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ABSTRACT 12 

The shear behavior of fiber reinforced polymer strengthened reinforce concrete (FRP 13 

strengthened RC) has been the focus of extensive research studies. However, the mechanism of 14 

this complex phenomenon has not been fully clarified. Recent analytical models which were 15 

developed for predicting the shear capacity of FRP strengthened RC girders were based on test 16 

results of simply supported beam specimens with various shear span-to-depth ratios. In such 17 

tests no region of the specimen is subjected to uniform stress conditions, Therefore, 18 

the results of such tests cannot predict the true pure shear behavior due to non-uniformity of 19 

stresses, the presence of flexural and other non-shear related effects such as a/d ratio that 20 

cannot be filtered out. Therefore, proper design of shear strengthening using FRP requires testing 21 

of elements that are subjected to pure shear case primary before adding other governing effects.  22 

This allows a careful investigation and full understanding of the behavior at the element level. In 23 

order to accomplish this task, panel testing of representative RC specimens strengthened with 24 

FRP sheets were needed. This paper reports the testing of 10 FRP strengthened RC panels 25 

subjected to pure shear stress field. The tests were carried out to evaluate the effects of three 26 
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variables: FRP stiffness, FRP wrapping scheme, and transverse steel reinforcement ratio. The 27 

test results showed that these three variables greatly affected the shear behavior due to various 28 

types of failure modes associated with FRP strengthening. In addition, it was observed that the 29 

magnitude of increased shear capacity associated with the application of FRP sheets depends not 30 

only upon the stiffness of FRP, but also on the stiffness of internal shear reinforcement. With the 31 

increase of internal steel shear reinforcement, the effectiveness of shear gain due to externally 32 

bonded FRP decreases. 33 

Keywords:  Shear behavior; FRP strengthened RC members; Failure modes; Wrapping Scheme 34 

 35 

INTRODUCTION 36 

As a response to corrosion problems in reinforcing steel, and to increase the efficiency of 37 

strengthening systems in terms of time and ease of application, FRP composites have been 38 

increasingly used in rehabilitation and strengthening of RC structures [1]. The complex behavior 39 

of FRP-strengthened RC structures with predominant shear behavior has been previously studied 40 

through extensive experimental and analytical investigations [2-4]. Research related to the 41 

flexural behavior of FRP-strengthened elements has reached an advanced stage, and well 42 

established analytical models are available for analyzing and designing FRP-strengthened beams 43 

and columns under flexural and axial-confinement actions [1, 5]. However, the experimental and 44 

analytical research related to FRP strengthened RC under shear load are limited and has not been 45 

fully developed [6-10] 46 

To predict the behavior of FRP-strengthened RC elements in shear, the truss model 47 

approach is commonly utilized by researchers [8, 11-12]. In the truss model analogy, constitutive 48 

laws of each component, namely concrete, steel, and FRP external reinforcement are crucial for 49 
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acceptable predictions. The results presented in this paper are part of a research work which 50 

aimed at developing a modified softening membrane model (SMM) for FRP-strengthened RC 51 

elements subjected to shear stress field. The SMM is based on a truss model and has been 52 

developed and was used to predict the entire shear stress-strain curve of the RC element under in-53 

plane shear stress field [13]. The materials laws utilized is SMM was a work carried out by 54 

Belarbi et al. [14] and are widely accepted and used in several versions of the Softened truss 55 

models [13,15]. While adding external reinforcement such as FRP sheets, the behavior of 56 

elements such as concrete, steel and FRP are typically altered due to several effects such as the 57 

crack pattern, softened concrete struts, and Poison’s ratio.  The smeared stress-strain behavior of 58 

the constituents of strengthened member including concrete and reinforcing steel will be 59 

fundamentally different than their corresponding values for un-strengthened specimens. 60 

Consequently, different failure modes exist, and in turn affects the shear strength. In addition to 61 

the failure modes related to concrete in RC members such as diagonal tension failure in the 62 

web, shear compression failure in compression zone and flexure failure , FRP 63 

debonding and FRP rupture are common failure modes in FRP strengthened R C 64 

members [4, 11]. The problem is further complicated due to the presence of several additional 65 

parameters that might influence the behavior; parameters such as the properties of the FRP 66 

material, the angle of fiber direction, the characteristics of the fiber-resin interface and FRP-67 

concrete interface, the presence of mechanical anchors, and the use of FRP strips as opposed to 68 

continuous sheets. These additional parameters modify the crack patterns, failure modes, and in 69 

turn influence the constitutive behavior of concrete [6,8,16]. Recent analytical models that were 70 

developed for predicting the shear capacity of FRP-strengthened RC beams are based on test 71 

results of simply supported beam specimens with various shear span-to-depth ratios. Results of 72 
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such tests cannot represent the true pure shear behavior due to the presence of flexural and other 73 

non-shear related effects that cannot be filtered out. As a result, a rational shear design cannot be 74 

accurately developed. An efficient method to evaluate the overall shear response of a member is 75 

to identify the characteristic behavior and the contribution of each element and material 76 

constituting the structure [17]. Reinforced concrete structures, such as shells and nuclear 77 

containment vessels, resist applied loads primarily through in-plane stresses. Each structure can 78 

be characterized as an assembly of elements, each subjected to two in-plane normal stresses and 79 

one in-plane shear stress [18]. To perform a rational analysis and thoroughly understand the 80 

behavior of FRP-strengthened RC structures, elements (panels) are isolated from the structure. 81 

Once a rational model is developed to predict the shear behavior in element level, the model can 82 

then be incorporated into a finite element program to predict the behavior of the whole structure. 83 

The first step in the research was to experimentally investigate the shear constitutive behavior of 84 

FRP-strengthened RC elements subjected to pure shear. To evaluate such behavior, a series of 85 

full scale FRP-strengthened RC panels were constructed and tested using the Universal Panel 86 

Tester housed at the University of Houston [17]. Pure shear loading condition was simulated 87 

through proportionally applied biaxial tension-compression load. The test results of 10 elements 88 

(panels) subjected to pure shear loading are reported in this paper.  The second step of the 89 

research was to develop an analytical model to predict the behavior of FRP-strengthened RC 90 

membrane elements subjected to pure shear. This new model, so-called the Softened Membrane 91 

Model for FRP-strengthened RC members (SMM-FRP), is described elsewhere [16,19].  92 

The shear behavior of FRP-strengthened RC members is influenced by various factors. This 93 

study focuses on parameters that have been recognized by other researchers to have the most 94 
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influence on the behavior [6,8,20]. These parameters are (1) FRP reinforcement ratio (FRP 95 

stiffness), (2) wrapping scheme, and (3) transverse steel reinforcement ratio.  96 

FRP Sheet Stiffness 97 

FRP sheet stiffness (𝐸𝑓𝑡𝑓)affects the contribution of FRP reinforcement to the overall 98 

shear strength of FRP strengthened RC members.  Previous research studies have indicated that 99 

there exists a limit with respect to axial rigidity of the applied materials beyond which no 100 

increase in shear capacity is expected [20]. When the thickness of the FRP sheets applied to RC 101 

beam increases, the ultimate shear strength gain is limited by premature debonding from the 102 

concrete substrate [21]. Also, the disproportionate strength gain when the FRP thickness (FRP 103 

stiffness) increases is due to the fact that the ultimate failure is primarily governed by the 104 

concrete cracking, splitting and loss of aggregate interlock [4]. Furthermore, as the FRP axial 105 

stiffness increases, the effective strains in the sheets decrease [6], therefore, the FRP materials 106 

will not reach their expected capacity before failure. In this case, the failure mode of the member 107 

will be either concrete crushing or FRP debonding instead of FRP rupture.  108 

Design guidelines such as ACI 440.2R-08 [1], CAN/CSA S806-12 [22] and fib-TG9.3 Bulletin 109 

14 [23] fail to incorporate such behavior for strengthened beams when the thickness of FRP 110 

sheets (and hence the stiffness) is high. These design guidelines are based on Triantafillou’s [24] 111 

statement that contribution to shear strength will increase with low values of axial stiffness. 112 

Therefore, only when FRP sheets with low thickness is applied, the current design guidelines are 113 

satisfactory [2]. 114 

Wrapping Scheme 115 
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The wrapping scheme affects the confinement due to the FRP sheets, and the potential for 116 

debonding. Common wrapping schemes in shear strengthening are  fully wrap, side bond, U-117 

Wrap, and  U-wrap with FRP anchor.  118 

The FRP anchor provides an effective way of anchoring the FRP composite to the RC substrate. 119 

There have been several studies regarding the design and implementation of FRP anchors [25- 120 

28]. The main parameters considered in designing the FRP anchors include the anchor diameter, 121 

number of anchors needed and anchor length. The FRP anchor used in this research had a 122 

diameter of 12.7 mm and a length of 610 mm as shown in Fig. 3. A contact length of 216 mm 123 

was used to cover the whole width of the FRP sheets with 6.5 mm extra on both sides, which 124 

satisfies the recommended length suggested by Kobayashi et al. [29]. 125 

Transverse Steel Reinforcement Ratio 126 

Previous studies have revealed that the magnitude of increased shear capacity associated 127 

with the application of FRP materials depend not only upon the type of FRP that is being used, 128 

but also on the amount of internal shear reinforcement [8,21,30]. Researchers have indicated that 129 

the contribution of FRP in shear gain reduces when the beam is heavily reinforced in shear. This 130 

is because the maximum shear contributions of steel stirrups and FRP material may not be 131 

reached simultaneously. Also, with the increase of steel shear reinforcement, the measured 132 

effective strain reduces [6].   133 

EXPERIMENTAL PROGRAM 134 

 In order to evaluate the shear behavior of FRP-strengthened RC members and to 135 

investigate the main factors that influence the behavior of such members, full-scale tests of 8 136 

FRP-strengthened RC panels and 2 un-strengthened RC control panels were conducted.  137 
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The test panels were 1397×1397×178 mm (55×55×7 inches) in size, as shown in Fig. 1. The 138 

longitudinal and transverse steel reinforcements were arranged at a 45 degree angle with respect 139 

to the principal directions of the applied loads (1-2 coordinates) along l and t directions and the 140 

external FRP reinforcement was applied along transverse (t) direction. The steel reinforcement 141 

was grade 60 deformed bars with cross-sectional areas of 71 mm
2 

(#3 rebar) and 129 mm
2 

(#4 142 

rebar) spaced at 188 mm in both longitudinal and transverse directions. The FRP sheets utilized 143 

in the experimental program which are typically used for shear strengthening in practice, consist 144 

of unidirectional carbon fibers attached on the two opposite surfaces of the panel specimens. The 145 

overall FRP sheet layout of the specimens is shown in Fig. 2a. The FRP strips had a width of 144 146 

mm, and 188 mm center to center distance. The nominal strength of concrete was 52 MPa. The 147 

rebar was welded onto a pre-embedded connector inserts that were connected to the loading 148 

actuators by high-strength bolts. The steel reinforcement ratios and FRP sheet thicknesses were 149 

chosen carefully in order to study the effect of FRP stiffness on the shear behavior and also the 150 

effect of the ratio of FRP reinforcement to steel reinforcement. Three common wrapping 151 

schemes in shear strengthening are adopted, namely, 1) fully wrap, (2) side bond, and (3) U-wrap 152 

with FRP anchor.  The fully wrap is to ensure that debonding is eliminated and the FRP will 153 

reach its ultimate strength, while the side bonding scheme is to evaluate the behavior up to FRP 154 

debonding occurs. The U-wrap with FRP anchor is to simulate the real case of shear 155 

strengthening with FRP in T-beams, where fully wrap method is infeasible due to the flanges. 156 

Fully wrap and side bonding wrapping scheme of the panels are shown in Fig. 2b and Fig.2c, 157 

respectively. Details of the U-wrap with FRP anchor are given in Fig. 3. 158 

The test matrix in the experimental program is shown in Table 1. The specimens are identified 159 

using transverse rebar size (No.3 and 4), FRP thickness [0.6, 1 mm, and 2 mm (0.025, 0.040 and 160 
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0.080 inch)] and wrapping schemes, namely, Fully Wrap (FW) (Fig. 2b), Side Bond (SB) (Fig. 161 

2c), and U-wrap with FRP Anchor (FA) (Fig. 3). As an example, P4-025-SB stands for the 162 

specimen with #4 transverse rebar, 0.6 mm (0.025 in.) thick FRP sheets and side bond (SB) 163 

wrapping scheme. REF-P3 and REF-P4, stand for RC reference specimens with No. 3 and 4 164 

transverse rebar, respectively. 165 

Standard material tests were conducted to obtain the material properties. Type III cement was 166 

used for concrete casting. Standard 152 mm × 305 mm (6 x 12 inch) cylinders were tested to 167 

obtain the compressive strength of concrete 
'

cf  as per ASTM C39 [31]. The FRP sheets were 168 

made of unidirectional carbon fibers with the material properties determined from coupon tests 169 

per ASTM D3039 [32]. The wet lay-up system was used for installation of FRP sheets. The 170 

specimen was ground, sandblasted, and power-washed to provide the proper concrete surface 171 

conditions that would develop the necessary bond strength between the concrete and FRP sheets. 172 

Putty and primer were first applied on the surface; the sheets were then impregnated with epoxy 173 

resin and applied in-situ. Specimens were then cured for a minimum of 72 hours before testing. . 174 

Along with preparing each specimen, a concrete beam was cast and FRP was applied to test the 175 

pull-off strength of the FRP-concrete interface. To have a quality control of the bond strength of 176 

the FRP-concrete interface, the standard pull-off tests were carried out by using the Dyna Z16 177 

pull-off tester. The test follows the requirements of ASTM D7522 [33]. Before the pull-off test, 178 

several 2 in. diameter cores were cut by a core drill, then the 2 in. diameter aluminum disks were 179 

attached onto the FRP sheets by high strength epoxy, with manufacture tested strength of 1500 180 

psi. When testing, the disk was attached to the pull-off tester and the pull-off load was applied by 181 

the manual crank. The ultimate load was captured by the load indicator and used to calculate the 182 

pull-off strength. The pull-off strength, p  shall be at least 1.4 MPa [1]. Details of the respective 183 
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material properties of steel and FRP are presented in Table 1, where 𝐸𝑙𝑠 and 𝐸𝑡𝑠are the steel 184 

modulus of Elasticity in l and t directions, respectively; and fE  are the modulus of elasticity of 185 

steel and FRP, respectively; 𝜌𝑡 and 𝜌𝑙 are the steel reinforcement ratios in l and t directions, 186 

respectively; and yf is the yielding strength of steel. 187 

Loading Method and Instrumentation 188 

Proportionally applied tensile load (horizontal 𝜎1) and compressive forces (vertical 𝜎2) 189 

were used to simulate a pure shear loading condition in the experimental test. As shown in Fig. 4, 190 

the reference l-t coordinate system represents the directions of longitudinal and transversal 191 

reinforcements. The reference 1-2 coordinate system represents the directions of the principal 192 

compressive stress (2-axis) and tensile stress (1-axis). Testing initially started using load control 193 

with increments of 1 kN/min.  up to first cracking and then switched to displacement control 194 

with the increment of strain in the horizontal direction set to 0.0001 (mm/mm)/min until the 195 

specimen failed.  196 

The average (smeared) strains in the horizontal, vertical, and diagonal directions were measured 197 

by a total of 14 Linear Variable Differential Transformers (LVDTs) attached on both sides of the 198 

panel specimen. With the stable reading from LVDTs, the stress-strain curves of concrete panels 199 

in the post peak branches were reliably monitored. On the North side, the panel specimen was 200 

instrumented symmetrically by 10 LVDTs. Four of the LVDTs were aligned horizontally, and 201 

another set of 4 LVDTs were aligned vertically, and each one of the remaining two was aligned 202 

along a diagonal direction as shown in Fig. 5a. On the south side of the specimen, four LVDTs 203 

were used: two in horizontal direction and two in vertical direction (Fig. 5b). The gage length for 204 

horizontal and vertical LVDTs was 800 mm, and gage length for diagonal LVDTs was 1,130 205 

mm. 206 



10 

 The local strains on steel rebar and FRP sheets for each panel specimen were measured by a 207 

total of 10 strain gauges. The position of strain gauges on steel rebar and FRP sheets are shown 208 

in Fig. 6 and Fig. 7, respectively. It should be noted that the strain gauges on steel and FRP were 209 

located at the same location. 210 

A digital image correlation (DIC) system was used to obtain the displacement and deformation 211 

field on the south side of the specimen. Through this DIC-based non-contact measurement 212 

system, the crack spacing and crack width of the specimens were captured in real time. Load was 213 

measured by the load cells installed on each hydraulic actuator.  214 

 215 

GENERAL BEHAVIOR OF TEST PANELS 216 

The specimens were subjected to pure shear loads in the l-t coordinates, as shown 217 

previously in Fig. 4. The peak stresses and strains for all the test panels are listed in Table 2. 218 

The subscript “m” indicates the load stresses at the peak shear stress and the subscript “0” 219 

indicates the strains that are measured at the peak shear stress. 220 

The shear stress, 𝜏𝑙𝑡, can be calculated in terms of the principle stress from Eq. (1) and the shear 221 

strain, 𝛾𝑙𝑡,is determined form Eq. (2) as follows: 222 

 21
2

1
 lt                                         (1) 223 

21  lt
                                           (2) 224 

where 1  and 2  are the average horizontal tensile and vertical compressive stresses, 225 

respectively; 1  and 2  are the average strains measured from LVDTs in horizontal and vertical 226 

directions, respectively. 227 

Effect of FRP Stiffness on the Shear Behavior 228 
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To study the shear behavior of FRP-strengthened RC members and to investigate the 229 

effect of FRP stiffness, panels with same steel reinforcements in l and t directions, but different 230 

FRP reinforcement ratios are tested. The application of FRP in the t-direction results in an 231 

increase of effective reinforcement ratio in that direction. The effective reinforcement ratio is 232 

defined as the contribution of transverse steel and FRP reinforcement ratio in the shear gain in t 233 

direction. Therefore, a different behavior is expected to be observed. To compare the behavior of 234 

panels, the shear stress-strain curves of panels series P4-FW, with the same steel reinforcement 235 

ratio in l and t directions ( %76.0 tl  ) and different FRP reinforcement ratios (FRP 236 

Stiffness) fully wrapped, are shown in Fig. 8. It can be observed that with the increase of FRP 237 

stiffness, the shear strength of panels increases. The maximum shear strength of test panels P4-238 

025-FW, P4-040-FW, and P4-080-FW were 4.2 MPa, 5.6 MPa, and 6.3 MPa, respectively. With 239 

the increase of FRP stiffness, the stiffness of strengthening system increases and the contribution 240 

of FRP reinforcement to shear capacity will increase; therefore, the shear strength of panels 241 

increases. The presence of FRP sheets along the transverse direction delays the yielding of steel 242 

rebar in the t-direction. Therefore, the rebar in the longitudinal direction will yield sooner 243 

compared to the rebar in the transverse direction. In other words, the rebar in l and t directions 244 

will not yield at the same time as in panel REF-P4.  245 

In order to compare the behavior of panels, the relationships between the shear stress and 246 

average strain in longitudinal and transverse directions of panels series P4-FW are shown in Fig. 247 

8. Panel REF-P4 is reinforced with equal amount of steel in l and t directions. Due to symmetry 248 

of the loading and the reinforcements, the average strain in the l-direction, ɛl, equals the average 249 

strain in the t-direction, ɛt. Therefore, the steel in both directions approximately yielded at the 250 

same time. Also, the inclination of cracks in this case coincides with the direction 251 
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of principal compressive stress. Therefore, the interlocking action of aggregates 252 

between concrete struts vanishes. As shown in Fig. 9, the measured strains in the two directions 253 

for panel REF-P4 are very close to each other from the beginning of testing up to failure of the 254 

panel. Panels in series P4-FW were reinforced with equal amount of steel in l and t directions 255 

(ρl = ρt = 0.76%). However, they were strengthened with different FRP reinforcement ratios 256 

along the t-direction. Therefore, the presence of FRP sheets resulted in the increase of the 257 

effective reinforcement ratio in transverse (t) direction and the steel in l-direction yielded sooner 258 

than the steel in t-direction (Fig. 9). After steel yielded in both l and t directions, the average 259 

strain in longitudinal direction ɛl increased rapidly compared to the average strain in transverse 260 

direction ɛt. The FRP sheets aligned in the t-direction prevented the rapid increase of strain along 261 

the transverse direction. It is observed from Fig. 9 that with the increase of FRP stiffness, the 262 

difference in steel strains in l and t directions increases. For instance, in panel P4-025-FW, ɛl at 263 

failure is 20% more than ɛt. With the increase of FRP reinforcement ratio this difference 264 

increases. In panels P4-040-FW (ρf = 0.87%) and P4-080-FW (ρf = 1.74%), ɛl at failure is greater 265 

than ɛt by 53% and 60%, respectively. With the increase of FRP reinforcement ratio (FRP 266 

stiffness) in the transverse direction, the effective reinforcement ratio in the t-direction increases. 267 

This will result in increase of deformation in the l-direction which is less reinforced.  268 

Effect of Wrapping Scheme on the Shear Behavior 269 

Wrapping scheme affects the confinement effect of the FRP sheets and the potential for 270 

debonding. The effect of wrapping scheme on the shear stress-strain curves of the panels are 271 

shown in Fig. 10 and Fig. 11. Test results of panels with the same steel and FRP reinforcement 272 

ratios (ρs = 0.76%, ρf = 0.87%), but different wrapping schemes are shown in Fig. 10. The 273 

behavior of panel P4-040-SB was similar to panel P4-040-FA up to failure. However, the shear 274 
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capacity of panel P4-040-FA was 22% greater than panel P4-040-SB. Panel P4-040-SB failed 275 

due to premature debonding of FRP sheets. Panel P4-040-FW showed a different behavior 276 

compared to the other two panels. The stiffness of the panel P4-040-FW after cracking was much 277 

higher compared to P4-040-FA and P4-040-SB panels, which showed the same post cracking 278 

behavior. This was due to a better bond between the FRP sheets and concrete substrate after 279 

cracking of concrete in panel P4-040-FW, which resulted in the increase of the overall stiffness. 280 

The shear capacity of panel P4-040-FW was 6% and 30% higher than panels P4-040-FA and P4-281 

040-SB, respectively. In Fig. 11, test results of panels with the same steel and FRP reinforcement 282 

ratios (ρs = 0.76%, ρf = 0.43%), but different wrapping schemes are compared. Although it was 283 

expected that the two panels show a similar behavior up to failure, the shear capacity of panel 284 

P4-025-FA was 15% higher than panel P4-025-FW. This difference was due to a lower concrete 285 

compressive strength, 𝑓𝑐
′, of panel P4-025-FW (45 MPa) compared to panel P4-025-FA (52 286 

MPa). The contributions of steel and FRP on the overall shear capacity of the two members were 287 

similar. However, the lower concrete compressive strength resulted in a lower contribution of 288 

concrete on the overall shear capacity of panel P4-025-FW therefore, a lower overall shear 289 

capacity was observed compared to panel P4-025-FA. 290 

For design purposes, the strengthening scheme is selected based on factors such as the 291 

accessibility of the member and the required amount of increase in shear capacity. The 292 

recommended wrapping scheme is fully wrap for shear strengthening of the member whenever it 293 

is possible.  However, in most situations, a U-wrap with FRP anchor is the only economical and 294 

practical economical and practical wrapping scheme.  295 

Effect of Transverse Steel Reinforcement on the Shear Behavior 296 
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The panels were reinforced with two levels of transverse steel reinforcement ratios, 297 

ρt = 0.43% and 0.76%. A low transverse reinforcement ratio (using No. 3 rebar) was chosen to 298 

simulate a beam which is lightly reinforced, and a high transverse reinforcement was chosen to 299 

simulate a beam which is heavily reinforced. The shear stress-strain curves of panels with the 300 

same FRP reinforcement ratio and wrappings scheme, but different transverse reinforcement 301 

ratios are compared in Figs. 12 and 13. The shear stress-strain curves of panels P3-040-FW and 302 

P4-040-FW are compared in Fig. 12. The panels are reinforced with the same FRP reinforcement 303 

ratio (ρf = 0.87%) and the wrapping scheme is fully wrap. It can be observed that panel P4-040-304 

FW had 25% higher shear strength compared to panel P3-040-FW, due to a higher transverse 305 

reinforcement ratio.  306 

In Fig. 13, the shear stress-strain curves of panels P3-025-FW and P4-025-FW are compared. 307 

The panels are reinforced with the same FRP reinforcement ratio (ρf = 0.54%) and the wrapping 308 

scheme is fully wrap. The two panels showed similar behavior in terms of maximum shear stress. 309 

It was expected that panel P4-025-FW show higher shear strength compared to panel P3-025-310 

FW. Although, panel P4-025-FW had a lower concrete compressive strength (𝑓𝑐
′ = 45 MPa) 311 

compared to panel P3-025-FW (𝑓𝑐
′ = 51 MPa), panel P3-025-FW reached its peak strength at a 312 

lower shear stress and strain compared to panel P4-025-FW. 313 

In Fig. 14, the strain of FRP sheets and transverse steel, measured using strain gauges, for panels 314 

P4-040-FW and P3-040-FW are compared at same load levels. It is observed that both the 315 

external FRP reinforcement and the transverse steel reinforcement did not contribute to the load-316 

carrying capacity in the initial stage of loading. This contribution initiated and became effective 317 

after the first cracking occurred. In panel P4-040-FW it can be observed that before reaching the 318 

tensile strength of concrete, the strains in FRP and steel were very small and less than the 319 
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maximum tensile strain of concrete. Once cracking occurred, strains on both steel and FRP 320 

increased suddenly. Before yielding of the steel, FRP strain was higher than the steel strain at the 321 

same load level. After steel yielded, the steel strain rapidly increased compared to FRP strain. 322 

The same behavior was observed for panel P3-040-FW. In panel P3-040-FW immediately after 323 

the steel yielded, since the transverse steel reinforcement ratio was low, the steel strain increased 324 

rapidly and became higher than FRP strain at the same shear stress level. In panel P4-040-FW, 325 

immediately after steel yielded, the transverse steel strain did not get bigger than the strain of 326 

FRP. This was due to a larger steel reinforcement ratio compared to panel P3-040-FW, and due 327 

to the different yield behavior of rebar Nos. 3 and 4 compared to each other. The strains in the 328 

FRP and the transverse steel are different, even at the same locations, because the strain on the 329 

fiber sheets increases drastically near the crack, due to the bond between the FRP and the 330 

concrete substrate. Also, the crack widths are smaller at the rebar location and increase at the 331 

surface. Addition of the FRP sheets delayed the contribution of transverse steel to the load 332 

carrying capacity of the specimen. The results clearly show that the effect of externally bonded 333 

FRP sheets preserves the integrity of internal transverse steel reinforcements. The effectiveness 334 

of the contribution of FRP sheets to the shear gain highly depends on the amount of internal 335 

shear steel reinforcement. However, the design guidelines have not yet considered the effect of 336 

transverse steel reinforcement and the contribution of FRP on the overall shear response (Vf ) in 337 

their formulations.  338 

Failure Modes Associated with FRP-Strengthened RC Panels 339 

In RC members subjected to compression-tension biaxial stresses, various types of shear failure 340 

occur; such as diagonal cracking, splitting, shear-compression failure, and web crushing[15]. 341 

These all involve cracking and crushing of concrete in a biaxial stress state. In FRP-strengthened 342 
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RC members, additional failure modes were observed. The two main failure modes related to the 343 

FRP strengthening which were observed in test panels are FRP rupture and FRP debonding. In 344 

the case of FRP rupture, the fibers reached their ultimate strain value and fracture at the point of 345 

maximum stress. In the FRP debonding failure mode, the strain of FRP at ultimate stage were 346 

considerably lower than the rupture strain. The failure mode of FRP rupture is similar to shear 347 

tension failure in conventional RC beams where vertical flexural cracks originates from the 348 

tension face. Widening of the diagonal crack eventually leads to failure involving tearing of the 349 

FRP along a line corresponding to the diagonal shear crack in the concrete. Available 350 

experimental data in literature shows that all of the test specimens with FRP sheets bonded on 351 

sides only, and many bonded with U-wrap, failed by debonding of the FRP from the concrete 352 

substrate.  353 

The main failure modes associated to panel specimens are shown in Table 3. Fig. 15 shows the 354 

main failure modes observed in panel specimens. In panels P3-FW and P4-FW series, which 355 

were strengthened with fully wrap scheme, the main observed failure modes were FRP rupture 356 

followed by crushing of concrete (Fig. 15a), except for panel P4-080-FW which failed by 357 

concrete crushing prior to FRP failure (Fig. 15b). Concrete crushing occurred due to high 358 

principal compressive stresses in the region between induced cracks. This failure mode is 359 

normally associated with high amounts of transverse reinforcement but may also be critical in 360 

beam members with thin webs. Panel P4-080-FW, which was strengthened with a higher FRP 361 

reinforcement ratio compared to other panels (ρf = 1.74%), had a different failure mode. The 362 

governing failure mode in this panel was concrete crushing. The increase in amount of FRP 363 

reinforcement (increase in thickness of FRP sheets) resulted in decrease of active bond length, 364 

that is the length which the majority of bond is maintained. Therefore, the effective strain in the 365 
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FRP sheets decreases and ultimately, FRP sheets did not reach their expected capacity up to their 366 

tensile strength before rupture and the panel failed due to concrete crushing. 367 

In panels P4-FA series, which were strengthened using U-wrap with FRP anchor wrapping 368 

scheme, a mixed failure mode was observed. In panel P4-025-FA, anchorage failure was 369 

observed on the south side of the panel while on the north side FRP rupture of FRP sheets was 370 

seen (Fig. 15c). In panel, P4-040-FA, FRP anchors did not show any sign of failure and the 371 

failure mode of the panel was governed by rupture of FRP sheets. This could be associated with 372 

different bond between FRP and concrete substrate on both sides of the panel. On the south side 373 

of the panel, the FRP anchors engaged in the shear resistance once the FRP sheets debonded 374 

from the concrete surface and failed at their ultimate load carrying capacity. 375 

Panel P4-040-SB, was strengthened with the side bond wrapping scheme. Once the concrete 376 

cracked, local debonding of FRP sheets initiated from the concrete substrate and the panel 377 

ultimately failed by debonding of all FRP sheets at a lower load level compared to other 378 

strengthened panels (Fig. 15d). In this panel, the FRP was not able to utilize its full tensile 379 

capacity and therefore, debonding of FRP sheets at lower strain levels occurred, which lowered 380 

the efficiency of the strengthening system. In this mode of failure, once the FRP starts to peel 381 

off, the beam will fail very quickly in a brittle process. The bond strength between FRP and 382 

concrete thus plays the key role in this mode. 383 

 It should be noted that the strain distribution in the FRP along a shear crack is non-uniform 384 

because the width of the critical shear crack changes from the lower end to the upper crack tip 385 

[34]. This leads to a non-uniform strain distribution in the FRP because the strain anywhere in 386 

the FRP intersected by the crack is closely related to the width of the crack at that location. Since 387 

the FRP sheets are linear elastic material up to their rupture, the stress in the FRP is also non-388 
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uniform along the shear crack. Combined with the brittle behavior of FRP, this means that at 389 

any instant in the failure process, only the most highly stressed part of the FRP is at its full 390 

tensile capacity.  391 

In practice, for design of FRP strengthened RC members, the primary failure modes are 392 

selected for each element. Each failure mode is classified in terms of the type of failure it 393 

represents and the seriousness of damage it causes [35]. A primary failure mode should be 394 

considered followed by other failure modes and their degree of undesirability. For instance, in an 395 

RC beam strengthened with FRP, the most desirable failure mode is flexural concrete crushing 396 

and the least desirable is debonding. For shear strengthening, the failure modes and bond of 397 

FRP to concrete substrate remain the focus of many research work. There are several verities in 398 

failure modes in FRP strengthened systems which can govern the strength [1]. While most of the 399 

failure modes have been identified by researchers, more accurate methods are still required. 400 

Throughout the design procedures, significant limitations on the strain and stress level achieved 401 

in the FRP material are imposed to conservatively account for debonding failure modes. More 402 

thorough design guidelines should be incorporated in codes for predicting debonding and other 403 

failure modes. 404 

 405 

CRACK CHARACTERISTICS 406 

The evolution of strains and deformations on FRP and concrete have been measured with a DIC 407 

system and its tracking method. This method has been widely used for measurements in RC and 408 

masonry members [36-38]. In order to study the crack characteristics on panel specimens, the 409 

DIC system was used on the south side of the specimen. The DIC system will generate contour 410 
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plots of the axial and lateral surface deformations of the panels, which will help determine the 411 

exact pattern around and in between the FRP sheets [19].  412 

The crack characteristics including crack width, spacing, and amount were measured by the DIC 413 

system and are presented in the following sections. In Fig. 16, the strain field in the direction of 414 

applied horizontal load 𝜀𝑥 of a specimen at a specific load level is shown using color gradient. 415 

The cracks are identified at locations with sudden increase in strain. The crack widths are 416 

measured by assigning two points near the cracks and continuously measuring their distances. It 417 

should be mentioned that due to accessibility issue, the DIC system was not used for specimen 418 

P4-025-FW, P4-040-FA, and P4-040-SB. The integrity of a structure is affected by the crack 419 

characteristics and therefore careful considerations should be made [39]. 420 

Crack Spacing 421 

The stabilized cracking phase is reached when the crack spacing between two existing 422 

cracks are too small for a new crack to develop in between. The crack spacing was determined at 423 

the last phase of the testing, since it is closest to the stabilized cracking stage. In Table 4, 424 

experimental measurements of the average crack spacing, Srm, maximum crack spacing, Sr,max, 425 

and minimum crack spacing, Sr,min, in panel specimens subjected to shear are presented. The 426 

experimental average crack spacing is defined by the measurement of the spacing between the 427 

adjacent cracks on the panel at different heights and averaging for the entire specimen at the 428 

stabilized cracking stage. The maximum and minimum crack spacing is defined based on the 429 

maximum and minimum measured crack spacing at the stabilized cracking stage throughout the 430 

specimen, respectively. In Fig. 17, ratios of maximum and minimum to average crack spacing 431 

versus average crack spacing in shear tests of panel specimens are presented. The mean value of 432 

the ratio Sr,max/Srm  and  Sr,min/Srm  are shown with  horizontal dashed lines. In EC2-04 [40] a value 433 
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of 1.7 is assumed for the ratio of the maximum to average crack spacing for RC structures; which 434 

is observed to be higher compared to the experimental value of Sr,max/Srm that equals 1.47 for 435 

FRP-strengthened RC panels. 436 

Crack Width 437 

Using the DIC system the crack widths were measured continuously during the test. It was 438 

observed that in FRP-strengthened RC members; average crack widths were generally smaller 439 

than for un-strengthened members at the same shear strain level (Fig. 18), due to the additional 440 

bond action developing at the FRP-concrete interface. Although, the number of cracks did not 441 

increase significantly in strengthened members as shown in Table 4., the crack widths decreased 442 

compared to RC panels. The thicker FRP (1.0 mm) provided better crack control compared to the 443 

thinner FRP (0.6 mm). Similar results were observed for P4-FW and P4-FA series. As shown in 444 

Fig. 19, in panels strengthened with FRP, average crack widths were generally smaller than un-445 

strengthened RC panels at the same shear strain level. For panels P4-FW series, with the increase 446 

of FRP reinforcement ratio, the crack widths did not change significantly at lower shear strains. 447 

In general. specimens strengthened with FRP exhibited a greater tension stiffening effect 448 

compared to RC specimens. The contribution of the concrete in shear affects the overall stiffness 449 

of the FRP strengthened RC members after cracking. Therefore, the crack spacing and crack 450 

width are affected at service load level. Wrapping scheme and FRP reinforcement ratio affect the 451 

bond behavior of steel-concrete and, FRP-concrete interface in FRP strengthened RC members. 452 

This will result in a different crack pattern in such members compared to RC members. 453 

MATHEMATICAL MODELING OF SMEARED STRESS-STRAIN CURVES OF FRP 454 

STRENGTHENED RC IN COMPRESSION 455 
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The softening coefficient is the most important parameter affecting the smeared 456 

stress-strain relationships of concrete in compression. Several researchers have 457 

investigated the softening coefficient in RC members and determined that the most 458 

effective parameters are: concrete compressive strength, 𝑓𝑐
′, the uniaxial tensile 459 

strain, 𝜀1̅, and the deviation angle, β [13,14]. In case of FRP strengthened RC 460 

members, the FRP sheets also have significant effect on the softening of concrete  461 

[16]. The smeared constitutive relationship of concrete compressive stress,  𝜎2
𝑐, 462 

versus the uniaxial compressive strain, 𝜀2̅, in the Softened Membrane Model, shown 463 

in Fig. 20, is given as: 464 
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The softening coefficient in Eq. 2 and 3 is expressed as the product of the function of concrete 467 

compressive strength, 𝑓𝑐
′, uniaxial tensile strain, 𝜀1̅, and deviation angle, β, as  468 
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Previous researches showed that in FRP strengthened RC members, FRP reinforcement has 474 
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significant effect on the softening coefficient [9 ,16]. Therefore, in FRP strengthened members 475 

the softening coefficient is expressed as  476 

       FRPfffff cFRP  1
                      (8)   477 

where, the first three terms on the right-hand side of Eq. (8) are the same as the 478 

softening coefficient for RC, Eq`ns. (5) to (7), proposed by other researchers at 479 

University of Houston [14, 18,41]. The fourth term is proposed by Yang [9] as 480 

  ff EFRPf 0076.01                                                            (9) 481 

In the proposed equation, fE f were adopted to account for the area of the 482 

concrete. It should be noticed that the proposed equation converges to the result of 483 

RC when fE f  equals to zero, in which case f (FRP) equals to 1 and the expression 484 

will be the same as for RC.  485 

To express the smeared stress-strain curves of the concrete in compression in 486 

FRP strengthened RC members, the same parabolic equation, Eq. ( 2) and (3), is 487 

used. The softening coefficient is derived from Eq. (8). The experimental results of 488 

FRP strengthened RC panels subjected to shear will be used to validate the function 489 

of deviation angle, β, in the softening equation of RC members for FRP 490 

strengthened RC members.  491 

The angle β is the deviation angle between r-d coordinate and 1-2 coordinate, 492 

equal to α r-α1 (Fig. 21). β is a function of the strain state, and can be expressed in 493 

terms of the three strains, ɛ1, ɛ2, and γ12 using the compatibility equations as  494 
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  496 

The deviation angle, β, is equal to zero if the element is reinforced with the 497 

same amounts of steel bars in l and t directions and subjected to pure shear loading, 498 

e.g., REF-P4. The values of β and 𝑓(𝛽) from FRP strengthened RC panel tests are 499 

listed in Table 5. The concrete compressive strength, 𝑓𝑐
′, and the uniaxial tensile 500 

strain, 𝜀1̅, of the concrete in the 1-direcrion at the peak point of the shear stress -501 

strain curve for each panel are listed in Table 5. The values of 𝑓(𝑓𝑐
′), 𝑓(𝜀1̅) and 502 

𝑓(𝐹𝑅𝑃) are calculated using Eqns. (5, 6, and 9), respectively. Dividing the 503 

experimental value of the softening coefficient, 𝜁𝑒𝑥𝑝, by 𝑓(𝑓𝑐
′), 𝑓(𝜀1̅), and 𝑓(𝐹𝑅𝑃) the 504 

experimental 𝑓(𝛽) for each panel is obtained and listed in Table 5. The value of  𝛽 505 

for each panel is calculated using Eq. (10). 506 

According to the data in Table 5, the 𝑓(𝛽)𝑒𝑥𝑝 versus β relationships for the 507 

FRP strengthened RC panels is plotted in Fig. 20 along with the data for the 508 

reinforced concrete panel tests [18, 41]. Also, the straight line defined by Eq. (7) is 509 

plotted in Fig. 20.  510 

The 𝑓(𝛽)𝑒𝑥𝑝 versus β relationships for FRP strengthened RC panels show a different 511 

trend than that for RC panels. Therefore, Eq. (7) should be modified before it can 512 

be applied to FRP strengthened RC members. Similar to RC members, the 513 

relationship between β and 𝑓(𝛽) is approximately linear. A regression analysis of 514 

the FRP strengthened RC data is performed to develop the new function of the 515 

deviation angle, β, in the softening coefficient of FRP strengthened RC members as  516 
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The effect of deviation angle, β, on the softening coefficient in FRP strengthened RC members is 518 

more complicated than that in RC members. The presence of FRP along the transversal direction 519 

increases the stiffness in that direction and therefore, increases the difference in the stiffness in 520 

the l and t directions. Thus, the deviation angle increases followed by a decrease in the softening 521 

coefficient. The new function of the deviation angle, 𝑓𝐹𝑅𝑃(𝛽), has been used for the softening 522 

equation of the new softened membrane model for FRP strengthened RC members presented 523 

elsewhere [42].  524 

 525 

CONCLUSIONS 526 

In order to evaluate the shear behavior of FRP-strengthened RC members and investigate 527 

the main factors which influence its behavior, panel testing was carried out. Other testing 528 

techniques such as testing beam with various a/d ratios cannot predict the true pure shear 529 

behavior due to the presence of flexural and other non-shear related effects that cannot be filtered 530 

out. For this purpose, full-scale tests on 8 FRP-strengthened RC panels and 2 RC panels were 531 

conducted. It should be noted that in this research the initial stresses existing in members prior to 532 

strengthening have been considered. The effects of different parameters on the true shear 533 

behavior of FRP-strengthened RC members were investigated. The following conclusions can be 534 

made: 535 

1) It was found that the application of FRP sheets enhanced the overall shear behavior of RC 536 

panels. However, ductility of the specimens was reduced due to the failure modes associated 537 

with the strengthening system such as FRP rupture and FRP debonding. 538 
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2) The presence of FRP sheets resulted in the increase of the effective reinforcement ratio in 539 

transverse direction, and the steel in the l-direction yielded sooner than the steel in the t-540 

direction. After the steel yielded in both l and t directions, the strain in the longitudinal direction, 541 

ɛl, increased rapidly compared to the strain in the transverse direction, ɛt. The FRP sheets aligned 542 

in the t-direction prevented the rapid increase of strain along the transverse direction. Also, with 543 

the increase of FRP reinforcement ratio, the difference in steel strains in l and t directions 544 

increased. 545 

 546 

3) In this research, many failure modes of FRP strengthened RC members have been identified. 547 

While some of these failure modes are similar to those of RC members, others are unique to FRP 548 

strengthened members. The transfer of stresses from concrete to FRP sheets is a critical 549 

parameter in FRP strengthening since it is likely to cause undesirable premature and brittle 550 

failures. The two main failure modes observed in the tests were rupture of FRP sheets at the 551 

ultimate strain following the yielding of internal steel reinforcement and debonding of FRP 552 

sheets in a brittle manner with a thin layer of concrete residue attached to the delaminated FRP 553 

sheet. It was observed that wrapping schemes played a critical role in determining the failure 554 

mode of the strengthened member. While all specimen with side bond wrapping scheme failed 555 

by premature FRP debonding, most specimens with U-wrap plus FRP anchor and fully wrap 556 

failed by concrete crushing followed by rupture of FRP.  557 

4) It was observed that the magnitude of increased shear capacity associated with the application 558 

of FRP sheets depend not only upon the amount of FRP reinforcement that is being used, but 559 

also on the amount of internal shear reinforcement. The increase in transverse steel reinforcement 560 

resulted in a significant decrease in the shear gain due to FRP strengthening. There exists a high 561 
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interaction between the components of the strengthening system, specifically steel and FRP 562 

reinforcement, when subjected to shear. The strains in the FRP sheets and the internal transverse 563 

steel reinforcement were observed to be different at the same locations in the test region. This 564 

was due to the strain on the fiber sheets increasing drastically near the cracks, due to the bond 565 

between the FRP and the concrete substrate. With increase in the internal shear reinforcement 566 

ratio, the crack pattern becomes relevantly more distributed along the member and therefore, the 567 

available effective bond length decreases. This ultimately leads to decrease in the bond force and 568 

decrease in the effectiveness of the FRP strengthening scheme. It should be noted that the 569 

external FRP reinforcement does not prevent the internal transverse steel reinforcement from 570 

yielding rather delays it.    571 

5) Test results showed that applying FRP reinforcement significantly changed the crack width 572 

and spacing of the RC member. The contribution of the concrete in shear affects the overall 573 

stiffness of the FRP strengthened RC members after cracking. Therefore, the crack spacing, and 574 

crack width are affected at service load level. Different wrapping schemes and external FRP 575 

reinforcement ratio affects the bond behavior of steel-concrete and also FRP-concrete interface 576 

in FRP strengthened members. This will result in different crack patter in in such members 577 

compared to RC members. Average crack widths were generally smaller than for un-578 

strengthened RC members at the same smeared strain level due to the additional bond action 579 

developing at the FRP-concrete interface which further reduced the crack spacing. 580 

6) The softening coefficient is the most important parameter affecting the smeared stress-strain 581 

relationships of concrete in compression. Previous research studies showed that in addition to 582 

effective parameters in the softening coefficient of RC members, FRP sheets also have 583 

significant effect on the softening of concrete in FRP strengthened RC members. In this paper, a 584 
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new softening coefficient for FRP strengthened reinforced concrete in compression is proposed 585 

based on panel tests.  The new softening coefficient includes the modified deviation angle factor 586 

in terms of the deviation angle β. The presence of FRP along the transversal direction increases 587 

the stiffness in that direction and therefore, increases the difference in the stiffness in the l and t 588 

directions. Thus, the deviation angle increases followed by a decrease in the softening 589 

coefficient. The new function of the deviation angle was implemented in the softening equation 590 

of the new softened membrane model for FRP strengthened RC members presented elsewhere. 591 
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Fig. 1. Dimensions of test panels  

 

 
Fig. 2. Layout and wrapping method of FRP sheets, a) FRP layout, b) Fully wrap, and c) Side 

bond wrapping scheme cross sections  
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Fig. 3. U-Wrap with FRP anchor details 

  

Fig. 4. Proportional loading of panel in 1-2 directions 
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Fig. 5. LVDT arrangement for the panel specimens 

 

                           a) North Side                                                 b) South Side 

Fig. 6. Strain gauge layout on steel rebar of panel specimens 
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Fig. 7. Strain gauge layout on FRP sheets of panel specimens 

 

 

 

Fig. 8. Effect of FRP stiffness on shear stress-shear strain curves of panels P4-FW series  
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Fig. 9. Effect of FRP stiffness on 𝜏𝑙𝑡 − 𝜀𝑙 and 𝜏𝑙𝑡 − 𝜀𝑡 relationships of panels P4-FW series  

 

 

 

Fig. 10. Shear stress-strain curves for specimens with different wrapping schemes (panels P4-

040 series) 
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Fig. 11. Shear stress-strain comparison of wrapping scheme in panels P4-025 series 

 

Fig. 12. Shear stress-strain comparison of transverse steel reinforcement in panels 040-FW series 
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Fig.13. Shear stress-strain comparison of transverse steel reinforcement in panels  

025-FW series 

 

 

Fig. 14. Comparison of transverse steel strain and FRP of panels P4-040-FW and P3-040-FW 
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Fig. 15. Different failure modes of panel specimens, a) FRP debonding, b) Concrete crushing, c) 

FRP anchor failure, d) FRP rupture  

 
 

 
Fig. 16. Full strain field in the direction of applied load of specimen at a specific load level 
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Fig. 17. Ratios of maximum and minimum to average crack spacing vs. average crack spacing in 

shear tests 

 

Fig. 18. Average crack width comparison of panel series P3-FW and REF-P3 
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Fig. 19. Average crack width comparison of panel series P4-FW and P4-FA 

 

Fig. 20. Monotonic Non-Softened and Softened Stress-Strain Curve [15] 
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Fig. 21 Deviation Angle β  [15] 

 

 

Fig. 22 f(β) versus β Relationships for RC and FRP Strengthened RC Panels 

 
 
 

Table 1. Principal variables of test panel and material properties  
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Table 2. Applied stresses and corresponding measured strains at peak load stage 

 

Series 

 

Panel 

 

𝝈𝟐𝒎 
(MPa) 

𝝈𝟏𝒎 
(MPa) 

𝝉𝒍𝒕𝒎 
(MPa) 

𝜺𝟐𝟎 
(mm/mm) 

𝜺𝟏𝟎 
(mm/mm) 

𝜺𝒍𝟎 
(mm/mm) 

𝜺𝒕𝟎 
(mm/mm) 

𝜸𝒍𝒕𝟎 
(mm/mm) 

REF 
REF-P3 -3.6 3.3 3.5 -0.000113 0.0228 0.0073 0.0172 0.0229 

REF-P4 -4.1 4.1 4.1 -0.000147 0.0219 0.0085 0.0117 0.0220 

P3-FW 
P3-025-FW -4.2 3.7 4.0 -0.000164 0.0108 0.00632 0.00429 0.1089 

P3-040-FW -4.7 4.1 4.4 -0.000241 0.0121 0.0059 0.0060 0.0122 

P4-FW 

P4-025-FW -4.0 4.4 4.2 -0.000265 0.0067 0.0037 0.0024 0.0070 

P4-040-FW -5.5 5.6 5.6 -0.000798 0.0166 0.0100 0.0050 0.0174 

P4-080-FW -6.6 5.9 6.3 -0.000328 0.0165 0.0177 0.0065 0.0162 

P4-SB P4-040-SB -3.9 4.7 4.3 -0.000114 0.0089 0.0047 0.0018 0.0091 

P4-FA 
P4-025-FA -5.1 4.8 4.9 -0.000233 0.0162 0.0098 0.0045 0.0164 

P4-040-FA -5.6 5.0 5.3 -0.000101 0.0187 0.0131 0.0042 0.0188 

 

  Concrete 
 

Steel in l direction  Steel in t direction  FRP in t direction 

Series 
Specimen 

Name 
f'c (ksi) 

 𝝆𝒍 

(%)

𝒇𝒍𝒚 

(MPa)

𝑬𝒍𝒔 

(MPa)
 𝝆𝒕 

(%)

𝒇𝒕𝒚 

(MPa)

𝑬𝒕𝒔 

(MPa)
 𝝆𝒇 

(%)

𝑬𝒇  

(MPa) 

REF 
REF-P3 53  0.76 462 190000  0.43 459 188000  - - 

REF-P4 52  0.76 462 190000  0.76 462 190000  - - 

P3-FW 
P3-025-FW 51  0.76 462 190000  0.43 459 188000  0.54 82700 

P3-040-FW 50  0.76 462 190000  0.43 459 188000  0.87 72400 

P4-FW 

P4-025-FW 45  0.76 462 190000  0.76 462 190000  0.54 82700 

P4-040-FW 52  0.76 462 190000  0.76 462 190000  0.87 72400 

P4-080-FW 54  0.76 462 190000  0.76 462 190000  1.74 72400 

P4-SB P4-040-SB 44  0.76 462 190000  0.76 462 190000  0.87 72400 

P4-FA 
P4-025-FA 52  0.76 462 190000  0.76 462 190000  0.54 82700 

P4-040-FA 52  0.76 462 190000  0.76 462 190000  0.87 72400 

 

  Concrete 
 

Steel in l direction  Steel in t direction  FRP in t direction 

Series 
Specimen 

Name 
f'c (ksi) 

 𝝆𝒍 

(%)

𝒇𝒍𝒚 

(MPa)

𝑬𝒍𝒔 

(MPa)
 𝝆𝒕 

(%)

𝒇𝒕𝒚 

(MPa)

𝑬𝒕𝒔 

(MPa)
 𝝆𝒇 

(%)

𝑬𝒇  

(MPa) 

REF 
REF-P3 53  0.76 462 190000  0.43 459 188000  - - 

REF-P4 52  0.76 462 190000  0.76 462 190000  - - 

P3-FW 
P3-025-FW 51  0.76 462 190000  0.43 459 188000  0.54 82700 

P3-040-FW 50  0.76 462 190000  0.43 459 188000  0.87 72400 

P4-FW 

P4-025-FW 45  0.76 462 190000  0.76 462 190000  0.54 82700 

P4-040-FW 52  0.76 462 190000  0.76 462 190000  0.87 72400 

P4-080-FW 54  0.76 462 190000  0.76 462 190000  1.74 72400 

P4-SB P4-040-SB 44  0.76 462 190000  0.76 462 190000  0.87 72400 

P4-FA 
P4-025-FA 52  0.76 462 190000  0.76 462 190000  0.54 82700 

P4-040-FA 52  0.76 462 190000  0.76 462 190000  0.87 72400 
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Table 3. Failure modes of test specimens 
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Table 4. Experimental maximum, minimum and average crack spacing of panels at stabilized 

cracking stage 

 
 
Table 5. Calculation of β and f(β) for FRP Strengthened RC Panels

Specimen No. of cracks 𝐒𝐫,𝐦𝐚𝐱 (mm) 𝐒𝐫,𝐦𝐢𝐧 (mm) 𝐒𝐫𝐦 (mm) 

REF-P3 10 151.89 71.37 105.35 

REF-P4 8 121.16 47.49 87.95 

P3-0250-FW 12 182.82 70.38 108.81 

P3-040-FW 11 136.14 65.02 98.46 

P4-025-FA 10 138.94 43.44 97.43 

P4-040-FW 12 154.94 53.16 99.79 

P4-080-FW 13 126.49 39.37 89.57 
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