𝑡 and 𝛾𝑇𝑎𝑟𝑔𝑒𝑡 are target values. 𝐔D

𝑇𝑎𝑟𝑔𝑒𝑡 

is set as 𝐔D
𝑇𝑎𝑟𝑔𝑒𝑡 = 𝟎 so that the complementary velocity 𝐔D

𝑡  is damped to 𝐔D
𝑡 = 𝟎  on 

both boundary 1 and boundary 2. 𝛾𝑇𝑎𝑟𝑔𝑒𝑡 is set by the volume fraction in the Euler domain 𝛾′. 

By doing so, the volume fraction γ on both boundary 1 and boundary 2 in the viscous domain 

is set as the same value as the volume fraction 𝛾′ in the Euler domain, for keeping the free 

surface consistent in the Euler domain and viscous domain. w is the relaxation coefficient, 

which will be discussed in the following subsection.  

 

Fig. 6Fig. 3.5.1 The transition zone in the viscous domain 

3.5.2 The relaxation method in the transition zone 

The relaxation coefficients w is defined as 

𝑤 = 1 −
𝑒(𝜎𝑝)−1

𝑒−1
                                                                                                            (3.5.2) 

In the formula (3.5.2), p is a constant, which is 3.5 by numerical tests. σ is a parameter related 

with the coordinates of the points in the transition zone, which is given by 

𝜎 =
|𝑥𝑝𝑜𝑖𝑛𝑡−𝑥𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦|

𝐿𝑡𝑟
                                                                                                           (3.5.3) 
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where 𝑥𝑝𝑜𝑖𝑛𝑡 is x coordinate of the point in the transition zone. 𝑥𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦is x coordinate of 

boundary 1 or boundary 2 depending on the location of 𝑥𝑝𝑜𝑖𝑛𝑡 , 𝐿𝑡𝑟  is the length of the 

transition zone. It is noticed that w is 0 on both boundary 1 and boundary 2 and it ranges from 

w=0 to w=1 smoothly along the transition zone. Correspondingly, in the viscous domain, on 

both boundary 1 and boundary 2, UD
𝑡 can be set as UD

𝑡=0 and γ can be set as γ=γ'. The 

transition of UD and γ also depends on the variation of w and σ, which is described below. 

 

(a)  w                                                                          (b) σ 

 

(c) w and σ change along the horizontal direction 

Fig. 7Fig. 3.5.2 The transition zone in the viscous domain 

Taking 𝐿𝑡𝑟 = 𝜆/2, 𝑥𝑏𝑜𝑢𝑑𝑛𝑎𝑟𝑦1 = −𝜆, and 𝑥𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦2 = 𝜆 (𝜆 is the wave length.) for instance, 

𝑤 and 𝜎 are distributed in a viscous domain ranging from 0 to 1 given that 𝑥 ∈ [−𝜆, 𝜆], which 

are shown in Fig. 3.5.2 (a) and Fig. 3.5.2(b), respectively. Meanwhile, the relationship 

between 𝑤 and 𝜎 is demonstrated in Fig. 3.5.2(c). It is noted that both 𝑤 and 𝜎 change only 

along the horizontal direction, and, the values of 𝑤 and 𝜎 are inversely distributed. By using 

this technique,  it can guarantee that 𝐔D
𝑡=0 and 𝛾𝑡= 𝛾′

𝑡 on both boundary 1 and boundary 2,  

while 𝐔D
𝑡=𝐔D

0 and γ𝑡=γ′
0 outside the transition zone as w=1 and σ=0. 

3.6 The interpolation technique 

Due to different mesh used in the Euler domain and the viscous domain, an interpolation 

process is applied for transiting the data from the Euler domain to the viscous domain. Three 

𝑤 𝜎 
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steps must be taken. Firstly, the target position in the viscous domain is found in the Euler 

domain. By the first step, the projection between the target cells in the viscous domain and the 

source cells in the Euler domain is established. Taking Fig. 3.6.1 for instance, the source 

position cell E0 that contains the target cell V0’s centre is found. Secondly, search the Euler 

domain to find all the neighbour cells of the source cell, e.g., as shown in Fig. 3.6.1, cell E1, 

cell E2, cell E3, and cell E4 are neighbour cells of cell E0. In the final step, by using the values 

at the centres of the source cell and neighbour cells, the interpolation result on the target cell 

centre can be obtained. 

 

Fig. 8Fig. 3.6.1 The interpolation method 

The interpolation formula can be described as 

𝑉0 = ∑ 𝑤0𝑖 ∙ 𝑉𝑖
𝑛
𝑖=1                                                                                                                 (3.6.1) 

In the equation, 𝑉0 is the interpolation value on the target cell centre in the viscous domain. 𝑉𝑖 

(i=0 … n) is the corresponding values on the source cell’s centre and neighbour cells’ centres 

in the Euler domain. 𝑤0𝑖 is the weight coefficients for interpolation, which are given by 

𝑤0𝑖 =
1

𝑙0𝑖
⁄

∑ (1
𝑙0𝑚

⁄ )𝑛
𝑚=0

                                                                                                                (3.6.2) 

where 𝑙0𝑖  (i=0, …, n) is the distance between the centres of the target cell centre in the 

viscous domain and the source cell in the Euler domain. It indicates that the weight 

coefficient varies inversely as the distance, which means that the contribution of the source 

cell goes down with the increasing of the distance. 

3.7 The solution procedure of the Euler-viscous hybrid solver 

In the Euler-viscous hybrid solver, the inlet boundary of the Euler domain is updated firstly, 

which can be supplied by a prescribed wave theory such as 1st order and 5th order Stokes 

waves etc. Then, the Euler equations and complementary RANS equations are solved 

subsequently. Meanwhile, the free surface is updated in the Euler domain and viscous domain, 
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respectively. During that, the interpolation process described in section 3.6 is required. The 

flow chart of the Euler-viscous hybrid solver is shown in the Fig. 3.7.1, which can be 

demonstrated as below: 

 

Fig. 9Fig. 3.7.1 The interpolation procedure  

Step1 Initialise the unknown variables including 𝐔I , pI  , and 𝛾′  in the Euler domain and 

establish the projection relationship between the Euler domain and the viscous domain for 

interpolation.  

Step2 By using the prescribed linear or non-linear wave theory, 𝐔in
I  and 𝛾in

𝐼  on the inlet 

boundary of the Euler domain is obtained. 

UI, pI, and γ' are transmitted into the viscous domain.  UD, 

pD, and γ are interpolated from the Euler solution in the 

trasition zones 

End 

tn<tend 

The total velocity and pressure are obtained by U= UI+ 

UD, and p= pI+pD 

γ' are updated by VOF equation (3.1.3) in  Euler domain 

UI and γ' are updated on the inlet boundary of the Euler 

domain by specified wave theory or the potential solver 

Oceanwave3D 

UI and pI are updated by momentum equations (3.1.1) and 

continuity equation (3.1.2) in the Euler domain  

γ are updated by the complementary VOF equation (3.1.8) 

in  the viscous domain 

UD and pD are updated by complementary momentum 

equations (3.1.7) and complementary continuity equation 

(3.1.6). 

The complementary turbulence model is solved. 

Initialization 

tn+1=tn+Δt 
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Step3 In the Euler domain, the free surface is updated by using equation (3.1.3). Then, 𝐔I and 

pI are updated for the next time step by solving the momentum equations and the pressure 

equation obtained from (3.1.1) and (3.1.2)  

Step4 The Euler solutions including 𝐔I, pI , and 𝛾′ are interpolated into the viscous domain, 

which are regarded as known variables. 

Step5 In the viscous domain, 𝐔D  and pD  is updated in the next time step by solving the 

complementary momentum equations and the corresponding pressure equation obtained from 

(3.1.6) and (3.1.7) by using the PISO algorithm. Meanwhile, the complementary turbulence 

model is solved by using the obtained values of  𝐔I  and 𝐔D  in the current time step. The 

volume fraction 𝛾 is updated by using (3.1.8). A transitional zone technique described in 

section 2.3 is used to keep volume fraction consistent and smooth between the Euler domain 

and the viscous domain. 

Step6 Finally, the total velocity and the total pressure in the next time step are obtained by 

𝐔 = 𝐔I + 𝐔Dand p = pI + pD respectively.  

The simulation advances into the next time step and the program returns to Step2 until the 

final time step is reached. 
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Chapter 4 Convergence study of the Euler-viscous hybrid 

solver for interaction of a surface-piercing fixed structure 

with waves 

In this chapter, based on the convergence study of the newly developed Euler-viscous hybrid 

solver introduced in Chapter 3, for simulating wave interacting with fixed surface-piercing 

structure will be explored. The effects of the mesh resolution, the size of the viscous domain, 

the length of the transition zone, and the incident waves on the numerical results are studied. 

The computational accuracy and efficiency are discussed. Finally, the validation of the Euler-

viscous hybrid solver is done.  

4.1 The numerical configuration 

                            

Fig. 10Fig. 4.1.1 the physical model 

A two-dimensional case of fixed surface-piercing structure interacting with regular waves is 

selected which has been studied by many researchers (Tanizawa, and Minami, 1998; Koo, 

and Kim, 2007; Li, and Lin, 2012). It is sufficient to investigate the convergence of the Euler-

viscous hybrid solver, which will further be used to study the effects of complex topography 

on wave interacting with fixed surface-piercing structure (Chapter 5). Note that the same case 

has been used by Koo and Kim (2007) to validate the in-house code, and Li and Lin, (2010) 

to validate a numerical wave tank based on OpenFOAM.            

As shown in Fig. 4.1.1, the fixed structure is a two-dimensional rectangular barge with width 

(B) of 0.5m and height (l) of 0.5m. The initial draft (d) of the floating structure is 0.25m. The 

water depth h is taken as the same as the incident wave length h=𝜆. Non-dimensional wave 

forces are used, e.g., the horizontal force FS is non-dimensionalized by dividing ρgLdA, 

where L is the length of the floating structure and A is half of the wave height Hw. Similarly, 

the vertical force Fh and the moment force M are also non-dimensionalized by dividing 
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ρgLBA and ρgLBdA respectively. Due to the sharp corner of the floating structure and high 

Reynolds number (Re>10000), the potential model is insufficient (Koo, 2004), thus the 

viscous model should be used for simulations. In this research, the case is simulated by both 

the conventional RANS solver and the Euler-viscous hybrid solver. Finally, the computational 

accuracy and the efficiency of the Euler-viscous hybrid solver is discussed. 

4.2 The effects of the mesh resolution  

4.2.1 The mesh for the Euler-viscous hybrid solver and the conventional RANS solver 

 

  (a) Mesh in the viscous domain                               (b) Mesh in the Euler domain 

                             

(c) Mesh in the conventional RANS domain 

Fig. 11Fig. 4.2.1 Mesh used in the hybrid model and conventional RANS model 

Both the Euler domain and the viscous domain are rectangular with the floating structures 

being placed in the centre, shown in Fig. 4.1.1. The length and the width of the Euler domain 

are LE=8λ and HE=2λ, respectively. Some researchers used smaller computational domains 

for simulations of the same case (Tanizawa and Minami, 1998; Koo and Kim, 2007; Li and 

Lin, 2012). The viscous domain is much smaller than the Euler domain. Meanwhile, the mesh 

in the viscous domain is denser than that in the Euler domain. The mesh uses hexahedral cells 

and is refined around the structure and free surface, which is generated by the mesh 

generating program blockMesh built in OpenFOAM. The scale of conventional RANS 

domain is the same as that of the Euler domain for comparison. In order to capture the vortex 

around the floating structure and free surface, the mesh surrounding the structure must be 

refined. Apart from that, the mesh close to that must be refined. i.e., the mesh is refined along 

the horizontal direction with the length of 2B, and refined along the vertical direction with the 

length of 4d. Finally, an example of the mesh is shown in Fig. 4.2.1, which it is found that 

along the vertical direction, the mesh is refined and uniformed, close to the sea level, but is 
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coarser and non-uniform (with the ratio of 1/30) far away from the floating structure. While 

on the horizontal direction, the mesh is uniformed and denser surrounding the floating 

structure.  

Some parameters are used to describe the effects of the mesh. Firstly, the number of division 

per wave length is used for the mesh far away from the structure in the horizontal direction. 

Specifically, nLE divisions in the length of 0.5LE-B in the Euler domain and nLV divisions in 

the length of 0.5LV-B in the viscous domain are applied for the Euler-viscous hybrid solver. 

Similarly, nLC divisions in the length of 0.5LC-B in the conventional RANS domain are 

applied for the conventional RANS solver. Secondly, the number of division per width of the 

structure is used to describe the mesh close to the structure in the horizontal direction along 

the length of 2B, i.e., nBE divisions in the Euler domain and nBV divisions in the viscous 

domain are used for the Euler-viscous hybrid solver, while nBC is used for the conventional 

RANS solver. Thirdly, to describe the mesh close to the structure in the vertical direction 

along the length of 4d, nHE, nHV, and nHC are used in the Euler domain, the viscous domain 

and conventional RANS domain, respectively. In the simulation based on the Euler-viscous 

hybrid solver, the mesh in the viscous domain is finer than that in the Euler domain, which 

means that nLV>nLE, nBV>nBE, and nHV>nHE. That’s because finer mesh is required by the 

viscous solver for convergence. 

Linear wave theory is used for generating incident regular waves at inlet boundary with the 

wave height Hw=0.07m and the incident wave length λ=2.1m. It should be noted that all 

parameters in length are non dimensionalized by dividing the draft d, i.e., B/d=2, l/d=2, 

h/d=8.4, λ/d=8.4, and Hw/d=0.28. In the next subsections, the effects of mesh resolution are 

explored. 

4.2.2 The convergence study of the conventional RANS solver and the Euler solver 

Firstly, the convergence study of the time step is carried out by using the conventional RANS 

solver, where nLC=200, nBC=80, and nHC=30. Cases with the same incident waves h/d=8.4, 

λ/d=8.4, and Hw/d=0.28 are simulated by using different time step size, i.e., Δt/T=200, 

Δt/T=500, and Δt/T=800. Wave loads acting on the structure are recorded for evaluating the 

convergence, as the main concern of the ship design is the environmental force and the 

resulted ship motion. The time history of the dimensionless moment is recorded and shown in 

Fig. 4.2.2.  
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(a) Time history of moment at Δt/T=500 

 

(b) The comparison of moment at different time step 

Fig. 12Fig. 4.2.2 Time history of moment 

It shows that the moment changes periodically and a quasi-steady state can be found after 10 

wave periods, which also validated the stability of the numerical method. In fact, not only 

moment, but also the horizontal force and the vertical force vary periodically after t/T=10 (not 

showing here for brevity). However, in the quasi-steady state, the amplitudes of wave loads 

are not stable. Hence, the average moment in continuous ten wave periods is considered. A 

relative average error of moment is defined as 

REM(1, 2) = ∑ [
Max(|M1

t −M2
t |)

Max(M1
max−M1

min ,M2
max−M2

min)
]

i

10
i=1 /10                                                                   (4.2.1) 

In (4.2.1), Max(|M1
t-M2

t|) is the maximum discrepancy in one wave period between moments 

in solution1 and solution 2. Max(M1
max-M1

min, M2
max-M2

min) is the maximum discrepancy in 

the same solution. By using that, the effects of time step in Fig. 4.2.2 (a) is investigated. 
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REM(Δt/T=200, Δt/T=500)=7.2% is larger than REM(Δt/T=500, Δt/T=800)=1.6%, which 

means that Δt/T=500 is sufficient and can be chosen as the time step for both the conventional 

RANS solver and the Euler solver.  

In addition to the time step, the mesh resolution plays a crucial role on the convergence of a 

solver. Both the horizontal and vertical grid sizes affect the convergence of the numerical 

simulation. Therefore, the convergence study of mesh resolution is done based on the 

conventional RANS solver and the Euler solver with the same domain size. Specifically, the 

effects of nBC, nHC, and nLC on the wave loads are studied based on the conventional RANS 

solver. Apart from that, the effects of nBE, nHE, and nLE on the wave loads are also studied 

based on the Euler solver.  

 

    (a)  The convergence study of  nBC based on the conventional RANS solver                    

 

(b) The convergence study of nBE based on the Euler solver 

Fig. 13Fig. 4.2.3 The convergence study (nBC and nBE) of conventional RANS solver and Euler solver 



57 

 

In order to study the horizontal mesh resolution surrounding the floating structure based on 

the conventional RANS solver, different mesh resolution is used with nBC=40, 80, and 160. 

The convergence study of nBC is shown in Fig. 4.2.3 (a), from which it can be seen that the 

maximum discrepancy between nBC=80 and nBC=160 is much smaller than that between 

nBC=40 and nBC=80, e.g., (REM(nBC=80, nBC=160)=0.7%)<(REM(nBC=40, nBC =80)=15%). 

Thus, nBC=80 is selected for the conventional RANS solver. Similar study of nBE is also done 

based on the Euler solver. Where nBE=20, 40, and 80 are tested. It is found that nBE=40 is 

sufficient for the Euler solver, as REM(nBE=40, nBE=80)=1.1% is much smaller than 

REM(nBE=20, nBE=40)=17%.  

 

(a)  The convergence study of nHC based on the conventional RANS solver 

 

(b) The convergence study of nHE based on the Euler solver 

14Fig. 4.2.4 The convergence study (nHC and nHE) of  conventional RANS solver and Euler solver 

The vertical mesh resolution close to free surface is also investigated, which can be seen in 

Fig. 4.2.4. For the conventional RANS solver, different vertical mesh resolution with nHC=15, 

30, and 45 are tested. It is found that nHC=30 is sufficient as REM(nHC=30, nHC=45)=0.4% is 
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much smaller than REM(nHC=15, nHC=30)=10.6%. Meanwhile, the convergence study of 

vertical mesh resolution is also done based on the Euler solver with nHE=8, 15, and 30. It is 

shown in Fig. 4.2.4 (b) that the gap between nHE=15 and nHE=30 is much smaller than that 

between nHE=8 and nHE=15, which is also supported by REM(nHE=15, nHE=30)=1.3% < 

REM(nHE=8, nHE=15)=14.5%. Therefore, nHE=15 should be used for the Euler solver. 

Finally, the horizontal mesh resolution far away from the structure is studied. Cases with 

nLC=100, 200, and 300 are simulated based on the conventional RANS solver. Since 

REM(nLC=100, nLC=200)=16.2% is larger than REM(nLC=200, nLC=300)=0.85%, nLC=200 

is sufficient for the conventional RANS solver, which can be also seen from Fig. 4.2.5 (a). 

Similarly, nLE=50, 100, and 200 are tested based on the Euler solver. It is found that nLE=100 

should be used for the Euler solver, where it is observed that REM(nLE=50, nLE=100)=12.7% 

is significantly smaller than REM(nLE=100, nLE=200)=1.4%. 

 

(a)  The convergence study of nLC based on the conventional RANS solver 

 

(b) The convergence study of nLE based on the Euler solver 

 15Fig. 4.2.5 The convergence study (nLC and nLE) of conventional RANS solver and Euler solver 
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In summary, the time step Δt=T/500 should be used for both the conventional RANS solver 

and the Euler solver. Furthermore, the suitable mesh resolution for the conventional RANS 

solver is nBC=80, nLC=200, and nHC=30, which is finer than that for the Euler solver with 

nBE=40, nLE=100, and nHE=15. Note that due to coarser mesh used by the Euler solver, it 

requires less CPU time comparing with the conventional RANS solver in a large computing 

domain. Meanwhile, in the Euler-viscous hybrid model, the complementary RANS solver just 

covers a small domain surrounding the floating structure, which improves the accuracy of the 

solution by using the Euler solver along while does not cost significant computation time. By 

doing so, the CPU time can be saved by the Euler-viscous hybrid solver, while keeping the 

same accuracy with the conventional RANS solver. 

4.2.3 The simulation results based on the Euler-viscous hybrid solver 

 

(a) The time history of horizontal force (FS) 

 

    (b) The time history of vertical force (Fh)   
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(c) The time history of moment (M)                        

 

 (d) The comparison of wave loads over one wave period 

Fig. 16Fig. 4.2.6 The comparison of wave loads between the Euler-viscous hybrid solver and the 

conventional RANS solver 

A numerical simulation based on the Euler-viscous hybrid solver is carried out. The incident 

wave is the same as that in section 4.2.2. In the Euler domain, the length LE=8λ and the width 

HE=2λ is used with the mesh resolution nBE=40, nLE=100, and nHE=15 obtained previously. 

In the viscous domain, the length LV=2λ and the width HV=2λ is used with the mesh 

resolution nBV=80, nLV=200, and nHV=30 same to the conventional RANS solver. 

Simulations are also carried out by the conventional RANS solver for comparison. The 

corresponding computational domain is described by the length LC=8λ and the width HC=2λ 

with nBC=80, nLC=200, and nHC=30. The simulation results are shown in Fig. 4.2.6. 

From Fig. 4.2.6 (a)~(c), it can be seen that the time history of wave loads of the Euler-viscous 

hybrid solver agrees very well with the conventional RANS solver. A closer look at the wave 
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loads in one wave period from t/T=32 to t/T=33 is shown in Fig. 4.2.6 (d), where the 

discrepancy of wave loads between the conventional RANS solver and the Euler-viscous 

hybrid solver is quite small. Although the quasi-steady state is reached after t/T=10, 

amplitudes of wave load vary with time. Therefore, the average error over 10 wave periods is 

adopted and defined as 

err(V) = ∑ {∑
|Vi

c−Vi
o|

[Max(Vo)−Min(Vo)]n
n
i=1 }

j
/1010

j=1                                                                     (4.2.2) 

where Vc
i and Vo

i are solutions obtained by the Euler-viscous hybrid solver and the 

conventional RANS solver at the ith time step Δti. Max(V0) and Min(V0) are the maximum 

and minimum values of V0 by the conventional RANS solver. This formula will be used in 

the following subsection to represent the error by using the Euler-viscous hybrid solver. 

4.2.4 The effects of mesh resolution for the Euler-viscous hybrid solver 

Two sets of mesh are used for the Euler-viscous hybrid solver. Furthermore, the mesh 

resolution is different between the Euler domain and the viscous domain. Therefore, it is 

necessary to study the effects of mesh resolution on its accuracy for the Euler-viscous hybrid 

solver. 

In this section, different combinations of mesh resolution in the Euler domain and the viscous 

hybrid domain are applied. 5 cases are studied and the mesh resolution is described in Table 

4.2.1 (b). Wave loads by the Euler-viscous hybrid solver are compared with those by the 

conventional RANS solver. The mesh resolution for the conventional RANS solver is 

described in Table 4.2.1 (a). The incident wave parameters are the same as that used in 

section 4.2.3. 

From Table 4.2.1 (b), it can be seen that the mesh resolution of case 1 is the same as that in 

section 4.2.3, which is obtained by the convergence study for the Euler solver and the 

conventional RANS solver, respectively. For case 2, the mesh in the Euler domain is finer 

than that of case 1, by increasing from nHE=15 to nHE=30, whereas the mesh in the viscous 

domain is still the same. For case 3, the mesh in the Euler domain is the same as that in the 

viscous domain by doubling nLE, nBE and nHE of that in case 1. For case 4 and case5, the 

mesh in the viscous domain is finer than that in case 1, whereas the mesh in the Euler domain 

is the same as that in case 1. 

3Table 4.2.1 The mesh resolution and computational domain for the conventional RANS solver and the 

Euler-viscous hybrid solver 

(a) The mesh resolution and computational domain for the conventional RANS solver 
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Conventional RANS domain 

LC HC  nLC nBC nHC 

8λ  2λ 200 80 30 

(b) The mesh resolution and computational domain for the Euler-viscous hybrid solver 

Table  

 

 

 

 

Firstly, wave loads by the Euler-viscous hybrid solver at different mesh resolution are 

compared with those by the conventional RANS solver. The comparison of wave loads in one 

wave period is shown in Fig. 4.2.7. It is obvious that the variation of wave loads with time is 

the same. However, the discrepancy of wave loads exists between the Euler-viscous solver 

and the conventional RANS solver. Furthermore, the degree of discrepancy is different with 

different mesh resolution. It can be found that the wave load at case 3 is closer to the 

numerical results by the conventional RANS solver. To be more specific, the average errors 

are estimated and plotted in Fig. 4.2.8. It indicates that the average error of case 3 is the 

smallest. Thus, when the mesh resolution in the Euler domain is the same as that in the 

viscous domain, the best computational precision can be obtained. It further implies that the 

different mesh resolution in the Euler and the viscous domain is an important factor, which 

leads to the numerical error between the Euler-viscous hybrid solver and the conventional 

RANS solver. 

 

(a) The comparison of the horizontal force (FS)  

No. Euler domain Viscous domain 

LE  HE nLE nBE nHE LV HV  Ltr nLV nBV nHV 

1 8λ 2λ 100 40 15 2λ 2λ 0.5λ 200 80 30 

2 8λ 2λ 100 40 30 2λ 2λ 0.5λ 200 80 30 

3 8λ 2λ 200 80 30 2λ 2λ 0.5λ 200 80 30 

4 8λ 2λ 100 40 15 2λ 2λ 0.5λ 200 80 45 

5 8λ 2λ 100 40 15 2λ 2λ 0.5λ 200 160 30 
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    (b) The comparison of the vertical force (Fh)  

 

    (c) The comparison of the moment (M)  

Fig. 17Fig. 4.2.7 The comparison of wave loads by using different mesh resolution in the Euler-viscous 

hybrid solver and the conventional RANS solver 

 

Fig. 18Fig. 4.2.8 The average error against cases with different mesh configuration 
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In addition, the computational efficiency is also discussed as the aim of the study is to reduce 

the CPU time while maintaining high accuracy. Numerical simulations are carried out based 

on OpenFOAM-2.2.0, on a workstation with the XEON E5-2692 V2 and 64GB RAM. All of 

simulations are carried out by using single thread computation. In the simulation, the CPU 

time (wall time) is recorded. Then, the ratio by dividing the CPU time of the Euler-viscous 

hybrid solver over that of the conventional RANS solver is used to evaluate the computational 

efficiency of the Euler-viscous hybrid solver. 

In Fig. 4.2.9, the computational efficiency under different mesh resolution is shown. It 

indicates that the CPU time ratio is less than 1 for all of 5 cases, which means that the CPU 

time can be saved by the Euler-viscous hybrid solver. Furthermore, the computational 

efficiency varies largely with different mesh resolution. Specifically, the computational 

efficiency of case 3 is the lowest (91.2%), because the largest mesh resolution in the Euler 

domain is used. On the other hand, the highest computational efficiency is achieved for case 1, 

where almost 70% CPU time can be saved, comparing with that consumed by the 

conventional RANS solver. Although the mesh in the viscous domain is finer in case 4 and 

case 5, the corresponding computational efficiency is higher than both case 2 and case 3. 

Because the size of the viscous domain is much smaller than that of the Euler domain, the 

effects of it is less significant. 

 

Fig. 19Fig. 4.2.9 The average error under different mesh resolution 

Considering both the computational accuracy and efficiency, it is found that the highest 

accuracy corresponds to the lowest efficiency as shown in case 3. If considering the error less 

than 3% can be accepted, the mesh resolution of case 1 can be used for Euler-viscous hybrid 

solver, which corresponds to the highest efficiency. Thus, in the investigation below, the 

mesh resolution of case 1 is used. 
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4.3 The effects of the length (LV) of the viscous domain 

In the simulation based on the Euler-viscous hybrid solver, the viscous domain is just 

surrounding the floating structure, which is much smaller than the Euler domain. By this, the 

computational efficiency can be improved. Nevertheless, the viscous domain cannot be 

arbitrarily small. That’s because the viscous effects are assumed to be insignificant at the 

boundary of the viscous domain, which is true if the boundary is sufficiently far away from 

the structure. To guarantee the computational accuracy for the Euler-viscous hybrid solver, it 

is important to study the effects of the size of the viscous domain on numerical simulations 

based on the Euler-viscous hybrid solver.  

Table 4Table 4.3.1 The mesh for study the effects of LV 

(a) The mesh configuration for the Euler-viscous hybrid solver 

 

 

 

  

(b)The mesh configuration for the conventional RANS solver 

Conventional RANS domain 

LC HC  nLC nBC nHC 

8λ  2λ 200 80 30 

In this section, cases with different length (LV) of the viscous domain are simulated based on 

the Euler-viscous hybrid solver. In these cases, the size of the Euler domain is kept the same 

as LE=8λ and HE=2λ, while the width of the viscous domain is the same as HV=2λ. The length 

(LV) of the viscous domain varies with LV=λ, LV=2λ, LV=3λ, and LV=4λ in 4 cases. The 

length (Ltr) of the transition zone is one fourth of LV. The same mesh resolution of case 1 in 

section 4.2.4 is used, which is described in Table 4.3.1 (a). Incident waves with h/d=8.4, 

λ/d=8.4, and Hw/d=0.28 are simulated based on the Euler-viscous hybrid solver. Numerical 

results are compared with those based on the conventional RANS solver under mesh 

resolution described in Table 4.3.1 (b). Finally, the influence of LV on computational 

precision and efficiency is discussed. 

4.3.1 The effects of LV on wave loads 

From section 4.2.3, it is found that by looking at the time history of the wave loads, a quasi-

steady state can be achieved. Thus, the wave loads in one incident wave period from t/T=34.5 

to t/T=35.5 is chosen for comparison, which is shown in Fig. 4.3.1.  

No. Euler domain Viscous domain 

LE  HE nLE nBE nHE LV HV  Ltr nLV nBV nHV 

1 8λ 2λ 100 40 15 λ 2λ 0.25λ 200 80 30 

2 8λ 2λ 100 40 15 2λ 2λ 0.5λ 200 80 30 

3 8λ 2λ 100 40 15 3λ 2λ 0.5λ 200 80 30 

4 8λ 2λ 100 40 15 4λ 2λ 0.5λ 200 80 30 
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(a) The comparison of the horizontal force (FS) 

 

      (b) The comparison of the vertical force (Fh) 

 

    (c) The comparison of the moment (M)  

Fig. 20Fig. 4.3.1 The comparison of wave loads at different LV 



67 

 

The Figure shows that the discrepancy of numerical results between the conventional RANS 

solver and the Euler-viscous hybrid solver is small. Hence, the wave-fixed structure 

interaction can be simulated based on the Euler-viscous hybrid solver at different LV. 

Furthermore, it is found that the effects of LV on the horizontal force (Fh) are more obvious. 

Specifically, from Fig. 4.3.1 (b), it indicates that with the increase of LV, the numerical result 

based on the Euler-viscous hybrid solver is closer to that based on the conventional RANS 

solver.  

The average errors of wave loads over 10 incident wave periods are shown in Fig. 4.3.2. It 

indicates that the average errors of wave loads increase as the length of the viscous domain 

are reduced. Nevertheless, the average error is less than 3%, when the length of the viscous 

domain is larger than LV=λ.  

 

Fig. 21Fig. 4.3.2 The average error of wave loads at different LV 

As a matter of fact, the average error of wave loads is induced by the cut-off of the viscous 

domain. Although the viscous effects dissipate far away from the floating structure, the 

numerical error can be induced by the cancelling of the viscosity at the ends of the viscous 

domain. With the decrease of LV, the numerical error is amplified.  

Wave loads are hydrodynamics integrated on the floating structure, which is related with 

wave elevation and velocity. Hence, besides wave loads, in order to study the computational 

accuracy of wave loads, effects of the length (LV) of the viscous domain on wave elevation 

and velocity should be also studied.  

4.3.2 The effects of LV on wave elevation 

In order to study the effects of LV on wave elevation, two wave gauges w1 and w2 are placed 

at the distance of 0.25m away from the structure at the front side and Lee side, respectively. 
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Wave elevation is recorded at two wave gauges. Wave elevation at different LV over one 

wave period is shown in Fig. 4.3.3, which is also compared with results by the conventional 

RANS solver. 

 

(a) Wave elevation at wave gauge w1 

 

(b) Wave elevation at wave gauge w2 

Fig. 22Fig. 4.3.3 The comparison of wave elevation in one wave period at different LV 

From Fig. 4.3.3, it can be seen that the wave elevation by the Euler-viscous hybrid solver 

match well with that by the conventional RANS solver. Nevertheless, small discrepancy of 

wave elevation exists between the Euler-viscous hybrid solver and the conventional RANS 

solver. However, in Fig. 4.3.3 (b), it is obvious that the discrepancy is much larger at LV=λ. 

Hence, the wave elevation is affected by LV. The average error of wave elevation is shown in 

Fig. 4.3.4, which indicates that with the increase of LV, the average error Err(η) decreases.  

The difference of wave elevation induces the discrepancy of velocity of water particles in the 

flow field. Hence, it is necessary to study the effects of LV on velocity. 
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Fig. 23Fig. 4.3.4 The average error of wave elevation and velocity in the horizontal direction 

4.3.3 The effects of LV on velocity 

In order to study the effects of LV on the velocity, two probe points are set below the floating 

structure for recording the velocity. These two points are set at a distance of 0.03m below the 

bottom. One probe point is located at 0.2m from the left wall. The other one is located at 0.2m 

from the right wall. The location of probe points is shown in Fig. 4.1.1. Because the 

magnitude of the vertical velocity is very small, only the horizontal velocity Vx is recorded. 

The comparison of the horizontal velocity between the Euler-viscous solution and the 

conventional RANS solution is shown in the Fig. 4.3.5.  

It shows that the numerical result by the Euler-viscous hybrid solver agrees well with that by 

the conventional RANS solver, except for LV=λ. By looking at the average error of the 

horizontal velocity shown in Fig. 4.3.4, it can be also observed that Err(Vx) is the highest at 

LV=λ, which is close to 6%. Furthermore, with the increase of LV, the average error is reduced. 

It shows that the average error of the horizontal velocity is below 3%, when LV>λ is satisfied. 

 

(a) The horizontal velocity at probe P1 
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(b) The horizontal velocity at probe P2 

Fig. 24Fig. 4.3.5 The comparison of the horizontal velocity over one wave period 

In summary, it can be concluded that numerical error can be induced by cut-off of the viscous 

domain. Due to the cut-off, the discrepancy of wave loads, wave elevation, and velocity is 

induced between the Euler-viscous hybrid solver and the conventional RANS solver. 

Nevertheless, the discrepancy is small if LV>λ. In these cases described in table 4.3.1, the 

average error can be smaller than 3%, when LV is larger than LV=λ. 

4.3.4 The effects of LV on computational efficiency 

 

Fig. 25Fig. 4.3.6 The CPU time ratio against length (LV) of the viscous domain 

The computational efficiency is shown in Fig. 4.3.6, where the CPU time ratio at different 

length (LV) of the viscous domain is presented. It indicates that with the decrease of the length 

(LV) of the viscous domain, the CPU time ratio is reduced. At LV=λ, more than 80% CPU 

time can be saved by the Euler-viscous hybrid solver, comparing with the conventional 

RANS solver. It means that by reducing the length of the viscous domain, the computational 

efficiency can be enhanced remarkably. However, considering the computational precision 
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discussed from section 4.3.1 to section 4.3.3, the average error is too large at LV=λ. Generally 

speaking, LV=2λ can be chosen for the Euler-viscous hybrid solver. That’s because at the 

condition of LV=2λ, almost 70% CPU time can be saved by the Euler-viscous hybrid solver, 

while a good computational accuracy can be also achieved, which is below 3%.  

4.4 The effects of the width (HV) of the viscous domain 

The size of the viscous domain is determined not only by the length (LV), but also by the 

width (HV). Numerical errors must be induced by the cut-off of the width of the viscous 

domain. Hence, it is necessary to study the effects of width (HV) of the viscous domain on 

numerical simulations based on the Euler-viscous hybrid solver.  

Table 5Table 4.4.1 The mesh for study the effects of HV 

(a) The mesh for the conventional RANS solver 

Conventional RANS domain 

LC HC   LC  nBC nHC 

8λ  2λ 200 80 30 

(b) The mesh for the Euler-viscous hybrid solver 

 

 

 

Some cases are simulated at different HV, based on the Euler-viscous hybrid solver. The mesh 

configuration is described in Table 4.4.1 (b), where the Euler domain is not changed for cases, 

which is the same as that of case 1 in section 4.2.3. The length of the viscous domain LV=2λ 

is used, which corresponds to good computational efficiency and accuracy. The mesh 

resolution in viscous domain is the same as that of case 1 in section 4.2.3. Different width (HV) 

of viscous domain is used, i.e., HV=0.5λ, HV=λ, HV=1.5λ, and HV=2λ. The numerical results 

based on the Euler-viscous hybrid solver are then compared with those by the conventional 

RANS solver, of which mesh configuration is described in Table 4.4.1 (a). Both 

computational accuracy and efficiency are discussed below. 

4.4.1 The effects of HV on wave loads 

In order to study the effects of HV on wave loads, wave loads over one wave period in quasi-

steady state are shown in Fig. 4.4.1, which are also compared with those by the conventional 

RANS solver.  

No. Euler domain Viscous domain 

LE  HE nLE nBE nHE LV HV  Ltr nLV nBV nHV 

1 8λ 2λ 100 40 15 2λ 0.5λ 0.5λ 200 80 30 

2 8λ 2λ 100 40 15 2λ λ 0.5λ 200 80 30 

3 8λ 2λ 100 40 15 2λ 1.5λ 0.5λ 200 80 30 

4 8λ 2λ 100 40 15 2λ 2λ 0.5λ 200 80 30 
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(a) The comparison of the horizontal force (FS) 

 

(b) The comparison of the vertical force (Fh) 

 

(c) The comparison of moment (M)  

Fig. 26Fig. 4.4.1 The comparison of wave loads at different HV 
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From Fig. 4.4.1, it is shown that the numerical results by the Euler-viscous hybrid solver can 

match well with those by the conventional RANS solver. However, the width (HV) of the 

viscous domain cannot be reduced arbitrarily. From Fig. 4.4.1 (b), it is obvious that at 

HV=0.5λ, the discrepancy of Fh between the Euler-viscous hybrid solver and the conventional 

RANS solver is largest. To further show the discrepancy of wave loads, the average error of 

wave loads under different HV is presented in Fig. 4.4.2. 

 

Fig. 27Fig. 4.4.2 The average error of wave loads at different HV 

In Fig. 4.4.2, it is found that with the increase of HV, the average error decreases. It indicates 

that the numerical errors can be induced by neglecting the viscosity, due to cut-off of the 

width of the viscous domain. The average error is very large if HV is smaller than λ. 

Otherwise, when HV is larger than λ, the average error reduces slowly with the increase of HV. 

In addition, it is noted that the error of Fh is more sensitive to the width of the viscous domain, 

which is always above 3%.  

4.4.2 The effects of HV on CPU time 

 

Fig. 28Fig. 4.4.3 The CPU time ratio against width (HV) of the viscous domain 
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The CPU time ratio at different height HV of the viscous domain is shown in Fig. 4.4.3, which 

shows that the influence of HV on computational efficiency is less significant, comparing with 

that of LV. Because the mesh in the vertical direction is coarse far away from the free surface, 

the CPU time is reduced slightly with the decrease of HV. Considering both the computational 

accuracy and efficiency, HV=1.5λ is chosen for the Euler-viscous hybrid solver, which can 

save almost 70% CPU time while the average error is below 3%. 

4.5 The effects of the length (Ltr) of the transition zone in the viscous 

domain 

6Table 4.5.1 The mesh for study the effects of Ltr 

(a) The mesh for the conventional RANS solver 

Conventional RANS domain 

LC HC  nLC  nBC nHC 

8λ  2λ 200 80 30 

(b) The mesh for the Euler-viscous hybrid solver 

 

 

 

The length of the transition zone plays an important role on the numerical simulations based 

on the Euler-viscous hybrid solver, which is used to dissipate the viscous effects in the 

transition zone. The length of the transition zone must affect the computational accuracy. In 

order to study its effects, some cases are simulated with different Ltr, i.e., Ltr=0.5λ, Ltr=λ, and 

Ltr=1.5λ. The mesh used for the Euler-viscous hybrid solver is described in Table 4.5.1 (b). 

The computational results by the Euler-viscous hybrid solver are compared with those by the 

conventional RANS solver as well. The mesh for the conventional RANS solver is shown in 

Table 4.5.1 (a). The effects of Ltr on computational precision and efficiency are discussed. Ta 

4.5.1 The effects of the length (Ltr) of the transition zone on wave loads 

Wave loads at different Ltr over one wave period from t/T=34.5 to t/T=35.5 are shown in Fig. 

4.5.1, where the numerical results by the Euler-viscous hybrid solver agree very well with 

those by the conventional RANS solver. The discrepancy between the Euler-viscous hybrid 

solver and the conventional RANS solver is small. Furthermore, at different Ltr, numerical 

results based on the Euler-viscous hybrid solver change a little. Thus, it can be concluded that 

wave loads are not sensitive to the length of the transition zone.  

No. Euler domain Viscous domain 

LE  HE nLE nBE nHE LV HV  Ltr nLV nBV nHV 

1 8λ 2λ 100 40 15 4λ 2λ 0.5λ 200 80 30 

2 8λ 2λ 100 40 15 4λ 2λ 1λ 200 80 30 

3 8λ 2λ 100 40 15 4λ 2λ 1.5λ 200 80 30 
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(a) The comparison of the horizontal force (FS) 

 

(b) The comparison of the vertical force (Fh) 

 

(c) The comparison of the moment (M)  

Fig. 29Fig. 4.5.1 The comparison of wave loads at different Ltr 
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Fig. 30Fig. 4.5.2 The average error of wave loads at different Ltr 

Then, the average error of wave loads at different Ltr is shown in Fig. 4.5.2. It can be seen that 

with the increase of Ltr, the average error increases. The numerical error can be explained in 

two aspects. Firstly, the numerical error can be induced by the difference of wave elevation 

between the Euler domain and the viscous domain, due to the viscous effects. Specifically, in 

the transition zone, the free surface is relaxed according to the wave elevations in the Euler 

domain, which is blending of free surface in the Euler domain and the viscous domain. 

Nevertheless, the blending result cannot fully reflect the difference of the free surface 

between the Euler domain and the viscous domain. Secondly, the transition zone may be too 

long so that viscous effects close to the structure are cancelled.  

4.5.2 The effects of the length (Ltr) of the transition zone on computational efficiency 

 

Fig. 31Fig. 4.5.3 The CPU time ratio at different Ltr   

The comparison of CPU time ratio is shown in Fig. 4.5.3. It indicates that the influence of the 

length (Ltr) of transition zone on consumed CPU time is small. With the increase of Ltr, the 
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CPU time increases a little. Considering both computational accuracy and efficiency, Ltr=0.5λ 

is selected for the Euler-viscous hybrid solver. 

4.6 The validation of the Euler-viscous hybrid solver 

Based on the study from section 4.2 to section 4.5, the time step Δt=T/500 is selected for both 

the Euler solver and the viscous solver. It can be found that the mesh resolution can be 

different in the Euler domain and the viscous domain, due to the different convergence 

property of the Euler solver and the viscous solver. However, the data transition under 

different mesh resolution can induce numerical error, which can affect the computational 

precision. Besides computational accuracy, the computational efficiency is also affected by 

the mesh resolution. Based on previous results, the mesh resolution with nBE=40, nLE=100, 

nHE=15, nBV=80, nLV=200, and nHV=30 is efficient to be applied for wave-fixed structure 

interactions by using the Euler-viscous hybrid solver. The computational efficiency can be 

increased remarkably by reducing the size of the viscous domain. Considering both accuracy 

and efficiency, the viscous domain size with LV=2λ and HV=1.5λ should be used, 

corresponding to the average error below 3%. Meanwhile, the length of the transition zone 

Ltr=0.5λ in the viscous domain is used. The above computational configuration is applied for 

the validation of the Euler-viscous hybrid solver below. 

In order to validate the Euler-viscous hybrid model for interaction of a surface-piercing fixed 

structure with waves, a series of numerical simulations are carried out. The sketch of 

interaction of a surface-piercing fixed structure (B=0.5m and l=0.5m) with waves has been 

shown in Fig. 4.1.1. Different incident waves are generated in the numerical simulations, 

where wave lengths λ=6.28m, λ=2.86m, λ=2.1m, λ=1.58m, λ=1.25m, and λ=1.05m with the 

same wave height Hw=0.07m. The initial water draft is d=0.25m. The water depth h is equal 

to the wave length λ. A non-dimensional wave frequency fB is defined as fB=0.5·(2π/T)2·B/g. 

The corresponding non-dimensional parameters are described in Table 4.6.1. For the 

validation, the time step is kept constant as Δt=T/500 for the Euler solver, the conventional 

RANS solver and the Euler-viscous hybrid solver. 

Table 7Table 4.6.1 Non-dimensional parameters of incident waves 

No. fB λ/d h/d Hw/d 

1 0.25 25.12 25.12 0.28 

2 0.55 11.44 11.44 0.28 

3 0.75 8.40 8.40 0.28 

4 1.0 6.32 6.32 0.28 

5 

6 

1.25 

1.5 

5 

4.2 

5 

4.2 

0.28 

0.28 
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(a) The comparison of the horizontal force (FS) with different incident waves 

 

(b) The comparison of the vertical force (Fh) with different incident waves 

 

(c) The comparison of the moment (M) with different incident waves 

Fig. 32Fig. 4.6.1 The comparison of wave loads with different incident waves 
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In order to study both computational accuracy and efficiency, numerical results based on the 

Euler-viscous hybrid solver with the efficient computational configuration are compared with 

the experimental results (Tanizawa, K., and Minami, M., 1998), the numerical results based 

on the conventional RANS solver, and the numerical results based on the Euler solver. 

For comparing with the experimental result, the first-harmonic of the horizontal force, the 

vertical force and the moment is obtained by Fast Fourier Transform (FFT).  Wave loads in 

10 continuous wave periods are used for FFT after the quasi-steady state is achieved. The 

comparison of the 1st order horizontal force, vertical force and moment is shown in Fig. 4.6.1 

(a)~(c). It can be seen that both the Euler-viscous hybrid results and the conventional RANS 

results agree well with the experimental results. The discrepancy between the conventional 

RANS results and the experimental results is due to some unknown physical properties such 

as friction coefficients of the structure. Besides that, the discrepancy between the Euler-

viscous hybrid results and the conventional RANS results is very small. On the other hand, 

the Euler results cannot match well with the experimental results and the conventional RANS 

results. That’s because due to the neglect of the viscous effects, the Euler model is insufficient, 

which is also mentioned in some author’s work (Li and Lin, 2010). Hence, only the 

conventional RANS solver and the Euler-viscous hybrid solver can be used for interaction of 

a surface-piercing structure with waves.  

 

Fig. 33Fig. 4.6.2 The CPU time ratio against frequency of incident waves 

Besides the comparison of wave loads, the computational efficiency is also compared with 

different incident waves. The ratio of CPU time between the Euler-viscous hybrid solver and 

the conventional RANS solver is shown in Fig. 4.6.2. It indicates that with the increase of the 

wave frequency fB, the computational efficiency increases. Considering the same wave height 

Hw is applied, the wave steepness increases, when the wave length λ is reduced. It means that 

with larger steepness, as fB changes from fB=0.25 to fB=1.25, the computational efficiency is 
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higher. Furthermore, it can be seen that more than 80% CPU time can be saved by the Euler-

viscous hybrid solver at fB=1.5. 

4.7 Summary 

From this chapter, the convenient mesh resolution and suitable configuration can be obtained 

by a series of numerical tests. Firstly, the convergence study is carried out based on the Euler 

solver and the conventional RANS solver separately. The sufficient mesh resolution for the 

Euler solver and the conventional RANS solver can also be used for the Euler solver and the 

complementary RANS solver. Then, by the study of computational robustness, the convenient 

configuration including the size of the viscous domain and the length of the transition zone 

can be found.  

According to convergence study of the Euler-viscous hybrid solver, it indicates that the 

numerical robustness of the hybrid solver can be affected by mesh resolution, the length of 

the viscous domain, the width of the viscous domain, and the length of the transition zone. 

Specifically, different mesh resolution in the Euler domain and the viscous domain increases 

the computational efficiency, however reduces the computational accuracy. The length of the 

viscous domain influences the computational robustness remarkably. With the decrease of the 

length of the viscous domain, the computational efficiency increases, while the computational 

accuracy decreases. For the width of the viscous domain, it affects the computational 

efficiency insignificantly. However, with the decrease of the width of the viscous domain, the 

accuracy goes down as well. For the length of the transition zone, it affects a little on the 

computational efficiency. With the increase of the length of the transition zone, the 

computational accuracy decreases a little.  

In summary, the computational efficiency of the Euler-viscous hybrid solver is increased 

significantly. Meanwhile, the computational accuracy can be kept the same as that of the 

conventional RANS solver. In some cases, more than 85% CPU time can be saved. 
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Chapter 5 Investigation of wave interaction with surface-

piercing fixed structure subjected to complex seabed 

topography 

5.1 Introduction 

Water wave propagation over complex seabed topography is an attractive and practical 

problem. When ocean waves propagate towards the coastal zone, near the sea shore, the 

seabed topography is generally not even and the water depth changes from the deep water to 

shallow water condition. Consequently, the water wave property changes significantly. The 

wave propagation with seabed effects has been studied by many researchers. The wave filed 

is influenced remarkably by the reflection and diffraction from seabed, as shoaling on the 

shore (e.g., Mei and Liu, 1993) The non-linearity of the waves can be enhanced by the 

complex topography, which is observed by experiments (e.g., Beji and Battjes, 1993) and 

numerical simulations (e.g., Kirby, 1996).  

In most work (Mei, 1985; Liu and Yue, 1998; Porter and Porter, 2003; Heathershaw, 1982; 

Davies and Heathershaw, 1984), the seabed topography is specified by some simple functions 

such as a sinusoidal function or a slope function, which can be seen in the ocean environment. 

Nevertheless, in the coastal area, the topography is often more complex. Some bottom-

mounded submerged structures often exist, such as breakwaters. Submerged bottom-mounded 

structures have many advantages in costal engineering compared to surface-piercing 

structures as mentioned by Hur et al., 2011. e.g., more convenient for ship navigation and 

lower construction cost. Submerged structures can affect the propagation of water waves 

(Chang and Liu, 2007; Rahman and Al Womera, 2013; Koley et al., 2015; Liu and Li, 2017). 

Generally speaking, such submerged structures may be considered to alter the seabed 

topography. 

In this study, wave-structure interaction subjected to complex seabed topography is 

numerically studied. As sketched in Fig. 5.2.1, a submerged breakwater is mounted on a flat 

seabed. The seabed effects on the wave diffraction by a fixed structure are carefully examined. 

5.2 Problem description 

The sketch of the problem to be considered is shown in Fig. 5.2.1, in which a surface-piercing 

floating structure is fixed and interacts with incoming waves propagating over submerged 

bottom-mounted structure. The breath, height and draft of the surface-piercing structure are B, 

l and d, respectively. The bottom-mounted structure is trapezium. The breath of its top and 

bottom surface and its submerged depth are B2, B3 and d2, respectively.  The water depth far 



82 

 

away from the bottom-mounted submerged structure is equal to the incident wave length λ. In 

this investigation, B=0.5m, l=0.5m and d=0.25m. 

 

Fig. 34Fig. 5.2.1 The sketch of the wave-fixed structure over the complex topography 

5.3 The numerical methods 

It is understood that when the gap between the floating structure and the submerged structure 

becomes small, vortex shedding may become more significant. Consequently, the potential 

theory based solver or the Euler equation may not be applicable to deal with this problem and 

a Navier-Stokes solver may be necessary.  However, in the area far away from structures, the 

Euler’s equation or fully nonlinear potential theory are sufficient in the case without wave 

breaking. For this reason, the present Euler-viscous hybrid solver is used here for maximising 

the computational robustness. In the Euler domain, the viscosity is set as zero. In the viscous 

domain, the complementary RANS solver and the complementary RNG k-epsilon model are 

considered. The detail of the numerical model is described in Chapter 3. The computational 

domain and mesh are introduced below. The validation is conducted firstly before a 

systematic numerical investigation. The computational efficiency is discussed finally. 

5.3.1 The computational domain and mesh 

The configuration of the computational domain adopted here is similar to that used in section 

3.3. In this investigation, the computational mesh around the submerged structure and the 

floating structure are refined in order to well capture the reflection of the waves by the 

structures and the turbulent flow in the gap between two structures. The computational 

domain and mesh are illustrated in Fig. 5.3.1. 

The length and the width of the Euler domain are LE=8λ and BE=2λ respectively. The length 

of the viscous domain is set as LV=2λ, which is one fourth of the Euler domain and the width 

BV=BE is applied. Both the fixed structure and the submerged structure are included in the 

structure 
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Euler domain and the viscous domain. The parameters related with the mesh resolution are 

described in the Table 5.3.1 (b), according to the convergence study presented in Chapter 3.  

 

(a) The viscous domain and mesh                    (b) The Euler domain and mesh 

                                              

                     (c) The conventional RANS domain and mesh 

Fig. 35Fig. 5.3.1 The computational domain and mesh used in the simulation 

Table 8Table 5.3.1 The mesh resolution for conventional RANS solver and Euler-viscous hybrid solver 

(a) The mesh for conventional RANS solver 

Conventional RANS domain 

LC HC  nLC  nBC nHC 

8λ  2λ 200 80 30 

(b) The mesh for Euler-viscous hybrid solver 

 

 

5.3.2 The validation of the numerical methods 

In order to validate the hybrid solver for wave interacting with the floating structure subjected 

to complex seabed topography, the results of some cases are compared with corresponding 

results obtained by the conventional RANS solver. In these cases, B2=B and B3=3B. d2 varies 

from 0.2λ to 0.5λ. The wave length of the incident wave λ=2.1m and the wave height is 

Hw=0.07m.  

The time histories of non-dimensional moment at d2=0.2λ by both the Euler-viscous hybrid 

solver and the conventional RANS solver respectively are shown in Fig. 5.3.2. It can be seen 

Euler domain Viscous domain 

LE  HE nLE nBE nHE LV HV  Ltr nLV nBV nHV 

8λ 2λ 100 40 15 2λ   2λ 0.5λ 200 80 30 
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that the moment varies periodically. The quasi-steady state can be obtained after 15 wave 

periods. Most importantly, the moment predicted by the Euler-viscous hybrid solver agrees 

well with that by the conventional RANS solver. Furthermore, wave loads over one wave 

period in the quasi-steady state are also considered in the comparison. Some results are shown 

in Fig. 5.3.3. Once again, the wave loads estimated by the present solver agree with those by 

the conventional RANS solver. The average error for the horizontal, vertical force and the 

moment between two solvers are 1.2%, 1.4% and 0.7%, respectively. Although no 

experimental data are used in the validation study, the agreement between the present solver 

and the conventional RANS solver may conclude that the present solver has a similar 

accuracy as the conventional RANS solver for the problems concerned in this Chapter. 

 

Fig. 36Fig. 5.3.2 Comparison of the time histories of the moment acting on the floating structure 

subjected to water waves propagating over submerged structure (d2=0.2λ, λ=2.1m, Hw=0.07m) 

 

(a) The horizontal force 
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(b) The vertical force 

 

(c) The moment 

Fig. 37Fig. 5.3.3 The comparison of wave loads in one wave period for wave-structure interaction 

under the effects of the submerged structure (d2=0.2λ, λ=2.1m, A=0.035m) 

 

Fig. 38Fig. 5.3.4 The CPU time ratio at different d2 for wave interactions with the floating structure 

subject to a submerged structure 
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5.3.3 The CPU time consumed in the simulation 

What really interested here is whether the present hybrid model has higher computational 

efficiency compared to the conventional RANS solver. For this purpose, the comparison of 

the CPU time spent by both solvers for all cases considered in the validation study is shown in 

Fig. 5.3.4. For convenience, the ratio of the CPU time spent by the present solver against that 

by the RANS solver is presented. It is clear that the hybrid model only requires less than 50% 

of the CPU time that is demanded by the conventional RANS solver. It shall be noted that the 

mesh resolution used by the conventional RANS solver is the same as that used in the viscous 

domain of the hybrid solver, which is finer than that used in the Euler domain of the hybrid 

solve, attributing to the fact that the Euler solver requires coarser mesh resolution than the 

conventional RANS solver to achieve convergent results. This means that the higher 

computational efficiency of the present solver attributes to the lower mesh resolution 

requirement by the Euler solver, compared with the conventional RANS solver. 

5.4 Results and discussion 

In order to investigate effects of the submerged structure on the hydrodynamics associated 

with the fixed body subjected to incident waves, systematic simulations are carried out under 

submerged structures with different water depth (d2) and top width (B2). The influence of the 

submerged structure on wave loads is discussed.  

5.4.1 The effects of the water depth (d2) on wave loads 

In order to study the effects of d2 on wave loads, various cases with different value of d2 are 

simulated by using the Euler-viscous hybrid solver with d2/h=0.3, d2/h=0.4, and d2/h=0.5. In 

numerical simulations, different incident waves with fB=0.25, fB=0.55, fB=0.75, fB=1.0, and 

fB=1.5 are used as described in Table 5.4.1. In these cases, the same top width B2=B is applied.  

Table 9Table 5.4.1 The incident waves 

fB λ (m) Hw (m) A (m) h (m) λ/d Hw/d h/d 

0.25 6.2833 0.07 0.035 6.2833 25.13 0.28 25.13 

0.55 2.8560 0.07 0.035 2.8560 11.424 0.28 11.424 

0.75 2.1 0.07 0.035 2.0944 8.3776 0.28 8.3776 

1.0 1.58 0.07 0.035 1.58 6.32 0.28 6.32 

1.5 1.05 0.04 0.02 1.05 4.2 0.16 4.2 

Similar to Fig. 5.3.3, the wave loads in the cases with fB=1.5 over one wave period (from 

t/T=86 to t/T=87) in quasi-steady state are illustrated in Fig. 5.4.1, in which different values 

of d2 are used.. It is found that the effects of d2 on horizontal force are insignificant, whereas 
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the vertical force and the moment are considerable affected by d2, especially when the d2 is 

equal or smaller than 0.3h. Specifically, as d2 reduces, the vertical force and moment seem to 

increase. For analyzing the effects of d2 on the amplitude of wave loads under different 

incident waves, the FFT is conducted for wave loads in the quasi-steady state over 10 

continuous wave periods. The comparison of the amplitude of the first harmonic (fa) of the 

horizontal force, the vertical force, and the moment are shown in Fig. 5.4.2 (a)~(c). It should 

be noted that if wave length is too small, d2 may be smaller than the initial draft (d) of the 

floating structure. This is not reasonable for the cases configured here. Hence, at d2=0.2λ, the 

case with fB=1.5 are not considered in the study. 

 

(a) The horizontal force                                                            

 

(b) The vertical force 
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                                                            (c)  The moment 

Fig. 39Fig. 5.4.1 The comparison of wave loads under submerged structure with different d2 

 

(a) 1st order  horizontal force 

 

(b) 1st order vertical force 
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(c)  1st order moment 

Fig. 40Fig. 5.4.2 The comparison of 1st order wave loads under effects of submerged structures at 

different d2 

The 1st harmonics of the wave loads with different wave length and different d2 are shown in 

Fig. 5.4.2. It can be seen that for different wave length, as d2 decreases from d2=0.5λ to 

d2=0.2λ, the 1st order horizontal force decreases slightly. However, the variation is 

insignificant. The first order moment (Fig. 5.4.2 (c)) seems not to be affected by the water 

depth d2 under different wave conditions considered in this study. For specific wave length, 

the first order vertical force ( Fig. 5.4.2 (b)) increases as  d2 decreases, except the long-wave 

case with λ/d=25.13 (fB=0.25) in which the effect is insignificant.  

In order to quantitatively analyse the amplification of the vertical force by the submerged 

structure, the relative amplification factor of 1st order vertical force is defined as followed, 

the relative amplification factor =
fh_str−fh_org

fh_org
                                                                (5.4.1) 

in which subscribes ‘str’ and ‘org’ stand for the cases with and without submerged structure. 

Some results are shown in Fig. 5.4.3. It is observed that as d2/d<3, 1st order vertical force 

decreases distinctively, as d2/d increases. As d2/d increases from d2/d=3 to d2/d=6, 1st order 

vertical force decreases as well.  As d2/d is larger than d2/d=6.0, 1st order vertical force seems 

not to be affected by d2/d. Finally, as d2/d arranging from d2/d=1 to d2/d=6, 1st order vertical 

force decreases as a power function by 2.379·(d2/d)-3.31. It is also interesting to find that the 

amplification factor seems to be less dependent on the ratio λ/d when d2/d≈3.0. Taking 

d2/d=2.5 at λ/d=5, d2/d=2.52 at λ/d=6.32 for instance, the corresponding amplification factor 

can be obtained as 13.10% and 13.13% respectively. Nevertheless, when d2/d is much smaller 

than 3.0, the ratio λ/d plays an important role on evaluating the amplification factor and small 

ratio of λ/d leads to more significant amplification for specific d2/d. Taking d2/d=1.68 for 
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example, the corresponding amplification factor are 46.30% and 38.50% respectively, for 

λ/d=4.2 and λ/d=8.37. 

 

Fig. 41Fig. 5.4.3 the comparison of the amplification factor of linear vertical force component under 

different incident waves at different d2 

5.4.2 The effects of the top width (B2) on the wave loads 

It is understandable that the shape of the submerged structure plays important role in the 

above investigation. For simplification, only the effects of the width B2 are taken into account 

in order to shed some light on this issue.  To do so, different widths B2 ranging from 1B to 4B, 

are considered, while other parameters associated with the submerged structure remain the 

same. All wave conditions described in Table 5.4.1 are adopted in this investigation. In these 

cases, the water depth (d2) of the submerged structure is fixed as d2=1.5d=0.375m.  

 

(a) 1st order horizontal force 
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(b) 1st order vertical force 

 

(c)  1st order moment 

Fig. 42Fig. 5.4.4 The comparison of 1st order of wave loads under submerged structure at different B2 

1st order horizontal force components in the cases with different B2 are shown in the Fig. 

5.4.4 (a).  It can be seen that the effects of B2 are not obvious except the case with longest 

wave, i.e. fB=0.2, for which the non-dimensional 1st order horizontal force fa(Fs)/(ρgLdHw) 

grows  continuously from 1.47 to 1.88, as B2/B increasing from 1 to 4. it is also interested to 

observe that for specific wave condition, e.g. fB≈0.5, the submerged structures seems not to 

amplify but to suppress the horizontal force. 

The corresponding results of the linear harmonic of moment are shown in Fig. 5.4.4(c). One 

may find that the linear moment harmonics fluctuates with the increase of B2. Similar to the 

horizontal force, the effects of B2 are significant at λ/d=25.13. For small and large wave 

length, i.e. λ/d=4.2, λ/d=6.32 and λ/d=25.13, the linear moment harmonics is amplified by the 

submerged structure. However, for intermediate wave length, e.g. λ/d=8.37 and λ/d=11.42, 
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the submerged structures with different width B2 seem not to influence the moments 

considerably. 

 

Fig. 43Fig. 5.4.5 The comparison of relative increase ratio under different incident waves at different 

B2 

In section 5.4.1, it is concluded that effects of water depth d2 on the vertical force are 

remarkable. In fact, not only the water depth d2, but also the top width B2 can influence the 

vertical force significantly. To demonstrate this, some results are shown in Fig. 5.4.4 (b). It is 

observed that the vertical force can be amplified by the submerged structures regardless the 

width of B2 and B2 may significantly influence the amplification factor. When the incident 

wave length λ is small such as λ/d=4.32, λ/d=6.32, and λ/d=8.37, 1st order vertical force 

increases as B2/B increases from 1 to 2, and changes slightly when B2/B further increases. In 

fact, at small incident wave length, i.e., including λ/d=4.32, λ/d=6.32, and λ/d=8.37, the top 

width B2 may be larger than the incident wave length λ. Subjected to the condition B2/λ>1, 1st 

order vertical force does not change much. For λ/d=11.42, and λ/d=25.13, 1st order vertical 

force increases and then decreases as B2/B increases. It is also observed that 1st order vertical 

force is also related with B2/λ. Hence, the relative increase ratio of 1st order vertical force is 

also affected by the ratio B2/λ. Hence, the amplification factors of 1st order vertical force in 

the cases with different B2/λ are analysed and some results are shown in Fig. 5.4.5. It is 

obviously seen that if B2 is larger than incident wave length λ, the amplification factor 

changes slightly ascending B2. As B2/λ is smaller than 1, i.e., the top width is shorter than the 

wave length, the amplification factor are significantly affected by B2. 

5.5 Summary 

The influence of complex seabed topography is investigated by using the Euler-viscous 

hybrid solver. The effects of the top width B2 and the water depth d2 of the submerged 
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structure on hydrodynamics are discussed. It is found that both the water depth and the top 

width can affect the vertical force significantly.  

1st order vertical force increases, as the water depth of the submerged structure increases 

except the long-wave case. The amplification factor of the 1st order vertical force decreases 

with the increase of d2/d, which fulfils a power function relation.  

The top width B2 has significant effects on hydrodynamics acting on the structure. For the 

influence of the top width on the vertical force, it shows that when the top width is smaller 

than the incident wave length, the amplification factor can be affected remarkably. 
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Chapter 6 Euler-viscous hybrid model for interaction of a 

surface-piercing moving structure 

In Chapter 3, the present Euler-viscous hybrid model for surface-piercing wave-structure 

interactions is introduced. Nevertheless, this version can only apply to deal with the problem 

with fixed structures due to the fact that the computational grid in both the Euler and the 

viscous domains are fixed Eulerian grid. In this Chapter, the function-decomposition method 

is also used and additional functionalities will be introduced into the present model to deal 

with the problems with moving structures. Similarly, both the velocity and the pressure are 

decomposed into two parts including Euler components and complementary components. 

Correspondingly, a two-phase Euler solver and a two-phase complementary viscous solver 

exist in the Euler domain and the viscous domain, respectively. Key numerical techniques 

include the dissipation of viscous effects near the boundary of the viscous domain and the 

interpolation of data between two computational domains. In this work, the dynamic mesh 

technique is used for moving the computational mesh in order to conform to the motion of the 

structure. Thus, the treatment of the dynamic mesh technique is included in the solution 

procedure of the improved version of the Euler-viscous hybrid model, which is presented in 

this Chapter.  In addition to the dynamic mesh technique, for the simulation of free motion of 

floating structures under incident waves, the special technique is developed to ensure the 

consistence of the motions of the structure in two computational domains. 

6.1 The mathematical model 

The two-phase Euler solver with dynamic mesh is introduced firstly. Then, by the function-

decomposition method, the two-phase complementary RANS solver with dynamic mesh is 

proposed. Finally, the corresponding complementary turbulence model under dynamic mesh 

is also derived by decomposition of velocity. 

6.1.1 Governing equations of the two-phase Euler solver with dynamic mesh 

A two-phase Euler solver under dynamic mesh is applied in the Euler domain. Comparing 

with the two-phase Euler solver for fixed Eulerian mesh, the equation is written in term of 

Arbitrary Lagrangian-Eulerian (ALE) form and the flux induced by the mesh motion must be 

considered. The ALE form of the Euler equations and the Continuity equation are described 

below 

∇ ∙ (𝐔I) = 0                                                                                                                         (6.1.1) 

𝑑(𝜌′𝐔I)

𝑑𝑡
+ [(𝐔I − 𝐮b

I ) ∙ ∇](𝜌′𝐔I) = −∇(pI) + 𝜌′𝒈                                                              (6.1.2) 
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In equation (6.1.2),  
𝑑(𝜌′𝐔I)

𝑑𝑡
 means the time derivative of momentum in the Euler domain. 𝐮b

I  

is the velocity of the mesh motion. The other variables are the same as those described in 

section 3.1.1 (Chapter 3). The corresponding volume fraction equation is shown as 

𝑑𝛾′ 

𝑑𝑡
+ ∇ ∙ [𝛾′  (𝐔I − 𝐮b

I )] = 0                                                                                               (6.1.3)            

In the volume fraction equation, 
𝑑𝛾′ 

𝑑𝑡
 represents the time derivative of volume fraction. 

6.1.2 Governing equations of the two-phase complementary RANS solver with dynamic mesh 

By the function-decomposition method, a two-phase complementary RANS solver under 

dynamic mesh is derived from the conventional RANS solver under dynamic mesh. In the 

viscous solver, the viscous effects are considered including the turbulence model. 

By decomposing both the velocity and the pressure into two parts, it can be obtained that 

𝐔 = 𝐔I + 𝐔D                                                                                                                        (6.1.4) 

p = pI + pD                                                                                                                         (6.1.5) 

𝐔I and pI are Euler components, which are explicit from the solution of the two-phase Euler 

solver described in section 6.1.1. On the other hand, 𝐔D  and pD  are viscous components, 

which are independent unknowns.  

Then, by putting 𝐔 = 𝐔I + 𝐔D and p = pI + pD into momentum equations 

 
𝑑(𝜌𝐔)

𝑑𝑡
+ [(𝐔 − 𝐮b

D) ∙ ∇](𝜌𝐔) = −∇(p) + ∇ ∙ (μt∇𝐔) + 𝜌𝒈 

It leads to 

𝑑(𝜌𝐔D)

𝑑𝑡
+ {(𝐔I ∙ ∇) + [(𝐔D − 𝐮b

D) ∙ ∇]}(𝜌𝐔D) − ∇ ∙ (μt∇𝐔D) +
𝑑(𝜌𝐔I)

𝑑𝑡
+ {(𝐔I ∙ ∇) +

[(𝐔D − 𝐮b
D) ∙ ∇]}(𝜌𝐔I) − ∇ ∙ (μt∇𝐔I) = −∇(pI) − ∇(pD) + ρ𝒈                                     (6.1.6) 

In equations (6.1.6), 
𝑑𝜌𝐔D

𝑑𝑡
 means the time derivative of momentum. 𝐮b

D is the velocity of the 

mesh motion.  

Similarly, by the velocity decomposition, the continuity equation ∇ ∙ (𝐔) = 0can be changed 

into 

∇ ∙ (𝐔𝐈) + ∇ ∙ (𝐔𝐃) = 0                                                                                                      (6.1.7) 
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The convective equation of volume fraction is used for tracking the free surface, which is also 

transformed by the function-decomposition method, from 
𝑑𝛾

𝑑𝑡
+ ∇ ∙ [𝛾(𝐔 − 𝐮b

D)] = 0 to 

𝑑𝛾

𝑑𝑡
+ ∇ ∙ [𝛾(𝐔I + 𝐔D − 𝐮b

D)] = 0                                                                                        (6.1.8) 

Finally, the turbulence model is also transformed into the complementary form. Taking the 

RNG k-epsilon model under dynamic mesh for instance, after decomposition of velocity and 

pressure, the corresponding complementary RNG k-epsilon equations are changed from  

dk

dt
+ ∇ ∙ [(𝐔 − 𝐮b

D) ∙ k] = ∇ ∙ [(μ +
μt

σk
) ∇k] + G − ε                                                                  

dε

dt
+ ∇ ∙ [(𝐔 − 𝐮b

D) ∙ ε] = ∇ ∙ [(μ +
μt

σε
) ∇k] + (C1ε − R) ∙ G ∙

ε

k
− C2ε ∙

ε2

k
                 

to 

dk

dt
+ ∇ ∙ [(𝐔𝐈 + 𝐔𝐃 − 𝐮b

D) ∙ k] = ∇ ∙ [(μ +
μt

σk
) ∇k] + G − ε                                             (6.1.9)                                                        

dε

dt
+ ∇ ∙ [(𝐔𝐈 + 𝐔𝐃 − 𝐮b

D) ∙ ε] = ∇ ∙ [(μ +
μt

σε
) ∇k] + (C1ε − R) ∙ G ∙

ε

k
− C2ε ∙

ε2

k
            (6.1.10)        

dk

dt
 and 

dε

dt
 are the time derivative of the turbulence energy and the turbulence dissipation rate 

respectively. The constants including σk, σε, C1ε, and C2ε are the same as those in section 

3.1.2. G and R are defined in 3.1.2 as well. 

6.2 The numerical methods 

The numerical methods used with dynamic mesh are the same as those used in Chapter 3. 

Finite Volume Method (FVM) is used to discretize governing equations. All parameters are 

located at the centre of the cell/grid. PISO scheme is applied for decoupling the velocity-

pressure relation. The distinguishing difference is that the velocity (ub) of mesh motion 

should be determined. This is done by using the existing OpenFOAM functionality. In 

OpenFOAM, the velocity (ub) of mesh motion is an independent unknown defined at the cell 

centre. A diffusion equation of the velocity of mesh motion is applied in the whole 

computational domain, which is described as 

∇ ∙ (Γb∇𝐮b) = 0                                                                                                                   (6.2.1) 

In equations (6.2.1), constant Γb is the diffusion coefficient. To solve the equation, the 

velocity of the floating structure is required to specify the boundary condition of Eq. (6.2.1). 

The velocity of the floating structure may be prescribed or solved by Newton’s law. By 

solving Eq. (6.2.1), the velocity of mesh motion, which is diffusive from the floating structure 
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(inner boundary) to the outer boundary (the other boundary), can be obtained. Consequently, 

the position of the computational mesh can be updated. It shall be noted that a smooth 

function may be used after the velocity of the mesh motion is solved in order to maintain a 

good mesh quality.  

6.3 Computational domain configuration for the Euler-viscous 

hybrid solver with dynamic mesh 

The configuration of the computational domain used here is similar to that used for fixed 

Eulerian grid. The Euler domain and the viscous domain are overlapped as illustrated in Fig. 

6.3.1. The viscous domain is smaller than the Euler domain for improving the computational 

efficiency. The floating structure exists in both the Euler domain and the viscous domain. The 

motions of the floating structure in both domains are kept the same. 

 

(a) The Euler computing domain                              (b) The viscous computing domain 

                          Fig. 44Fig. 6.3.1 the computational domain for the Euler-viscous hybrid model 

6.4 Boundary conditions 

For the problems concerning the interaction between the waves and floating bodies 

undergoing motions, two types of boundaries are taken into account. One is fixed boundaries, 

including inlet, outlet, top, bottom as shown in Fig. 6.3.1. The other is structure-surface 

boundary, which is the surface of the floating structure in contact with fluids. For the former, 

the boundary conditions are the same as those described in Section 3.4.1.In this section, only 

the latter is introduced. 

6.4.1 Structure-surface boundary condition in the Euler domain 

For the structure subjected to motions, the velocity 𝑼𝑠𝑡𝑟
I  induced by the motion of the 

structure on the structure-surface can be determined by a prescribed motion for the forced 

motions or by Newton’s 2nd law for freely floating structures. In the Euler domain, the slip-

wall boundary condition should be fulfilled on the rigid body surface, since the viscosity is 

ignored. Therefore, the normal component of 𝑼I should be equal to the normal component of 

𝑼𝑠𝑡𝑟
I , i.e., 𝑼I ∙ 𝒏 = 𝑼𝑠𝑡𝑟

I ∙ 𝒏 . Meanwhile, the tangential component of 𝑼I  cannot be 

boundary1 structure 

top 

boundary2 

bottom 

structure 

top 

inlet outlet 
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determined by 𝑼𝑠𝑡𝑟
I , which may be considered as the tangential component of velocity 𝑼𝑛𝑏𝑟

𝐼  

on the neighbour cell of the structure-surface boundary, i.e., 𝑼I ∙ 𝒕 = 𝑼𝑛𝑏𝑟
𝐼 ∙ 𝒕. Therefore, the 

velocity on the structure-surface should be described as 

𝑼I = (𝑼𝑛𝑏𝑟
𝐼 ∙ 𝒕)𝒕 + (𝑼𝑠𝑡𝑟

I ∙ 𝒏)𝒏 on the structure-surface                                                    (6.4.1) 

In (6.4.1), n and t is the normal and tangential unit vector on the floating structure, 

respectively. The volume fraction on the floating structure should fulfil the zero normal 

gradient condition as well, which is described as 

𝜕𝛾′

𝜕𝒏
= 0  on the structure surface                                                                                         (6.4.2) 

6.4.2 Structure surface boundary condition in the viscous domain 

In the viscous domain, the no-slip-wall boundary is imposed on the structure-surface. For the 

total velocity U on the structure-surface, U=UI+UD=𝑼𝑠𝑡𝑟
I  should be satisfied, which means 

that 𝑼𝐷 = 𝑼𝑠𝑡𝑟
I − 𝑼𝐼. By using (6.4.1), the boundary condition is proposed as 

𝑼𝐷 = (𝑼𝑠𝑡𝑟
I ∙ 𝒕)𝒕 − (𝑼𝑛𝑏𝑟

𝐼 ∙ 𝒕)𝒕   on the structure-surface                                                  (6.4.3) 

The volume fraction on the structure surface should satisfy the zero normal gradient boundary 

condition, which is described below 

𝜕𝛾

𝜕𝒏
= 0  on the structure surface                                                                                          (6.4.4) 

6.5 Numerical techniques in the Euler-viscous hybrid solver with 

dynamic mesh 

In the Euler-viscous hybrid solver with dynamic mesh, specific numerical techniques 

described in Chapter 3, including the transition zone for dissipating viscous effects in the 

viscous domain and the numerical interpolation for data transition are also adopted. However, 

the wave load on the floating structure estimated by the Euler solver in the Euler domain may 

be considerable different from that predicted by the complementary solver in the viscous 

domain. Consequently, the motion of the structures and thus the positions of the structure 

surface boundaries in two computational domains do not match. This causes a problem on 

data exchanging between two solvers, e.g. some part of the fluid domain in the viscous 

domain may be occupied by the structure in the Euler domain and thus cannot request UI and 

PI from the Euler solver. A special numerical technique shall be developed for the simulation 

of the motions of a floating structure subjected to incident waves to make the motion of the 

structure consistence between two domains. To do so, the total hydrodynamic loading on the 
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floating structure in the viscous domain is transmitted into the Euler solver and used to 

evaluate the motion of the floating structure in the Euler domain.  

6.6 The solution procedure of the Euler-viscous hybrid solver with 

dynamic mesh 

The solution procedure of the Euler-Viscous hybrid solver with dynamic mesh is different 

from that without dynamic mesh in Chapter 3. The solution procedures of the Euler-viscous 

hybrid solver for modelling with the interactions between waves and structures subjected to 

motions are discussed below. 

6.6.1 Solution procedure for interaction between waves and a floating structure undergoing 

forced motion 

For the wave interactions with a floating structure undergoing a forced motion, the motions of 

the floating structure are prescribed and kept the same in both the Euler domain and the 

viscous domain. Therefore, the special treatment described in section 6.5 is not taken into 

account. After the mesh is updated in the Euler domain according to the prescribed motions of 

the floating structure, the volume fraction equation and Euler equations are solved. Then, the 

mesh in the viscous domain is also updated following the same motions. By the interpolation 

process described in section 3.6 (Chapter3), the Euler solution is mapped into the viscous 

domain. Finally, the free surface in the viscous domain is updated and the complementary 

RANS equations are solved with the complementary turbulence model. The details are 

illustrated in Fig. 6.6.1. 

Step1 Initialise the unknown variables including 𝐔I , pI  , and 𝛾 ′  in the Euler domain and 

establish the projection relationship between the Euler domain and the viscous domain. 

Step2 Computational mesh in the Euler domain is updated by using the dynamic mesh 

technique according to the prescribed motions of the floating structure. 

Step3 The volume fraction 𝛾 ′ in the Euler domain is solved by equation (6.1.3). The viscosity 

and density in the Euler domain is updated by the new volume fraction. After that, the 

momentum equations and the continuity equation in the Euler domain are solved. 𝐔I and pI 

are updated in the new time step. 

Step4 Computational mesh in the viscous domain is updated by using the dynamic mesh 

technique according to the prescribed motions of the floating structure. 

Step5 The Euler solutions including 𝐔I, pI , and 𝛾 ′ are mapped into the viscous domain, which 

are regarded as known variables by the complementary solver. 
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Fig. 45Fig. 6.6.1 The flow chart of the simulation of the floating structure with forced motion by the 

Euler-viscous hybrid solver under dynamic mesh 

Step6 In the viscous domain, the free surface is updated by equation (6.1.8). After that, the 

viscosity and density in the viscous domain is obtained in the new step. Then, the 

complementary momentum equations (6.1.6) and the continuity equation are solved by PISO 

UI, pI, and γ' in the Euler domain are mapped into the 

viscous domain.  UD, pD, and γ are relaxed from the Euler 

solution in the transition zones 

End 

tn<tend 

The total velocity and pressure are obtained by U= UI+ 

UD, and p= pI+pD 

γ' is solved by Eq. (6.1.3) in the Euler domain 

UI and γ' on the inlet boundary of the Euler domain by 

specific wave theory  

UI and pI are updated by momentum equations (6.1.1) and 

the continuity equation (6.1.2) in the Euler domain  

γ is updated by the complementary VOF equation (3.1.8) 

in  the viscous domain 

UD and pD are updated by complementary momentum 

equations (6.1.7) and the complementary continuity 

equation (6.1.6) 

The complementary turbulence model is solved. 

Initialization 

Mesh in the Euler domain is updated by using the 

dynamic mesh technique with prescribed structure motion 

Mesh in the viscous domain is updated by prescribed 

motion as well 

tn+1=tn+Δt 

No 

Yes 
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algorithm, along with the complementary turbulence equations being solved by using 𝐔I and 

𝐔D in the new time step.  

Step7 Finally, the total velocity and the total pressure in the new step are calculated by 𝐔 =

𝐔I + 𝐔D and p = pI + pD respectively.  

The simulation advances into the next time step and the program returns to Step2 until the 

final time step is reached. 

6.6.2 The solution procedure for interaction between waves and floating structure undergoing 

freely motion 

For the simulation involving a freely floating structure subjected to incident waves, special 

treatment indicated above is conducted to ensure that the motion of floating structures in two 

domains are the same. In the simulation, the motion of the floating structure is determined by 

a 6 Degree Of Freedom (6 DOF) model built in OpenFOAM using the hydrodynamic load 

acting on it.  

To illustrate, the forces and moments on the structure are calculated firstly, which are 

described as below. 

{
𝐅 = ∯ (𝐅body + 𝐅fluid) ds

S

𝐌 = ∯ (𝐌body + 𝐌fluid) ds
S

                                                                                         (6.6.1)                                                                               

In equation (6.6.1), F and M are total forces and moment on the structure by surface 

integration of Fbody and Ffluid. Fbody (Mbody) are external forces (moments) such as gravity, 

magnetic forces, and electronic forces etc. In the research, only gravity is considered. 𝐅fluid 

(Mfluid) are fluid forces such as viscous forces and pressures.  

After that, the velocity acceleration and angular acceleration can be obtained by the Newton’s 

second law, described as 

{
𝐚 =

𝐅

m

𝛂 =
𝐌

I

                                                                                                                               (6.6.2)                                                                                                                        

In equation (6.6.2), m is the mass of the structure, while I is the moment inertial.  

Finally, by a splitting method (Dullweber, Leimkuhler, and McLachlan, 1997), the new 

position can be obtained, which is described below. 
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{
(𝒗)

𝑛+
1

2

= 0.5 ∙ (1 − 𝐶𝑑𝑎𝑚𝑝) ∙ (∆𝑡)𝑛 ∙ (𝒂)𝑛

(𝒔)𝑛+1 = (𝒔)𝑛 + (∆𝑡)𝑛 ∙ (𝒗)
𝑛+

1

2

                                                                      (6.6.3)                                                               

In equation (6.6.3), (a)n is the velocity acceleration in the time step n. (Δt)n is the time step 

from n to n+1. (v)n+1/2 can be regarded as velocity between time step n and n+1, which is 

assumed to be unchanged in (Δt)n. Finally, the new position (s)n+1 at time step n+1 is obtained 

from the old position (s)n. Cdamp is the damping coefficients for avoiding the numerical 

instability.  

Similarly, the new orientation can be obtained by 

{
(𝝎𝐼)

𝑛+
1

2

= 0.5 ∙ (1 − 𝐶𝑑𝑎𝑚𝑝) ∙ (∆𝑡)𝑛 ∙ (𝜶𝐼)𝑛

(𝑸)𝑛+1 = (𝑸)𝑛 ∙ 𝑹1 ∙ 𝑹2 ∙ 𝑹3 ∙ 𝑹4 ∙ 𝑹5

                                                                 (6.6.4)                                                               

In fact, the new orientation (Q)n+1 at time step n+1 is obtained from the old orientation (Q)n, 

by the unchanged angular acceleration (w)n+1/2 in time step (Δt)n. R1, R2, R3, R4, and R5 are 

functions with the variable (w)n+1/2. 

The solution procedure of the Euler-Viscous hybrid solver with dynamic mesh for a freely 

floating structure is described below in Fig. 6.6.2, in which the most steps are the same except 

those related to the motion of the freely floating structures. 

Step1 Initialise the unknown variables including 𝐔I , pI  , and 𝛾 ′  in the Euler domain and 

establish the mapping between the Euler domain and the viscous domain. 

Step2 The volume fraction 𝛾 ′  in the Euler domain is solved by equation (6.1.3). The viscosity 

and density in the Euler domain is updated by the new volume fraction. After that, the 

momentum equations (6.1.2) and the continuity equation (6.1.1) are solved. 𝐔I  and pI  are 

updated in the new time step. 

Step3 The Euler solutions including 𝐔I, pI , and 𝛾 ′ are mapped into the viscous domain by 

interpolation, which are regarded as known variables. 

Step4 The volume fraction 𝛾 in the viscous domain is solved by equation (6.1.8). Besides that, 

the viscosity and density in the viscous domain are obtained by the free surface at the new 

time step. Then, the complementary momentum equations and the corresponding continuity 

equation are solved by the PISO algorithm. 𝐔D  and pD  are updated at the new time step, 

along with the complementary turbulence equations are solved by using 𝐔I and 𝐔D in the new 

time step.  
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Step5 Finally, the total velocity and the total pressure at the new step are calculated by 𝐔 =

𝐔I + 𝐔D and p = pI + pD respectively.  

 

Fig. 46Fig. 6.6.2 The flow chart of the simulation of the floating structure with free motion by Euler-

viscous hybrid solver under dynamic mesh 

tn+1=tn+Δt 

No 

Yes 

UI, pI, and γ' are transmitted to the viscous domain.  UD, 

pD, and γ are relaxed from the Euler solution in the 

transition zones 

End 

tn<tend 

The total velocity and pressure are obtained by U= UI+ 

UD, and p= pI+pD 

γ' is solved by Eq. (6.1.3) in the  Euler domain 

UI and γ' are specified on the inlet boundary of the Euler 

domain by specific wave theory 

UI and pI are solved by momentum equations (6.1.1) and 

the continuity equation (6.1.2) in the Euler domain  

γ are solved by the complementary VOF equation (6.1.8) 

in  the viscous domain 

UD and pD are solved by complementary momentum 

equations (6.1.7) and complementary continuity equation 

(6.1.6) 

The complementary turbulence model is solved 

Initialization 

Mesh in the Euler domain is updated with the 

hydrodynamic load the on structure in the viscous domain 

Mesh in the viscous domain is updated according to 

motions determined by using the 6DOF model 
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Step6 In the viscous domain, hydrodynamics is calculated on the floating structure, which is 

used to determine the motion of the floating structure by the 6DOF model. Then, dynamic 

mesh in the viscous domain is updated.  

Step7 In the Euler domain, with the feedback of hydrodynamics on the floating structure in 

the viscous domain, the motion of the floating structure is determined by the 6DOF model. 

Then, dynamic mesh is updated. 

The simulation continues into the next time step and the solution procedure goes back to 

Step2 until the final time step is reached. 
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Chapter 7 Convergence study of the Euler-viscous hybrid 

solver for moving surface-piercing structures in waves 

In this chapter, the Euler-viscous hybrid solver adopting the dynamic mesh technique is used 

to simulate the interaction between waves and a moving surface-piercing structure. This 

chapter mainly focuses on specific numerical tests exploring the convergence property. Two 

specific cases are taken into account in this chapter to shed light on the feature of the present 

solver. These include (1) a 2D rectangular floating structure undergoing forced rolling motion; 

and (2) roll damping of a 2D rectangular floating structure. For the latter, an experimental 

study has been conducted by Jung et al (2006), this may give good reference for the 

investigation presented in this chapter.  Although incident waves are not considered in both 

cases, radiation waves are generated by the motion of the structure and interact with the 

structure.  

7.1 Description of the physical model 

      

Fig. 47Fig. 7.1.1 the physical model 

The physical model to be considered in this chapter is sketched in Fig. 7.1.1. The floating 

structure is a two-dimensional rectangular barge with width (B) of 0.3m and height (l) of 

0.1m. The initial draft (d) of the structure is 0.05m. The water depth h is 0.9m. The floating 

structure rolls around a rotating axis across the centre of the gravity centre G located at the 

centre of the barge. Using such configuration, it is easy to get that B/d=6, and l/d=2.  

For the first case, the structure subjected to a forced roll motion, which is specified by a 

periodic motion with the motion amplitude of α0. In this case, the moment acting on the 

structure due to the water are recorded for comparison. For convenient, the moment M is 

nondimensionalised by ρgLBdl, where L is the length of the floating body. The roll angle α of 

the floating structure is nondimensionalised by the roll amplitude α0. In addition to the present 
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Euler-viscous hybrid solver with dynamic mesh technique, the conventional RANS solver is 

also used to simulate the same case for comparison. Both the accuracy and the efficiency of 

the present solver are discussed. 

7.2 Convergence study  

It is well-known that the mesh plays a crucial role on the accuracy, efficiency and the 

convergence of any numerical approaches. For both the Euler-viscous hybrid solver and the 

conventional RANS solver, a mesh with sufficient resolution is required for all cases to 

ensure the convergence of the solution. In the present Euler-viscous hybrid solver, the 

requirement of the mesh resolutions in the Euler domain and that in the viscous domain may 

be different in order to get convergent solution for the Euler equations and the complementary 

RANS equations, respectively. In the viscous domain, one may agree that adopting the same 

mesh resolution as the conventional RANS solver is acceptable. Thus, preliminary 

convergence studies are conducted for the Euler solver of the present solver and the 

conventional RANS solver, respectively.  

7.2.1 Computational mesh 

 

  (a) Mesh in the viscous domain                               (b) Mesh in the Euler domain 

                             

(c) Mesh in the conventional RANS domain 

Fig. 48Fig. 7.2.1 mesh with feature parameters 

For the conventional RANS solver, the numerical wave tank is rectangular with the length LC 

of 12m (LC/B=40), and the width HC of 1.8m (HC/h=2). The floating structure is located at the 

centre of the tank and the mean sea level is the central horizontal line of the tank. This is 

sketched in Fig. 7.2.1 (c). The size of the tank and locations of the floating structure and the 

mean water surface in the Euler domain of the present solver are the same as those used by 

the conventional RANS solver (see Fig. 7.2.1(b)). The computational mesh is hexahedral and 
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generated by the OpenFOAM mesh generator blockMesh. Similar to the problem with fixed 

structures, the mesh near the free surface must be refined for capturing the water waves. In 

this case, the mesh at a rectangle region with a width of 4d centred at the mean sea level is 

refined. Furthermore, the mesh around the floating structure may also be refined for capturing 

small-scale physics, e.g. the turbulence, boundary layer and vortex, which significantly 

influence the force on the floating structure. Similar to the mesh near the free surface, a 

rectangle region with length of 2B (in horizontal) are defined. Within such refined regions, 

the mesh sizes are uniform in both the horizontal and vertical direction.  Outside the refined 

regions, the mesh sizes are uniform in horizontal direction, but gradually increases in vertical 

direction from the boundary of the refined regions to the outer boundary of the computational 

domain (the ratio of the maximum mesh size and minimum mesh size in vertical direction is 

30). Illustrations of the computational mesh used by the present solver and the conventional 

RANS solver are given in Fig. 7.2.1.  Similar to the cases with fixed structures, the 

parameters listed in Table 7.2.1 are used to reflect the mesh resolutions in different area 

Table 10Table 7.2.1 Parameters for features of mesh 

nLC, nLE and nLV  the numbers of division in the horizontal direction outside the refined 

regions (nL), i.e. four corner areas with lengths of 0.5LC-B, 0.5LE-B and 

0.5LV-B, for the conventional RANS solver, the Euler Solver and the 

complementary RANS solver, respectively. 

nBC, nBE and nBV  the numbers of division per width of the floating structure in the 

horizontal direction (nB) in the refined region near the floating structure 

with the length of 2B for conventional RANS solver, Euler solver, and 

complementary RANS solver, respectively 

nHC, nHE and nHV  the numbers of division per height of the floating structure in the vertical 

direction (nH) in the refined region near the free surface with height of 4d 

for conventional RANS solver, Euler solver, and complementary RANS 

solver, respectively 

 

7.2.2 Convergence properties of the conventional RANS solver and the Euler solver 

In the study, simulations of forced rolling of a floating structure in water are carried out using 

the conventional RANS solver and the Euler solver, respectively. The prescribed roll motion 

of the structure is described as 

α = α0sin (
2π

T
∙ t) {sin [

π

2
∙

min (T0,t)

T0
]}

3
                                                                               (7.2.1) 
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In (7.2.1), α is the roll angle at the time t; α0 is the motion amplitude, which is α0=π/36 (5deg) 

in the investigation; T=0.93s is the motion period. .  One may notice that a ramping function 

{sin [
π

2
∙

min (T0,t)

T0
]}

3
 is applied to duration of T0 to avoid a sudden increase of the motion speed 

to improve the stability of the simulation.  The moment acting on the forced rolling structure 

is recorded for comparison due to the fact that the moment induced by the forced roll is used 

to determine the added-mass coefficient and damping coefficient of the roll motion, which 

play a crucial role in the design of floating structures. Different time step sizes and mesh 

resolutions are considered in the convergence investigation. As indicated above, the 

convergence properties for the Euler solver and the conventional RANS solver are 

investigated as the preliminary study for the present Euler-viscous coupled solver. 

Firstly, the effects of the time step size (Δt) are investigated. For the conventional RANS 

solver, the simulations adopting Δt=T/500, Δt=T/1000, and Δt=T/2000 are carried out. The 

mesh resolution is specified by nLC=460, nBC=50, and nHC=46. The time history of the 

moment acting on the floating structure is shown in Fig. 7.2.2. As expected, the moment 

varies periodically after the initial ramping period. For quantifying the relative error, the time 

histories of the moment in 5 continuous time periods from t/T=5 to t/T=10 are used for the 

calculation of relative average error that defined in Section 4.2.2. It is obtained that the REM 

between the case with Δt=T/500 and that with Δt=T/1000 is 6.7%, whereas the corresponding 

value between the case with Δt=T/2000 and that with Δt=T/1000 is reduced to 0.2%. One 

may conclude that the time step size of Δt=T/1000 is acceptable for the conventional RANS 

solver. It is well understood that the requirement of the time step by the Euler equation 

leading to a convergent results shall not be shorter than that by the Navier-Stokes equation.  

Therefore, Δt=T/1000 shall be sufficient for the Euler solver to get convergent results, 

although we may use a larger time step sizes for the Euler solver.  

 

Fig. 49Fig. 7.2.2 The comparison of moment at different time step 
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(a) The conventional RANS solver 

 

(b) The Euler solver 

Fig. 50Fig. 7.2.3 The comparison of  moment (nLC and nLE) between the conventional RANS solver 

and the Euler solver 

The convergence study in terms of the mesh resolutions are conducted where the time step 

size is taken as Δt=T/1000. The mesh resolutions are specified by number of divisions defined 

in Table 7.2.1. The numbers of division per width of the floating structure in horizontal, i.e. 

nBc and nBE, ranges from 12 to 100; the numbers of division per height of the floating 

structure in vertical, i.e. nHc and nHE, ranges from 23 to 138. The numbers of division in the 

horizontal direction outside the refined regions, i.e. nLc and nLE, ranges from 160 to 960.  

The effects of numbers of division in the horizontal direction outside the refined regions (nL) on 

numerical results are investigated and some results are shown in Fig. 7.2.3. it shall be noted 

that the mesh resolutions in the refined regions are the same, i.e. nBC=50 & nHC=92 for the 

conventional RANS solver and  nBE=25 & nHE=46 for the Euler solver. These are sufficient 

for achieving convergent results as will be discussed below. As observed from Fig. 7.2.3 (a), 

nLC=460 is sufficient for the conventional RANS solver to achieve convergent results. 
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Evaluation also show that the REM for the cases with nLC=230 and nLC=460 is 8.3%, 

whereas the REM for the cases with nLC=460 and nLC=920 is 1.2%. It is also found from Fig. 

7.2.3(b) that a coarser mesh resolution outside the refined regions, i.e. nLE=230 is sufficient 

for the Euler solver. The corresponding REM is 8.8% for cases with nLE=160 and nLE=230, 

and reduces to 0.8% for nLE=230, nLE=460. 

 

(a) The conventional RANS solver 

 

(b) The Euler solver 

Fig. 51Fig. 7.2.4 The comparison of moment (nBC and nBE) between the conventional RANS solver 

and the Euler solver 

The convergence properties in terms of the numbers of division per width of the floating 

structure in horizontal direction (nB) in the refine region are also analysed. Some results are 

shown in Fig. 7.2.4. Similar to Fig. 7.2.3, nL and nH for both solvers are fixed but sufficiently 

smaller to ensure a convergent solution.  For the conventional RANS solver, nLC=460, 

nHC=92 and nBC ranges from 25 to 100. Obviously, nBC=50 is sufficient for the conventional 

RANS solver (REM for the cases with nBC=50 and nBC=100 is 1.3%). The comparison of 

moment in the cases with different nBE (nBE=12, nBE=25, and nBE=50) by the Euler solver 
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(Fig. 7.2.4 (b)) suggest that the Euler solver only requires nBE=25 to achieve convergence 

results (REM for the cases with nBE=25 and nBE=50 is 1.6%), providing sufficiently large 

value of nLE and nHE. 

 

(a) The conventional RANS solver 

 

(c) The The Euler solver 

(a)  

Fig. 52Fig. 7.2.5 The comparison of moment (nHC and nHE) between the conventional RANS solver 

and the Euler solver 

Finally, the effects of nH, i.e. the numbers of division per height of the floating structure in the 

vertical direction, are discussed. Some results are shown in Fig. 7.2.5. For the conventional 

RANS solver (Fig. 7.2.5(a)), numerical simulations are carried out with different nHC 

including nHC=46, nHC=92, and nHC=13; whereas the same nLC and nBC are used, i.e. 

nLC=460 and nBC=50, which are sufficient as indicated by Fig. 7.2.3 and Fig. 7.2.4. It can be 

seen that nHC=92 is sufficient for the conventional RANS solver to achieve convergent results. 

The corresponding values of REM are 0.8% for the cases with nHC=92 & nHC=138, which is 

much smaller than the REM for the cases with nHC=46 and nHC=92 (7.2%). For the Euler 
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solver (Fig. 7.2.5(b)), nHE=46 should be used. The corresponding values of REM are 0.6% 

for the cases with nHE=46 and nHE=70, whereas it is 5.2% for the cases with nHE =46 and 

nHE =23. 

In summary, for numerical simulations of forced rolling structure in water, the time step 

Δt=T/1000 is sufficient for the convention RANS solver and the Euler solver. In addition to 

the time step, sufficient mesh resolution is also found. Specifically, for the conventional 

RANS solver, the mesh resolution shall be specified by nLC=460, nBC=50, and nHC=92. On 

the other hand, for the Euler solver, mesh resolution with nLE=230, nBE=25, and nHE=46 is 

acceptable. By comparison of mesh resolution, it is indicated that mesh for the conventional 

RANS solver must be finer than that for the Euler solver. That’s because the viscous effects 

including turbulence are considered in the conventional RANS solver, which requires finer 

mesh resolution (about half of the mesh size on both horizontal and vertical direction). 

Therefore, CPU time consumed by the conventional RANS solver is much longer than that by 

the Euler solver. This builds the basis for the necessity of developing the Euler-viscous hybrid 

solver, in which the viscosity and the turbulence are only considered in the viscous domain i.e. 

a smaller region near the floating body.  

7.2.3 Convergent property of the Euler-viscous hybrid solver 

The preliminary study in Section 7.2.2 has found the appropriate mesh resolution for both the 

Euler and the conventional RANS model for simulating the forced rolling structure in water.  

The questions to be answered here include (1) are the requirements of the time step size and 

the mesh resolution by the complementary solver of the present hybrid solver similar to the 

conventional RANS model? (2) is the hybrid solver convergent to the same results as the 

conventional RANS solver? These questions have been answered previously for the cases 

with fixed structures. Systematic results for the convergence investigation for the hybrid 

solver are not presented in this section to save the space, and only some results are shown to 

confirm that the conclusion drawn by using the case with fixed structures still stand for the 

cases with moving structures. For this purpose, the Euler-viscous hybrid solver with dynamic 

mesh technique is used to model the same case as that presented in Section 7.2.2. The size of 

computational domain and mesh resolution are described in Table 7.2.2, which are results of 

convergence study in section 7.2.2. It shall be noted that for the Euler-viscous hybrid solver, 

the Euler domain is the same as the domain used by the conventional RANS solver in Section 

7.2.2. The value of the parameters for specifying the mesh resolutions in the Euler domain of 

the present solver and those in the corresponding simulation by the conventional RANS 

solvers are taken according to the convergence investigation shown in Section 7.2.2. The size 

of the viscous domain for the Euler-viscous hybrid solver are given as Lv = 6B (about 15% of 
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the length of the Euler domain) and Hv = 2h (the same height as the Euler domain). The mesh 

resolution in the viscous domain is the same as that used in the computational domain for the 

conventional RANS simulation. 

Table 11Table 7.2.2 The mesh for the study of convergent property 

(a) The mesh for the conventional RANS solver 

Conventional RANS domain 

LC HC   LC  nBC nHC 

40B  2h 460 92 50 

(b) The mesh for the Euler-viscous hybrid solver 

 

 

 

Fig. 53Fig. 7.2.6 The comparison of time history of moment between the Euler-viscous hybrid solver 

and the conventional RANS solver 

The comparison of time history of moment is shown in Fig. 7.2.6. It can be seen that the 

numerical results based on the Euler-viscous hybrid solver agree well with those by the 

conventional RANS solver. In order to analyze the relative difference between two sets of 

results in Fig. 7.2.6, time histories of moment in 5 continuous time periods from t/T=5 to 

t/T=10 are used by formula (4.2.2). The average difference is 1.05%. This confirms that the 

requirement for the mesh resolution in the viscous domain to achieve convergent results may 

be the same as the corresponding values required by the conventional RANS solver. It also 

confirms that the accuracy of the hybrid solver is at the same level as that of the conventional 

RANS solver. 

It shall be pointed out that the sizes of the viscous domain and the transitional zone play 

important role on the efficiency and the accuracy of the present Euler-viscous hybrid solver. 

Euler domain Viscous domain 

LE  HE nLE nBE nHE LV HV  Ltr nLV nBV nHV 

40B  2h 230 46 25 6B 2h 3B   460    92    50 
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This will be explored in the following sections.  In these investigations, the mesh resolutions 

are taken as the same as those used here. Different values of the length (LV) and the width (Hv) 

of the viscous domain, as well as the length of the transitional zone (Ltr) are focused. 

7.3 Performance of the Euler-Viscous Hybrid solver a forced rolling 

floating structure in water 

In this section, the forced rolling floating structure in water is simulated by the Euler-Viscous 

hybrid solver and the conventional RANS solver. The motion of the structure and the size of 

the entire computational domain are the same as those in the previous section. The mesh 

resolutions used by both solvers are the same as the case presented in Section 7.2.3.  

7.3.1 The effects of the length  of the viscous domain (LV) 

In order to study the effects of LV, numerical simulations with different values of LV, ranging 

from 3B to 14B, are carried out by using the Euler-viscous hybrid solver. The width remains 

the same as HV =2h, the same as the width of the Euler domain. The detail of configuration is 

described in table 7.3.1.  

Table 12Table 7.3.1 The mesh for the study of effects of LV 

 (a) The mesh resolution for the Euler-viscous hybrid solver 

 

 

  

 

(b) The mesh resolution for the conventional RANS solver 

Conventional RANS domain 

LV HV  nLV nBV nHV 

40B  2h 460 92 50 

From Fig. 7.2.6, one may observe that the moment shows a periodic motion in steady state 

from the second period. For better visualisation, the time histories over one wave period from 

t/T=6 to t/T=7 in the cases with different LV, are shown in Fig. 7.3.1.  It can be seen that the 

results obtained by using LV=3B are considerably different from others. When LV>=6B, the 

moment predicted by the Euler-viscous hybrid solver agrees well with that estimated by the 

conventional RANS solver. The relative error compared to the results by the conventional 

RANS solver in the cases with different Lv is analysed and some results are shown in Fig. 

7.3.2, together with the CPU time spent by the present Euler-Viscous hybrid solver. For 

convenience, the CPU time shown in Fig. 7.3.2 is presented in form of the ratio against that 

No. Euler domain Viscous domain 

LE HE nLE nHE nBE LV HV  Ltr nLV nHV nBV 

1 40B 2h 230 46 25 3B 2h 3B 460 92 50 

2 40B 2h 230 46 25 6B 2h 3B 460 92 50 

3 40B 2h 230 46 25 10B 2h 3B 460 92 50 

4 40B 2h 230 46 25 14B 2h 3B 460 92 50 
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spent by the conventional RANS solver. One may easily conclude that the optimised length of 

the viscous domain Lv leading to highest computational robustness is 6B, where more than 60% 

CPU time can be saved compared with the conventional RANS solver and only 1% relative 

error is observed. 

 

Fig. 54Fig. 7.3.1 The comparison of moment at different LV by the Euler-viscous hybrid solver 

 

Fig. 55Fig. 7.3.2 The average error and CPU time ratio at different LV 

7.3.2 The effects of the width of the viscous domain (HV) 

Not only the length of the viscous domain (LV), but also the width of the viscous domain (HV) 

can be optimised to achieve a better computational robustness. Similar to LV, HV may also 

affect both computational accuracy and computational efficiency for the present Euler-

Viscous hybrid solver. Hence, it is necessary to study the effects of HV. For this purpose, the 

width of the viscous domain HV ranges from HV=2h to HV=0.5h in the investigation. Details 

of the configuration can be found in Table 7.3.2. 
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Table 13Table 7.3.2 The mesh for the study of effects of HV 

 (a) The mesh for the Euler-viscous hybrid solver 

 

 

  

 

(b) The mesh for the conventional RANS solver 

Conventional RANS domain 

LV HV  nLV nBV nHV 

40B  2h 460 92 50 

 

Fig. 56Fig. 7.3.3 The comparison of moment at different HV by the Euler-viscous hybrid solver 

 

Fig. 57Fig. 7.3.4 The average error and CPU time ratio at different HV 

Similar to Fig. 7.3.1, the comparison of time histories of moment in one period from t/T=6 to 

t/T=7 is shown in Fig. 7.3.3. It can be seen that the Euler-viscous hybrid solver leads to 

No. Euler domain Viscous domain 

LE HE nLE nHE nBE LV HV  Ltr nLV nHV nBV 

1 40B 2h 230 46 25 6B 0.5h 3B 460 92 50 

2 40B 2h 230 46 25 6B h 3B 460 92 50 

3 40B 2h 230 46 25 6B 1.5h 3B 460 92 50 

4 40B 2h 230 46 25 6B 2h 3B 460 92 50 
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results which are all close to the results from the conventional RANS solver, regardless the 

width of the viscous domain. The relative errors are all smaller than 2% (Fig. 7.3.4). The 

ratios of the CPU time consumed by the hybrid solver against the conventional RANS solver 

are also plotted in Fig. 7.3.4 for different value of Hv. One may conclude that Hv=h may lead 

to the highest robustness for the case considered here. 

7.3.3 The effects of the length of the transition zone (Ltr) 

The transition zone is used to dissipate the viscous effects and to ensure a consistent solution 

on the outer boundary of the viscous domain by both solvers. It also brings benefit on 

numerical stability and a smooth transmission from the Euler solution outside the viscous 

domain to the fully RANS solution inside the viscous domain. An appropriate length (Ltr) of 

the transition zone may be sought for the Euler-viscous hybrid solver to ensure a good 

computational robustness. For this purpose, different values of Ltr from B to 4B are 

considered in the investigation, where the size of the viscous domain are kept the same, i.e. 

LV=12B and HV=h. More details can be found in Table 7.3.3. 

14Table 7.3.3 The mesh for the study of effects of Ltr 

(a) The mesh resolution for the conventional RANS solver 

Conventional RANS domain 

LV HV  nLV nBV nHV 

40B  2h 460 50 92 

 

(b) The mesh resolution for the Euler-viscous hybrid solver 

 

 

 

Table  

Time history of the moments in the cases with different Ltr are compared with the 

corresponding results by the conventional RANS solver over the period from t/T=6 to t/T=7. 

The results are shown in Fig. 7.3.5. The relative error compared to the results by the 

conventional RANS solver is shown in Fig. 7.3.6, together with the consumed CPU time.  

The average error is smaller than 0.5%, regardless the value of the Ltr considered in the 

investigation. It is also found that the CPU time seems not to be influenced by Ltr. 

No. Euler domain Viscous domain 

LE HE nLE nHE nBE LV HV  Ltr nLV nHV nBV 

1 40B 2h 230 46 25 12B h B 460 92 50 

2 40B 2h 230 46 25 12B h 2B 460 92 50 

3 40B 2h 230 46 25 12B h 3B 460 92 50 

4 40B 2h 230 46 25 12B h 4B 460 92 50 
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Fig. 58Fig. 7.3.5 The comparison of moment at different Ltr by the Euler-viscous hybrid solver 

 

Fig. 59Fig. 7.3.6 The average error and CPU time ratio at different Ltr 

7.3.4 The effects of the motion frequency  

From Section 7.3.1 to Section 7.3.3, the effects of the length (LV) and width (HV) of the 

viscous domain and length (Ltr) of the transition zone are studied. However, only one motion 

frequency, i.e. f0=1.08Hz (T=0.93s) is considered. One may concern that whether the same 

conclusion stands for different motion frequencies. In this section, the effects of the motion 

frequency on the Euler-viscous hybrid solver are investigated. Different roll frequencies 

including f=0.67HZ (T=1.5s), f=0.83HZ (T=1.2s), f=1.08HZ (T=0.93s), f=1.25HZ (T=0.8s), 

and f=1.67HZ (T=0.6s) are considered. In these cases, the roll amplitude is kept the same as 

α0=π/36 (5 deg). For comparison, corresponding results by the conventional RANS solver are 

also obtained. The mesh resolutions are specified by nLE=230, nHE=46, and nBE=25 in the 

Euler domain with size of LE=40B, HE=2h. Meanwhile, nLV=460, nHV=92, and nBV=50 are 

used to generate the mesh in the viscous domain with its sizes specified by LV=6B, HV=h. The 

length of the transition zone Ltr is taken as 0.25LV. The time step size is Δt=T/1000 for both 
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the Euler solver and the complementary RANS solver. For comparison, simulations using the 

conventional RANS solver are also conducted by using the same size of the computational 

domain as the Euler domain and the same mesh resolution as the viscous domain, which is 

specified by using nLC=460, nHC=92, and nBC=50. 

 

Fig. 60Fig. 7.3.7 The comparison of 1st order amplitude of moment between the Euler-viscous hybrid 

solver and the conventional RANS solver at different motion frequency 

 

Fig. 61Fig. 7.3.8 The average error and CPU time ratio at motion frequency 

In order to compare the numerical results between the Euler-viscous hybrid solver and the 

conventional RANS solver, 1st order moment components (ψ(M)) are obtained by FFT using 

the time histories of the moment over 5 motion periods from t/T=5 to t/T=10. The comparison 

of ψ(M) is shown in Fig. 7.3.7. It can be seen that the results by the Euler-viscous hybrid 

solver agree well with those by the conventional RANS solver for all motion frequencies 

considered in this study. Consequently, the present Euler-viscous hybrid solver can have the 

same computational accuracy as the conventional RANS solver at different motion 

frequencies. It is clearer in Fig. 7.3.8, which shows the variation of Err(M) with motion 
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frequencies. With different motion frequencies, the average errors (Err(M)) are all lower than 

1%. Furthermore, more than 50% CPU time can be saved compared with that by using the 

conventional RANS solver within a wide range of motion frequencies. 

7.4 Performance of the Euler-Viscous hybrid solver for simulating 

roll damping of a floating structure 

In this section, the performance of the present Euler-viscous hybrid solver is studied for 

simulating the roll damping of a floating structure. In this investigation, the motion of the 

floating structure is not prescribed but is determined by using Newton’s second law by the 

hydrodynamic forces acting on the structure. It is distinguishingly different from the 

simulation of a forced rolling structure. The algorithm in section 6.2.2 is used for this purpose. 

The simulation of the roll damping of a floating structure is based on the experiment carried 

out by Jung et al (2006), which is also studied by many researchers (Yang, 2017, 2018). The 

relevant experimental data is also used for validation purpose. 

The physical model is described in section 7.1. The initial roll angle α0 is π/12 (15 deg). The 

mesh resolution obtained in the convergence study in section 7.2 is applied for current 

simulations. The size of the Euler domain is specified by LE=40B and H=2h, which is 

sufficiently large to obtain the results covering 3 natural motion periods. In the viscous 

domain, the effects of the length (LV) and the width (HV) of the viscous domain and the length 

(Ltr) of the transition zone are investigated. The time history of roll angle α is used for 

comparison between the Euler-viscous hybrid solver and the conventional RANS solver.  

7.4.1 The effects of the length of the viscous domain (LV) 

Similar to the study in Section 7.3.1, simulations with different LV are carried out by the 

Euler-viscous hybrid solver. LV ranges from 14B to 3B. The configuration of mesh is the 

same as that in Table 7.3.1. The comparison of time histories of the roll angle is shown in Fig. 

7.4.1.  

From Fig. 7.4.1, it is observed that both the Euler-viscous hybrid solver and the conventional 

RANS solver can predict the roll damping, which is close to the experimental results. 

Furthermore, the relative difference between the results by the present hybrid solver with 

different LV and those by the conventional RANS solver are carefully examined. The results 

are shown in Fig. 7.4.2. It can be seen that with the increase of LV, the averaged error of roll 

angle decreases remarkably. When LV>3B, Err(α) is below 2%. Correspondingly, the CPU 

time that consumed by the present solver increases with the increase of the Lv. Once again, 

LV=6B, where more than 60% CPU time can be saved with Err(α)<2% compared to the 

conventional RANS solver, may be considered as an optimised value of Lv.  
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Fig. 62Fig. 7.4.1 The comparison of time history of roll angle at different LV 

 

Fig. 63Fig. 7.4.2 The average error and CPU time ratio at different LV 

7.4.2 The effects of the width of the viscous domain (HV) 

 

Fig. 64Fig. 7.4.3 The comparison of time history of roll angle at different HV 
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The effects of the width (HV) of the viscous domain are also investigated. Cases with different 

HV ranging from HV=2h to HV=0.5h are simulated by the Euler-viscous hybrid solver. The 

computational domain and mesh are the same as those described in Table 7.3.2. The 

comparison of roll angle can be seen in Fig. 7.4.3. It is shown that all numerical results are 

close to the experimental results.  

In order to analyze the relative difference between the results by the Euler-viscous hybrid 

solver and those by the conventional RANS solver, the average error of roll angle is 

duplicated and shown in Fig. 7.4.4, which suggests that the relative differences Err(α) are all 

smaller than 0.5%, with  different HV. From the comparison of CPU time ratio, one can 

conclude again that 50% CPU time can be saved by the present solver compared with the 

conventional RANS solver. 

 

Fig. 65Fig. 7.4.4 The average error and CPU time ratio at different HV 

7.4.3 The effects of the length  of the transition zone in the viscous domain (Ltr) 

Finally, the influence of the length of the transitional zone (Ltr) in the simulation of roll 

damping is discussed. Simulations by the Euler-viscous hybrid solver are carried out with Ltr 

ranging from Ltr=B to Ltr=4B. The computational domain and mesh are the same as those 

described in Table 7.3.3.  

The comparison of roll angle is shown in Fig. 7.4.5. Once again, the numerical results from 

the Euler-viscous hybrid solver and from the conventional RANS solver agree well with the 

experimental data. From the average error between the results by the present hybrid solver 

and the conventional RANS solver are shown in Fig. 7.4.6, it can be seen that Err(α) is 

smaller than Err(α)=0.5%; the lowest Err(α) exists when Ltr=2B; whereas the consumed CPU 

time is quite similar at different Ltr. 
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Fig. 66Fig. 7.4.5 The comparison of time history of roll angle at different Ltr 

 

Fig. 67Fig. 7.4.6 average error and CPU time ratio at different Ltr 

7.5 Summary 

In this chapter, the convergence study of the Euler-viscous hybrid solver with dynamic mesh 

is conducted. Numerical simulations for forced rolling and roll damping of a floating structure 

are applied for different solution procedures described in section 6.6. The effects of the size of 

the viscous domain, the length of the transition zone on the computational robustness are 

discussed, respectively. It shows that with the increase of the length of the viscous domain, 

the computational efficiency decreases while the accuracy increases. With the decrease of the 

width of the viscous domain, the efficiency increases slightly and the accuracy decreases a 

little. For the length of the transition zone, a suitable length exists corresponding to the best 

computational accuracy, while the computational efficiency decreases slightly with the 

increase of the length of the transition zone.  
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By the validation of the Euler-viscous hybrid, it shows that the same computational accuracy 

can be obtained, comparing with the conventional RANS solver. The computational 

efficiency can be enhanced.  
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Chapter 8 Hybrid Model Incorporating Domain-

decomposition and Function-decomposition Methods for 

Wave-Structure Interaction 

In the previous chapters, the Euler-viscous hybrid models based on the function-

decomposition method has been developed and tested for wave interactions with a floating 

structure. Compared with the conventional RANS solver, the Euler-viscous hybrid model 

requires much less CPU time (approximate 50% CPU time can be saved) in order to get 

solution at the same level of computational accuracy. It is admitted that all cases simulated by 

the Euler-viscous hybrid model and the conventional RANS model are limited to a relatively 

small computational domain compared to the physical wave basin in the experimental study 

or real sea state. This may be acceptable for normal sea state modelling where the 

nonlinearity of the wave is insignificant and simplified wave theories, such as linear and 2nd 

order wave theory, can be used to specify the wave condition in the inlet of the computational 

domain. Nevertheless, in practices, especially when evaluating the survivability of the 

structure, one may need to consider extreme waves, which cannot be accurately modelled by 

the above-mentioned simplified wave theories.  

Compared with the two-phase Euler equation adopted by the present Euler-viscous hybrid 

model, the fully nonlinear potential theory (FNPT) is more robust due to the fact that it is 

single phase and has simpler governing equation. The FNPT has been proved to be efficient 

and sufficiently accurate for modelling large-scale long-duration wave propagation. 

Following the same method and assumption of the Euler-viscous hybrid model, i.e. the 

viscous effects can be ignored in the region far away from the structures,  the FNPT model 

will be used to govern the motion of the fluid outside of the Euler domain using a domain-

decomposition method. Overall, it aims to combine a function-decomposition method and a 

domain-decomposition method towards a multi-scale multi-model hybrid system. By the 

combination of two hybrid strategies, wave generation and propagation in large spatial 

domain are simulated by a FNPT solver and the local wave-structure interactions are 

modelled by the Euler-viscous hybrid solver. By the domain-decomposition method, the 

further provides a wave condition at the boundary of the Euler domain of the Euler-viscous 

hybrid solver. 

In this section, the function-decomposition based Euler-viscous hybrid solvers are extended to 

be coupled with the FNPT solver using the domain-decomposition method. The developed 

model, which is referred to as an extended Euler-viscous hybrid solver, will be applied to 

model the interaction between waves and structures which may be fixed or undergo motion. 
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The performances of the Extended Euler-viscous hybrid solver are studied. Both the 

computational efficiency and computational accuracy will be discussed..  

8.1 Extended Euler-viscous hybrid solver 

 

Fig. 68Fig. 8.1.1 The extending of the Euler-viscous hybrid solver with a fully nonlinear potential 

solver 

In the Euler-viscous hybrid solvers, incident waves are prescribed on the inlet boundary of the 

Euler domain by classic simplified wave theories such as 1st order stokes waves and 5th order 

stokes waves assuming the wave condition at the inlet is known. Nevertheless, in practices, 

one may only obtain the wave forecasting/hindcasting data at a resolution at a scale of ~10s 

km, as indicated above. This means that one may need to apply the Euler domain at a size of 

~10s km.  In such a way, the computational demands may be impractical high. More 

importantly, such classic simplified wave theories may not be able to reproduce highly 

nonlinear waves, e.g. extreme focusing wave groups, as indicated above. In order to improve 

the computational efficiency, a fully nonlinear potential solver called OceanWave3D (Engsig-

Karup, Bingham, and Lindberg, 2009) is coupled with the present Euler-viscous hybrid 

solvers.  As described in Fig.8.1.1, the potential solver, OceanWave3D, covers the majority of 

the computational domain and the Euler-viscous hybrid solvers only cover a small area near 

the floating structures. The wave will be generated and propagates in a long-distance in the 

domain for the OceanWave3D. The procedure can be described in Fig. 8.1.2.  

In the Extended Euler-viscous hybrid solver, the potential solver OceanWave3D is used 

firstly at a time step, in which the domain of the OceanWave3D covers the water phase of the 

Euler domain. Then, the fluid velocity and volume fraction at the inlet boundary of the Euler 

domain can be determined by OceanWave3D using its predicted wave elevation and the 

gradients of the velocity potential (fluid velocity). Only one-way coupling is considered here. 

This means that no feedback from the Euler domain to the potential domain will be 

considered. The solution in the Euler domain is then updated and the Euler solution is mapped 

into the viscous domain for seeking the solution of the complementary solver. Finally, the 

final solution is obtained in the viscous domain. For the problems associated with moving 

structures, the overall hydrodynamic forces on the structures predicted in the viscous domain 

Inlet  

Euler domain 

viscous domain 

structure 
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will be feedback to the Euler domain for updating the Euler mesh and the body-surface 

boundary condition. 

 

Fig. 69Fig. 8.1.2 Data flow in the extended Euler-viscous hybrid solver 

The Extended Euler-viscous hybrid solver can be used for wave-structure interaction, no 

matter the structure is fixed or subjected to motions. Validations are conducted for the cases 

with a fixed structure or a free rolling structure subjected to incident waves, respectively. 

Finally, performance of the developed solver is investigated. 

8.2 Computational domain 

When the extended Euler-viscous hybrid solver is used for the simulations of wave-structure 

interactions in a large numerical wave basin, the computational domain is complex, due to the 

combination of the domain-decomposition method and the function-decomposition method. 

The simulation is carried out in three domains including the one-phase potential domain, the 

two-phase Euler domain and the two-phase viscous domain, which are illustrated in Fig. 8.2.1. 

According to Fig. 8.2.1, the features of computing domains can be described by parameters 

including LP, LEH, and LER. Specifically, LP presents one part of the potential domain, which is 

the distance of the wave propagation until the inlet boundary of the Euler domain. LEH is the 

head part of the Euler domain, which is the distance from the inlet boundary to the gravity 

centre of the structure. LER is the rear part of the Euler domain, which is the distance from the 

gravity centre of the structure to the outlet boundary. In the simulation, the potential domain 

covers the entire wave basin without considering the floating structure and the OceanWave3D 

is used to model the water waves. The incident waves are generated in the potential domain 

and propagate along the distance of LP before reaching the inlet boundary of the Euler domain, 

where the inlet boundary condition is imposed to the Euler equations. The inlet boundary 

condition of the Euler domain is specified by the solution in the potential solution. The 

Potential field 

OceanWave 3D is applied for wave generation and propagation 

The inlet boundary of the Euler domain is determined by 

potential solution and the two-phase Euler model is solved 

Euler field 

With explicit Euler solution, the two-phase complementary 

RANS solver is solved. The final solution is obtained 
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viscous domain is a small area surrounding the floating structure, which is overlapped with 

the Euler domain. The floating structure exists both in the Euler domain and the viscous 

domain.   

 

Fig. 70Fig. 8.2.1 Surface-piercing potential-Euler-viscous hybrid domains 

Computational accuracy and efficiency of the extended Euler-viscous hybrid solver are 

mainly affected by two issues. The first one is associated with the coupling of the Euler 

domain and the viscous domain, including the mesh resolution, the size of viscous domain, 

and the length of transition zone. This has been discussed in Chapter 4 and Chapter 7. The 

second one is related to the one-way coupling of the potential solver and the Euler solver, e.g. 

how to effectively damp the reflection/radiation waves from the floating structure when it 

reaches the interface between the potential domain and the Euler domain. For the latter, one 

may terminate the simulation before the reflection/radiation waves reaches the interface. 

Consequently, the length of the Euler domain or the distance LP before reaching the inlet 

boundary of the Euler domain shall be carefully selected. Detailed investigation on the 

performance of the extended Euler-viscous hybrid solver for wave-structure interactions are 

discussed below.  

8.3 Convergence study of the Extended Euler-viscous hybrid solver 

for interactions between wave and fixed structures 

In order to study the performance of the extended Euler-viscous hybrid solver for modelling 

the interaction between waves and fixed structures, a fixed structure subjected to incident 

waves is simulated. In this study, the parameters related to the mesh resolution, the size of the 

viscous domain, and the length of the transitional zone have been preliminarily tested in 

previous chapters and similar configurations will be adopted here. Additionally, the effects of 

the distance LP before reaching the inlet boundary of the Euler domain are primarily studied 

in order to optimise the size of the Euler domain towards the highest computational 

robustness. 
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8.3.1 Physical model 

Table 15Table 8.3.1 Parameters related with mesh features 

Parameters definition  

nLC, nLE 

and nLV 

the numbers of division in the horizontal direction outside 

the refined regions (nL), i.e. four corner areas with 

lengths of (LP+LEH-B) & (LER-B), (LEH-B) & (LER-B), and 

0.5LV-B, for the conventional RANS solver, the Euler 

Solver and the complementary RANS solver, 

respectively. 

 

nBC, nBE 

and nBV 

the numbers of division per width of the floating structure 

in the horizontal direction (nB) in the refined region near 

the floating structure with the length of 2B for 

conventional RANS solver, Euler solver, and 

complementary RANS solver, respectively 

 

nHC, nHE 

and nHV 

the numbers of division per height of the floating 

structure in the vertical direction (nH) in the refined 

region near the free surface with height of 4d for 

conventional RANS solver, Euler solver, and 

complementary RANS solver, respectively 

 

In this test, a real wave tank is simulated. The length of the wave tank is 32m and the mean 

water depth is 0.8m. According to the specification shown in Fig. 8.3.1, LP+LEH+LER =32m, 

which is also the same as the length of the conventional RANS domain. The distance between 

the wave maker and the gravity centre of the floating body is 22m (LP+LEH), whereas the 

length of the rear part of the wave basin is 10m, i.e. the value of LER.  The floating structure 

has a breath, B, of 0.2m and height, l, of 0.064m. The initial draft of structure, d, is 0.032m. 

The incident wave is a regular wave with wave length λ of 1.56m and wave height Hw of 

0.04m (A=0.02m). According to the linear dispersion, the group velocity of the incident wave 

is 0.795m/s. The experiment was conducted by Jung et al (2006). The wave loading, 

including the horizontal force (Fs), the vertical force (Fh) and the moment (M) are recorded 

and used to quantify the accuracy of the model. For convenience, they are non-

dimensionalised by ρgLdA, ρgLBA, and ρgLBdA respectively, where L = 0.9m is the length 

of the structure.  
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8.3.2 Mesh resolution 

The mesh for the extended Euler-viscous hybrid solver is illustrated in Fig. 8.3.1. As above, 

two sets of mesh for the Euler domain and the viscous domain, as well as the computational 

mesh for the conventional RANS solver, are all generated by using the blockMesh function of 

OpenFOAM. Relative parameters to reflect the mesh resolutions are described in Table 8.3.1 

 

   (a) Mesh in the viscous domain                              (b) Mesh in the Euler domain 

                

                (b) Mesh in the conventional RANS domain 

Fig. 71Fig. 8.3.1 Mesh in hybrid domains 

Following the convergence test in Chapter 4, those parameters are taken as  Ltr=0.5λ, LV=2λ, 

HV=HE=1.5h, nLV=200, nBV=80, nHV=30, nLE=100, nBE=40, and nHE=15.  These will ensure 

a sufficient mesh resolution for the Euler and the viscous domains, as well as sufficient size of 

the transitional zone for supressing the viscous effects gradually near the boundary of the 

viscous domain.  

8.3.3 The effects of  the distance LP before reaching the inlet boundary of the Euler domain 

Because the computational domain of OceanWave3D covers the entire physical domain, i.e. 

32m, the distance LP before reaching the inlet boundary of the Euler domain does not 

influence the CPU time used by the OceanWave3D. Furthermore, LP+LEH is fixed, i.e. 22m 

(approximately 14λ). Smaller LP means larger LEH, consequently larger size of the Euler 

domain and longer CPU time required by the extended Euler-viscous hybrid solver. In order 

to investigate the effects of LP, different values ranging from 10λ (LEH=4λ) to 4λ (LEH=10λ) 

are considered in the investigation.  
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In the physical experiments and the conventional RANS simulation, it takes 22m/cg ≈27.5T, 

where cg is the group velocity of the incident waves, for the reflection waves from the floating 

structure reaching the wave maker, which is installed in the left end of the wave tank. The 

wave maker will re-reflect the reflected wave. It takes approximately 27.5T for the re-

reflected wave from the wave maker reaches the floating body. This means that after 55T, the 

measurement or the simulation by the conventional RANS model may not be acceptable.  On 

the other hand, for the extended Euler-viscous hybrid solver, the reflection from the floating 

structure will be re-reflected from the left end of the Euler domain. Taking LP = 4 λ as 

example, it may take approximately 39T for the re-reflection waves reaches the floating 

bodies. In order to examine the performance of the Extended Euler-viscous, the wave loading 

during the period of 40-55T is chosen. During this period, the numerical results by the 

conventional RANS equations are not affected by the re-reflection waves, whereas those by 

the extended Euler-viscous hybrid solver do.  It shall also be noted that when the re-reflection 

wave reaches the floating structure, part of them are reflected again by the floating structures. 

Consequently, for specific value of LP, longer the duration of the simulation, more significant 

the error caused by the reflection by the boundary of the Euler domain might be. In the other 

words, for specific duration of the simulation, longer value of LP, more significant such error 

might be. 

The wave loading on the floating structure in the cases with different LP is illustrated in Fig. 

8.3.2.  For clarity, only the time history at 40-41T, during which all numerical results has 

shown a quasi-steady state, is plotted. For the purpose of comparison, the corresponding 

results by the conventional RANS solver are also plotted. It is shown that results from the 

extended Euler-viscous hybrid solver with different LP behave similarly to that from the 

conventional RANS solver. The relative differences of wave loading obtained by using Eq. 

(4.2.2) are extracted and plotted in Fig. 8.3.3. 
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(a) The comparison of the horizontal force (FS)  

 

(b) The comparison of the vertical force (Fh)  

 

(c) The comparison of the moment (M)  

Fig. 72Fig. 8.3.2 The comparison of wave loads at different LP 

 

Fig. 73Fig. 8.3.3 average error of wave loads under different LP 
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From Fig. 8.3.3, it can be seen that with the increase of LP, the average difference increases 

gradually. It is well understood that the viscosity play insignificant role for non-breaking 

waves. Therefore, the FNPT or the Euler equation shall be able to accurately model the 

propagation of the wave away from the structures at the same accuracy level as the 

conventional RANS solver, providing sufficient mesh resolutions. Therefore, the relative 

difference shown in these Figures are primarily caused by the reflection from the boundary of 

the Euler domain. 

 

     74Fig. 8.3.4 CPU time ratio at different LP     F 

ig. 

 75Fig. 8.3.5 CPU time ratio for different solvers 

In addition to the computational accuracy, the CPU time consumed by the cases with different 

LP is also concerned and the corresponding results are shown in Fig. 8.3.4. As expected, the 

CPU time ratio between the extended Euler-viscous hybrid solver and the conventional 

RANS solver reduces considerably as with the increase of LP, attributing the fact that the 

FNPT solver is more efficient for modelling non-breaking waves.  Furthermore, the 
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computational efficiency of the extended Euler-viscous hybrid solver (ext E-v, Lp=10λ, 

LV=2λ) is also compared with those of other two solvers. These include (1) the potential-

viscous hybrid solver (p-v, LP=10λ) which directly couples the OceanWave3D with the 

conventional RANS solver with LP=10λ; and (2) the Euler-viscous hybrid solver (E-v, LV=2λ) 

with LP=0.  All solvers adopt sufficient mesh resolution towards a convergent solution. The 

CPU time ratios against the conventional RANS solver is shown in Fig. 8.3.5, which clearly 

demonstrates the superiority of the extended Euler-viscous hybrid solver over others, which 

only use either the domain-decomposition method or the function-decomposition method, in 

terms of computational robustness. 

8.4 Convergence study of the extended Euler-viscous hybrid solver 

for modelling rolling structures in waves 

In Chapter 7, the Euler-viscous hybrid solver has been used for modelling a moving structure 

in waves, where no incident waves have been considered. In this section, the incident wave is 

taken into account and consequently a larger computational domain will be employed by the 

extended Euler-viscous hybrid solver. For simplification, the structure is subjected free rolling 

motion excited by the incident waves. All criteria regarding the performance of the present 

solver, including the mesh resolution, the size of viscous domain, the length of transition zone, 

and the value of LP are discussed in terms of computational robustness.  

8.4.1 Physical model 

The sketch of the physical model is shown in Fig. 8.1.1. The total length of the wave basin is 

30m with the mean water depth (h) of 0.9m. In the numerical simulation, LP+LEH+LER =30m. 

The floating structure is located 20m away from the wave maker, which is installed in the left 

end of the computational domain, yielding LER =10m. The breath(B), height(l)  and length 

(L,normal to the sketch shown in Fig.8.1.1) of the floating structure are 0.3m, 0.1m and 0.9m , 

respectively. The initial draft is taken as d=0.05m. Regular incident waves are generated in 

the potential domain with wave length λ and wave height Hw. The floating structure can only 

be subjected to roll motion around the centre of gravity, which is located at the centre of the 

structure. The roll angle α of the floating structure is recorded and non-dimensionalised by kA, 

where k=2π/λ is the wave number and A is the wave amplitude. 

8.4.2 Convergence study 

The structure of the mesh used here is the same as that used in section 8.3. However, the 

convergence study are conducted to seek appropriate mesh sizes for modelling a free-rolling 

structure in waves, whose hydrodynamic feature may be different from those presented in 

Chapter 7 without considering incident waves.  
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Fig. 76Fig. 8.4.1 The time history of roll angle 

In the convergence study, the incident wave with wave length λ=2.22m (λ/h=2.46) and wave 

height Hw=0.032m (Hw/h=0.035) is used. Similarly, the convergence property against time 

step size is investigated firstly. For this purpose, Δt=T/500, Δt=T/1000, and Δt=T/2000 are 

used. Once again, the convergent results from the conventional RANS solver are regarded as 

a reference in the convergence test. The time history of roll angle α from the conventional 

RANS solver is shown in Fig. 8.4.1, for which the mesh resolution is specified by using 

nHC=15, nLC=200, and nBC=100. One can find that after t/T=28, the roll angle is periodic. 

Hence, in the convergence study, the relative average error of roll angle is used, defined as 

REM(1, 2) = ∑ [
Max(|α1

t −α2
t |)

Max(α1
max−α1

min ,α2
max−α2

min)
]

i

10
i=1 /10     (8.4.1) 

where Max(|α1
t − α2

t |) is the maximum difference of the roll angle between the results obtained 

using mesh case 1 and case 2 (represented by the subscripts 1 and 2), in one wave period at 

quasi-steady state, αmax and αmin are the peak and trough values of roll angle in the same wave 

period.  Following the code for engineering practices, 5% error is used as the critical value for 

evaluating the convergence. For the results shown in Fig. 8.4.1, REM(Δt=T/500, 

Δt=T/1000)=9.8% and  REM(Δt=T/1000, Δt=T/2000)=4.2%. One maybe agrees that time 

step Δt=T/1000 is sufficient for the conventional RANS simulation. Similar to the convergent 

tests presented previously, Δt=T/1000 is adopted for the extended Euler-viscous hybrid solver. 

Firstly, the convergence study of the number of divisions per wave height is conducted for the 

conventional RANS solver (nH), which is different from the definition in table 8.3.1, due to 

incident waves. Cases with nHC=10, nHC=15, and nHC=25 are simulated with fixed value of 

nBc and nLc, i.e. nBC=100 and nLC= 200. The comparison of roll angle in the cases with 

different nHC in one wave period at the quasi-steady state, i.e. 28-29T, is shown in Fig. 8.4.2 

(a), which demonstrates that nHC=15 is sufficient for the conventional RANS solver.  The 
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corresponding values of the relative errors are REM(nHC=15, nHC=25)=2% and 

REM(nHC=15, nHC=10)=10%. Alternatively, Cases with nHE=7, nHE=10, and nHE=15 are 

simulated by using the Euler solver with nBE=50 and nLE=100. The corresponding results are 

shown in Fig. 8.4.2(b). One may conclude that nHE=10 should be taken as the appropriate 

value. The corresponding REMs are REM(nHE=7,nHE=10)=7.5% and REM(nHE=10, 

nHE=15)=1.2%. 

 

(a) The conventional RANS solver 

 

(b) The Euler solver 

Fig. 77Fig. 8.4.2 The comparison of the roll (nHC and nHE) between the conventional RANS solver and 

the Euler solver 

Similar works have been done for the convergence properties against nL (number of division 

in horizontal in the region far away from the floating structure) and nB (number of division in 

horizontal in the refined area near the floating structure) for the conventional RANS solver 

and the Euler solver.  Some results are shown in Fig. 8.4.3 and Fig. 8.4.4.  For the 

conventional RANS solver, nLC=200 is sufficient if nBC=100 and nHC= 15 are applied  as 

demonstrated by Fig. 8.4.3(a)), where REM(nLC=100, nLC=200)=9.7% and REM(nLC=200, 
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nLC=300)=0.6%; nBC=100 is sufficient if nLC=200 and nHC= 15 are employed , as displayed 

by Fig. 8.4.4(a)), in which REM(nBC=100, nBC=150)=0.5% and REM(nBC=100, 

nBC=50)=8.6%. For the Euler solver, nLE=100 is sufficient if nBE=50 and nHE=10 are used, 

as shown in Fig. 8.4.3(b), where REM(nLE=50,nLE=100)=14.2% and 

REM(nHE=100,nHE=150)=1.4%; nBE=100 shall be used to get convergent results if nLE=100 

and nHE= 10 applied, as illustrated in Fig.8.4.4(b), in which REM(nBE=100,nBE=50)=0.4% 

and REM(nBE=50,nBE=25)=7.3%. 

 

(a) The conventional RANS solver 

 

(b) The Euler solver 

Fig. 78Fig. 8.4.3 The comparison of the roll (nLC and nLE) between the conventional RANS solver and 

the Euler solver 
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(a) The conventional RANS solver 

 

(b) The Euler solver 

Fig. 79Fig. 8.4.4 Time histories of the roll angles in the cases with different values of nBC and nBE for 

the conventional RANS solver and the Euler solver, respectively 

In summary, it is found that mesh resolution specified by nBC=100, nLC=200, and nHC=15 are 

sufficient for the conventional RANS solver to achieve convergent results; whereas the Euler 

solver requires coarser mesh resolution, which may be specified by nBE=50, nLE=100, and 

nHE=10. Once again, this confirms the necessity of the developing the hybrid modelling 

coupling the Euler solver with the complementary RANS solver. Similar to the investigation 

in Section 7.2, it is assumed that the same mesh resolution as the conventional RANS solver 

shall be used in the viscous domain of the hybrid solver and the same mesh resolution as the 

Euler solver shall be used in the Euler domain in order to achieve convergent results. This is 

confirmed by the results shown in Fig. 8.4.5, which compares the results from the 

conventional RANS solver and those from the extended Euler-viscous hybrid solver. For the 

latter, LP=4λ, LEH=6λ, LER=4.5λ, HE=2h, LV=2λ, HV=2h, and Ltr=0.5λ are used to specify the 

computational domain.  nBE=50, nLE=100, nHE=10, nBV=100, nLV=200, and nHV=15 are 
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used for the mesh generation. From Fig. 8.4.5, one can find that results in the quasi-steady 

state , i.e. after t/T=28, obtained by the conventional RANS solver agree well with the 

corresponding results from the extended Euler-viscous hybrid solver. Noticeable difference is 

observed at time t/T ranging from 12 to 18. It seems that the transient effects on the structure 

motion are damped slower in the modelling by the extended Euler-viscous hybrid solver. This 

may be due to the fact that the viscous effects are only considered in a small domain near the 

floating structure by the extended Euler-viscous hybrid solver. 

 

Fig. 80Fig. 8.4.5 The time histories of the roll angle obtained by the conventional RANS solver and the 

extended Euler-viscous hybrid solver 

8.4.3 Effects of the length of the viscous domain (LV) 

Table 16Table 8.4.1 The mesh for the study of effects of  length (LV) of the viscous domain 

                                     (a) The mesh for the conventional RANS solver 

Conventional RANS domain 

LC HC  nLC  nBC nHC 

14.5λ  2h 200 100 15 

(b) The mesh for the extended Euler-viscous hybrid solver 

In order to study the influence of LV used by the extended Euler-viscous hybrid solver in 

terms of computational robustness, cases with different LV ranging from 2λ to 4λ, are 

simulated. In these cases, the computational domain and mesh resolution are described in 

No

. 

Potential domain Euler domain Viscous domain 

LP LEH LER HE nLE nHE nBE LV HV  Ltr nLV nHV nBV 

1 4λ 6λ 4.5λ 2h 100 10 50 2λ 2h 0.5 λ 200 15 100 

2 4λ 6λ 4.5λ 2h 100 10 50 3λ 2h 0.5 λ 200 15 100 

3 4λ 6λ 4.5λ 2h 100 10 50 4λ 2h 0.5 λ 200 15 100 
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Table 8.4.1. The wave conditions are the same as that used in section 8.4. The same case is 

also simulated by the conventional RANS solver for comparison.  

Following Fig. 8.4.5, the roll angle over one wave period at quasi-steady state, i.e., from 28T 

to 29T, is used to evaluate the computational accuracy. Some results are shown in Fig. 8.4.6. 

It can be seen that the extended Euler-viscous hybrid solver seems not to be disturbed by the 

value of LV considered in the test. All results are slightly different from the corresponding 

results by the conventional RANS solver.  The relative Err(α) and the CPU time are examined 

and shown in Fig. 8.4.7, which suggests that with the increase of LV, the relative error 

decreases whereas the CPU time increases. One may agree that LV=2λ is suitable for the 

present solver, at which more than 70% CPU time can be saved  and  Err(α) is smaller than 5% 

compared to the conventional RANS solver.  

 

Fig. 81Fig. 8.4.6 The comparison of roll angle at different LV 

 

Fig. 82Fig. 8.4.7 Average error and CPU time ratio at different LV 
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8.4.4 Effects of the width of the viscous domain (HV) 

In addition to the length of the viscous domain (LV), the width of the viscous domain (HV) 

plays an important role. The corresponding effects are also examined. For this purpose, cases 

with HV=h, HV=1.5h, and HV=2h are taken into account by the extended Euler-viscous hybrid 

solver. All other conditions are the same. The configurations of the computational domain and 

the mesh resolutions in this test are listed in Table 8.4.2. 

The comparison of roll motion in the cases with different HV is shown in Fig. 8.4.8. Unlike 

the comparison shown in Chapter 7, for the cases with incident waves, the accuracy of the 

extended Euler-viscous hybrid solver is sensitive to the value of HV. Larger HV, is closer to the 

result from the present solver to that from the conventional RANS solver. For HV=2h, the 

relative Err(α)=4.45%, which may be quantified as acceptable. According to the limit 

investigation in this test, it is therefore recommended to use the same height of the viscous 

domain as that adopted by the conventional RANS solver. 

Table 17Table 8.4.2 The mesh for the study of effects of the width (HV) of the viscous domain 

                                     (a) The mesh resolution for the conventional RANS solver 

Conventional RANS domain 

LC HC  nLC  nBC nHC 

14.5λ  2h 200 100 15 

(b) The mesh for the extended Euler-viscous hybrid solver 

 

Fig. 83Fig. 8.4.8 The comparison of roll angle at different HV 

No

. 

Potential domain Euler domain Viscous domain 

LP LEH LER HE nLE nHE nBE LV HV  Ltr nLV nHV nBV 

1 4λ 6λ 4.5λ 2h 100 10 50 2λ h 0.5 λ 200 15 100 

2 4λ 6λ 4.5λ 2h 100 10 50 2λ 1.5h 0.5 λ 200 15 100 

3 4λ 6λ 4.5λ 2h 100 10 50 2λ 2h 0.5 λ 200 15 100 
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8.4.5 Effects of the length of the transition zone (Ltr) 

 

Fig. 84Fig. 8.4.9 The time histories of roll angle in the cases with different Ltr 

 

Fig. 85Fig. 8.4.10 Average error and CPU time ratio at different Ltr 

Table 18Table 8.4.3 The mesh for the study of effects of the length (Ltr) of transition zone 

                                     (a) The mesh for the conventional RANS solver 

Conventional RANS domain 

LC HC   LC  nBC nHC 

14.5λ  2h 200 100 15 

(b) The mesh for the extended Euler-viscous hybrid solver 

 

No

. 

Potential domain Euler domain Viscous domain 

LP LEH LER HE nLE nHE nBE LV HV  Ltr nLV nHV nBV 

1 4λ 6λ 4.5λ 2h 100 10 50 4λ 2h 0.5 λ 200 15 100 

2 4λ 6λ 4.5λ 2h 100 10 50 4λ 2h λ 200 15 100 

3 4λ 6λ 4.5λ 2h 100 10 50 4λ 2h 1.5 λ 200 15 100 
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In order to investigate the effects of the length of the transitional zone (Ltr), cases with 

Ltr=0.5λ, Ltr=λ, and Ltr=1.5λ are simulated by the extended Euler-viscous hybrid solver. 

Detailed case configuration is described in Table 8.4.3. All other conditions are the same as 

above. 

In these cases, the length LV and the weight HV of the viscous domain are 4λ and 2h, 

respectively. The time histories of the roll motion are compared in Fig. 8.4.9. It can be seen 

that the results by the extended Euler-viscous hybrid solver are not sensitive to the size of the 

transitional zone within the range considered in this test. All results are slightly different from 

the corresponding result from the conventional RANS solver. The relative error Err(α) are all 

lower than 5%, as shown in Fig. 8.4.10, together with the variation of the CPU time against  

Ltr. One may agree that Ltr=λ might be the optimised value for the case considered here. 

8.4.6 Effects of distance LP before reaching the inlet boundary of the Euler domain 

The effects of LP for the cases with a fixed structure are studied in section 8.3.3, from which 

one can find that LP considerably affect the computational accuracy and efficiency of the 

extended Euler-viscous hybrid solver. For the case with a free rolling structure, the reflection 

waves may be more significant and the radiation waves caused by the motion of the structures 

shall also taken into account.  Hence, the effect of LP on the robustness of the extended Euler-

viscous hybrid solver is investigated again for the case with freely rolling motion. For this 

purpose, different values of LP, i.e., LP=2λ, LP=4λ, and LP=6λ, are tested. All other parameters 

are the same as others in Section 8.4.3~8.4.5 of this chapter. The detailed configurations are 

described in Table 8.4.4. 

Table 19Table 8.4.4 The mesh for the study of effects of LP of the viscous domain 

                                     (a) The mesh for the conventional RANS solver 

Conventional RANS domain 

LC HC   LC  nBC nHC 

14.5λ  2h 200 100 15 

(b) The mesh for the extended Euler-viscous hybrid solver 

The corresponding comparison of the time histories of the roll angle in the cases with 

different LP is shown in Fig. 8.4.11, covering the same wave period as that given in previous 

Figures. It can be seen that the extended Euler-viscous hybrid results agree well with the 

No

. 

Potential domain Euler domain Viscous domain 

LP LEH LER HE nLE nHE nBE LV HV  Ltr nLV nHV nBV 

1 2λ 8λ 4.5λ 2h 100 10 50 2λ 2h λ 200 15 100 

2 4λ 6λ 4.5λ 2h 100 10 50 2λ 2h λ 200 15 100 

3 6λ 4λ 4.5λ 2h 100 10 50 2λ 2h λ 200 15 100 
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corresponding conventional RANS results. As expected, with the increase of LP, the average 

error Err(α) increases, as shown in Fig. 8.4.12. On the other hand, the consumed CPU time 

increases as LP decreases.  From Fig. 8.4.12, it is not difficult to conclude that LP=4λ is 

suitable for the extended Euler-viscous hybrid solver to achieve the results shown in Fig. 

8.4.11. It is important to note that if one wants to acquire results with longer durations, the 

reflections from the boundary of the Euler domain may become more significant. Thus 

shorter LP may be required. 

 

Fig. 86Fig. 8.4.11 The comparison of roll angle at different LP 

 

Fig. 87Fig. 8.4.12 Average error and CPU time ratio at different LP 

8.5 Validation of the extended Euler-viscous hybrid solver 

So far, the extended Euler-viscous hybrid solver is compared with the conventional RANS 

solver in the performance investigation, through which it is concluded Δt=T/1000, nBE=50, 

nLE=100, nHE=10, nBV=100, nLV=200, nHV=15, LV=2λ , HV=2h, Ltr=0.5λ and LP=4λ are 

appropriate for the former to achieve highest robustness against the latter for the case 
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considered.  It is admitted that the conclusion may be problem dependant. Nevertheless, such 

configurations are used by the extended Euler-viscous hybrid solver for modelling the cases 

under different wave conditions summarised in Table 8.5.1. Numerical results are compared 

with the experimental data obtained by Jung et al.(2006). For the comparison, the amplitude 

of the linear harmonics of the roll angle (ψ) is gain by FFT. Considering the fact that a 

considerable transient effects are observed before t=25T, the data used for the FFP covers 10 

continuous wave periods at the quasi-steady state. 

Table 20Table 8.5.1 Non-dimensional parameters of incident waves and the computational domain 

No. fB/fN λ/h Hw/h LP/λ LEH/λ LER/λ HE/h LV/λ HV/h Ltr/λ 

1 1.33 0.86 0.017 19.48052 6 12.98701 2 2 2 0.5 

2 1.16 1.11 0.032 14 6 10 2 2 2 0.5 

3 1.09 1.26 0.037 11.68142 6 8.849558 2 2 2 0.5 

4 1 1.5 0.018 8.814815 6 7.407407 2 2 2 0.5 

5 0.77 2.46 0.035 4 6 4.545455 2 2 2 0.5 

6 0.71 2.86 0.067 1.789883 6 3.891051 2 2 2 0.5 

7 0.62 3.66 0.069 0.303951 6 3.039514 2 2 2 0.5 

 

Fig. 88Fig. 8.5.1 The comparison of the first order (ψ) of roll angle for incident waves 

The comparison of ψ between the numerical and experimental data is shown in Fig. 8.5.1, in 

which the numerical results from both the extended Euler-viscous hybrid solver and the 

conventional RANS solver are included. It is clear that both solvers deliver satisfactory 

predictions for the roll RAOs within wide range of wave frequency. Nevertheless, the 

extended Euler-viscous hybrid solver demands less CPU time. This is confirmed by the 

comparison shown in Fig. 8.5.2, which suggests that the CPU ratio between the CPU 

consumed by the present solver against that by the conventional RANS solver is always lower 

than 50%. This means that the present hybrid model can save at least 50% CPU time 

compared with the conventional RANS solver.  It is also interested to observe that the CPU 



146 

 

ratio decreases as the wave frequency increases, up to 85% of the CPU time may be saved by 

the present solver within all cases considered.  

 

 Fig. 89Fig. 8.5.2 The comparison of CPU time ratio for different incident waves  

In this chapter, the demonstration of such systematic investigation is given. It is worthy 

noting that improvement of the computational efficiency by the extended Euler-viscous 

hybrid solver over the conventional RANS solver may be problem dependent. The conclusion 

may be applied to similar problems. A systematic investigation following this chapter may be 

required to achieve the highest computational robustness for modelling other wave-structure 

interaction problems. 

8.6 Summary 

In this chapter, Euler-viscous hybrid solvers are extended by using domain-decomposition 

method. The convergence study of the extended Euler-viscous hybrid solver with the static 

mesh and with the dynamic mesh is conducted for simulating wave-structure interactions in a 

real wave tank, respectively.  

For the extended Euler-viscous hybrid solver with the static mesh, the effects of distance 

before reaching the inlet boundary of the Euler domain are significant on computational 

robustness. Specifically, with the increase of the distance, the computational efficiency of the 

extended Euler-viscous hybrid solver increases significantly, comparing with the original 

Euler-viscous hybrid solver, the potential-viscous hybrid solver, and the conventional RANS 

solver.  

For the extended Euler-viscous hybrid solver with the dynamic mesh, wave interactions with 

the free rolling structure are simulated for the convergence study. The sufficient mesh 

resolution for the Euler domain and the viscous domain is found firstly. Then, the effects of 

the size of the viscous domain, the length of the transition zone, and the distance before 
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reaching the inlet boundary of the Euler domain are investigated on the computational 

robustness. Specifically, with the increase of the length of the viscous domain, the 

computational efficiency decreases, while the accuracy increases. The computational 

accuracy decreases significantly with slight decrease of the width of the viscous domain. For 

the length of the transition zone, a convenient value exists for high accuracy and efficiency. 

The increase of distance before reaching the inlet boundary of Euler domain leads to the 

decrease of the CPU time and the increase of the computational efficiency.  

From the convergence study, the suitable numerical configuration can be obtained by a series 

of numerical tests. The validation of the extended Euler-viscous hybrid solver is conducted, 

by comparing with experiment results and the conventional RANS results. It is found that the 

extended Euler-viscous hybrid solver owes the same accuracy as the conventional RANS 

solver. Meanwhile, the computational efficiency is increased significantly. 
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Chapter 9 Investigation of wave interaction with surface-

piercing moving structure subjected to complex seabed 

topography 

9.1 Introduction 

As indicated above, the wave interaction with moving structures in the cases with non-flat 

seabed is a practically important problem. Many researchers have studied the seabed effect on 

the water waves and their interaction witn structures.  The linear or weakly non-linear theories 

(e.g. Liu, Molin, and Kimmoun, 2011; Kim, 2013; Jiang, Cui, and Gao, 2016) are widely used 

in the design practices for normal and moderate sea state when the motion of the structure is 

not significant. The fully non-linear potential models have also been developed and applied to 

investigate the wave-structure interaction with seabed effects. (Yan, and Ma, 2007; Ma, and 

Yan, 2009) These theories are mainly based on the potential theory, in which the fluid is 

assumed to be incompressible, inviscid and irrotational. However, it has been confirmed by 

many researchers (e.g., Carrica, Wilson, and Noack, 2007) that the viscous effects, turbulence 

and vortex may be significant, in particular for rolling structures with sharp corners.  For such 

cases, the potential theory is not valid (Wilson, Carrica, and Stern, 2006; Seah, and Yeung, 

2003).  

In Chapter 5, the seabed effects on the interaction between wave and fixed surface-piercing 

floating structures are numerically simulated and discussed by using the Euler-viscous hybrid 

solver, in which the viscosity and turbulence are taken into account in the area near the 

floating structure. In that study, the seabed geometry is modified by a bottom-mounted 

submerged structure.  It was found that the wave loads on the fixed structure can be affected 

considerably by the submerged structure, indicating a significant seabed effect. Such 

investigation is extended in this chapter to look at the problems with freely floating structures.  

Similar to the previous study, one only considers the structure subjected to motion of one 

degree of freedom (DOF), i.e. free rolling. The extended Euler-viscous hybrid solver is 

applied.  To the best of the author’s knowledge, such research has not been presented in the 

public domain. 

In order to model the wave induced roll motion subjected to complex topography, some 

specific numerical issues may be worthy of noting. Firstly, the computational domain must be 

sufficiently long. This does not only to ensure an accurate modelling of nonlinear wave 

generation and propagation, but also, perhaps more importantly, this can ensure the re-

reflection of the reflection/radiation waves, which are caused by the structure and the seabed, 

from the wave inlet boundary, where the wave is generated, influence the motion of the 

floating structure. Secondly, the mesh near the floating structure and the non-flat seabed must 
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be sufficient fine in order to reveal the complex flow feature, e.g. the turbulence and the 

vortex shedding. 

9.2 Physical model 

Once again, the hydrodynamic experiments by Jung et al (2006) are used in this chapter. The 

physical model used in this chapter is similar to that described in section 8.9. The only 

difference is that a submerged structure is fixed to the seabed and located beneath the floating 

structure, as shown in the Fig. 9.2.1. Similar to the physical model used in Chapter 5, the 

submerged structure is a trapezoid with a top width B2 and a bottom width B3. It is located d2 

below the mean water surface; the floating structure has a breath of B, depth of l and initial 

draft of d.  In this Chapter, B=0.2m, l=0.064m height, the length of the structure L=0.9m 

(normal to the paper) and d=0.032m are used. The length of the wave tank is 30 m and the 

mean water depth h is 0.9m. The details can be found from Jung (2006). The distance 

between the wave maker and the centre of the gravity of the floating structure, which is the 

centre of the floating structure, is 20m.  

 

(a) Sketch of the physical model 

 

(b) Interaction of moving structure with waves over complex seabed topography 

Fig. 90Fig. 9.2.1 The physical model 

9.3 The numerical methods 

The extended Euler-viscous hybrid solver described in section 8.1 is used here. The 

computational domain and the mesh configuration are introduced below. Furthermore, the 

structure 

B2 

B3 

h 

structure 
l 

d 

B 

d2 
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numerical model is validated by using the experimental data and its computational efficiency 

is discussed. 

9.3.1 The computational domain and mesh 

           21Table 9.3.1 The mesh for conventional RANS solver and Euler-viscous hybrid solver 

(a) The mesh for the conventional RANS solver 

Conventional RANS domain 

LC HC  nLC  nBC nHC 

LT  2h 200 100 15 

(b) The mesh for the extended Euler-viscous hybrid solver 

 

   (a) The viscous domain and mesh                         (b) The Euler domain and mesh 

                                     

(c) The conventional RANS domain and mesh 

Fig. 91Fig. 9.3.1 The computational mesh used in the simulation 

The computational domain adopted here is similar to that described in section 8.2, i.e. 

LP+LEH=20m, LER=10m. According to the performance investigation presented in the 

previous chapter, LP=4λ is taken here. Due to the involvement of the submerged structure, the 

mesh near the submerged structure is also refined in order to well capture the flow features, 

including the turbulence and vortex. The computational mesh is illustrated in Fig. 9.3.1. The 

parameters related with the mesh resolution are described in the Table 9.3.1. As usual, the 

corresponding simulation by using the conventional RANS solver is also carried out for 

comparison. 

Potential domain Euler domain Viscous domain 

LP LEH HE nLE nHE nBE LV HV  Ltr nLV nHV nBV 

4λ LT- LP-LER 2h 100 10 50 3λ 2h 0.5 λ 200 15 100 
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9.3.2 The validation of the numerical methods 

 

Fig. 92Fig. 9.3.2 The time histories of the roll angle in the cases with different d2 using different 

numerical solvers 

In the first case considered here, the wave length is taken as λ=2.22m (λ/d=44). In order to 

systematically investigate the seabed effects, the different value of d2 ranging from 3d to 7d 

are considered.  For simplification, the top width B2 and the bottom width B3 and specified as 

B and 2B, respectively. The time histories of the roll motion in the cases with different d2 

using different numerical solvers are compared. Some results are shown in Fig. 9.3.2 during 

one wave period from 31T to 32T, which has been quantified as the quasi-steady state. 

 

Fig. 93Fig. 9.3.3 CPU time ratio in the cases with different d2 

From Fig. 9.3.2, it can be seen that the roll angles predicted by the extended Euler-viscous 

hybrid solver are generally close to those from the conventional RANS solver for all d2 

considered in this study. One may agree that the extended Euler-viscous hybrid solver has a 

similar accuracy as the conventional RANS solver, providing a sufficiently fine mesh 
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resolution. The comparison of the CPU time ratio between the CPU consumed by the 

extended Euler-viscous hybrid solver and that by the conventional RANS solver is shown in 

Fig. 9.3.3. It can be seen that more than 60% CPU time can be saved by the extended Euler-

viscous hybrid solver, compared to the conventional RANS solver, for all the cases 

considered in this investigation. 

9.4 Systematic Investigation 

In the previous section, only one wave condition is considered for validation purpose. 

Different wave conditions are taken into account in the systematic investigation. The incident 

waves and the domain sizes are summarised in Table 9.4.1. The effects of d2 and B2 on roll 

motion are examined. The configuration of the computational mesh remains the same as those 

in section 9.3.1. 

Table 22Table 9.4.1 The incident waves and domain sizes 

No. fB/fN λ/h Hw/h LP/λ LEH/λ LER/λ HE/h LV/λ HV/h Ltr/λ 

1 1.33 0.86 0.017 19.48052 6 12.98701 2 2 2 0.5 

2 1.16 1.11 0.032 14 6 10 2 2 2 0.5 

4 1 1.5 0.018 8.814815 6 7.407407 2 2 2 0.5 

5 0.77 2.44 0.036 3.090909 6 4.545455 2 2 2 0.5 

6 0.71 2.86 0.067 1.789883 6 3.891051 2 2 2 0.5 

 

9.4.1 Effects of d2 on wave-excited roll motions 

 

Fig. 94Fig. 9.4.1 The time histories of the roll angle of a free rolling structure subjected to a submerged 

structure with different d2 

Following the work done for the validation, different d2 ranging from 3d to 7d, yielding a 

range of d2/h from 0.18 to 0.43, are used for all wave conditions. The time histories of roll 

motion α in the cases with  different d2 and the flat seabed (i.e. d2/h = 1) are compared and 

illustrated in Fig. 9.4.1 for the data over one wave period from 52T to 53T, which is at the 
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quasi-steady state. In this case, the wave length λ is 1.35m (i.e. λ/h=1.5). Clearly, the 

submerged structure influences the motion the floating structure, in particular when d2 is 

small, e.g. d2/h=0.18. As d2 increases to be greater than 0.31, the roll motion seems not to be 

significantly affected by the submerged structure. 

 

Fig. 95Fig. 9.4.2 First order harmonics of roll motion ψ at different wave condition and different d2 

In order to study the seabed effects on the roll motion for different wave conditions, the linear 

harmonics, φ, equivalent to the RAO of roll, is duplicated by the FFT using the time history 

of roll motion in 10 wave periods at the quasi-steady state. The linear roll harmonics φ in the 

cases with different d2 and wave conditions are compared and illustrated in Fig. 9.4.2. As 

expected, as the wave length decreases, i.e. fB increases, the seabed effects become more 

insignificant. Especially, when fB is larger than fN, i.e. the natural frequency, the submerged 

structure seems not disturb the roll amplitude. Overall, larger wave length (λ) and/or smaller 

value of d2 lead to more significant seabed on the roll motion of the floating structure.  

 

Fig. 96Fig. 9.4.3 The relationship between ψd/ψf and λ/d2 in the cases with different d2 

To quantify the significance of the seabed effects on the roll motion of the floating structure, 

the ratio of ψ in the case with the submerged structure, referred to as ψd, against the 
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corresponding value in the case without the submerged structure, i.e. ψf , are defined. The 

variation of ψd/ψf in the cases with different λ/d2 is shown in Fig. 9.4.3. One may find that 

close to the resonance condition, i.e. fB/fN=1 and fB/fN=1.161, the submerged structure trends 

to suppress the roll motion.  If the wave frequency is away from the natural frequency, e.g. 

fB/fN =1.328, 0.775 and 0.714, the submerged structure amplifies the roll motion and the 

amplification becomes more significant as λ/d2 increases. 

9.4.2 Effects of the top width (B2) 

The effect of the top width (B2) of the submerged structure on the roll motion is investigated. 

Submerged structures with B2=2B, B2=B, and B2=0.5B are used. For all structures d2=0.18h 

and the incident wave with λ/h=1.5 (λ=1.35m) are employed. The time histories of the roll 

angle during t=52T and 53T at the quasi-steady state are shown in Fig. 9.4.4 for the cases 

with or without submerged structures. It is observed that the submerged structure not only 

influence the amplitude but also influence the phase of the roll motion. It is also noted that 

different B2 leads to significant different roll motions.  

 

Fig. 97Fig. 9.4.4 The time histories of the roll angle of a free rolling structure subjected to a submerged 

structures with different B2 

The variations of ψ at different B2 and different wave conditions are shown in Fig. 9.4.5. It is 

clear that, under different incident waves, the effects of B2 behave differently. Similar to the 

results shown in Fig. 9.4.2, the submerged structure influence the motion of the structure 

insignificantly for fB/fN >1.0 (shorter wave), but is significant if the wave length increases, i.e. 

fB/fN<=1.0 (λ/h>=1.5). More importantly, different values of B2 lead to considerably different 

motion for fB/fN<=1.0.  The variation of ψd/ψf against λ/d2·B2/B are illustrated in Fig. 9.4.6, 

from which a similar phenomenon to that in Fig. 9.4.3 is observed. 
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. 98Fig. 9.4.5 The effects of B2 on 1st order roll amplitude under different incident waves at different B2 

 

Fig. 99Fig. 9.4.6 The relationship between φd/φf and λ/d2·B2/B 

9.5 Summary 

In this chapter, wave interactions with the floating structure subjected to complex seabed 

topography are simulated by the extended Euler-viscous hybrid solver. The effects of the 

water depth and top width of a bottom-mounted submerged structure are investigated. It is 

found that larger wave length (λ) and/or smaller value of d2 lead to more significant seabed on 

the roll motion of the floating structure. As wave frequency is smaller than the natural 

frequency, large top width of the submerged structure leads to the amplified roll angle. On the 

resonance condition, the submerged structure can suppress the roll angle. 
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Chapter 10 Conclusions and recommendations 

In this thesis, function-decomposition Euler-viscous hybrid models and corresponding 

extended models are developed for wave-structure interactions, based on OpenFOAM. By 

decomposing both the velocity and the pressure into the Euler part and the viscous part, 

complementary RANS equations can be proposed from conventional RANS equations. 

Corresponding complementary turbulence models can also be derived by function-

decomposition method. Finally, the Euler-viscous hybrid solver is extended by coupling 

function-decomposition method and domain-decomposition method together. Some 

numerical techniques are used or developed for hybrid models. Specifically, new boundary 

conditions in the viscous domain are proposed for adapting to the Euler domain. An 

interpolation algorithm is used for data mapping from the Euler domain to the viscous domain. 

A relaxation scheme is developed for damping viscous effects and keeping free surface 

consistent in the transition zone of viscous domain. For the Euler-viscous hybrid model with 

dynamic mesh, wave loads acting on the structure are transited from the viscous domain to 

the Euler domain for keeping the same motion of structures in two domains.  

Hybrid solvers are validated by experiments and conventional RANS solvers. It is shown that 

the same computational accuracy can be obtained by hybrid solvers, comparing to 

conventional RANS solvers. Besides, hybrid solvers own high computational efficiency. For 

hybrid models, computational accuracy and efficiency are affected by many aspects including 

the size of the viscous domain, the length of the transition zone, mesh resolution, and distance 

before reaching the inlet boundary of the Euler domain.  

Hybrid solvers can be used in complex computational domains as well. Effects of complex 

topography on wave-structure interactions are studied based on hybrid solvers. Influence of a 

submerged bottom-mounted structure is discussed. 

10.1 Numerical techniques 

Some numerical techniques are used for coupling the Euler solver and complementary RANS 

solver together. In order to map the data from the Euler domain into the viscous domain, an 

interpolation algorithm is used for data mapping between mesh with different resolution. By 

the algorithm, the target value in viscous domain can be obtained by interpolation of source 

values surrounding the target location in the Euler domain. By numerical tests on different 

mesh resolution in the Euler domain and the viscous domain, it is indicated that the errors 

induced by the interpolation algorithm are small. 
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New boundary conditions are proposed for coupling the Euler solver and the complementary 

RANS solver on the boundary of the floating structure. By the new boundary conditions in 

the viscous domain, the total values of the velocity and the pressure on the floating structure 

can be equal to those for the conventional RANS solver.  

For coupling the Euler solver and the complementary RANS solver, the viscous effects 

should be cancelled at two side boundaries far from the floating structure. Besides, free 

surface should be consistent in the Euler domain and the viscous domain. Hence, a transition 

zone is used for damping the viscous velocity that is zero at two side boundaries of viscous 

domain. Similarly, volume fraction in two side boundaries of the viscous domain is kept the 

same as that in the Euler domain. The variation of volume fraction in transition zone is also 

smooth by a smooth function. By the comparison of the wave elevation and the velocity near 

the floating structure, it shows that the numerical technique for relaxation is useful. 

To guarantee motions of floating structures the same in both the Euler domain and the viscous 

domain, a new computing process is designed. In the computing process, the Euler model is 

solved firstly. However, the mesh in the Euler domain is not updated. Then, after 

complementary RANS equations are solved and mesh in viscous domain is updated, total 

forces acting on the structure in the viscous domain are transited on the structure in the Euler 

domain, by which motions of the structure in the Euler domain is determined. The transiting 

of total forces can be regarded as a “two-way” treatment from viscous solution to Euler 

solution.   

10.2 Computational robustness of hybrid solvers 

For study of computational robustness of Euler-viscous hybrid solvers, some cases are 

simulated for wave-structure interactions. Effects of the length of the viscous domain, the 

width of the viscous domain, the length of the transition zone, and mesh resolution are 

investigated. It is indicated that the length of viscous domain affects computational accuracy 

and efficiency remarkably. Specifically, with the increase of the length of the viscous domain, 

computational efficiency is reduced and computational accuracy goes up. As the width of the 

viscous domain goes down, only a little CPU time can be saved with sharp drop of 

computational accuracy. The length of transition zone has only small effects on computational 

efficiency. However, high computational accuracy can only be achieved by suitable length of 

the transition zone. Different mesh resolution in the Euler and the viscous domain leads to 

discrepancy of numerical results between the Euler-viscous hybrid solver and the 

conventional RANS solver. However, the difference of mesh resolution is the main factor that 

the Euler-viscous hybrid solver is more efficient than the conventional RANS solver. As the 

Euler-viscous hybrid solver is extended by domain-decomposition method, the distance 
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before reaching the inlet boundary of the Euler domain also affects computational accuracy 

and efficiency significantly. With the increase of the distance, the computational accuracy 

goes down with the enhancing of computational efficiency. 

10.3 Application to wave interactions with a floating structure 

subjected to complex seabed topography 

Hybrid solvers are applied to wave interactions with a floating structure subjected to complex 

seabed topography. On the condition, a computational domain is used for a submerged 

bottom-mounted structure distributed at the seabed. By the comparison of numerical results 

between hybrid solvers and conventional RANS solvers, hybrid solvers can be used in 

complex computational domain. Besides, it is found that the submerged bottom-mounted 

structure can affect wave-structure interactions remarkably. 

10.4 Contributions 

There are two originalities in the research including: 

1 New function-decomposition hybrid methods are developed for surface-piercing wave-

structure interactions. 

2 Multi-model methods including potential, Euler, and viscous models are developed by 

function-decomposition method and domain-decomposition method together. 

The advantage of the numerical model is more efficient comparing with the conventional 

RANS solver. Specifically, by the Euler-viscous hybrid model, the viscous effects are just 

considered in the domain close to the floating structure. Outside the viscous domain, simple 

mathematical model is used for improving the computational efficiency. Furthermore, by the 

new function-decomposition model that considering the floating structures in both Euler and 

viscous domains, the reflection waves can be considered in the Euler domain as well, which 

results in small viscous domain. Besides the new function-decomposition method, by 

coupling the domain-decomposition method together, the wave propagation can be simulated 

by potential model, which reduces the CPU time significantly. Finally, comparing with the 

original RANS solver, the computational efficiency of hybrid solvers can be increased 

significantly with the same computational precision, which is validated by several cases. 

10.5 Recommendations 

Although some hybrid solvers are developed for surface-piercing wave-structure interactions, 

more work for improvement of hybrid solvers is recommended below: 

a) At the current stage, the hybrid solvers can only run in a series mode. In the future, the 

hybrid solvers will be improved to run in parallel mode. The Euler solver, the viscous 
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solver and the potential solver can run in different processes separately so that 

computational efficiency can be improved significantly. 

b) At the current stage, only two dimensional cases are simulated. In the future, three 

dimensional cases should be simulated by hybrid solvers. 

c) The interpolation algorithm can be improved in the future. By using high order 

interpolation algorithm, numerical errors induced by the difference of mesh resolution can 

be reduced. 

d) Many potential models can be hybrid with Euler-viscous hybrid solvers by domain-

decomposition method. In the future, more models will be added in the hybrid solvers for 

solving more kinds of cases. 

e) In the research, only regular waves are considered. In the future, irregular waves and 

extreme waves should be taken into account in the simulations by hybrid methods. 
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