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Abstract 37 

Evolutionary pressures suggest that choices should be optimised to maximise 38 

rewards, by appropriately trading speed for accuracy. This speed-accuracy tradeoff 39 

(SAT) is commonly explained by variation in just the baseline-to-boundary distance, 40 

i.e. excursion, of accumulation-to-bound models of perceptual decision making. 41 

However, neural evidence is not consistent with this explanation. A compelling 42 

account of speeded choice should explain both overt behaviour and the full range of 43 

associated brain signatures. Here, we reconcile seemingly contradictory behavioural 44 

and neural findings. In two variants of the same experiment, we triangulated upon 45 

the neural underpinnings of the SAT in the human brain using both EEG and TMS. 46 

We found that distinct neural signals, namely the ERP centroparietal positivity (CPP) 47 

and a smoothed motor-evoked potential (MEP) signal, which have both previously 48 

been shown to relate to decision-related accumulation, revealed qualitatively similar 49 

average neurodynamic profiles with only subtle differences between SAT conditions. 50 

These signals were then modelled from behaviour by either incorporating traditional 51 

boundary variation or utilising a forced excursion. These model variants are 52 

mathematically equivalent, in terms of their behavioural predictions, hence providing 53 

identical fits to correct and erroneous reaction time distributions. However, the 54 

forced-excursion version instantiates SAT via a more global change in parameters 55 

and implied neural activity, a process conceptually akin to, but mathematically 56 

distinct from, urgency. This variant better captured both ERP and MEP neural 57 

profiles, suggesting that the SAT may be implemented via neural gain modulation, 58 

and reconciling standard modelling approaches with human neural data. 59 

 60 
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Significance Statement 61 

Successful organisms need to make the right choice fast. To make such decisions, 62 

we are regularly forced to trade speed for accuracy. This tradeoff has been 63 

explained in behavioural models using a single free parameter reflecting response 64 

caution. However, neural evidence suggests that more widespread changes are 65 

associated with quick vs accurate decisions. Here, we suggest a model which 66 

reconciles these seemingly contradictory findings. This ‘forced-excursion’ model is 67 

mathematically equivalent to standard models of response caution but implies a 68 

global modulation in activity akin to a change in neural gain or urgency. Re-69 

expressed in this way, the model is able to account for both behavioural and neural 70 

data from two separate neural recording techniques. 71 

 72 

 73 

  74 
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Introduction 75 

Every day we make countless decisions, each requiring an appropriate compromise 76 

between speed and accuracy. This speed-accuracy tradeoff (SAT, Garrett, 1922; 77 

Hick, 1952; Wickelgren, 1977) appears ubiquitous across experimental tasks and 78 

species (Chittka et al., 2003; Heitz and Schall, 2012; Ivanoff et al., 2008). The 79 

process of making decisions can be formally described using sequential sampling 80 

models: Sensory evidence accumulates over time, until a decision boundary is 81 

reached, triggering a response (Brown and Heathcote, 2008; Ratcliff, 1978). Such 82 

models traditionally explain SAT-related changes in the reaction-time distributions of 83 

both correct and erroneous responses by adjusting their boundary parameter. This 84 

reduces the required accumulation excursion, leading to faster but more error-prone 85 

decisions (Bogacz et al., 2006; Brown and Heathcote, 2008; Smith and Ratcliff, 86 

2004; Usher and McClelland, 2001). 87 

 88 

Signals displaying the accumulation predicted by these models have been identified 89 

in electrophysiological data from non-human primates (Gold and Shadlen, 2000; 90 

Shadlen and Newsome, 1996, 2001), and recently also in humans (Donner et al., 91 

2009; Hadar et al., 2016; O’Connell et al., 2012). However, when instructions or 92 

payoffs change, neural accumulation profiles appear inconsistent with a changing 93 

boundary, the traditional model-based explanation of the SAT (Hanks et al., 2014; 94 

Heitz and Schall, 2012, 2013).  95 

 96 

Hanks et al. (2014) proposed that the SAT is explained by an urgency signal in 97 

monkeys. Similarly, a recent human neuroimaging study proposed that urgency may 98 

arise from a global modulation of neural gain (Murphy et al., 2016). In fact, the 99 
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concept of an evidence-independent urgency signal, which increases over time to 100 

inflate the accumulation process, has been a recurring theme in the recent SAT 101 

literature (Cisek et al., 2009; Milosavljevic et al., 2010; Thura et al., 2012). This 102 

urgency signal may increase faster under speed instructions, leading to faster, more 103 

error-prone responses. However, alternative accounts, prioritising human 104 

behavioural data, favour models which implement boundary differences (hereafter 105 

referred to as “classic” models) as opposed to urgency signals (Hawkins et al., 2015; 106 

see also Evans et al., 2017). 107 

 108 

Here, we aimed to square these contrasting behavioural and neural findings. In 109 

classic models, the use of a varying boundary to explain the SAT is in fact merely a 110 

conceptually appealing convention. Since sequential sampling models are formally 111 

non-identifiable (i.e. different parameter combinations can yield the same prediction), 112 

one parameter must be chosen as a scaling parameter and fixed to an arbitrary 113 

value (i.e. changing its value will lead to a change in the value of all parameters but 114 

not in their relation to each other and therefore will not affect the model fits; Donkin 115 

et al., 2009; Ratcliff and Rouder, 1998). This suggests that a variant of the classic 116 

model could be used to transfer the effects of the SAT onto other model parameters, 117 

while providing an equivalent fit to the data. We hypothesised that this mathematical 118 

sleight of hand would reconcile the classic bound-variation explanation of the SAT 119 

with neural findings.  120 

 121 

We tested this hypothesis against data from two experiments. Experiment 1 used 122 

transcranial magnetic stimulation (TMS) to track corticospinal excitability, a 123 

downstream signal presumed to be under continuous influence from the decision 124 



 

6 
 

variable (Bestmann et al., 2008; Duque et al., 2010; Hadar et al., 2016; Klein-Flugge 125 

and Bestmann, 2012). In Experiment 2, we recorded  the event-related potential 126 

(ERP) centroparietal positivity (CPP; Kelly and O’Connell, 2013; O’Connell et al., 127 

2012; Twomey et al., 2016), a large, late positivity recorded over parietal regions. 128 

Importantly, this ERP has been suggested to reflect decision-related accumulation 129 

directly, independently of associated motor responses. These ERP and MEP signals 130 

therefore represent fundamentally different neural generators, which have both been 131 

shown to reflect decision-making processes. We believe that this methodological 132 

triangulation permits a more robust interpretation that spans the sensorimotor 133 

pipeline. 134 

 135 

In both experiments, participants made decisions with two difficulty levels under SAT 136 

instructions. Difficulty influences the rate of evidence accumulation (Donkin et al., 137 

2011; Ratcliff and McKoon, 2008), and was introduced here to confirm that our 138 

signals represented plausible correlates of the decision variable. We then 139 

constructed accumulation profiles predicted when the SAT is modelled through 140 

boundary variations, and by our alternative forced-excursion approach. By 141 

comparing these neurodynamic predictions to data, we demonstrate that classic 142 

models re-expressed to have a fixed excursion provide compelling approximations to 143 

both brain and behavioural measures in humans.  144 

 145 
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Materials & Methods 146 

Participants 147 

For the TMS experiment, an opportunity sample of 22 participants (13 female), 148 

primarily students and staff at City, University of London were recruited. According to 149 

criteria established prior to the experiment, participants were excluded if they were 150 

unable to reach a calibrated coherence level of less than 90% for either of the 151 

difficulty conditions (see Difficulty Calibration). The remaining 18 participants (11 152 

female, mean age of 29.82, SD = 8.38) took part in three sessions, each lasting 153 

between 2 and 2.5 hours and involving the same conditions (speed/accuracy 154 

easy/hard, see below). For the EEG experiment, we recruited 26 participants (17 155 

females). Of these, 23 (15 females), with a mean age of 29.39 (SD = 7.47), pre-156 

tested sufficiently well to proceed to the main experiment, and thus participated in a 157 

single 2-hour session. All participants were paid £8 per hour and an additional 158 

reward for task performance (up to £4 per session). The experiments were approved 159 

by the City, University of London Psychology Department Ethics Committee.  160 

  161 

Stimuli and Procedure 162 

< Insert Figure 1 around here > 163 

Stimuli and Experimental setup 164 

 In the random dot motion task (Figure 1 a), participants saw an array of moving 165 

dots, a proportion of which moved coherently in one direction (equiprobably up or 166 
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down) while the rest moved in random directions (selected for each dot on each 167 

frame). Trial difficulty was manipulated by varying the proportion of dots moving 168 

coherently. The task was displayed on a cathode ray tube (CRT) screen (size: 41 cm 169 

x 30 cm), operating at a refresh rate of 85 Hz and a resolution of 1240 x 786 pixels. 170 

Participants sat at a distance of 100 cm from the screen. In each trial, 300 white 171 

dots, each 0.04 x 0.04 degrees visual angle (dva) in size, were displayed within a 5 172 

dva aperture on a black background. A fixation cross (size: 0.33 x 0.33 dva) was 173 

located centrally. All dots moved at a speed of 3.3 dva per second. The position of all 174 

dots was randomised every five frames. The experiment was coded in Matlab (The 175 

Mathworks, Natick, U.S.A.), using the Psychophysics Toolbox extension (Brainard, 176 

1997; Kleiner et al., 2007; Pelli, 1997) and run on a PC.   177 

 178 

Initially, participants saw a fixation cross for 500 ms (plus a jitter of up to 1000 ms, 179 

drawn from a uniform distribution). Then, 100% of the dots moved randomly for 1000 180 

ms (plus a jitter of up to 1500 ms, drawn from a truncated gamma distribution with 181 

shape parameter 1 and scaling parameter 150). This was followed by the onset of 182 

coherent motion, either upwards or downwards, for up to 2000 ms, or until response. 183 

Feedback was provided after each trial (see SAT Instructions). Two equiprobable 184 

coherence levels generated ‘easy’ (high coherence) and ‘hard’ (low coherence) 185 

trials, which were randomly intermixed. The ‘speed’ and ‘accuracy’ conditions were 186 

blocked. The order of these SAT blocks was counterbalanced across participants.  187 

 188 

Each participant completed a minimum of 100 practice trials, followed by 200 189 

calibration trials (see Difficulty Calibration). In each experimental TMS (EEG) 190 

session, a total of 432 (800) planned trials were completed, and self-timed breaks 191 
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were provided after every 50 (100) trials. In TMS sessions, to ensure the required 192 

frequency of pulses (< .2 Hz), TMS-free trials were added when necessary (see TMS 193 

and EMG Processing), leading to an average of ~500 trials per session.  194 

 195 

Responses 196 

Participants in the TMS experiment held two digital response buttons interfaced via a 197 

16 bit A/D card (National Instruments X-series PCIe-6323, sample rate 100,000 Hz) 198 

in their right hand. One button was placed between the thumb and index finger and 199 

required a ‘pinch’ response, contracting the first dorsal interosseous (FDI) muscle. 200 

The second button was placed on a plastic cylinder in the palm of the hand and 201 

required a ‘grasp’ response, contracting the abductor digiti minimi (ADM) muscle 202 

(Figure 1 b). The pinch and grasp buttons indicated ‘up’ and ‘down’ responses 203 

respectively. In the EEG experiment, participants held one button between the thumb 204 

and index finger of each hand, with right and left-hand button presses indicating 205 

upward and downward motion respectively.  206 

 207 

Difficulty Calibration 208 

 Once participants felt comfortable with the task, they completed a total of 209 

200 staircase trials to calibrate the level of difficulty appropriate for the ‘easy’ and 210 

‘hard’ conditions. A QUEST procedure (Watson and Pelli, 1983) estimated the 211 

coherence levels at which each participant responded correctly in 75% and 95% of 212 

trials, used for the ‘hard’ and ‘easy’ conditions respectively. The stimulus 213 

presentation time was reduced from 2000 ms to 1300 ms, and no feedback was 214 
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provided during QUEST trials. If a participant’s performance led to estimated hard 215 

coherence levels of more than 90%, the participant was excluded from the 216 

experiment. This procedure resulted in a mean coherence of 23.81% in the hard 217 

condition and 65.41% in easy trials in the TMS experiment, and 30.63% for hard, 218 

and 67.67% for easy trials in the EEG experiment.  219 

 220 

SAT Instructions 221 

 After the difficulty calibration, the main experiment began, in which, participants 222 

were instructed to react either as fast or accurately as possible in different blocks. 223 

Additionally, feedback was provided after each trial to either reward participants (by 224 

display of the word ‘Correct’ and a small monetary reward, adding up to a maximum 225 

of £4 per participant) for fast and correct/correct responses in ‘speed’/‘accuracy’ 226 

trials respectively, or provide negative feedback (with the words ‘TOO SLOW’ or 227 

‘INCORRECT’ in green letters on a red screen) when the instructions were not 228 

followed. The inter-trial interval was increased by 1000 ms after each trial with 229 

negative feedback. Neutral feedback (no monetary reward, but a neutral screen with 230 

the words ‘incorrect’ or ‘too slow’) was shown when participants responded fast but 231 

incorrectly in the ‘speed’ condition or accurately but very slowly in the ‘accuracy’ 232 

condition. Whether a response was too slow or not was determined by a variable 233 

deadline which was initially set to 600 ms for the ‘speed’ and 1000 ms for the 234 

‘accuracy’ condition. To optimise performance, the deadlines varied between 450 235 

and 750 ms (‘speed’) and between 700 and 1300 ms (‘accuracy’) and were adjusted 236 

using separate QUEST procedures, targeting accuracy levels of 75% for ‘speed’, 237 
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and 90% for ‘accuracy’ conditions. Feedback was also provided when participants 238 

responded before the onset of the coherent motion (‘too fast’). 239 

 240 

 241 

TMS and EMG Processing 242 

In the TMS experiment, participants’ muscle activity was recorded using surface 243 

electromyography (EMG), sampled at 1000 Hz via a 13 bit A/D Biometrics Datalink 244 

system (version 7.5, Biometrics Ltd., Ladysmith, VA, U.S.A., 2008). We placed 22 245 

mm x 28 mm surface Ag/AgCL electrodes on the skin above the FDI and the ADM of 246 

the right hand, as they contribute to the ‘pinch’ and ‘grasp’ responses respectively. 247 

Reference electrodes were placed at distances of approximately 2 cm to each active 248 

electrode. Participants were instructed to relax their hand muscles in between 249 

responses, and the EMG signals were passed to two speakers to provide auditory 250 

feedback about any unwanted muscle activation. 251 

 252 

During the experiment, single-pulse TMS was applied using a MagstimRapid2 253 

biphasic stimulator (Magstim Co. Ltd., Whitland, UK). A figure-of-eight coil was 254 

positioned over the optimal spot on the scalp over the left primary motor cortex to 255 

elicit MEPs in both the ADM and FDI. The exact location was adjusted for each 256 

participant and the stimulation intensity was set at approximately 110% of the resting 257 

motor threshold, in order to evoke potentials of around 1 mV in both muscles. The 258 

resting motor threshold was defined as the minimal intensity necessary to elicit an 259 

MEP with a peak-to-peak amplitude of ~50 μV in 50% of stimulations in both the FDI 260 
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and the ADM, and was, on average, 59.28% (SD = 7.76) of maximum stimulator 261 

output. 262 

  263 

TMS pulses were planned in 66% of trials, but cancelled if a response was detected 264 

before stimulation. To ensure a good distribution of TMS pulses over the course of 265 

the reaction time, TMS trials were divided into four equally sized, equiprobable time 266 

bins (between 5 ms and 500 ms relative to the onset of the coherent motion in the 267 

‘speed’ condition, and between 5 ms and 600 ms in the ‘accuracy’ condition). Within 268 

a given bin, the exact stimulation time was drawn uniform randomly. Since the 269 

experiment followed a single-pulse TMS protocol, pulses were required to occur at a 270 

maximal frequency of 0.2 Hz. If, by chance, a planned pulse followed a previous one 271 

after less than 5000 ms, the task was adjusted in several ways. If the timespan 272 

between the previous and the planned pulse was less than 5000 ms but more than 273 

4000 ms, the inter-trial interval was increased in order to decrease the pulse 274 

frequency to < 0.2 Hz. For scheduled intervals of less than 4000 ms, the planned trial 275 

was replaced with the next planned stimulation-free trial. If no stimulation-free trial 276 

remained, random stimulation-free trials were generated in order to increase the 277 

interval between TMS pulses, resulting in an average of 68.67 (SD = 15.79) 278 

additional trials per session. 279 

  280 

EMG pre-processing 281 

To eliminate potential differences in the time required to execute ‘pinch’ and ‘grasp’ 282 

responses, we recorded the onset of EMG as a measure of reaction time (EMG RT). 283 

EMG data from both channels were aligned to the onset of the coherent motion 284 
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(stimulus onset) and visually inspected to select the onset of response-related EMG 285 

bursts. Visual inspection provided no information about the experimental condition of 286 

a given trial. 287 

 288 

In TMS trials, MEP amplitudes in both channels (FDI and ADM) of the right hand 289 

were defined as the difference between the minimal and maximal EMG values in a 290 

time window of 10 to 40 ms relative to stimulation time. An algorithm detected EMG 291 

activity prior to the stimulation, discarding any trials in which there was activity 292 

greater than 50 μV peak to peak in a period of 200 ms preceding the stimulation. 293 

These trials, as well as trials in which there was partial activation in more than one 294 

channel, or trials in which a clear EMG onset could not be detected, were excluded 295 

from further analysis (23.39% of trials). Additionally, trials with very fast (< 100 ms) or 296 

very slow (> 1800 ms) response onsets (5.12% of trials), trials in which no MEP was 297 

visible or in which the MEP amplitude could not be accurately detected due to 298 

amplifier saturation (1.05%), and trials in which the response preceded the planned 299 

TMS pulse (6.09%) were excluded. In total, 35.65% of all trials were discarded, with 300 

a total of 17,067 trials remaining, including 6535 usable TMS trials (42.85% of all 301 

planned TMS trials).  302 

  303 

MEP processing 304 

To yield sufficient data to accurately estimate corticospinal excitability in a time-305 

continuous manner, correct-trial MEPs from all participants were combined. Before 306 

pooling, MEP amplitudes were z-transformed separately for each muscle, session 307 

and participant, while TMS latencies were normalised by median RT of TMS-free 308 
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trials in the corresponding session. Z-scored MEPs were then sorted as a function of 309 

stimulation latency (Figure 1 c, e, f) and smoothed using a Gaussian kernel to 310 

recover a continuous time-varying MEP average in steps of 1% median RT:  311 

 312 

(1)  313 

 314 

Where the N contributing MEPs each have amplitude Yi and occur at normalised 315 

time ti. The width of the Gaussian kernel defined by the full width half maximum was 316 

set at 5% of median RT (i.e., around 20ms), previously suggested as an appropriate 317 

compromise between temporal resolution and signal-to-noise ratio (Hadar et al., 318 

2016). This MEP signal was computed for both stimulus and response-locked MEP 319 

latencies, and from the responding muscle, the non-responding muscle and the MEP 320 

amplitude difference between them. Finally, 95% confidence intervals were 321 

estimated around each signal using a bias-corrected and accelerated bootstrap 322 

(BCa) confidence interval, based on 1999 iterations.  Since analyses were restricted 323 

to correct trials, MEPs recorded from the responding muscle always reflected 324 

activation of the correct response, while MEPs form the non-responding muscle 325 

reflected the incorrect response. We focused particularly on the MEP average signal 326 

based on the amplitude difference between responding and non-responding MEPs, 327 

as this eliminates variations due to non-specific influences, such as inhibitory 328 

processes during action preparation, which would result in MEP suppression in both 329 

responding and non-responding muscles (for a review see Duque et al., 2017). 330 

 331 

 332 
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EEG Recording and Processing 333 

Continuous EEG was recorded using 64 active electrodes, placed equidistantly on 334 

the scalp (EasyCap, M10 Montage) and referenced to the right mastoid (BrainAmp 335 

amplifier; BrainProducts; sampling rate: 1000 Hz). The data were pre-processed and 336 

analysed using custom scripts in Matlab (Mathworks, Natick, USA), drawing on 337 

functions from the EEGLAB toolbox (Delorme and Makeig, 2004). 338 

 339 

EEG data were re-referenced to the average reference and digitally bandpass 340 

filtered (0.1 to 45 Hz). Data were visually inspected to remove large muscle artefacts 341 

before applying ICA to remove eye blink components. Any remaining artefacts were 342 

removed manually during a second visual inspection. Afterwards, spherical spline 343 

interpolation was used to reconstruct noisy channels, which were identified and 344 

rejected during the first visual inspection.  In line with the procedures used in 345 

previous CPP studies (Kelly and O’Connell, 2013; O’Connell et al., 2012), the data 346 

were converted to current source density (CSD) estimates using the CSD toolbox 347 

(Kayser and Tenke, 2006). 348 

 349 

Experimental Design and Statistical Analysis 350 

Behavioural Data Analysis 351 

We explored the within-subjects factors Instruction and Difficulty with the levels 352 

speed/accuracy and easy/hard respectively. To test their effects on RT, we used a 353 

2x2 repeated-measures ANOVA. Because accuracy data violate the assumptions of 354 

ANOVA, statistical inferences about errors were made using a generalised linear 355 
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mixed-effects model with a logistic link function and binomial data model (applied 356 

using the ‘fitglme’ function in Matlab). Parameter estimates were based on a 357 

maximum-likelihood method using Laplace approximation and the ‘maximal’ random 358 

effects structure (Barr et al., 2014), i.e. both Instruction and Difficulty, and the 359 

Instruction*Difficulty interaction were entered as fixed effects, and both 360 

manipulations, and their interaction within each participant (and session in the TMS 361 

experiment) were included as random effects. 362 

 363 

MEP Analysis 364 

Two analyses were conducted on the MEP difference signal to confirm that MEP 365 

modulations across time reflected decision-related accumulation processes. We 366 

compared the stimulus-locked build-up rate, expected to be steeper in easy than 367 

hard trials, and the response-locked signal amplitude, which should not vary across 368 

difficulty levels at the time of decision. Comparisons were also made across speed 369 

instructions, although no clear predictions could be made regarding how evidence 370 

accumulation should vary in this case. MEP data were permuted across easy and 371 

hard (or across speed and accuracy) trials1999 times. Mean MEP signals (and 90% 372 

BCa confidence intervals; see below) were then computed for each iteration. The 373 

build-up rate was then estimated from both the original and the resampled data as 374 

the slope of a straight line fitted to the stimulus-locked signal in a time window 375 

ranging from half median up to median RT (corresponding to around 200 to 400 ms 376 

after stimulus onset). Slope differences between difficulty levels or instructions were 377 

considered significant if smaller (or larger) than the lower (or upper) 2.5% of the 378 

corresponding slope-difference null distribution obtained from resampled signals. 379 
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 380 

To test response-locked amplitude differences while controlling for multiple 381 

comparisons, a cluster statistic was calculated (c.f. Blair and Karniski, 1993; Groppe 382 

et al., 2011; Nichols and Holmes, 2001). Potential regions of difference between 383 

conditions were based on contiguous time periods with no overlap between 90% 384 

bootstrap BCa confidence intervals (the arbitrary “cluster threshold”). A cluster sum 385 

was calculated within each such putative cluster, and was considered significant 386 

when this sum of the point-by-point differences fell outside the central 95% of the 387 

corresponding distribution of the biggest cluster sum obtained from resampled 388 

signals. Amplitude differences were assessed on both stimulus and response-locked 389 

signals. 390 

 391 

ERP Analysis 392 

For the ERP analysis, we extracted both stimulus (-200 to 2000 ms, relative to 393 

coherent motion onset) and response aligned (-1000 to 100 ms, relative to the button 394 

press) epochs. All epochs were baseline corrected to the average over a 200 ms 395 

period preceding motion onset. The appropriate electrode to generate the CPP 396 

waveform was chosen individually, by visually inspecting each participant’s averaged 397 

ERP topography to identify the centroparietal region of maximum amplitude (chosen 398 

electrodes: 1, 5, or 14, roughly equivalent to electrodes Cz, CPz, Pz in the 10-20 399 

system). The activity recorded on the selected electrode was averaged for each 400 

condition (collapsed over ‘up’ and ‘down’ trials) and for stimulus and response-locked 401 

signals separately. In line with Kelly and O’Connell (2013), we measured the slope of 402 

the CPP for each participant, by fitting a straight line to the waveform from 200 to 403 
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350 ms in the stimulus-locked data. Additionally, we measured the peak amplitude of 404 

the response-locked ERP by averaging over the amplitude of the waveform from -50 405 

to 50 ms relative to the response. Differences across conditions were assessed with 406 

a 2x2 repeated-measures ANOVA. 407 

 408 

Modelling 409 

Free-excursion race model  410 

According to a standard free-excursion race model (Bogacz et al., 2006; Laberge, 411 

1962; Vickers, 1970) evidence supporting the correct and the incorrect response is 412 

integrated independently in two accumulators. The amount accumulated at each 413 

time step (dx) is given by: 414 

 415 

dxcorrect  vcorrect + N(0,σ2)                               416 

(2)              dxincorrect  vincorrect + N(0,σ2)                            417 

 418 

Where xcorrect and xincorrect are the quantities accumulated, and vcorrect and vincorrect the 419 

input evidence (i.e. accumulation rate, see below) in favour of the correct and the 420 

incorrect responses. Noise, N, drawn from a normal distribution of mean 0 and 421 

standard deviation σ, is also integrated at each iteration. To avoid negative values, 422 

evidence accumulated at each time step is updated as:  423 

 424 

      xcorrect (t + 1) = max(0, xcorrect(t) + dxcorrect)                         425 

(3)        xincorrect (t + 1) = max(0, xincorrect(t) + dxincorrect)                         426 
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 427 

Correct and incorrect accumulator starting points are drawn in each trial from a 428 

uniform distribution ranging between 0 and SZ. As soon as one of the accumulators 429 

reaches the response boundary A, the corresponding response is selected. The 430 

response time is then modelled as the time required to reach the boundary, plus 431 

non-decision time, during which sensory and motor processes occur, drawn from a 432 

uniform distribution centred on Ter and of width STer. In a standard race model for a 433 

binary decision, this leads to a total of seven parameters (A, Sz, vcorrect, vincorrect, Ter, 434 

STer, σ2). One parameter is chosen as a scaling parameter and fixed to an arbitrary 435 

value, resulting in a total of six free parameters. 436 

 437 

To apply this model to the data in this experiment, we added accumulation rate 438 

parameters to account for the different difficulty conditions (veasy_correct, veasy_incorrect, 439 

vhard_correct, vhard_incorrect). This implementation of difficulty is well-established and has 440 

been validated using both behavioural and neural data (Mulder et al., 2014; Ratcliff 441 

and McKoon, 2008; Ratcliff and Rouder, 1998; Roitman and Shadlen, 2002; Twomey 442 

et al., 2015). In order to explain differences due to SAT instructions, we added a 443 

second boundary parameter. The boundary for ‘accuracy’ trials Aaccuracy acted as a 444 

scaling parameter and was fixed to 1, while the boundary for the ‘speed’ condition, 445 

Aspeed, was free to vary. We tested three different models: one in which all remaining 446 

parameters were fixed across conditions (Model 1), one in which the starting point 447 

parameter Sz was free to vary across SAT conditions (Model 2), and one in which the 448 

non-decision time parameter Ter was free to vary across SAT conditions (Model 3; 449 

see Table 1). 450 
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Modelled RTs were simulated based on Equations 2 and 3 (10,000 simulated trials 451 

with a 1% median RT time step, around 4ms, for TMS and a 10ms time step for 452 

EEG) and compared to pooled RT data using Quantile Maximum Probability 453 

Estimation (Heathcote et al., 2002). Specifically, we estimated empirical RT quantiles 454 

(at 0.1, 0.3, 0.5, 0.7 and 0.9), for both correct and erroneous responses, and 455 

compared counts of simulated RTs in the resulting bins against the predicted 456 

multinomial distribution. Parameter values were adjusted using a differential 457 

evolution algorithm implemented in Matlab (Price et al., 2005). The goodness-of-fit of 458 

the different models was assessed by computing the Akaike information criterion 459 

(AIC, Akaike, 1977). 460 

 461 

Forced-excursion Race model variant 462 

To test the hypothesis that the SAT is not implemented through decision bound 463 

variation per se, but rather by more widespread changes of neural activity, we 464 

constructed a forced-excursion model variant in which decision boundaries are fixed 465 

and the effects of the SAT are transferred onto all other parameters. All parameters 466 

of the free-excursion race model estimated in the speed condition were divided by 467 

the speed boundary Aspeed (apart from Ter and STer). This forced-excursion version of 468 

the model is mathematically equivalent to the original one as, given the scaling 469 

property of sequential sampling models, multiplying all models parameters (except 470 

Ter and STer) by the same amount does not affect model predictions (Donkin, Brown, 471 

et al., 2009). A simple ‘rescaling’ of speed parameters hence results in a new set of 472 

parameters in which the speed and accuracy response boundaries are equal, and 473 

the SAT modulation is transferred onto the other decision-related parameters. 474 
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 475 

Model predictions 476 

TMS experiment: In each session, EMG RTs were normalized by median EMG RT, 477 

and trials were pooled across sessions and participants. On average, we obtained 478 

2,651 trials per condition, used to determine best-fitting parameters at the group 479 

level. We then generated predictions according to the free and forced-excursion race 480 

model variants by simulating evidence accumulation. To allow for a direct 481 

comparison, model predictions were constructed identically to the accumulation 482 

signals derived from our experimental data, i.e., as MEP difference average signals. 483 

 484 

For both models, and each condition, 20,000 single-trial accumulation paths were 485 

computed based on Equations 2 and 3 (in 0.5% median EMG RT time steps). Each 486 

modelled MEP amplitude was determined by the value of one of the single-trial 487 

simulated accumulation signals reached at a (simulated) TMS latency, based on 488 

stimulation times applied during the experiment (see Figure 1 d-f). The difference 489 

between correct and incorrect values was used to model the MEP difference signal. 490 

As in experimental data, trials were discarded when simulated RT was shorter than 491 

TMS latency (i.e., the response would have been given before the TMS pulse). The 492 

duration of sensory and motor processes, which are represented by a single Ter 493 

parameter, have to be allocated to pre and post-accumulation processes in order to 494 

generate predictions. Since we modelled accumulation observed in or around M1, 495 

we assumed that post-accumulation stages would only relate to response execution, 496 

which could reasonably be ignored, as reaction times were defined up to EMG onset. 497 
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Therefore, the whole of Ter was allocated to pre-accumulation processes, and 498 

accumulation started after a delay of Ter ± STer. 499 

 500 

From simulated MEPs, predicted continuous MEP signals were then computed by 501 

applying the same smoothing method applied to the MEP data. Finally, accumulation 502 

signals based on predicted MEPs were compared to the empirical MEP signal using 503 

a mean squared error metric, after a scaling procedure was applied to match 504 

modelled and experimental signal amplitudes. Modelled signals were vertically 505 

normalized by the value minimizing the mean squared error, estimated using the 506 

previously described differential evolution algorithm. Note that even though this 507 

normalization could differ between the free and forced-excursion models, the same 508 

value was applied within each model to all conditions, and to stimulus and response-509 

locked signals.  510 

 511 

Finally, two complementary statistical analyses compared the mean squared errors 512 

obtained for the free and forced-excursion model variants, to determine which 513 

predictions displayed greater similarities to the neural signal. First, goodness-of-fit of 514 

the model predictions was computed based on AIC values, using the formula AIC = 515 

n*log(MSE) + 2K (Burnham and Anderson, 2004), where n is the number of 516 

observations, MSE the mean squared error, and K the number of free parameters 517 

(K=1 in this case, as only amplitude was allowed to vary freely to fit recorded MEP 518 

signals). AIC was then used to compute Akaike model weights, which can be seen 519 

as the weight of evidence in favour of each model. 520 

 521 
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The second analysis applied a bootstrap procedure estimating the distribution of 522 

differences of mean squared error between the free and forced-excursion models, in 523 

order to determine the bias-corrected1 95% confidence interval around the observed 524 

difference. To estimate the distribution, EMG RT data were resampled 1999 times 525 

with replacement within each condition. The best-fitting parameters for the original 526 

and each resampled set of EMG RT data were then estimated by a simplex 527 

algorithm implemented in Matlab (Lagarias et al., 1998), using the original 528 

parameters as starting values2. As for the original analysis, forced-excursion 529 

parameters were obtained by normalising the free-excursion parameters by the 530 

response boundary value obtained in the speed condition, and MEP signal 531 

predictions for free and forced-excursion models were computed. Mean squared 532 

errors were then calculated between these bootstrapped signal predictions and a set 533 

of equivalently resampled MEP signals, again after applying a scaling procedure 534 

matching signals amplitudes (via a differential evolution algorithm, Price et al., 2005). 535 

The 95% bias-corrected confidence interval was estimated based on the bootstrap 536 

distribution of mean squared error differences between the free and forced-excursion 537 

models. 538 

 539 

EEG experiment: RTs were pooled across participants to fit the models at a group 540 

level. As EEG signals integrate spatially disparate underlying neuronal activity, we 541 

reasoned that the CPP would likely represent the sum of evidence accumulators 542 

across time. The corresponding accumulation signals predicted by the models 543 

should therefore be obtained by adding up the correct and incorrect accumulators’ 544 

                                                            
1 Bias-correction was used rather than bias-correction and acceleration (BCa) to make the time of 
computation manageable.  
2 The Simplex algorithm was preferred to the differential evolution algorithm in this case to reduce the 
time of computation. 
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activities. For both models and each speed and coherence level condition, 10,000 545 

single-trial accumulation paths were computed based on Equations 2 and 3. To 546 

account for sensory processes, accumulation started after a sensory delay. Once a 547 

decision was made, we assumed that evidence accumulation continued until the 548 

response was executed (and the stimulus was turned off). Accumulation therefore 549 

continued after the boundary was reached for the duration of any motor processes 550 

(Resulaj et al., 2009; Twomey et al., 2015). The compound duration of sensory and 551 

motor processes were given by the model non-decision time Ter, which we divided 552 

into Te and Tr, modelling sensory and motor processes respectively. As detailed 553 

below, this division was optimized for each model. To match with EEG processing, 554 

the sum-of-accumulations signal was baseline corrected by subtracting the first data 555 

point value from each trial. Finally, to compare the prediction to the CPP, we 556 

averaged accumulation signals in each condition, either time-locked on stimulus 557 

onset (i.e., time 0), or on response time (the time of the corresponding simulated 558 

RT). Since we can only speculate on how the accumulator behaves once the 559 

response is executed, trials were removed from averaging once the simulated 560 

response time had been reached (and the same procedure was used for the 561 

averaging of empirical EEG data).  562 

 563 

The similarity between the CPP and the predicted decision variable of each model 564 

was quantified by computing the mean squared error between mean signals. To 565 

provide optimal CPP predictions, the amplitude of each summed signal was scaled 566 

to match the CPP amplitude, and the division of non-decision time Ter into encoding 567 

time Te and response time Tr was determined. The optimal scaling factor and Ter 568 
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division were obtained for each model signal using differential evolution (Price et al., 569 

2005), minimising the mean squared error.  570 

 571 

Finally, as in the TMS experiment, a bootstrap analysis (bootstrapping both RT and 572 

EEG data) determined whether the mean squared error calculated for the free- and 573 

the forced-excursion models had a 95% confidence interval excluding zero, i.e. 574 

whether they differed significantly. In this experiment, no AIC-based comparison was 575 

attempted because EEG data points have complex temporal dependencies (i.e. 576 

autocorrelation) that make it difficult to establish the likelihood with which a model 577 

predicts these neurodynamic data. 578 

 579 

Results 580 

Behavioural Results  581 

Trials remaining after pre-processing were collapsed over ‘up’ and ‘down’ trials 582 

(Figure 2). Both experiments revealed the same behavioural effects. As expected, 583 

RTs were faster under speed than accuracy instructions (TMS: F(1,17) = 26.90, p < 584 

.001, ηp
2 = .61; EEG: F(1,22) = 36.47, p < .001, ηp

2 = 0.62), as well as in easy 585 

compared to hard trials (TMS: F(1,17) = 62.14, p < .001, ηp
2 = .79; EEG: F(1,22) = 586 

120.12, p < .001, ηp
2 = 0.85). Additionally, Instruction and Difficulty interacted (TMS: 587 

F(1,17) = 10.80, p = .004, ηp
2 = .79; EEG: F(1, 22) = 36.47, p < .001, ηp

2 = .62). 588 

Follow-up t-tests revealed that the effect of difficulty was larger in the accuracy 589 

condition (p < .001) than in the speed condition (p < .001). All reported effects in the 590 
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TMS experiment are based on EMG RT (time of EMG onset), but results based on 591 

response-button RT were not qualitatively different. 592 

 593 

For error data, a generalised linear mixed-effects model revealed higher accuracy 594 

scores under accuracy compared to speed instruction (TMS: t(208) = 4.81, p < .001; 595 

EEG: t(88) = 7.76, p < .001), as well as in easy trials compared to hard trials (TMS: 596 

t(208) = 4.57, p < .001; EEG: t(88) = 4.68, p < .001). The Instruction*Difficulty 597 

interaction was not significant (p > .05). 598 

 599 

< Insert Figure 2 around here > 600 

Neural Results 601 

MEP-average signals  602 

MEP amplitudes from correct trials were collated and smoothed to form three 603 

categories of MEP-average signal: Responding, non-responding, and the difference 604 

between them. Responding and non-responding MEP-average signals obtained for 605 

each condition are presented in Figure 3 a. The responding MEP-average signal 606 

(associated with the correct response) builds up gradually during the reaction time 607 

period, while the non-responding signal (associated with the incorrect response) 608 

remains fairly flat. However, our main focus was the difference in MEP amplitudes 609 

between responding and non-responding muscles (Figure 3 c). Statistical analyses 610 

confirmed that this MEP signal displays characteristics consistent with the 611 

hypothesis that M1 excitability reflects an accumulation process. We found that the 612 

stimulus-locked signal built up faster in easy than hard trials (for both speed, p = 613 
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.049, and accuracy, p < .001 instructions), and that the response-locked signal 614 

amplitude reached similar levels just before the response regardless of trial difficulty, 615 

with cluster permutation tests showing no significant divergence between conditions 616 

(p = 1). Differences were however observed in stimulus-locked averages, with higher 617 

amplitudes evident in easy compared to hard trials from 75% median EMG RT (~294 618 

ms) in the speed condition (p = .005) and from 81% (~318 ms) under accuracy 619 

instructions (p < .001). The latter results demonstrate that we had sufficient power to 620 

detect MEP amplitude differences. Collectively, our results show that the MEP-621 

average difference signal is a viable neural correlate of the decision variable. 622 

However, no difference was observed between speed and accuracy instructions, on 623 

either the slope or amplitude of MEP accumulation (all p > .1). 624 

 625 

ERP Results 626 

The CPP is displayed in Figure 3 b. Like the MEP-average difference signal, it builds 627 

over the course of the decision, at a rate reflecting the difficulty of the decision. For 628 

build-up rate, there was a significant main effect of Difficulty (F(1,22) = 14.70, p = 629 

.001, ηp
2 = .40), with higher slopes in easy compared to hard trials. There was no 630 

main effect for Instruction, and no interaction, in either of the time alignments (p > 631 

.26).  632 

 633 

There was also a main effect of Difficulty on the peak amplitude of the response-634 

locked CPP, F(1,22) = 8.53, p = .008, ηp
2 = .28, with higher amplitudes in the easy 635 

compared to the hard conditions. However, again we found no main effect for SAT 636 

Instruction and no interaction (p > .22).  637 



 

28 
 

 638 

Summarising the neural data, neurodynamic signals derived from two very different 639 

imaging methods converged to yield the same outcome: Clear effects of adjusting 640 

task difficulty, particularly on the rate of accumulation, but no statistically reliable 641 

effects of speed/accuracy instruction, despite the fact that these two manipulations 642 

had similar magnitudes of behavioural effect (mean RT effect sizes, i.e. ηp
2, of 0.62 643 

for SAT instruction vs 0.82 for difficulty). 644 

 645 

< Insert Figure 3 around here > 646 

  647 

Model selection 648 

In both experiments, we fitted several models to RT data and used AIC to select the 649 

best candidate with which to go on and make neural predictions. The winning race 650 

model (Model 2; see Table 1) varied both response boundary and starting-point 651 

between different SAT instructions (and also varied drift rates with changes in 652 

difficulty). As anticipated, the best-supported model’s best-fitting parameters (shown 653 

under “free-excursion” in Table 2) show that the response boundary decreased 654 

under speed instruction, and that accumulation rates were higher for easy than hard 655 

trials. Additionally, starting-point variability was larger under speed instructions. 656 

Since the starting-point distribution ranges from 0 to the starting-point parameter Sz, 657 

larger starting-point variability also implies a larger mean starting-point, further 658 

decreasing the distance between baseline and boundary. The quality of the fit was 659 

good (see Figure 4). 660 

 661 
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< Insert Figure 4 around here > 662 

< Insert Table 1 around here > 663 

< Insert Table 2 around here > 664 

 665 

Importantly, we also re-expressed this model under a forced-excursion constraint. In 666 

this forced-excursion version, parameter normalisation forced the speed response 667 

boundary to be the same as the accuracy boundary, with the SAT being transferred 668 

onto accumulation rate and variability parameters. Note that the forced-excursion 669 

version of this model is mathematically equivalent to the standard one, with identical 670 

predicted RTs and error rates.  671 

 672 

Stimulus and response-locked accumulation signals for each experiment and each 673 

condition predicted by the free and forced-excursion variants of the best-supported 674 

model are shown in the lower panels of Figure 3. Broadly the same patterns were 675 

predicted in both experiments. The main difference between free and forced-676 

excursion predictions is the level of accumulation reached at the time of the decision. 677 

This is evident in the amplitude of response-locked signals attained just before 678 

response selection, which is predicted to be higher under accuracy than speed 679 

instructions for the free-excursion model, but similar in the forced-excursion model 680 

(Figure 3 panels d-h). Note that, while this pattern is more pronounced in the forced-681 

excursion predictions associated with the MEP signal (Figure 3 e) than the EEG 682 

signals (Figure 3 h), the reduced amplitude difference between speed and accuracy 683 

profiles prior to the response is evident in both experiments, and importantly, both 684 

forced-excursion model predictions capture the patterns seen in the corresponding 685 

neural data (Figure 3 c, f). In the stimulus-locked predictions, easy trials display a 686 
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steeper build-up than hard trials, yet, interestingly, even though accumulation rates 687 

in the forced-excursion model were higher under speed than accuracy instructions 688 

(see Table 2), the predicted signal was not correspondingly steeper in this case (see 689 

Figure 3 panels e, h). For MEPs, this may be partly explained by the fact that both 690 

correct and incorrect accumulation rates increased, such that the slope of the 691 

(motoric, thus difference-based) accumulation signal remained unaffected. However, 692 

the similar pattern observed in CPP predictions (which were modelled as a sum of 693 

accumulators, because this signal occurs relatively early and is not response-694 

specific) indicates that the ~20% change in modelled accumulation rate was 695 

insufficient to generate a substantial increase in predicted slope when combined with 696 

the associated changes in noise parameters. 697 

 698 

Summarising these observations, the signals predicted by the forced-excursion 699 

version of the best-supported model appear to better reproduce the pattern of the 700 

recorded CPP and MEP signals than do those predicted by the free-excursion 701 

version. Specifically, the accumulation slope is steeper in easy than hard trials, but 702 

not different between speed and accuracy conditions, and a similar signal amplitude 703 

is attained before response for both coherence levels, and, crucially, under both SAT 704 

instructions.  705 

 706 

Statistical analyses confirmed these observations. Akaike weights in the TMS 707 

experiment indicated that neurodynamic predictions from the forced-excursion model 708 

variant were better matched to the MEP signals than were free-excursion predictions 709 

(forced-excursion: 0.994, free-excursion: 0.006). Additionally, bootstrap analysis 710 

showed that the mean squared error between predicted MEP signals and recorded 711 
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MEP values was significantly lower for the fixed than the free-excursion model (p = 712 

.018, 95% bias-corrected confidence interval on difference: [0.005; 0.056]3). The 713 

same bootstrap analysis revealed similar results in the EEG experiment, where the 714 

forced-excursion model predicted profiles more similar to the CPP than the free-715 

excursion model (p = .026, 95% bias-corrected confidence interval on this difference: 716 

[1.55; 21.32])4. 717 

 718 

 719 

  720 

                                                            
3 Although a significant difference was observed using a BCa confidence interval, this was not the 
case when a simpler percentile interval was used. This result should hence be interpreted cautiously 
(but is bolstered by our subsequent findings with EEG). 
4 For consistency, we repeated the model comparison for the ERP data set with RT normalised data 
and found that the results were unchanged. 
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Discussion  721 

We utilised two separate electrophysiological methods to explore the neurocognitive 722 

mechanisms underlying the speed-accuracy tradeoff, a central yet unresolved issue 723 

in decision-making research. The model-based behavioural literature suggests that a 724 

variation in the decision boundary (or, equivalently, a change in the baseline level) 725 

explains the SAT (Brown and Heathcote, 2008; Smith and Ratcliff, 2004; Usher and 726 

McClelland, 2001), but recent neural evidence has not supported this claim, 727 

suggesting more widespread changes (Hanks et al., 2014; Heitz and Schall, 2012, 728 

2013; Murphy et al., 2016). To resolve this paradox, we hypothesised that the SAT 729 

may result from changes which are mathematically equivalent to a modulation of the 730 

decision boundary, but which are implemented physiologically through global 731 

changes in neural activity akin to turning up the gain in the brain. We recorded 732 

neurodynamic substrates of decision-making during a motion discrimination task with 733 

two difficulty levels and under instructions to focus on either response speed or 734 

accuracy. The resulting data converged to favour the predictions made by a forced-735 

excursion model variant in which the SAT is implemented by adjusting both the 736 

signal (i.e. accumulation rates v) and noise (i.e. noise parameters Sz and σ) affecting 737 

accumulation-related neural activity.  738 

Although our main interest was the SAT, we included a difficulty manipulation as a 739 

“sanity test” regarding the validity of our neurodynamic decision correlates. The 740 

impact of difficulty on evidence accumulation has been demonstrated previously, 741 

with both sequential sampling models and proposed neural correlates of 742 

accumulation displaying steeper build-up rates in easier decisions (Kelly and 743 

O’Connell, 2013; Mulder et al., 2014; Ratcliff and McKoon, 2008; Roitman and 744 
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Shadlen, 2002). Accordingly, we found that faster and more accurate responses in 745 

easy trials were explained by higher accumulation rates in both experiments. These 746 

patterns were observed in both neural signals and their simulated accumulation 747 

profiles and, consistently with previous studies (Hadar et al., 2016; O’Connell et al., 748 

2012), support the role of MEP and CPP signals as neural correlates of the decision 749 

variable, with corticospinal excitability likely receiving a time-lagged but continuous 750 

input from CPP/decision-generating regions. 751 

Like the difficulty manipulation, SAT instructions also resulted in the expected 752 

behavioural changes, with faster and more error prone responses under speed 753 

instructions. In line with many previous studies (Brown and Heathcote, 2008; Heitz, 754 

2014; Ratcliff and McKoon, 2008; Usher and McClelland, 2001), our free-excursion 755 

race model accounted for behavioural effects of the SAT, primarily by varying the 756 

amount of accumulated evidence required to make a decision. However, since 757 

recent studies exploring neural correlates of decision-making have challenged this 758 

implementation of the SAT (Hanks et al., 2014; Heitz and Schall, 2012, 2013; 759 

Murphy et al., 2016), we used a forced-excursion variant which models a global gain 760 

modulation by adjusting the parameters of the free-excursion race model so that the 761 

boundary was equal across SAT conditions, thus transferring the estimated 762 

difference between response bounds onto all other parameters affecting 763 

accumulation. In other words, a fixed boundary between SAT conditions was made 764 

mathematically equivalent to the free-excursion model by assuming different 765 

underlying mechanisms, with changes between SAT conditions explained not by 766 

boundary differences, but by differences between virtually all other parameters, 767 

modelling a global shift in decision-related brain activity. 768 
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When we compared predicted accumulation profiles from both the free and the 769 

forced-excursion model variants to our neural data, a fixed boundary provided 770 

significantly better degrees of correspondence between them (we avoid the term 771 

“goodness of fit” here, because predictions were based on RT data, with little 772 

adjustment required to capture neurodynamic trends). We should, however, offer the 773 

caveat that the statistical basis of this result is unconventional. By utilising 774 

permutation tests on pooled data, we compared against sampling distributions 775 

derived from the population of all possible trials from our particular set of 776 

participants, rather than the population of all possible participants. However, 777 

generalisations to an even less representative population (e.g. all neurons of a given 778 

type within a single monkey) are commonplace in neuroscience. Furthermore, there 779 

are several additional observations that support our conclusion that the forced-780 

excursion model variant was best. In both model and data, the stimulus-locked 781 

profiles displayed a slope difference between easy and hard trials and no difference 782 

between speed and accuracy trials. Importantly, in the response-locked model 783 

predictions, the terminal amplitude differences between SAT conditions were 784 

reduced compared to the predictions retaining a free excursion, better resembling 785 

the neural signals. These findings support the hypothesis that differences induced by 786 

SAT instructions are explained by a global modulation of activity rather than by 787 

varying a single specific parameter/process. 788 

Previous attempts to explain the SAT in the absence of variation in the decision 789 

boundary have done so by incorporating an urgency signal, i.e. an evidence-790 

independent signal, which over time pushes the accumulation process towards a 791 

boundary (Cisek et al., 2009; Hawkins et al., 2015; Thura et al., 2012). This 792 

integration of urgency is not dissimilar to our suggestion of an amplified 793 
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accumulation process. Both approaches avoid a variation in response boundary by 794 

boosting accumulation in hasty decisions, and make broadly analogous predictions 795 

regarding the SAT’s impact on accumulation profiles. 796 

However, urgency models do differ mathematically from our forced-excursion model. 797 

While the former assume the addition of an independent and growing signal, i.e. a 798 

time-varying process, the latter is obtained by an adjustment of parameters derived 799 

from the more established free-excursion model, implying a time-invariant intrinsic 800 

amplification of the accumulation process induced by global changes of the system. 801 

To expand on this distinction (with the important caveat that the urgency has been 802 

implemented in different ways by different authors) – urgency may be implemented 803 

as the addition of an evidence-independent signal at each time step, with this signal 804 

growing over time (e.g. Hanks et al., 2014), or as the multiplication of evidence by 805 

such a signal (e.g. Ditterich, 2006) in which case accumulation noise is also subject 806 

to this time-varying gain. In the latter approach, the integration of evidence over time 807 

may additionally be deliberately downplayed via (very) leaky integration (e.g. Cisek 808 

et al., 2009). By contrast, our modelling instead captured the SAT by amplifying both 809 

signal and noise in a constant manner throughout the decision (with noise even 810 

amplified prior to the onset of the imperative stimulus, via the Sz parameter). This is 811 

what we mean here by neural gain modulation – the amplification of both signal and 812 

noise in a time-independent manner. Note that the way starting-point noise was 813 

implemented here implies that it effectively conflates mean starting point with start-814 

point variability (see methods/results). In this sense, our “fixed-excursion” 815 

terminology is a slight misnomer – some part of our model’s ability to explain the 816 

SAT in both behavioural and neural data is still dependent on a reduction in 817 
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excursion, but several other parameters also play a role, and the decision bound is 818 

fixed. 819 

We wish to note that we are in no sense hostile to the concept of urgency. In fact, we 820 

tested urgency models as an additional exploratory analysis, but opted not to include 821 

these results for reasons of brevity and clarity.5 Indeed, we find the concept of 822 

“urgency” to be a useful one that somewhat overlaps our “neural gain” hypothesis 823 

and finds support in the neuroscientific literature (e.g. Thura and Cisek, 2017). 824 

Therefore, we do not claim that our model is better supported than urgency models, 825 

either here or in general. However, since a number of studies evaluating the concept 826 

of an urgency signal have been unable to support it, suggesting instead that 827 

standard sequential sampling models can fully account for all behavioural data (Balci 828 

et al., 2011; Hawkins et al., 2015; Karsilar et al., 2014), we propose that forced-829 

excursion model variants should at least be considered as an appropriate alternative 830 

to urgency signals, reconciling decades of model-based support for decision 831 

boundary variation with recent neural evidence.  832 

Although we have argued that the simulated accumulation profiles of the forced-833 

excursion model closely resemble both of our neural signals, supporting the notion of 834 

a global modulation of activity as the underlying mechanism explaining the SAT, 835 

there are nonetheless some differences between the empirical and simulated 836 

profiles. However, any model is a simplified approximation of the true neurocognitive 837 

mechanisms and is unlikely to perfectly simulate any given process. This is 838 

particularly the case for neural signals which inherently have a low signal-to-noise-839 

                                                            
5 We implemented two kinds of urgency model, with a linear urgency signal proving more successful. 
This model was about as good as those we present here when fitting our behavioural data (it provided 
a better fit in the EEG experiment, but a worse one in the TMS experiment). For neurodynamic data, it 
performed very similarly to our forced-excursion model in the EEG experiment. Its ability to capture 
these data in the TMS experiment lay approximately mid-way between our forced and free-excursion 
classic models, but did not differ significantly from either one. 
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ratio, such as ERPs and in particular the MEP signal. Somewhat limited signal 840 

quality is however typical for experiments of this nature (Hadar et al., 2016; 841 

O’Connell et al., 2012), and we used large numbers of trials in both experiments, 842 

producing demonstrably interpretable neural signals. We would argue that the 843 

correspondence between model predictions and neural data, both here and 844 

elsewhere, is remarkable, given a class of models originally conceived to have a 845 

largely behavioural scope (Luce, 1986). 846 

All neuroscientific methods have limitations. For example, our MEP signal is derived 847 

from a technique that both records and perturbs neural activity, with implications that 848 

are difficult to precisely predict (Hadar et al., 2016). However, methodological 849 

triangulation is an established approach to building a convincing body of evidence. 850 

Here, we obtained converging evidence from two fundamentally different signals, as 851 

both corticospinal excitability and a parietal ERP displayed qualitatively similar 852 

findings. While there were small practical differences between the experiments (e.g. 853 

one vs. multiple sessions, bilateral vs. unilateral responses), these are unlikely to 854 

qualitatively alter the accumulation process, and we have matched the simulation of 855 

model predictions to the processing of each neural signal to further reduce the 856 

impact of methodological differences on our interpretation. Although the suggestion 857 

that these signals represent decision accumulation is recent, both signals were 858 

modulated by the difficulty manipulation, supporting this account. Furthermore, 859 

previous research using more established neural correlates of decision-making in 860 

non-human primates has shown similar findings, suggesting widespread changes in 861 

activity when the SAT is manipulated (Hanks et al., 2014; Heitz and Schall, 2012, 862 

2013). Collectively, we believe these neural findings warrant adjusting even a well-863 
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established model (by rescaling its parameters) given that the adjustment is purely 864 

conceptual and does not affect the behavioural fit.  865 

A final potential concern relates to our decision to fit models to pooled data, i.e. at 866 

the group, rather than individual, level. Such collation may give rise to distorted RT 867 

distributions relative to the shape of underlying individual distributions. However, 868 

where comparisons have been made between the mean of sequential sampling 869 

model parameters derived from individual fits, and the same parameters derived 870 

from a single group fit, they have tended to suggest that the group fitting approach is 871 

not particularly problematic (e.g. Ratcliff et al., 2003, 2004). The procedure has been 872 

used in several recent papers (e.g. Dmochowski and Norcia, 2015; Twomey et al., 873 

2015). 874 

In conclusion, we set out to explore the neural mechanisms of the SAT by examining 875 

two neural correlates of the decision variable, an MEP signal reflecting corticospinal 876 

excitability and a parietal ERP component known as the CPP. The SAT is typically 877 

explained in sequential sampling models as a variation of the decision boundary. 878 

Here, we tested whether this variation is visible in neural activity or if it might instead 879 

be implemented through a mathematically equivalent gain change in neural activity. 880 

Our decision-related neural activity, independently sourced from two brain networks, 881 

resembled the accumulation profiles predicted by a forced-excursion model variant in 882 

which the boundary differences are transferred onto other decision parameters. 883 

Consistent with previous studies, our results therefore indicate that the SAT is 884 

implemented by global changes of neural activity, but that this conceptually important 885 

outcome does not necessarily invalidate traditional modelling approaches. 886 

  887 
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Table Legends 1078 

Table 1: Model Comparison: BIC and AIC values for each model and each 1079 

experiment (best BIC and AIC values in bold).The terms  "fixed" and "free" here 1080 

relate specifically to changes across speed/accuracy instructions, as accumulation 1081 

rate (V) was always free to vary between difficulty conditions. 1082 

  1083 
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Table 2: Estimated parameter values for the best-supported model (Model 2) when 1084 

expressed with both free and forced-excursion in both experiments. The response 1085 

boundary A in the 'accuracy' condition was set to 1 as a scaling parameter. 1086 

Parameters are not comparable across experiments, as the TMS fit is to data 1087 

normalised to the median RT of each participant.  1088 
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Figure Captions 1089 

Figure 1: TMS experiment procedure: a) random dot motion task: after a fixation 1090 

cross and a period of random motion, coherent motion (here: upward, coherence 1091 

70%) is displayed for 2000 ms or until response (the same task was used in the EEG 1092 

experiment); b) response setup in TMS experiment: Participants held one button (up) 1093 

between their thumb and index finger (pinch) and one in the palm of their hand 1094 

(down), attached to a cylinder (grasp); EMG electrodes were placed on the ADM and 1095 

FDI; c) example EMG traces from a single trial (here, a hard speed trial, where the 1096 

responding muscle is the FDI and the non-responding muscle is the ADM); d) To 1097 

create model predictions which are comparable to MEP data, accumulation values 1098 

from both the correct accumulator (corresponding to the responding muscle) and the 1099 

incorrect accumulator (corresponding to the non-responding muscle) are sampled at 1100 

simulated TMS times; e) Illustrative real MEP amplitudes (from the speed/easy 1101 

condition) collated from all participants; f) MEPs and simulations (not shown) are 1102 

then z-scored per muscle, participant, and session (note that latencies were 1103 

normalised by the median, not maximum, EMG RT for each participant); g) real and 1104 

simulated continuous signals can be created for each muscle (responding, non-1105 

responding), using a Gaussian smoothing kernel; h) however, to remove non-specific 1106 

processes, the same smoothing is applied to the difference between simultaneously 1107 

recorded MEPs (responding minus non-responding).  1108 

1109 
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Figure 2: Behavioural results for both the TMS experiment (a) and the EEG 1110 

experiment (b): reaction time (left) and accuracy scores (right) for each condition. 1111 

Top left panel shows both EMG RT (bars) and button RT (dashed lines). Error bars 1112 

indicate 95% Confidence Interval. ** indicates p < .001. 1113 

  1114 
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Figure 3: Neural and modelling results: Top: neural data; Bottom: model comparison; 1115 

Left: TMS experiment; Right: EEG experiment; a) stimulus-locked (left) and 1116 

response-locked (right) MEP signal for each condition. Each panel shows both the 1117 

MEP signal associated with the responding muscle (dark) and the non-responding 1118 

muscle (light). Shaded areas indicate 95% confidence intervals; b) CPP: stimulus-1119 

locked (left) and response-locked (right) CPP waveform for each condition. The 1120 

bottom right of the panel shows the topography of the ERP, averaged over the 1121 

stimulus-locked time interval of 0 to 1000 ms. Electrodes used to generate CPP 1122 

waveforms are highlighted; c) stimulus-locked (left) and response-locked (right) 1123 

MEP-average signal (responding minus non-responding muscle); d) stimulus-locked 1124 

(left) and response-locked (right) model predictions made by the free-excursion 1125 

variant of the best-supported model; e) stimulus-locked (left) and response-locked 1126 

(right) model predictions made by the forced-excursion variant of the best-supported 1127 

model; f) stimulus-locked (left) and response-locked (right) CPP; note that the CPP 1128 

here is a pooled average rather than a grand average and therefore differs from b. 1129 

Additionally, the waveform has been low-pass filtered with a cut-off of 5 Hz to assist 1130 

comparison with model predictions; f) stimulus-locked (left) and response-locked 1131 

(right) model predictions (correct and incorrect accumulator summed) made by the 1132 

free-excursion variant of the best-supported model; g) stimulus-locked (left) and 1133 

response-locked (right) model predictions (correct and incorrect accumulator 1134 

summed) made by the forced-excursion variant of the best-supported model. 1135 

 1136 

 1137 
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Figure 4: Model fit for the TMS experiment (a) and the EEG experiment (b): quantiles 1139 

estimated from behavioural data (circles) and Model 2 simulations (crosses and 1140 

lines) for easy (top) and hard (bottom) decisions. For each condition, correct (thick) 1141 

and incorrect (thin) quantiles are displayed separately. Note that the model fit is 1142 

identical for the forced-excursion and the standard free-excursion race model. 1143 

 1144 
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e) Forced-Excursion Model
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c) MEP Difference

d) Free-Excursion Model
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