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Abstract 

At the heart of future communication systems will be integrated, all optical devices. The 
role of the second order non linear process in the realisation of such devices is well 
known and has been documented. Research activity in the field of second order 
nonlinear processes has focused primarily on the generation of new frequencies, which 
have an important role to play in multimedia systems. The second order process also has 
great potential for use in all-optical switches, all-optical transistor and intensity­
dependent phase modulation. For the theoretical study of such devices, efficient 
mathematical models are required. The finite element method has established itself as an 
accurate, efficient and versatile method in the modal analysis of both linear and 
nonlinear systems but its application to the evolutionary analysis has been minimal. 

The application of the finite element method to the theoretical study of such devices is 
the subject of this thesis. A formulation of the finite element method that takes into 
consideration material anisotropy and different diffusion profiles is developed, as is a 
finite element based beam propagation model. Such a model combines the strengths of 
the finite element method with the weB-established beam propagation method for the 
evolutionary analysis of the fundamental wave and the generated second harmonic 
wave. The model is applied to the study of second harmonic generation in various 
material systems and waveguide structures. 

The propagation model developed has been applied to the study of second harmonic 
generation in both LiNb03 and semiconductor waveguides. Second harmonic generation 
in waveguides with one-dimensional confinement is first studied and provides a basis for 
comparative analysis with previously published results. The method is then extended to 
more realistic guides with two-dimensional confinement. Second harmonic generation 
by the Cerenkov radiation scheme is illustrated. Quasi-phase matching schemes for 
enhancing the output power are also discussed. Semiconductor material systems provide 
the basis for the monolithic integration of optical waveguides and hence are of great 
technological importance. The method developed is thus applied to the study of SHG in 
GaAs and AIGaAs devices. Methods of QPM and fabrication tolerances on output power 
as well as waveguide loss are treated. Finally the phenomenon of cascaded second 
harmonic generation is considered. 

As a first task, it was necessary to determine the modes or characteristic solutions of the 
waveguide structure through the solution of the stationary wave equation. The finite 
element vector H formulation was thus extended to the study of 3-D waveguides with 
material anisotropy and diffused index profiles, both the transverse directions. Some 
new and interesting observations were made. The solution obtained from the above is 
then used at the second stage, an input for the BPM. A step by step solution of the 
paraxial wave equation in the propagation direction then produces a second harmonic 
output. Various types of waveguides are analysed and the results fully discussed. 
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Chapter I Introduction 

Chapter One 

Introduction to Optical Waveguide Theory 

1.1 Overview of research and development in lightwave technology 

Optics is concerned with the propagation and interactions of electromagnetic waves with 

matter. The study of light has extended the range of human vision. It enabled man to be 

made aware of the existence of phenomena far beyond the range of normal human 

. vision. The nature of the wave phenomenon itself and of the medium that was postulated 

to support them remained a mystery until Maxwell considered the properties of 

electromagnetic waves. The recognition that light is an electromagnetic wave was one of 

the great milestones of scientific thought. It unified the description of a great diversity of 

phenomena, and also enabled predictions to be made about previously unknown 

phenomena. As a natural occurrence, light has been used by man since time immemorial: 

however, as a means of communication, it was first used when man learnt how to make 

fire. 

Tremendous advances have since been made, particularly after the establishment of the 

electromagnetic theory of light. Maxwell's electromagnetic theory of light helped to 

bring into one body some of the diverse aspects of light, and arguably could be said to be 

the greatest scientific achievement of the 19th century as it has formed the basis of 



Chapter I Introduction 

modern communications technology. Heinrich Hertz demonstrated long radio waves in 

1888 and in 1895 Guglielmo Marconi demonstrated wireless communication. Since 

these pioneering research works, the move has been towards obtaining more powerful 

communication systems using higher carrier frequencies. The range of applications has 

also greatly diversified, from early voice communication systems, requiring a bandwidth 

of 15kHz to analogue television with a bandwidth of 6MHz, through to microwaves for 

radar applications with frequencies measured in Gigahertz. Optical frequencies are 

important for of present-day systems, involving optical communications, for example 

optical switches, optical storage systems and optical computing. 

The invention of the laser has given a major boost to the field of optical systems. The 

first laser operating at a wavelength of 694nm represented an optical frequency of 5x I 0 14 

Hz. Since the demonstration of this, the ruby laser, the transmission and processing of 

optical signals has been of the greatest interest to scientists. The exploitation of the 

tremendous potential bandwidth offered by laser light has been potentially limited by a 

number of factors: 

a) It was discovered quite early that free space propagation of the laser beam was 

not a suitable means of establishing effective communications links. Laser light 

is strongly scattered by rain, fog, smog and snow. There was also the need for a 

line-of-sight link, and hence the work turned to establishing suitable transmission 

media. There are, however, a number of applications where it is possible, even 

desirable, to use free space transmission e.g. communication between satellites in 

orbit. 

b) Electronic components place a limitation on the bandwidth of any optical 

communication system, in that it is not yet possible to use the full potential of a 

1014 _1015 Hz system. 

A solution to the first of these problems was to allow light to propagate through another 

medium, which protects it from atmospheric interruptions. The transmission of light by 

glass (and other transparent media) by multiple internal reflections had been known and 

used since ancient times. In 1880, Alexander Graham Bell developed a device, the 

2 



Chapter I Introduction 

'Photophone', that varied the intensity of light incident upon it as a function of the 

amplitude of speech vibrations (Kapany, 1967). The development of this idea was 

however hampered by very high propagation losses. Early measurements of loss in glass 

of near infra red light was put at 1000dB per km, which was attributed to the impurities 

in glass (Kao and Hockham, 1966). This effect was confirmed by Kapron et al., (1970) 

who succeeded in making pure glass with a loss of 20dB per km and opened up the way 

for effective fibre optics. Today's optical fibers have a loss of less than 0.2dB/km on 

certain spectral bands. 

1.1.1 Research trends in optoelectronics 

The development of low loss optical fibre has helped address the problem of suitable 

transmission media for modern optoelectronic systems. Present day optical fibres have 

transmission rates of over two billion bits per second over hundreds of kilometres with 

an error of about one per billion bits and performance figures are improving year by 

year. Along with the development of low loss optical fibre came the development of the 

compact single mode semiconductor laser since the early I 960s (Hall et al., 1962; 

Nathan et al., 1962; Quist et al., 1962). By the early 1970s semiconductor lasers were 

providing continuous wave (cw) coherent sources of laser light (Alferov et al., 1970; 

Hayashi et al., 1970). Improvements from the 1980s made them reliable sources for use 

in optical communications systems. 

Optical signals transmitted using optical fibres will ultimately have to be converted into 

electronic form for processing. The speed of operation of electronic components is a 

major determining factor in the bandwidth of a communications system. This limitation 

has led to major research into a field now known as optoelectronics, replacing electronic 

devices with optical devices, switches, modulators, filters, transmitters, connectors and 

receivers. The potential of this new field is enormous. Will the development of an optical 

switch eventually lead to an optical computer? That is the hope and aspiration of many 

workers in this field. Advances in recent times in optoelectronics have led to the 

development of a wide range of optical components and devices such as directional 

couplers, Y-branches, waveguide crossings, optical filters, modulators, optical amplifiers 

3 
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and many others (Tamir, 1979). These advances in optical technology have resulted in 

the availability of consumer goods based on optical technology, such as laser copiers, 

laser printers, barcode readers, CD players and many others. 

Research in the now established field of optoelectronics has developed along the 

following five main directions: 

I. Optical communications systems 

2. Optical storage technology 

3. Waveguide devices and optoelectronic packaging technology 

4. Photonic devices and materi als 

5. Optical sensor technology, including speciality fibers 

1.1.1.1 Optical communications systems 

Research in this area has been mainly in the area of telecommunications. local area 

networks and optical intercommunications. Many commercial organisations are building 

their research. development. and marketing programs around multimedia concepts like 

Visual . Intelligent, and Personal communications systems. The potential role of 

optoelectronics in the development of such systems cannot be overstated. These 

technologies, which enable such multimedia systems to be developed, include high­

speed digital communications, switching, high-capacity information storage, image 

processing, high-definition and flat-panel di splays, new kinds of consumer electronics 

and local networks. 

High-speed digital transmission (10 Gbitls and beyond), and switching for 

telecommunications have been major development thrusts for companies like Lucent, 

Alcatel, Fujitsu. Hitachi, and NEC for nearly two decades. Transmission equipment 

developed by these companies pioneered the use of single-mode fiber, high bit rates, and 

long wavelengths. Some of these companies were early to commit to the Asynchronous 

Transfer Mode (ATM) standard for multiplexing and switching. 

4 
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Two important systems recently developed have been synchronous digital hierarchy 

(SDH) -10 Gbit/s trunking systems using optical amplifiers (erbium-doped fiber 

amplifiers or EDFAs) for amplification at 1550nm, and fiber to the home (FfTH) 

systems capable of a two-way ISDN (integrated services digital network) at 1310nm, 

combined with one-way video at 1550nm. These systems will pave the way for 

interactive broad band services for homes and small businesses, generally accepted as a 

key requirement for the so-called "Information Age" revolution just now beginning. 

Equipment for fiber-optic broadband systems was forecast by the end of the 20lh century 

to constitute two-thirds of all optical communications equipment sales, with a total value 

of $12 billion; and by 2003, fiber-optic broad band equipment is forecast to constitute 

three-quarters of $30 billion in total optical communications sales (OIDA 1994). (The 

corresponding worldwide markets for all optoelectronics, including displays and storage, 

are estimated at $140 billion and $230 billion, respectively, in those years.) 

1.1.1.2 Optical storage technology 

Optical data storage, which once appeared to be a failing technology in the marketplace, 

is quickly finding its way into homes and offices with the multimedia revolution. In the 

past, it was believed that optical storage, because of its long access times, would not be a 

significant threat to magnetic storage. However it has become one of the important 

enabling technologies fusing together the entertainment and computing industries. 

Developments in optical storage technology underlie developments in multimedia 

systems and it is envisaged that it will form one of the major optoelectronics 

technologies for this, the twenty-first century. 

As in all data storage systems, optical disk systems are characterised by their storage 

capacity, data transfer rate, access time, and cost. The wavelength of the laser used for 

"read and write" operations imposes a fundamental limitation on the information storage 

density and the speed of data retrieval. The storage capacity of an optical storage system 

is a direct function of spot size (minimum dimensions of a stored bit) and the 

geometrical dimensions of the media. A good metric to employ to assess the efficiency 
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in using the storage area is the areal density (MB/sq. in.). Areal density is governed by 

the resolution of the media, the numerical aperture of the optics and the wavelength of 

the laser in the optical head used for recording and readout. The data transfer rate in an 

optical recording system operating at a fixed rotational speed is inversely proportional to 

the laser wavelength. Research and development in the field of optical storage is 

typically directed at: 

• Reducing the spot size using lower-wavelength light sources 

• Reducing the weight of optical pickup heads using holographic 

components 

• Increasing rotation speeds using larger optical power lasers 

• Improving the efficiency of error correction codes; and increasing the 

speed of the servo systems. 

The introduction of the CD format in the late 1980s, opened up another direction for 

optical storage devices. Due to their low-cost replication capability, high capacity, 

robustness, and removability, optical CD-ROM systems have become competitive with 

magnetic floppy disks for applications such as software distribution and home 

multimedia applications. The success of CD-ROM technology in the consumer market 

has allowed the cost of optoelectronic components such as CD lasers to drop sharply 

over the last few years, paving the way for new applications and new optical storage 

systems. It is expected that CD systems will remain essential for the wide commercial 

acceptance of optical storage systems in the years to come. 

Those features which uniquely make optical storage systems attractive are their higher 

capacity per disk, removability, mass replicability, and long memory persistence for 

archival applications. They are most commonly used for software distribution, backup 

memory for personal computers and workstations, external memory for some 

mainframes, and a large-capacity off-line memory. Key applications include text and 

graphics filing, statistical data and ledger storage, public and historical database storage, 
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and possibly as a replacement for paper. New applications and markets opening to 

optical storage systems as their prices are dropping include home multimedia, 

multimedia servers, high-definition television and digital videodisks (DVD), and 

massive storage systems. 

1.1.1.2.1 The Data Storage Market 

The growth of any data storage market is determined by various information processing 

and storage applications. For the optical storage market. it is a new application, 

multimedia entertainment systems. which is fuelling its growth. The volume of the data 

storage market approached $100 billion as early as 1994. of which the hard disk segment 

was $47 billion, the magnetic tape segment $42 billion. and the optical disk segment $6 

billion. 

In the past, the majority of desktop computing users did not need such a high capacity of 

data storage. However, during the 1993-95 period, the advent of image computing and 

processing of multimedia documents with still images has quickly raised the floor of the 

minimum useful desktop storage capacity to about I GB. This has made optical storage 

devices more attractive. As a consequence, demand for optical storage devices exceeded 

supply in 1994 for the first time. With increasing demand, most optical storage 

manufacturers have continued to drop prices to increase their market share. An 

optoelectronics Industry Development Association (OIDA) survey predicts an explosive 

growth in the optical storage market of $50 billion by the end of the next decade (20 I 0). 

It is believed that video- and computing-related products will strongly support this 

growth. 

1.1.1.2.2 Emerging optical storage technologies 

For any storage technology to remain competitive over time, it is critical that its access 

time, system volume. and cost be kept constant (or preferably reduced) while its capacity 

and data rate are increased. This requires low-cost pickup sensors that can move quickly 

and accurately to access an increasing amount of data. Mechanical constraints dictate 
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that fast and accurate movements can only be achieved over short distances; this 

consideration leads to the conclusion that data must be kept as local as possible with 

respect to the pickup heads. Historically, this consideration has driven the increase in 

areal densities, allowing much larger amounts of data to be stored, accessed, and 

retrieved without an increase in access time and system cost. 

However, as optical areal densities approach optical diffraction limits, researchers have 

started seeking new solutions. On the one hand, solutions may entail further increasing 

the areal density by combating the diffraction limits of optics using, for example, near­

field optics. On the other hand, solutions may take advantage of additional available 

dimensions such as are proposed for various 3-D optical storage concepts. Indeed, data 

residing in a volume may be considered as being local to the pickup sensors if both the 

performance cost and actual cost of accessing it in 3-D is affordable. In this case, 

volumetric density (Mbitlin3) becomes critical. The volumetric density is governed by 

the effective volume of the spot, which in turn is limited by the volumetric resolution of 

the medium, the numerical aperture of the optics, the wavelength, and the positional 

accuracy of the pickup head in the third dimension . The spot size is limited by the 

recording wavelengths through diffraction effects, as well as by the sensitivity and 

integration time of the readout detector. The approach promises low-cost, high­

volumetric-density ROM disk media with a thousand or more layers for image storage, 

and also low-cost compact disk player drive units employing semiconductor blue and/or 

green lasers. 

The potential impact of layered 3-D optical disks on the capacity of optical storage can 

be much greater than the impact of, for example, the use of blue lasers. This is because 

the growth factor in capacity is directly proportional to the number of layers. Assuming 

that the areal density is not affected, the 3-D layering provides the potential for realising 

optical disks with capacities exceeding lOO GB, beyond the turn of the millennium. If 

this factor is now coupled with a reduction in spot size, then the potential storage 

capacity of optical storage systems will be phenomenal. 

A major increase in capacity is expected over the next 3 to 5 years using lasers with 

progressively shorter wavelengths. As mentioned earlier, areal density is governed by 
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spot size. This can be expressed in terms of the wavelength (A) and the numerical 

aperture (NA), of the optical system as: 

. 1.8,1, 
spot size = -­

NA 
1.1 

In order to reduce the spot size, the numerical aperture may be increased, or the 

wavelength may be reduced. However, since the numerical aperture also affects the 

depth of focus (and the depth of focus is directly proportional to NA), increasing the 

numerical aperture imposes restrictions on the media thickness and the servo controllers. 

Practically, it is expected that the numerical aperture will be increased only up to 0.62 

from its present value of 0.55, allowing an increase in the storage capacity of about 12%. 

It is anticipated that laser wavelengths used will change over the coming years from the 

present standard of 780 nm to 430 nm with the development of the low cost blue laser. 

This would lead to an increase in the information storage capacity by a factor of nearly 

four and also more than double the data transfer rate. Sony is actively pursuing this 

direction by developing zinc-selenide-based lasers. They have currently developed such 

a laser operating at room temperature, still with a relatively short lifetime. In contrast, 

researchers at Nichia are actively pursuing GaN-based lasers. They have demonstrated 

lasing using this material (Nakamura, 1994) and remain active in commercialising such 

devices. The major drawback at present of these lasers has been their extremely short 

operating lifetimes but work to improve this aspect is underway. Growing GaN on a 

lattice mismatch AhO) substrate is also accompanied by a large number of defects but 

work is continuing to overcome these difficulties. 

An alternative method of obtaining shorter wavelengths is by use of frequency-doubled 

blue lasers, through the non-linear process of second harmonic generation. Several laser­

based blue-green sources are now under development and systems are commercially 

available. These frequency conversion technologies rely on the availability of suitable 

laser diodes, which must meet stringent requirements of high output power, single spatial 

mode, spectral stability and operate within a specific range of wavelength. Efficient 

harmonic generation requires that the harmonic and the fundamental waves travel with a 
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fixed phase rel ationship. Where thi s is not feasible, then the direction of the spontaneous 

polarisation is reversed in the non-linear waveguide at regular intervals, which 

corresponds to the situation when the two waves are out of phase by 180°. Work in both 

directly generated and second harmonic devices is continuing at a rapid rate. 

1.1.1.3 Guided wave devices 

Another area of intensive research has been photonic devices and material s, with the 

emphasis on laser and optoelectronic integrated circuit technology, including both 

surface-emitting and edge-emitting lasers, as well as devices for use in 

telecommunications, sensors, and consumer products. Within the past decade, guided 

wave, or integrated optical (10) components in various material s have become ava il able 

from a variety of vendors, world-wide and are now being deployed in commercial 

systems. Integrated optical devices include modulators and passive circuits in LiNbO], 

glass, and semiconductors; these devices are applied to telecommunications, cable 

television (CATV), and instrumentation. 

These components are key to advanced transmitters in many fiber-optic-based CATV 

and long haul telecommunications systems. The devices themselves are based on planar 

optical waveguides, in which light is confined to channels at the substrate surface and 

routed on the chip. These channels are typically less than a few microns across and are 

patterned using microlithography techniques. Using appropriate optical circuits based on 

channel guides, both passive functions (i.e., power splitting from one to several 

channels) and active functions (i.e., electrical-to-optical signal conversion, known as 

modulation) can be performed on the light. The primary materials used in the 

commercial market are glass (bulk or Si02/Si) for passive devices and LiNb03 for active 

devices. A closely related technology that is in the research stage is the development of 

photonic integrated circuits (PICs), in which a variety of semiconductor optoelectronic 

devices are monolithically integrated and interconnected with waveguides such as lasers 

and modulators. 
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Applications for integrated optics have historically been in niches of the analogue, 

digital, and sensor fiber-optic markets; at present, however, major new markets are 

emerging. Perhaps the largest new market is telecommunications, where 10 devices will 

be used for multigigabit data transmission, signal splitting and loop distribution, and bi­

directional communication modules. A second new market is CATV, where 10 modules 

will be used for external modulation in fiber-optic-based signal distribution systems. In 

both telecommunications and CA TV, 10 devices enable signal transmission at higher 

data rates and over longer distances. In a third market, instrumentation, a major 

application is fiber-optic gyroscopes. An early market study of 10 modulators predicted 

a 24% annual growth rate in North America over the 1993 - 2003 period (Tamir 1987). 

A significant portion of this growth was for aerospace and military applications (e.g., 

fiber gyros). The forecast annual sale by 2003 is nearly $200 million. The photonics 

market enabled by 10 modulators (e.g., transmitters and gyros) is many times larger and 

is expected to exceed $1 billion. 

Closely coupled to this work are efforts to pigtail multiple fibers, at once, to an 10 circuit 

(IOC). Research and development (R&D) efforts at major centres in the world are 

focused on large planar Iightwave circuits (PLCs), including planar erbium-doped 

amplifiers, components for wavelength division multiplexing (WDM), and structures for 

the silicon microbench. Much of the leading research has been performed at AT&T in 

the United States and NTT in Japan. In the semiconductor modulator area, the major 

focus is on developing devices suitable for 10 Gbitls communications. For example, 

Hitachi is working on a discrete modulator and an integrated diode laser and an 

electroabsorption modulator is under development at AT&T in the United States and at 

NTT, NEC, and Fujitsu in Japan. 

Commercial IOCs (based on annealed proton-exchange waveguides in LiNb03) are 

available and widely used. 10Cs are being used in telecommunications for high-speed 

modulation, signal splitting and switching and bi-directional communication. 

LiNb03 modulators are being used in 2.5 Gbitls (OC-48) systems to enable transmission 

over distances of greater than 100 km without repeaters. LiNb03 modulators make it 

possible to use CW (continuous-wave) 1.5 micron lasers that have closely spaced 

wavelengths for transmission over the standard fiber already installed, which is 
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optimised for 1.3 micron operation. Since installing new fiber is a major cost, the 

externally modulated multigigabit approach is a significant cost-saver for long-haul 

telecommunications operating companies. With such systems, 10 Gbitls system 

operation is achieved, for example, by multiplexing four wavelength channels at 2.5 

Gbitls each. 

Interest in LiNb03 modulators for radio frequency (RF) link applications is being 

actively pursued at many research centres. The development of hybrid integrated optical 

disk pickup heads and quasi-phase-matching structures for diode laser frequency 

doubling is a topic of major research interest. Work on guided wave devices in many 

places is focused on linearized modulators, high-speed and high-optical-power 

modulators, modulators with gain, and frequency-doubled structures all using LiNb03. 

In Japan, interest in quasi-phase-matching in LiNb03 for frequency conversion is being 

researched at Oki for 1.5 micron applications and at Sony for frequency doubling (blue 

light generation). 

1.1.1.4 Photonic devices 

Research In the area of photonic devices can be classified into the following major 

categories: semiconductor light-emitting diodes (LEDs), lasers, semiconductor optical 

amplifiers, switches, and integrated receivers. 

LEDs are the light sources used for many semiconductor-based devices. The AIGaInP 

material system is widely used in generating highly efficient red light for the automobile 

industry and in traffic light systems and also finds application in optoisolators and low 

data rate «50Mbitls) optical links. 

Lasers have been widely used in a number of areas: transmission lasers, pumping lasers 

for erbium (Er)-doped fiber amplifiers and local-loop or access lasers, are used mainly in 

the telecommunication industry. Included in the category of transmission lasers are 

photonic integrated circuits (PICs), wavelength-division multiplexed (WDM), and time­

division multiplexed (TDM) laser sources, and 1.3 micron and 1.55 micron wavelength 
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devices based on InP. Analogue lasers are used mainly in the cable TV or other 

subcarrier multiplexing applications, although they are finding increasing application in 

satellite communications and phased-array radars. Visible, shorter-wavelength lasers are 

used for optical storage, sensing, or display applications. 

The use of lasers in compact optical disk players has brought about a revolution in the 

diode laser industry. For the first time, there has been created an application that requires 

the production of more than a few thousand units per month . Thus the corresponding 

advantages of real mass production can be employed. Rohm, a resistor manufacturing 

company that expanded into lasers, perhaps best illustrates these advantages. Through 

the heavy use of automation (previously foreign to the laser diode business), Rohm was 

able to capture half of the CD market, and in 1994 produced about 60 million laser 

diodes. This kind of demand has now pushed the price down to less than $1 per laser, 

even with the conventional cleaved-facet technology. 

Besides optical storage, major applications for lasers in the 600-800 nm range lie in 

optical pointers, bar-code scanners, printers, data links, and displays. The production of 

laser pointers relies upon visible light emission, and wavelengths in the 630-650 nm 

range are much better for visibility than those at approximately 670 nm, even though 

higher power tends to be available there. For the print heads and bar-code scanners an 

analogous argument holds, but here the shorter-wavelength lasers are preferable because 

of the sensitivity of the detecting medium. For display, again, the 670 nm is somewhat 

too long. 

1.2 Nonlinear effects in optics 

Much of the economic potential to be realised through the application of optics in 

telecommunications and information processing can be ascribed to the best use of the 

nonlinear effects in optics. In recent years, there has been a significant increase in the 

number of published papers on nonlinearity in optics, due mainly to their economic 

potential. The foundation of the subject was laid in the early 1960s with the pioneering 
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work of several groups, e.g. Franken et al. 1961, Franken and Ward, 1963, Boyd et al., 

1965, Armstrong et al., 1962, Miller, 1964. 

Most material media exhibit weak nonlinearities if exposed to electromagnetic radiation 

of high intensity. The discovery of many of these nonlinear effects and especially their 

development however has been made possible by the invention of the laser, when the 

practical applications of these effects were quickly realised. At very high intensities, the 

light waves may interact with each other or with the material medium. These 

nonlinearities arise from an anharmonic motion of electrons in response to the applied 

field. This can lead to the observation of several effects, the most important of which can 

be divided into two classes depending on their origin, be it quadratic or cubic. 

If the material is regarded simplistically as a collection of charged particles, then with 

the application of an electric field, an oscillation is induced in the electron cloud. At 

relatively low intensities, the induced polarisation, the displacement of the electron cloud 

or dipole, P is directly proportional to the magnitude of the electric field of the lightwave 

P=xE 1.2 

where X is the linear optical susceptibility, a function of the refractive index of the 

material. It is well known in physics, that the linear dependence of one physical quantity 

on another is almost always an approximation, and valid only over a limited range. The 

most familiar example is Hooke's law of elasticity. Laser light generates very intense 

fields, which give rise to nonlinear optical effects and the expression for the polarisation 

can then be written as (a detailed derivation is given in Chapter 3) 

1.3 

where X(2) and X(3) are constants, the second and third order susceptibilities. 
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1.2.1 Quadratic nonlinear effects 

The second term of equation 1.3 gives the quadratic polarisation term which gives rise to 

effects, which are all of the mixing (interaction of light with nonlinear dielectric) type. 

This involves the generation of sum and difference frequencies, which may take a 

variety of forms. These are 

Second harmonic generation: This is the coalescing of two identical photons. It 

represents a special case of a process more commonly known as sum frequency 

generation. In this process, light waves at two different frequencies are summed to form 

the output. When the applied optical field contains just one frequency, i.e. when the two 

waves are equal in frequency, power or amplitude, the quadratic polarisation will contain 

a static term and a term oscillating at twice the applied frequency. The polarisation 

oscillating at twice the applied frequency radiates into the medium, giving rise to SHOo 

The overall effect of this process can be described as follows: part of the energy of an 

optical wave of frequency w propagating through a crystal is partly converted to that of 

a wave at 2w. 

Parametric ampLification: This is used to build a signal from a zero value. If power is 

provided at the frequency W 3 and the power at the frequency w2 is initially assumed to 

be zero then the growth in the signal power at w2 = (03 - (0, . It is assumed here that 

(03 » w,. It must also be noted that the power at W, is amplified. Thus this device 

generates an 'idler' signal at w2 and at the same time amplifying the signal at W, . In 

effect, power from a 'pump' wave at (03 is transferred to waves at frequencies w, and 

W 2 ' where W 3 = W, + (0 2 ' Fundamentally it is similar to second harmonic generation but 

the difference is in the direction of the flow of power. In this process X(l) is changed by 

an amount proportional to the pump intensity. 

Frequency Up-Conversion: This is used to convert a signal from a low frequency w, to 

a high frequency W 3 by mixing it with a strong laser beam at (0 2 ' such that 
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ill, + (1) 2 = ill3 . It is also another special case of sum frequency generation. From a 

quantum mechanical point of view, this can be thought of as the annihilation of photons 

at frequencies ill, and (1)2' and the generation of a photon at (1)) . This can be used in the 

detection of infrared radiation by converting the frequency into the visible or near visible 

part of the spectrum. 

The linear electra-optic (Pockets) effect: This is the linear variation in the refractive 

index of a dielectric medium caused by the application of a static electric field. Thi s is 

the simplest of the mixing processes. In thi s, one of the frequencies is zero i.e. an optical 

wave is sent through the medium in the presence of a dc electric field . The quadratic 

polarisation will then contain a term proportional to the product of the optical and dc 

fields, in effect being equivalent to changing X ( I) by an amount proportional to the dc 

field. This causes the medium to become electrically ani sotropic, thus making the phase 

velocity of the propagating wave dependent on the direction of the electric field vector of 

the wave. Thi s phenomenon is useful in the desi gn of phase modulators. If the change in 

phase velocity is dependent on an applied field, it then follows that phase or frequency 

modulation can be achieved in the medium. 

1.2.2 Cubic nonlinear polarisation effects 

Cubic nonlinear effects arise from the cubic polari sation term co X(3) E ) . This gives rise 

to third harmonic generation, quadratic electro-optic effects, two-photon absorption and 

other related mixing phenomena, i.e. 

The quadratic Electro-optic effect: It is the simplest case of effects arising from cubic 

polari sation. This is the variation arising in the refractive index due to a quadratic term. 

An optical wave propagating through a medium in the presence of direct current (dc) 

field causes a change in the refractive index of the materi al proportional to the square of 

the direct current field. This effect is also known as the Kerr effect and may be used in 

fast acting optical shutters. 
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Third harmonic generation: This can occur when an incident field at frequency ill 

induces a polarisation at the frequency 3ill . This process is governed by the third order 

nonlinear susceptibility tensor X(3). An optical field propagating through a nonlinear 

medium induces a cubic polarisation, which is proportional to the third power of the 

field. The refractive index is thus modulated by an amount proportional to the optical 

intensity. The induced nonlinear polarisation may then generate a travelling wave at the 

third harmonic frequency. 

Two-photon absorption: If two intense electromagnetic waves at frequencies (01 and ill2 

propagate through a medium, then there is the probability that some energy will be 

absorbed from both of these waves as result of the transition at the sum frequency 

illt where illt = ill 1 + w2 . In semiconductor materials the transition is usually between the 

valence and conduction bands. This phenomenon can be used for the observation of 

extremely short light pulses. 

Raman effect: Given light of a particular frequency, travelling in a dielectric medium, it 

is then possible to observe weak side bands of radiation close to the frequency of the 

incident light. The vibrational resonant frequency of the material determines the 

difference from the incident frequency of the side bands. This phenomenon is similar to 

a parametric processes: however there are two main differences. The 'idler' wave will 

now be replaced by an internal oscillation of the molecule, in other words a mechanical 

crystal vibration instead of the electromagnetic idler wave. This phenomenon is 

therefore possible only in materials whose molecules are capable of vibrational 

oscillation. No phase matching is also required. The spontaneous Raman effect is used in 

the spectroscopic investigation of the structure of molecules whereas the stimulated 

Raman effect is used in the design and fabrication of optical amplifiers and oscillators. 

1.3 Fundamental Theory underlying optical waveguide analysis 

The field of integrated optics can broadly be classified into areas involving optical fiber 

waveguides and the optical integrated circuits (Hunsperger, 1984). The optical integrated 
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circuit (OIC) can be regarded as the optical equivalent of the conventional electronic 

circuit, where the fundamental material that interconnects the various devices of an OIC 

is the optical waveguide. Unlike electrical circuits where the signal is carried by a 

current, the signal in an optical waveguide travels in distinct optical modes. A mode can 

simply be regarded as the spatial distribution of optical energy in one or more 

dimensions. In this section, Maxwell's equations for the propagation of waves in optical 

waveguides are presented, and different types of waveguides are then reviewed. 

1.3.1 Maxwell's Equations 

The work presented in this thesis is based on a numerical solution of Maxwell's 

equations, which govern the propagation of light through an optical medium and its 

interaction with the medium. These equations are valid for the entire frequency spectrum 

and in differential form can be stated as follows: 

aB 
VxE+-=O at 

an 
VxH--=O at 

V ·D=p 

V·B=O 

(Faraday's law) 1.4 

(Maxwell-Ampere law) 1.5 

(Gauss's law) 1.6 

(Gauss's law magnetic) 1.7 

For a lossless dielectric isotropic material, the electric E and magnetic H field vectors 

are related through the constitutive equations 

D=£E+P 1.8 

B =,uH 1.9 
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In the above D is the electric flux density (coulombs/m2), B is the magnetic flux density 

(webers/m 2
), p is the charge density, f..lo = 4n x LO-7 F/m is a constant equal to the 

magnetic permeability of a vacuum and c" is the vacuum dielectric permitivity. 

Assuming complex time dependence through the factor exp(jwt) , where j is an 

imaginary unit, W the angular frequency and t is time, and substituting for Band D, the 

time derivatives in the above equations may be rewritten as 

v x E + j wf..lH = 0 1.10 

VxH- jWcE=O 1.1 I 

Taking the curl of these equations and making the necessary substitution from equations 

(1.4) and (1.5), equations (I. 10) and (I. I I) could be written as follows 

1.12 

1.13 

Using the following vector identity 

VxVxA = V(V ·A)_V 2A 1.14 

the first terms of equations (1.12) and (I. I 3) may be written as 

1.15 

1.16 

For a perfect insulator with no stored charges, the above two equations simplify to 
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1.17a 

1.17b 

These two equations can be written as: 

1. ISa 

1.ISb 

where the wavenumber, k = m~£J1(1 . 

The equations (1.17) or (I.IS) provide the general solution to Maxwell 's equations in 

terms of material properties and the angular frequency of the electromagnetic signal. It i 

these two equations, which need to be solved for a particular waveguide structure, with 

appropriate boundary conditions, in order to obtain the optical mode, in other words the 

field and its characteristics. 

1.3.2 Planar waveguides 

Various types of optical waveguides exist, the simplest of which is the 2 dimensional (2-

D) or planar waveguide. The 2 dimensional waveguide enables the confinement of li ght 

in one direction (y) whilst allowing it to spread in the other direction (x). 
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Fig.I.1 Example of a planar waveguide 

For the waveguide that is shown in Fig 1.1, n li is the refractive index of the guide core, ne 

is the refractive index of the upper cladding and n.l' is the refractive index of the substrate 

region. For a three layer asymmetric planar waveguide, the refractive indices are related 

as follows: ne < n" < n il and hence the light can be trapped inside the guide core. When 

the substrate index and the index of the upper cladding are equal ne = n" then a 

symmetric guide is obtained. In the above, the refractive index is assumed to be a 

constant value within specified sections of the guide. Many waveguides have a graded 

index where the refractive index changes gradually as a result of the fabrication 

technique employed. Such waveguides will be considered in detail in a later section of 

the thesis. 

1.3.2.1 Basic Equation 

Expanding the curl operator in equation (1.17) in the rectangular co-ordinate system, 

where z is the propagation direction, the following is obtained 

1.19 
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The field vector E can be separated into the individual component parts, such that there 

is an equivalent differential equation for each of the vector components. 

1.20a 

1.20b 

1.20c 

1.3.2.2 Analytic solution 

In a planar waveguide structure, the field quantities are assumed to vary in only one 

transverse direction. Considering the three-layer waveguide structure shown in Fig. 1.1, 

and assuming the light confinement to be in the y-direction, then the partial derivative 

along the x-direction can be written as~ = O. If the parameter c/J is now defined such 
dx 

that 

ForTE mode 

ForTM mode 

then equations (1.18a and b) can be written as 

where n = F,. and f3 is the phase constant. 
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For 2-D waveguides, the TE mode has no longitudinal component of the electric field, 

E z = 0 . The non-vanishing field components are thus defined as: 

H =LE 
y wJ.1 x 

1.23 

H =_l_dEx 
z jwJ.1 dy 

1.24 

E = LH +_l_dH z 

x W£ )' jw£ dy 
1.25 

For TM modes, there is no magnetic field component along the direction of propagation, 

H z = O. The only non-vani shing field components are thus 

E =-LH 
y W£ x 

1.26 

E 
_ 1 dH x ------

Z jw£ dy 
1.27 

f3 1 dE z H =--E ---
x WJ.1 )' jwJ.1 dy 

1.28 

The solutions to (1 .22) are either exponential or sinusoidal functions of y in each of the 

regions of the waveguide. The particular function is dependent on the factor 

(k ,;n2 - f3 2). For the three-layered asymmetric planar waveguide, for a guided wave the 

phase constant f3 will satisfy the following condition kn,. ::; f3 ::; kn f . Equation (1.22) 

will therefore have the solution (Koshiba, 1992) 
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{

AI: exp(- a cY) 

f/J = AI' cos kf Y + B f sin kf Y 

A.,. exp [a.,. (y + t )] 

O~ Y 

-l:S;y:S;O 

Y ~-t 

Introduction 

1.29 

[n the above A J ' B J ' Ac and A, are arbitrary constants determined by the boundary 

conditions, which must be satisfied at the interface of two media [Appendix I J. 

The values ac ' a.,., and k J are defined as 

1.30 

1.31 

1.32 

These are well-confined modes normally referred to as TEJTMo and TEIITMI modes. 

For {3 > kn J ' the function f/J must be exponential in all three regions, which would imply 

infinite energy in the upper and lower cladding of the waveguide (Hunsperger, 1984). 

Such a mode will, of course, not exist. A substrate radiation mode is obtained for a value 

of kn, > {3 > knc and this mode is confined at the interface of the upper cladding but 

varies sinusoidally in the substrate. Such a mode can only be supported over short 

di stances as it losses energy from the guiding region to the substrate region and hence is 

not very useful in signal transmission. It may, however, prove useful in tapered coupler 

applications. The number of modes that can be supported by a waveguide depends on the 

thickness of the waveguiding layer and on the material properties of the waveguide, as 

well as on the frequency. This implies that for a given waveguide thickness and given 

refractive indices, there is a cut-off frequency, W c below which waveguiding cannot 

occur. In optical waveguide applications, the wavelength is of fixed value, and the 

problem is therefore to determine the refractive index values for which a particular mode 

can be supported. It can be shown that for the asymmetric waveguide, the refractive 
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. d· I d A. (2m+l)2 A? 
In Ices are re ate through til1 = n f - n . 2: (I , (Hunsperger, 1984), where m = 

.1 32n f t 2 

0, I ,2 . . . is the mode number, Il) s the vacuum wavelength and t is the thickness of the 

waveguiding layer. 

1.4 Methods of solution of optical waveguide problems 

The properties of planar waveguides, useful in many applications can be studied by 

means of using analytic methods. Exact analytical solutions can also be obtained for 

planar guides with stepped refractive index values but for a continuously graded index 

guide, it is rather difficult to obtain exact analytical solutions. Planar waveguides, useful 

in many applications have a limited range of use due to their one-dimensional optical 

confinement. In many applications, two-dimensional confinement is required, and this 

can be provided by channel or three-dimensional waveguides. It is not possible to obtain 

exact analytical solutions to such waveguides, except in very special cases, and many 

practical waveguides have complex structures with arbitrary index di stribution. The 

propagation mode is often a hybrid mode, E ;'", (the main components of the 

electromagnetic field being Ex and Hy) or E ;,,,, (the main components of the 

electromagnetic field being Ey and Hx) modes, where the subscripts m and n refer to the 

mode order such that m, n = 1,2,3 ... , corresponding to the total number of extrema 

appearing in distribution of the electric fields in both the x and y directions. In reality, 

one of the modes is dominant, TEY in the case of E;'m mode and the TM Y in the case of 

E;'III where the existence of such modes compounds the complexity of obtaining an 

analytical solution. Amongst the many other reasons why it is difficult to obtain an exact 

analytical solution to Maxwell 's equations are the following major factors: 

a. the electromagnetic fi eld may extend beyond the guide core 

b. anisotropic material s and non-linear optical material s may be used to 

extend the range of applications of the waveguide and 
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materials with complex refractive index such as in semiconductors may 

be used. 

d. Waveguide cross-section may be of irregular geometry 

1.4.1 Approximate analytical methods 

In view of the difficulties outlined above, various methods have been developed over the 

years for the analysis of waveguide problems. These methods can broadly be classified 

into two main categories, approximate analytical methods and numerical methods. The 

first group includes such approaches as circular harmonic point matching (Goell, 1969), 

the effective index method (Hocker and Burns, 1977), the spectral index method (Burke, 

1990) and the Marcatili method (Marcatili, 1969). Some of the approximate methods 

provide very good results for the analysis of waveguides far from cutoff but many of 

these methods are not very suitable for the analysis of a wide range of important 

practical waveguides. Some of these methods are considered below. 

1.4.1.1 Marcatili method 

A channel waveguide is an example of a practical waveguide device. Such a structure 

will consist of a guide region surrounded on all sides by a confining medium of a lesser 

refractive index. Such a waveguide is difficult to analyse exactly. Marcatili (1969) 

derived an approximate solution to the rectangular waveguide problem by considering 

the structure shown in Fig. 1.2. A knowledge of fields in the two slab waveguides, 

obtained by extending to infinity the width and height of the guide core, is used to 

approximate the field in the rectangular core. The key assumption in thi s analysis is that 

the modes are well guided i.e. far from the cut off region. Within the guide core, the field 

is assumed to vary sinusoidally and to decay exponentially within the substrate region. 

With these assumptions and by matching the boundary conditions along the walls of the 

core region only, the transcendental equations are derived for each transverse direction 

(Tamir, 1990). The propagation constant is obtained from the simultaneous solution of 
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the transcendental equations with the assumption that most of the power is within the 

guide region. 

y 

L x 

nJ 

Fig. 1.2. Cross-sectional representation of channel waveguide. 

This approach, even though valid for well-confined modes, gives poor results near to 

cut-off (Chiang, L994). An exact scalar formulation has been reported by Kumar et al. 

(1983) for a similar rectangular structure used by Marcatili. By using perturbation 

techniques, more accurate propagation characteristics of practical integrated optical 

waveguides were obtained. 

1.4.1.2 The effective index method 

Knox and Toulios (1970) first introduced the Effective Index Method. This is an 

improvement on the Marcatili method and has been extensively used by many research 

workers in view of its simplicity. In this approach two equivalent slabs are used to 

replace the core of the rectangular structure where each of these 2-D structures can then 

be considered homogeneous in either the x or the y directions, as shown in Fig. 1.3 

(Koshiba, 1992). 
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Fig. 1.3 A model for the effective index method 

The transcendental equation is obtained by applying the appropriate boundary conditions 

for one of the transverse directions. The effective index thus obtained by solving the 

transcendental equation is further used as the refractive index in the solution of the 

transcendental equation in the other transverse direction. The effective index obtained 

from the solution of the second equation can then be regarded as the overall effective 

index of the guide. A theoretical study of the method by Peng and Oliner (1981) revealed 

that the method was in fact the lowest order version of the mode matching method, in the 

case of some composite structures. 

This method, in spite of its popularity, is inaccurate in the region near to cut-off. In view 

of this, several techniques have been proposed to improve on its accuracy such as a dual 

effective index method proposed by Chiang (1986) which required the linear 

combination of two effective indices, obtained by applying the effective index method in 

two different ways. Chiang (1996) proposed a new effective index method with 

perturbation to correct the error in the propagation constant of the rectangular guide . 
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1.4.2 Numerical Methods 

In the last two decades, numerical methods have been widely used in the study of optical 

guided wave devices due to the availability of faster and cheaper computer power. These 

methods are concerned with finding numerical solutions to the Helmholtz' s wave 

equation derived from Maxwell's equations. In many instances, a choice has to be made 

between a numerical method and an approximate method, where the choice is dependent 

on the level of accuracy required. For planar structures, or for structures with one 

dimensional (I-D) index variation , the approximate methods do give satisfactory results. 

However, for the accurate characterisation of three dimensional 3-D structures, a fully 

numerical method such as the finite difference or the finite element method is required. 

Pichot (1982) has used a numerical method based on a vector integral equation for the 

analysis of diffused channel waveguides. Sharma and Bindal (1992) have employed a 

variational approach based on the Hermite-Gaussian trial functions to analyse diffused 

planar and channel waveguides. Schweig and Bridges (1984) and Lagu and Ramaswamy 

(1986) have advanced the variational approach in the finite difference method (FDM) for 

the analysis of diffused channel waveguides. 

The proliferation of numerical methods means that thought has to be given to the choice 

of the best method for the solution of a waveguide problem. Factors which need to be 

taken into consideration when choosing a numerical method, (Davies, 1972, Ng, 1974) 

include the following: 

a) the shape of the region, n, under consideration in particular whether it is curved 

or polygonal, concave or convex 

b) whether the method can be implemented as a computerised program for all types 

of geometries or if it has to be implemented specifically for each region of the 

guide structure 

c) whether the field distribution required is well away from cut-off region or near to 

the cut-off region and in particular its accuracy near to the cut-off region 
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d) the type of modes required, the dominant mode or higher order mode, as well as 

being able to distinguish between optical modes which are quite close together 

and 

e) the efficiency in terms of computational time and storage requirements. 

1.4.2.1 The variational method 

The differential equation, which describes the propagation of electromagnetic waves in 

an optical medium, can be written as: 

Lv{x) = j{x) 1.33 

where L is a linear differential operator defined as: 

1.34 

v{x) is the function sought and j{x) is the source function. For typical eigenvalue 

problems, there are no sources of radiation and j{x)=O. The function v{x) and its 

derivatives must also satisfy some continuity conditions, that is the function is 

continuous and differentiable up to the highest order present in the integral form of the 

governing equation. For the function v{x) to have a unique solution, certain boundary 

conditions need to be imposed on the function and its derivatives at the guide 

boundaries. These boundary conditions comprise of a set of linear operator equations 

satisfied on the boundary [Appendix I]. 
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1.4.2.1.1 Weak formulation 

Equation (1.33), together with the boundary conditions, form the definition of the 

problem discussed, also known as the strong formulation . It is possible to find an 

approximate solution to the above problem using equation (1.33) as the starting point. It 

is however instructive to attempt to find a weak formulation, that is to reformulate the 

problem as a search for a function that satisfies some specified conditions also satisfied 

by the solution to the problem of (1.33). This weak formulation is also known as the 

variational formulation, the solution of which is also the solution of the original problem, 

provided those specified conditions are satisfied. 

[n order to find the variational form, an inner or calar product of two functions u(x) 

and v{x) is defined as the integral 

f u(x) v(x}lx 1.35 
r 

where r is the domain in which the functions are defined. The inner product of u(x) 

and v{x), denoted by (u, v), is thus 

(u, v) = f u{x)v{x}ix 1.36 
r 

1.4.2.1.2 Properties of the inner product 

Given an inner product as defined by (1.36), then the following properties hold true 

(Retorys, 1980) 

I . (u, v) = (v,u) 
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3. (u,u)?O 

4. (u,u) = 0 if and only if u(x)= 0 

1.4.2.1.3 Functional Formulation of the Curl equation 

It can be shown [Appendix 2] that the function which minimises the following equation 

1.37 

is given as 

F = (Vx(pV x v), v) -m2 (qv, v) -(f, v) -(v,f). 1.38 

In electromagnetic field problems, the fields have time dependence, and the inner 

product can therefore be modified slightly as follows 

(u,v)= f(u ' .v}in 1.39 
n 

The asterisk denotes the complex conjugate. The functional of equation (1 .38) can now 

be written as 

F = f v' ,Vx(pVxv)dn-m2 f v'qvdn- f v' · f dn- ff ' 'vdn 1.40 
n n n n 

If the following vector identity is now considered 

V· (axb)= {Vxa)·b-a· Vxb 1.41 
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then taking the integral of both sides of the above equation (1041) , the following is 

obtained 

f V . (a x b )do. = f [(V x a ). b - a . V x b] dO. 1042 
n n 

From the divergence theorem it is known that 

f V . (a x b) dO. = f (a x b)· n df' . 1043 
n r 

It follows that 

f (a x b ). n dr = f [(V x a ). b - a . V x b ]do. 1.44 
r n 

rearranging the above, the following is now obtained 

fa. Vxbdo. =f(Vxa).bdo.-f(a xb ).ndr 1045 
n n r 

Making the following substitutions a = v' and b = pV x v, then the following can be 

written 

f v' . V x (PV xv 'Jio. = f(Vx v, ), (PV xv 'Jio. - f(v ' x (PV xv)). ndr 1046 
n n r 

This can now be substituted into the functional of equation (1.38) to obtain 

F = J(VXV*). (pVxv )do.-m2 J v*· qvdo.- J(v*. f + .!'*v )-f(v* x(pvxv)). n df 
n n n r 

1.47 
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which is the functional that needs to be minimised. Depending on the interpretation of p, 

q, f and v, any equation in the form of the curl equation can be solved using the above 

functional. 

The variational form can now be used to construct approximate solutions, and by use of 

trial functions to represent field solutions, the integral equation is then reduced to a set of 

linear equations which can be solved by standard techniques. The accuracy of the 

solution depends on an appropriate choice of trial functions satisfying the specified 

boundary conditions. A systematic procedure for finding an appropriate function is 

provided by the Rayleigh-Ritz method where the function vex) is expanded as a series of 

trial functions (Adams, 1981) of the form 

N 

et> = 2.a;et>; 1.48 
;=0 

Several types of trial functions have been used in optical waveguide problems, such as 

Gaussian and Hermite Gaussian functions (Austin, 1984; Erteza and Goodman, 1995; 

Sharma and Bindal, 1992). Others include cosine-exponential functions, airy functions, 

(Goyal et al., 1993) and the modified Hermite-Gauss exponenti al function. 

1.4.2.2 The Equivalent Network Method 

Thi s method, also known as the mode matching method is used in the characterisation of 

open dielectric waveguides. The guide is assumed to be artificially bounded and hence 

the coupling between the TE-TM modes and the continuous spectrum di stribution at the 

sides of the waveguide can be neglected (Koshiba et al., 1982). The waveguide is 

considered in terms of di screte blocks or portions of uniform dielectric layered structures 

with a step discontinuity at the interfaces. An expansion of the fields in the various 

regions of the guide in terms of the transverse modes results in a microwave equivalent 

circuit representation of the guide. The uniform dielectric regions can then be 

represented as transmission lines with a characteristic impedance and admittance. The 
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step discontinuities are modelled as transformers. This method has been applied to 

rectangular waveguides using a vectorial wave analysis (Koshiba and Suzuki,1985). 

Oagli and Fonstand (1987) have extended the method to study of GaAs rib waveguides 

and directional and three guide couplers. 

1.4.2.3 The Spectral Index Method 

This is a relatively fast and accurate semi-numerical method in which the 

electromagnetic wave equation is expressed in terms of Fourier transforms and Fourier 

series. The method has been applied in the solution of rib waveguide problems (Kendall 

et al., 1989), (Stern et al., 1990) and in the study of the strip loaded directional coupler 

(Burke, 1990). More recently the method has been extended to the study of multiple rib 

waveguides (Pola et al., 1996). The accuracy and speed of the method relies on the use 

of Fourier transforms to generate a spectral index for the region below the rib. 

In the method, the original structure is replaced by a 1-0 structure with the refractive 

indices below the rib being represented by their corresponding spectral indices. 

Application of the method requires: 

1. A Fourier transform in the transverse horizontal direction 

2. A Fourier series in terms of trigonometrical functions inside the rib and 

3. A transfer relation linking the two equations into a transcendental equation. 

The propagation constant is determined through the solution of the transcendental 

equation. To solve the problem of strong dielectric discontinuity in the rib region, the 

concept of an effective width is used and the evanescent regions are represented through 

imaginary spectral indices. Numerical algorithms for this method converge more slowly 

in the presence of dielectric corners, (Sudbo, 1992). 
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1.4.2.4 The Beam Propagation Method 

The methods considered thus far have been used to obtain the modal properties of an 

optical waveguide through the solution of a two-dimensional wave equation. Such modal 

properties of a waveguide can also be obtained through the solution of a three­

dimensional wave propagation equation. This method was first proposed for the solution 

of non-uniform waveguide problems in anisotropic media by Feit and Fleck (1980) and 

independently by Yeh et al. (1979). 

The beam propagation method is based on the assumption of plane polarised waves. In 

essence, the method consists of calculating the paraxial approximation to the field as it 

propagates down the waveguide, and performing the Fourier transform of a correlation 

function relating the evolved field and the incident field to yield the mode spectrum 

Chiang (1994). For the analysis of non-uniform waveguides, the beam propagation 

method is now widely accepted as the most powerful method available. However, for the 

analysis of uniform structures, this method is not as efficient as those designed 

specifically for two-dimensional wave equations, because it is necessary to discretise the 

structure in both the transverse and the longitudinal planes. To overcome these 

difficulties, a two-dimensional method such as the finite difference method is best 

employed. 

1.4.2.5 The Finite difference Method 

The finite difference method is the oldest and probably the best known numerical 

method for the solution of boundary value problems. The importance of the finite 

difference method lies with the ease with which many logically complicated operations 

and functions may be discretised. In this method, the optical waveguide is enclosed in a 

rectangular box whose cross-section is divided into sub-regions. Operations are then 

performed not on continuous functions, but rather on values at discrete point sets on the 

grid. The major advantage of this method is that operations such as differentiation and 
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integration are reduced to simple arithmetic operations, which lend themselves easily to 

algorithmic solutions. The walls of the rectangular box may either be electric or 

magnetic. The field at the boundaries of the walls is assumed to be negligible, allowing 

infinite elements with an associated decay factor to be introduced. A grid with all the 

dielectric boundaries on it is then used to represent the cross-section. The nodal field of 

an arbitrary node can be expressed in terms of the neighbouring nodes in the two 

transverse directions using a five-point formula, (Davies, 1989) of finite differences. The 

differentiation of the wave equation at the nodes is thus replaced with differences of the 

field s evaluated at the nodes. This approach leads to a large non-symmetric matrix, 

which puts constraints on the storage requirements. An iterative procedure using lower 

order modes is employed to avoid the storage of large matrices by solving the matrix 

eigenvalue equation (Chiang, 1994) directly. 

The finite difference method can also be formulated using the variational principle. The 

variational expression obtained is arranged into a set of coupled wave equations for each 

of the transverse directions, Hx and Hy . An eigenvalue matrix equation of the form 

Ax - Ax = 0 can be formed which can be solve using sparse matrix techniques. 

The accuracy of this method is determined by the size of the computational window. If 

the computational window is too large, convergence will be slow. A small computational 

window would, on the other hand, invalidate the assumption of zero field at the 

boundaries. As the distance between points is made sufficiently small, the method 

becomes increasingly accurate. 

1.4.2.6 The Finite Element Method 

The finite element method (FEM) is a relatively new and powerful numerical technique 

in the analysis of optical waveguide problems. Following this approach, any optical 

waveguide cross-section can be divided into triangular elements and the field 

components within the elements approximated by polynomial expressions. The 

versatility of the method ensures that each element can be of a different dielectric 

materi al, anisotropic, non-linear or lossy. The finite element formulation is usually 
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established using a variational technique (Davies, 1989), or through the Galerkin method 

(8erk, 1956). 

Vector variational formulations of Maxwell's equations provide a means of solving 

wave propagation problems where all six electromagnetic field components are required 

and scalar formulations are inadequate (English and Young, 1971). Such a formulation 

also provides a better convergence where the natural boundary condition is that of 

Dirichlet. Using a standard procedure discussed below, a variational formulation can be 

obtained. The steps involved are to 

I. Find the variational integral whose first variation is zero for the given 

boundary conditions 

2. Choose an appropriate trial function and expand the field components as 

a sum of the trial functions 

3. Substitute the trial fields in the variational integral and find the first 

variation and equate it to zero and 

4. The resulting simultaneous equations from the weak formulation of the 

boundary value problem are equivalent to a standard eigenvalue matrix 

equation of the form Ax - Ax = o. This equation can then be solved by 

one of several standard matrix algorithms. 

Different variational formulations have been proposed for use with the finite element 

method. The simplest of these is the scalar approximation, which is useful where the 

field can be said to be predominantly TE or TM. It has been applied to the analysis of 

different types of waveguide problems; e.g. in the work of Silvester (1969), Hayata et 

al., (1986), Chiang (1985) and Mabaya et al., (1981). 

For practical waveguides, the scalar formulation is not accurate since the modes are 

hybrid. To overcome this shortcoming of the scalar approximation, a vector formulation 
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with at least two field components is used. Both the E and H field vector variational 

formulations (Berk, 1956) or combinations of the two have been used. 

The finite element method in terms of the Ez-Hz variational formulation has been used in 

the analysis of both microwave devices, Csendes and Silvester (1970), Tzuang et al. 

(1986)) and optical waveguide devices (Yeh et al., (1975), Ikeuchi et al . (1981 )) . This 

formulation is however not suitable for generally anisotropic waveguides. It is also 

difficult to implement the natural boundary condition using this method for guides with 

arbitrary index distribution. Most importantly, however, the two axial components on 

which the formulation is based are the least essential of the six vector field components. 

Coupled with the above, the method suffers from spurious modes which can be reduced 

at the expense of increased computational cost (Mabaya et al., 1981). 

A vector E has been used in the study of cylindrical waveguides (English and Young 

(1971 )), magnetically anisotropic waveguides (Koshiba and Suzuki, 1985) and optical 

fibers (Katz and Werner 1982). The natural boundary condition for the E field is that of 

a magnetic wall. This implies a conducting electric boundary wall, n x E = 0, such a 

condition is however difficult to implement on arbitrarily shaped guide walls. The E 

field formulation also requires special care in preserving the continuity of the transverse 

components of the fields. 

The vector H field formulation has been extensively used due to its ability to solve 

generally anisotropic waveguide problems (Rahman and Davies, (1984a, 1985), Koshiba 

et al. (1986), and Kobelansky and Webb. (1986)). Since the natural boundary condition 

is that of an electric wall there is no need to explicitly enforce this condition. This 

formulation can be written as (Rahman and Davies, 1984a) 

2 ICV'xH)" . £-1 . (V'xH)1n 
m=~--..:---...:....--~-JH*· ,u-' . Hdn 

where £ and,u are the permittivity and permeability of a loss free medium, and they 

may both be of arbitrary anisotropy. Application of the Raleigh-Ritz procedure to the 
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above equation will yield a similar matrix equation as in the vector E formulation. A 

serious shortcoming of the above formulation is the appearance of spurious solutions, 

which can be attributed to the fact that the divergence condition V· H = 0 is not 

satisfied. Enforcing this divergence condition through the imposition of 'penalty' 

function (Rahman and Davies, 1984c) could eliminate these spurious modes. Another 

method of eliminating the spurious modes has been achieved through the use of edge 

elements (Bossavit and Mayergoyz, 1989). 

Variational formulations in terms of the transverse electric and magnetic field 

components have been used of late; e.g. in the work of Hayata et al. (1986, 1988) and 

Fernandez and Lu (1990). In such a formulation, the divergence condition is implicitly 

satisfied and minimum number of variables are required hence spurious modes can be 

avoided. This formulation can also provide the complex propagation constant for 

waveguides with loss and gain, however it can lead to a more complex matrix eigenvalue 

problem, (Hayata et al., 1986) with larger memory and cpu time requirement. 

I.S Aims and Objectives of the thesis 

Following from the discussion in the introduction, the important role optoelectronics has 

to play in present day communications systems is clear. A number of important areas 

have been identified in which ongoing research will contribute immensely towards 

communications systems of the future. The background information provided thus far 

has been important in defining the aims and objectives of this thesis, a small contribution 

to the efforts of many people to herald in a new communications age. The primary aim 

of this work can be summarised as follows: 

I. To investigate the different approaches to the solution of the optical 

waveguide problems and to provide a justification for the use of the finite 

element method. 
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To develop a rigorous, accurate, efficient and versatile method for the 

analysis of diffused and anisotropic optical waveguide problems based 

on the vector H finite element method. 

3. To develop an efficient and robust beam propagation method which 

combines the finite element discretization in the transverse domain with 

the stable z-stepping Crank-Nicholson scheme in the longitudinal 

direction for the study of nonlinear propagation. 

4. To apply the methods developed in 2 and 3 above to the study of second 

harmonic generation in LiNb03 waveguides and to investigate various 

methods of obtaining more efficient harmonic power in both planar and 

channel waveguides. 

5. To apply the methods thus developed in 2 and 3 to the study of second 

harmonic generation in semiconductor waveguides, involving GaAs and 

AIGaAs and to show the effects of fabrication error on the technique of 

quasi-phase matching. 

6. To investigate the cascaded effect in the second order nonlinear process 

of second harmonic generation. 

The methods thus developed, it is hoped, will aid in the better understanding of device 

design and analysis and hence provide a useful tool to the systems developer for the 

design of novel optical systems. 

1.6 Structure of the thesis 

The work presented in this thesis is based on the research carried out by the author in the 

use of the finite element based modal analysis method in the study of various types of 

waveguides and in the study of the nonlinear phenomenon of second harmonic 

generation. In particular, diffused anisotropic waveguides are considered. GaAIAs-based 
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semiconductor waveguides are also considered. The discussion, which follows, gives an 

outline of the structure of this thesis beginning with an introduction, which is presented 

in this first chapter. This first chapter gives a brief review of the historical development 

of optical waveguide development and its economic and technological impact on present 

day society. A number of linear and nonlinear effects are considered. This is then 

followed by a review of the theory underpinning optical waveguide analysis. Several 

methods of analysis are considered including semi-analytical and numerical methods. 

The formulation of the theory of the finite element method as a powerful method in the 

solution of complex problems is presented in Chapter 2. A detailed study of the finite 

element method along with the use of both linear and second order elements and shape 

functions is undertaken with a view to developing an algorithm for the modal analysis of 

anisotropic diffused and nonlinear waveguides. The fundamental mathematical relations 

are derived from Maxwell's equations. Also considered in the chapter are several 

variational formulations with a detailed consideration of the vector H-field finite element 

variational formulation. The chapter concludes with a look at beam propagation 

algorithms based on finite element discretization in the transverse cross-section and 

finite difference discretization in the z-domain. The split-step finite element schemes are 

considered. 

Chapter 3 is devoted to the theory of second harmonic generation. The origin of 

nonlinearity in optical materials is examined. Following Zernike and Midwinter (1973), 

an attempt is made at a detailed derivation of the nonlinear interaction equation, which is 

at the heart of nonlinear phenomena. The classification of SHG is then considered. A 

finite element variational formulation of the nonlinear equation is then obtained from 

first principles. The chapter concludes with a look at methods used to increase the 

second harmonic output. 

In Chapter 4 the application of the finite element method to the analysis of optical 

waveguides is considered. The chapter begins with a discussion of channel waveguides 

and their fabrication techniques. Methods developed in Chapter 2 are applied to obtain 

results for planar waveguides in the first instance. A comparison of the results obtained 

by methods developed in this thesis show very good agreement with previously 
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published results. The method developed in Chapter 2 is then extended to diffused planar 

and anisotropic waveguides as well as to channel waveguides. Various diffusion profiles 

are considered. The particular profile assumed by a waveguide will depend to a large 

extent on the fabrication technique adopted. It is shown that better results are obtained 

near to cut off if the waveguide dimensions are assumed to be greater than the diffusion 

parameters. Finally the finite element method is then applied to directional couplers 

which form an important component in many optical devices. More recently they have 

been used in the enhancement of the second harmonic power output (Hempelmann, 

1999). 

The application of the finite element method to the simulation of the nonlinear optical 

phenomenon of second harmonic generation in the ferroelectric crystal material of 

LiNb03 is considered in Chapter 5. The chapter begins with a review of the theory of 

SHG and then considers various phase matching techniques. Using the method proposed 

in Chapter 2, a model is developed for propagation in a linear medium. Nonlinearity is 

then introduced into the model and used to obtain results for planar waveguides using the 

Cerenkov radiation scheme. The results obtained here show excellent agreement with 

those previously published. The method is then extended to channel waveguides again 

using the Cerenkov radiation scheme. It is shown that such a scheme does not require 

any special techniques in order to increase output power. It is however observed that 

since the power is radiated into the substrate, special techniques may have to be applied 

in order to obtain useful output. The chapter also presents results for the non-radiated 

output and how quasi phase matching may be employed to increase the output power. 

Chapter 6 is devoted to second harmonic generation in semiconductor materials. Firstly 

the importance of semiconductors in the monolithic integration of optical devices is 

considered. A comparative study of second harmonic generation in both GaAs and 

GaAIAs is undertaken. An attempt is made at device optimisation using the modal based 

finite element method. In the first instance results are obtained for lossless devices when 

the quasi phase matching techniques of domain inversion and domain depletion are 

employed. The effect of loss is then taken into consideration. It is then concluded that 

GaAIAs based devices could provide better output power than GaAs devices even 

though they have a lower nonlinear susceptibility tensor. Results are also presented for 
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errors due to fabrication that might cause the phase matching distance to differ from the 

coherence length of the device. It is shown that such inaccuracies could lead to 

substantial departure from the theoretically predicted possible output power. 

In most research work on second harmonic generation it is often assumed that there is no 

depletion of the fundamental power. This assumption is however not strictly accurate in 

the presence of a strong laser beam. In Chapter 7 we investigate second harmonic 

generation under the assumption that the fundamental beam is depleted. The wave 

equation for the propagation of the fundamental is written with the second harmonic 

wave as a source term. It is shown that under certain conditions the generated second 

harmonic wave and the fundamental wave can co-propagate in the medium without 

affecting each other. 

The final chapter provides a summary of the work that has been carried out. A brief 

discussion is given on each chapter. This chapter also discusses some ideas and 

suggestions as to how the work carried out here may be extended in the future. 

Appendices are provided at the end together with a list of publications by the author 

relevant to this work as well as a list of references cited throughout the thesis. 
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Chapter Two 

The Finite Element Method and Propagation 

Algorithms 

2.1 Introduction 

Many natural phenomena can be described using algebraic differential or integral 

equations. The derivation of these equations may in themselves not present undue 

difficulty: however, their solution by exact analytical methods is a formidable task 

(Reddy, 1993). As a result approximate solutions are sought through the use of 

numerical methods. A numerical method is, in simple terms, a technique, which 

converts the infinite degrees of freedom of an unknown analytical solution to a finite 

set of unknowns, which can then be solved computation ally. The finite element 

method (FEM) is one such numerical technique for solving, to a high degree of 

accuracy, complicated boundary value problems. 

The basic idea of the finite element method is to divide the region of interest into a 

large number of finite elements or sub-regions. These elements may be one, two or 

three-dimensional. The idea of representing a given domain as a collection of 

discrete elements is not new: it is recorded that ancient mathematicians estimated the 

value of Tr by representing the circle as a polygon with a large number of sides. 
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In the past, the FEM has been used to solve complex engineering problems including 

structural analysis in the aircraft industry, heat transfer, fluid flow, and mass 

transport. In recent years it has found application in electromagnetic field problems. 

Most waveguide problems can be described through the use of integral or differential 

equations. These equations can then be solved using numerical techniques. The finite 

element method has established itself as one of the most powerful and accurate 

methods for solving problems associated with the sophisticated integrated optical 

waveguides and microwave devices been developed today. The versatility of the 

method allows elements of various shapes to be used to represent an arbitrary cross­

section. Each element could also be of a different material type, enabling a wide 

range of practical waveguides to be analysed. The type of waveguide problems 

considered in this thesis belongs to the class of eigenvalue problems and the 

emphasis will be on the vector H field formulation and the scalar fomulation. 

2.2 Basic Concepts in the finite element method 

In the finite element method, the key ideas are the 

• discretization of the region of interest into elements 

and 

• using interpolating polynomials to describe the variation of the field within 

each of the elements. 

Hence, instead of differential equations for the system under investigation, 

variational expressions are derived and the piecewise continuous function is 

approximated by a piecewise continuous polynomial within each element. From the 

equivalent discretized model and the contribution from each element, an overall 

system is assembled. This can be regarded as a sub-class of the Ritz-Galerkin method 

in which the trial functions are replaced with polynomial functions. In the classical 
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analytical procedure where the reglOn IS not subdivided into reglOns, only the 

simplest structures with basic material properties can be considered. The finite 

difference method is the simplest of all the discretization procedures and in the 

traditional version uses a rectangular grid with nodes at the intersections of the 

orthogonal straight lines (Fig 2.1 }. 

~ 

~\" 
node 

Fig 2.1 Example of domain division using a regular grid 

Such an approach is not particularly suited to irregular geometries with curved 

boundaries and interfaces since the intersections with the gridlines could be at points 

other than at the nodes. It is also not well suited to the analysis of problems in which 

there are steep variations of the field. The finite element method, on the other hand, 

allows the domain to be subdivided into elements or sub-regions. These elements can 

be of various shapes such as triangles and rectangles thus enabling the use of 

irregular grid for a complex waveguide structure (see Fig 2.2). 

The method can therefore be easily used to analyse problems with steep variations of 

the field and can be adapted quite readily to anisotropic and inhomogeneous 

problems. The accuracy of the method could be systematically increased by 

increasing the number of elements. The method does not rely on the variational 

method for its establishment: it could be established by the used of the Galerkin 

method, which is a weighted-residual method. The importance of this last point is 
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that the method could be applied in cases where no variational formulation exists or 

cannot be found. 

z 

Fig 2.2 Example of an arbitrary shape optical guide with several regions of different 

material types. 

The steps involved in the finite element analysis can be summarised as follows: 

• discretize the domain under investigation into sub-domains or elements. The 

accuracy of the method depends on the level of discretization. It is 

recommended to use more elements in areas where the field is thought to 

have steep variations. It is also not advisable to use elements across physical 

boundaries or interfaces. For symmetrical domains, the mesh should follow 

the same type of symmetry. 

• the functionals for which the variational principle should be applied for the 

elements are then derived. In deciding on the interpolation function, certain 

continuity conditions must be satisfied by the interpolation function across 

inter-element boundaries. These requirements are normally obvious from the 

physical consideration of the problem. It is however also necessary that the 

function be an admissible member of the Ritz and Galerkin methods. It 
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follows that the polynomial function has to remain unchanged under a linear 

transformation from one co-ordinate system to the other. 

• assemble all the element contributions to form a global matrix . 

• solve the system of equations that was obtained, in this case a matrix 

equation. 

Fig 2.3 shows how the discretization procedure can be applied to a waveguide with 

different regions, e.g. a cladding, film and substrate. The elements used in this case 

are triangular since it is much easier to represent an arbitrary cross-section with 

triangles rather than with rectangles . In 2-D waveguide analysis the triangles can be 

of any order but the most commonly used triangle orders are the first and second. 

Fig 2.3 Discretization of an optical waveguide 
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2.3 Implementation of the Method 

2.3.1 Finite Element Implementation of the Electromagnetic Wave 

Equation 

Given the following Helmholtz equation 

2.1 

as the governing equation in a waveguide problem, defined within the domain n, 
where l/> is the electric or magnetic field component and V 2 is a Laplacian operator 

defined as 

2.2 

then e is a constant related to frequency, also that r f and r" are boundaries within 

the said domain, the following boundary conditions may be defined 

l/> = ~ on the boundary rf (Dirichlet boundary condition) 2.3 

~~ = n . V l/> = lji on the boundary r
ll 

(Neumann boundary condition) 2.4 

where n is the outward normal unit vector. The gradient operator, is defined by the 

following matrix differential operator 

2.5 
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m the Cartesian system of co-ordinates. Taking into consideration the stated 

boundary conditions, the functional for equation (2.1) could be written as (Koshiba, 

1990) 

F = ~ Iff[(V tP)2 - etP2 ]dQ - If tPl{! dr 
n I " 

2.6 

The stationary requirement of the above functional, 8F = 0 , coincides with the 

governing equation of the problem. The Neumann boundary condition is 

automatically satisfied in the variational procedure and as such it is referred to as the 

natural boundary condition. The Dirichlet boundary condition however needs to be 

imposed and is therefore called the forced boundary condition. The functional for 

each of the elements of the region could then be written as 

2.6 

The functional for the whole of the domain can then be regarded as a summation of 

the element functions 

F=" F £..J e 
e 

2.7 

For the n nodes within each element, the field, tP, can be approximated as follows 

" 
tP = LN; tP; 2.8 

;=1 

where tP; is the ;th nodal parameter of the element e and N; is the interpolation or 

shape function. The above equation could be written in matrix form, as follows 

2.9 
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where the component of the vector {<p}. is <Pi and that of the vector {N Y is the 

interpolation function Ni' The superscript T denotes a transpose, {} and {Y denotes 

a column and row vector respectively. 

For convergence of the solution, the shape function Ni must satisfy certain 

conditions when the functional contains first order derivatives 

• the variable <p and its derivatives must include constant terms and 

• the variable <p must be continuous at the interface of two adjacent elements. 

The first of the two conditions is also known as the completeness condition and is 

simple to satisfy, provided complete polynomial expressions are used in each 

element. The second of the two conditions is called the compatibility condition. First 

order elements are the most fundamental and first order polynomials are used with 

them but higher order elements are used with higher order polynomials. Since the 

number of nodes within each element coincides with the number of terms in a 

complete polynomial expansion, the nodes are simply arranged to satisfy the 

compatibility condition. 

2.3.2 Derivation of the Element Equations 

In order to obtain the element equations, it is necessary to perform a co-ordinate 

transformation. This is required because the interpolation function is defined using 

the local co-ordinates and hence it is necessary to find a means of linking the global 

derivatives in terms of the local derivatives. Secondly the element volume over 

which the integration has to be carried out needs to be expressed in terms of local co­

ordinates with change of limits as may be appropriate. 
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Assuming the local co-ordinates ~I' ~ 2 and ~ 3 have as a corresponding set the 

following global co-ordinates x, y and z as follows: 

2.10 

2.11 

2.12 

Using the rules of partial differentiation, the transformation relation for 

differentiation can be written as 

a a 
a~, ax 
a = [J] a 
a~2 ay 
a a 

a;3 az 

where the matrix [J] is a 1 acobian matrix defined as 

ax ay az ---
a~, a;, a;, 

[J]= ax ay ~ 
a~2 a;2 a;2 
ax ay az 
---a;3 a;3 a;3 

2.13 

2.14 

The global matrix of the derivatives can then be obtained through an inversion of the 

lacobian matrix to give 
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a a 
ax a~1 
a 

= [ill a 2.15 ay a~ 2 
a a 
az a~3 

The following transformation relation for the integration is obtained 

2.16 

2.3.2.1 Line Elements 

As noted, line elements (one-dimensional) are the most fundamental of all the 

elements used. These elements can be of 

a) first order 

b) second order or 

c) higher order 

y y 

1 2 
1 3 
I'--------.---------~ 

1'-------------------1 

z x z 

Fig 2.4 Examples of line elements a) Linear element b) Quadratic element. 
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Examples of some line elements are shown in Fig 2.4. These are normally used when 

solving one-dimensional problems and it is necessary to introduce the line co­

ordinates Ll and L2. 

The relation between the line co-ordinates and the Cartesian co-ordinates is given by 

2.17 

where x
J 

and x2 are the Cartesian co-ordinates of the edge of the line and the length 

of the element is le is given by 

2.18 

If the local co-ordinate is now defined as ~J then 

2.19a 

2.19b 

The transformation relation for differentiation is then given as 

dId 
2.20 -=---

For integration, the transformation relation is given by the following 

2.21 
e o 
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Using equations (2.20) and (2.21), both the differentiation and integration formulae 

could be written as 

2.22 

I 

f L~ I.!2dx = Le f ~Ik (1- ~I)' d~, 
o 

= L k!f! 
e (k+L+l)! 

2.23 

The shape function vector for the linear element and its derivative are given as 

{N}=[~l 2.24 

and 

2.25 

respectively. The nodal co-ordinates (L" L2 ) of the linear element are given as 

follows: 

node 1: (1,0) node 2: (0,1). 

For the quadratic element, the shape function and its derivatives are defined as 
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2.26 

and 

2.27 

respectively. The nodal co-ordinates for nodes 1, 2 and 3 are given as (1,0), (0,1) and 

(1/2,1/2) respectively. 

2.3.2.2 Triangular Elements 

Most practical electromagnetic problems are of the two dimensional type which 

makes the use of triangular elements a common practice. These elements can be of 

either 

a) First order 

b) Second order or 

c) Higher order 

Examples of triangular elements of the first and second order are shown in Fig 2.5 

In applying the first order elements, it can be seen that nodes occur at the vertices of 

the triangles while nodes are also defined at the middle of the edges for second order 

elements. In this work only first order triangular elements are used since the second 

order elements are costly in terms of the computational time. Since adjacent elements 

will have common nodes, it is important to adopt a numbering system that will assign 

to these common nodes the same numbers. 
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y y 

I 

4 6 

.-----~~----~. 3 
~----------~. 3 2 5 

2 
~---------------------) 

z x z 

Fig 2.5 Triangular elements a) First order b) second order. 

Triangular elements shown in Fig 2.5 are used in two-dimensional problems. For 

such an element, the area co-ordinates L" L2 and L3 are introduced. The equation 

relating the Cartesian co-ordinates to the area co-ordinates is defined as 

2.28 

or 

2.29 

where (x"y,), (X2,Y2) and (X3,Y3) are the Cartesian co-ordinates of the vertex k (k= 1,2 

and 3) of the triangle. The coefficients ak, bk and Ck are defined as 
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2.30a 

b = y -y k I m 2.30b 

Ck = X'" -XI 2.30c 

The subscripts k, l, m are cyclical around the three vertices of the triangle. The area 

Ae of the element is given as 

1 

2.31 

If the local co-ordinates ~,1] are defined as 

2.32a 

2.32b 

2.32c 

then the transformation relation for differentiation will be given by the following 

2.33 

where 
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2.34 

or 

2.35 

with 

2.36 

The relation for integration is given as 

I I -~ 

If f(x, y)dxdy = 2Ae f f f(~,71 )d~d71 2.37 
o 0 

Using equations (2.32) through to (2.37), the formulae for both differentiation and 

integration can be written as 

2.38 

2.39 

63 



Chapter 2 The Finite Element Method 

= 2A k!L!m! 
e (k+l+m+2J. 

2.40. 

2.3.2.3 Other Elements 

Other type of elements in use include 

a) rectangular elements - two dimensional elements 

b) tetrahedral elements - three dimensional elements 

c) ring elements - axisymmetric two dimensional elements 

d) triangular ring elements - axisymmetric three dimensional elements 

e) special elements - edge, isoparametric or boundary elements 

All of the above could either be of linear, second or higher order. 

2.4 Finite Element Application 

2.4.1 Application of the Finite element Method to Waveguide 

problems 

For the purpose of numerical analysis and characterisation, optical waveguide 

problems can be classified as either one-dimensional (planar) or two-dimensional. 

The particular method of analysis used will depend on the waveguide property being 

sought. The finite element method is based on either the variational or the Raleigh­

Ritz approach and several variational formulations have been proposed. Most of the 

formulations yield a standard eigenvalue problem (Rahman and Davies 1984a). Of 

the various methods, the following can be identified: 
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Scalar field formulation: This method is suitable for one dimensional problems for 

situations where the electric or magnetic field can be expressed approximately in 

terms of the predominant field component. It has been applied to the analysis of 

wave propagation in homogeneous isotropic media (Daly, 1984), open boundary 

problems (Wu and Chen, 1986) and for the analysis of anisotropic waveguides 

(Koshiba et aI., 1984). 

For quasi-TE modes in the domain n, where the dominant field component is Ex, 

the formulation can be expressed as (Mabaya et al., 1981): 

2.41 

where f3 is the propagation constant and n is the refractive index. For quasi-TM 

modes, with Hx being the dominant field component, the formulation may be given 

as follows: 

2.42 

This formulation is not particularly suitable for media and where the guided modes 

are inherently hybrid. 

Vector field formuLation: For the accurate characterisation of general waveguides, a 

vector formulation with at least two field components is required. There are two 

main types of the full vector formulations namely, the E-field and H-field. The 

vector E-field approach was first applied by English and Young (1971). This 

formulation is suitable for generally anisotropic and loss-less problems. The natural 

boundary condition corresponds to a magnetic wall and as such it is essential to 

enforce the electric wall as the boundary condition (nxE=O). Such a condition is 

quite difficult to impose for an irregular structure. It also requires an additional 
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integral to ensure the continuity of the fields at the dielectric interfaces. The H-field 

formulation, on the other hand, has as its natural boundary condition the electric wall 

and the magnetic field is continuous everywhere. As such it is suitable for dielectric 

waveguide problems, as no boundary conditions need to be imposed. This 

formulation is given as 

2 f(VxH)* .£-1 . (VxH}1Q 
m=.!:.-.:.---:-~--~----=---

fH* . P. . HdQ 
2.43 

The above formulation leads to non-physical or spurious solutions since the 

divergence condition V· H = 0 is not satisfied. Various methods exist for detecting 

these spurious modes. A simple way is to examine the field profiles, since these 

modes are characterised by inconsistency and a random variation of the field they are 

easy to identify. The mathematical idea underpinning the physical solution is that the 

condition V· H = 0 is obeyed by the eigenvector. By calculating V· H for each 

eigenvector, it is possible to identify the true solutions from the spurious ones. The 

objective, however, is not simply to detect these modes, but to eliminate them or at 

least suppress them. The penalty-function method (Rahman and Davies, 1984c) is 

one of the best established methods for eliminating these spurious solutions. The 

method includes an additional term a, and the penalty term, a dimensionless number 

in the variational formulation, which now is written as: 

m' ~ f(v x H)' . £ - 1. (V X H}m+ (~J (V . H)'(V H)in 

fH*.p.. HdQ 
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2.4.2 The Matrix Equation 

It has been stated that the vector formulation leads to a standard eigenvalue problem 

of the form 

Ax-A,Bx=O 2.45 

In the above x represents the eigenvector, which holds the nodal field values. If in 

equation (2.43) the following substitution is made for the numerator 

and the denominator is written as 

x T 
. Bx = J H* . 11 . Hdn 

then the functional 

J = J(Vx Hr .£-1. (v x H)1n- k;; JH* '11' Hdn 

can be written as 

T T J=x ·A·x-A,·x ·B·x 

To find a stationary solution, it is required that 

aJ =0 
ax 

2.46 

2.47 

2.48 

2.49 

2.50 

Applying this minimisation procedure to equation (2.49), the following eigenvalue 

equation (2.45) is obtained 
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Ax- ABx = 0 

which can be solved using any standard matrix routine to obtain the field values at 

the nodes. 

2.4.3 Shape Functions 

The shape functions are a set of interpolation functions, defined in terms of complete 

polynomials and which are normalised over each element. If a typical element, as 

shown in Fig 2.6 is considered, then the shape function is chosen so that it uniquely 

defines the field within the element under consideration. 

<\>, (x , ,y J 

p (X,y) 

<p, (X , ' Y ,) <\>, (X " y, ) 

Fig 2.6 Diagram of a typical element 

The nodal points, the shape functions takes on values equal to the nodal values f/J" 

lP2 and f/J3 of the field. It is important therefore that the functions are expressed in 
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terms of their nodal values. Within the triangle, the field value can be adequately 

modelled by the expression 

c/J = a +bx+cy 2.51 

where a, band c are constants. These constants can be represented in terms of the co­

ordinates of the nodes. The nodal values of c/J can then be expressed as 

c/J3 = a + bx 3 + cy 3 

The above system of equations can be solved to determine a, band c as 

a = c/J1(X2 Y3 -X3Y2 )+c/J2(X3YI -X l yJ+c/J3(XIY2 -X2YI) 
2Ac 

b = c/JI (Yz - Y3)+ c/J2 (Y3 - YI )+ c/J3 (YI - Y2) 
2Ae 

c = c/JI (X3 - x2)+ c/J2 (XI - x3)+ c/J3 (X2 - XI) 

2Ae 

2.52a 

2.52b 

2.52c 

2.53a 

2.53b 

2.53c 

where, in the above, Ae is the area of the triangle. A substitution of these values into 

equation (2.51) will yield 

2.54 

or 
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2.55 

where 

2.56a 

2.56b 

2.56c 

The above can be rewritten as 

2.57a 

2.57b 

2.57c 

An important property of shape function is that 

2.58 

The H-field components Hx, Hy and Hz can be written as 

2.S9a 

2.S9b 
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2.59c 

In matrix form, the above equations can be expressed as 

Hxl 
Hyl 
HzI 

[H'] [N' 
0 0 N2 0 0 N3 0 

~J 
Hx2 

H = ~: = ~ NI 0 0 N2 0 0 N3 HY2 2.60 

0 NI 0 0 N2 0 0 Hz2 
HX3 
H y) 

Hz) 

In a simplified form, this is equivalent to H = [N]{H}, where [N] is the 3x9 matrix 

shown above and {H} is the 9x 1 column vector, which represents the components of 

the field . 

Similarly, the expression for \7 x H could be written as 

2.61 

where 

0 _aNI aNI 
0 

aN2 aN2 0 
aN) aN) 

--- ---az ay az ay az ay 

[Q]= aNI 
0 _ aNI aN2 0 

aN2 aN) 
0 

aN) 
--- ---az ax az ax az ax 

_ aNI aNI 
0 

aN2 aN2 0 
aN) aN) 

0 ---ay ax ay ax ay ax 

2.62 
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The Q matrix, after evaluation i.e. finding the derivative of the shape, with jf3z 

being the z-variation, becomes 

K21=h~~' 
jf3N

J a) 0 jf3N2 a6 0 jf3N) 
a, J 0 -a2 - jf3N2 0 -a5 jf3N) 0 -as 2.63 

a2 0 - a6 a5 0 - a9 as 0 

The B matrix can also be calculated in a similar fashion from equation (2.46). Since 

11 is a scalar quantity, it can be taken outside the integral to give 

2.64 

since H=[N] {H} 

Be = f [N]* . [N ] dQ 2.65 
~ 

The solution of the above expressions yields a 9x9 matrix. The integration is carried 

out using equation (2.40) and the resulting Be matrix is as follows: 

A 
0 0 

A A - 0 0 0 0 
6 12 12 

0 
A 

0 0 
A A - 0 0 - 0 

6 12 12 

0 0 
A 

0 0 
A 

0 
A 

- - 0 -
6 12 12 

A 
0 

A A 
0 - 0 0 0 0 

12 6 12 

B = 0 
A 

0 0 
A A 2.67 e - 0 0 0 

12 6 12 

0 0 
A 

0 0 
A 

0 
A - 0 

12 6 12 
A 

0 A A - 0 0 0 0 0 
12 12 6 

0 
A 

0 
A A - 0 0 0 - 0 

12 12 6 

0 0 
A 

0 0 
A 

0 
A 

- 0 -
12 12 6 
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In the above, Ae is the area of each element or triangle. The coefficients of the Ae 

matrix could also be calculated using equation (2.39). Making the following 

substitutions H=[N]{H} and V xH = [Q). {H}, the equation below is obtained 

2.68 

A simplification of the above will yield an Ae matrix of the form 

Ae = f [Q]. £-1 . [Q]dQ 2.69 

For isotropic media, e is a scalar quantity and hence can be facto red out of the 

integral sign. For anisotopic media, e is a tensor defined by a 3x3 matrix 

2.70 

Finding the inverse of e , [P] (Appendix 3), equation (2.69) can be written as 

2.71 

Carrying out the necessary algebraic manipulations a 9x9 matrix is obtained. Using 

the integration formula of equation (2.40), the integrals can be evaluated as 

f 
2 A 

N l dQ="6 2.72a 

2.72b 
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2.72c 

As an example, the Ae/l matrix will be given as follows 

2.73 

The other 80 elements of the Ae matrix can be found in a similar fashion . 

2.4.4 Element assembly 

The next stage in the finite element method is the assembly of the element matrices 

[Ae] and [Be] into global matrices [A] and [B] respectively. An appropriate matrix 

solver is then used to obtain the eigenvalues and eigenvectors of the equation. The 

assembly of the global matrix is done with respect to the nodes of the domain. Where 

two or more nodes are common to more than one element, then it is advisable to add 

the contribution of each adjacent element to the global matrix when the calculation 

for the common node is carried. 

1 2 

1 3 
A 3 

2 B 
3 1 2 4 

1 3 

C 
3 

2 D 
5 1 2 6 

1 3 
E 3 

2 F 

7 1 2 
8 

Fig 2.7 Example of domain discretisation using triangular elements 

74 



Chapter 2 The Finite Element Method 

Fig 2.7 shows a simple diagram of a domain, which has been discretised using 6 first 

order triangular elements. The node numbers 1-8 are the global node numbers for the 

domain and are used in the global matrices. The nodal points inside each triangular 

element are numbered 1-3. For the above structure, the global matrix, G, is formed 

by the addition of the element matrices A, B, C, D, E and F. 

As previously noted, for every element in the discretised variational formulation, 

there is an expression of the form 

2.74 

Each term in the matrix Ni) relates to two nodal field values where the indices, i andj, 

correspond to the nodal field values of the vectors {H} and {H}T according to the 

local numbering of an element. If a scalar formulation is considered, then only one 

field component need be taken into account, Hx for example, and the expression can 

be written as 

{

NIl 

{H x l H x2 H X3 N 21 

N 31 

For the structure shown in Fig 2.7, the global matrix Gpq may be defined as 
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G= 

If P is the total number of nodal points of the structure, the order of the global matrix 

is PxP, which defines the size of the matrix when only one unknown field component 

is considered for each node. The terms of the global matrix, Gpq, are the field 

contributions of two nodes, p and q according to the global numbering system, where 

p and q correspond to the row and column of the matrix. Each term of the global 

matrix Gpq consists of a local contribution from only one element, unless the nodes 

lie on a shared boundary. The terms of the global matrix, G 11, for the first node with 

respect to itself will be defined as 

2.76 

where N,~ is the term for the element matrix for the element A. The terms of the 

global matrix for other nodes, which do not lie on a shared boundary, can be found in 

a similar manner: G I2 = N,~ , G24 = N~ etc. When the nodes are on a shared 

boundary, then the contributions of each element are added to the node e.g. 

2.77 

2.4.5 Infinite Elements 

In electromagnetic terms, the dielectric waveguide is an unbound structure. The 

electromagnetic field can therefore, in principle, extend over the whole of open 

space, the area of which is infinite. This may cause problems for waveguides in 

which the solution exits near the cut-off region. In the finite element method, the 
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discretization of the waveguide cross-section cannot extend to infinity. Several 

techniques have therefore been developed for modelling the infinite open space with 

a finite number of elements. 

The most commonly adopted approach is to enclose the core of the waveguide in an 

artificial conducting boundary, chosen to be sufficiently distant from the core of the 

waveguide. The finite element method can then be applied to the core region. 

Although this approach is simple, it is an inefficient method of dealing with the 

problem as a large number of elements are required in order to give good results. It is 

still difficult to model accurately cut-off situations accurately with this method. 

The use of boundary elements was proposed by Yeh et al. (1979) to model a wide 

range of optical waveguide structures. In the method, the field in the exterior region 

was assumed to decay with an exponential factor, an effect incorporated into the 

finite element matrix. The major disadvantage of the approach is that the decay 

factor has to be determined heuristically and hence iteratively. The two co-ordinate 

systems did not conform and hence the fields used were not continuous. 

A method of 'infinite elements' has been proposed and was used by Rahman and 

Davies (1984a) to include explicit field representation in all of the necessary 

transverse directions by incorporating rectangular strips as shown in Fig 2.8. An 

infinite element is a finite element that does indeed extend to infinity, extending the 

domain of the explicit field representation to infinity without increasing the matrix 

order. 

The shape function for such an element should be chosen realistically and must be 

square integrable over an infinite element area. For such an infinite element 

extending to infinity in the x-direction, an exponential decay x may be assumed and 

the shape function can be written as 

N(x, y)= f(y)exp(- xl L) 2.78 
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where L is the decay length and f(y) is the conventional shape function in the y­

direction. Exponential decay functions can be assumed in a similar manner for decay 

in both the x and y directions. 

y 

v 
Traditional .. _II!It_.,. .. _,. ... _IIII!!~ .. t-.-.-.-;.-:.-;.~- finite element 

<f--,o"'--- In:fmite 
element 

Fig 2.8 Showing the use of infinite elements at the guide boundary. 

2.5 Beam Propagation Algorithms 

The finite element method outlined in the previous section is suitable for the 

stationary analysis of waveguides or where it is assumed that the guide under 

consideration is invariant in the axial direction. In integrated optics, however, there 

are numerous occasions when it is required to study the propagation of 

electromagnetic waves in z-variant structures. Such will be the case for example in 

bends, tapers, junctions and many other devices. In second harmonic generation in 

particular, the output power is dependent on the crystal length and hence there is a 

need to propagate the electromagnetic field obtained through the use of the modal 
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analysis method. As the case might also be under quasi phase matching, where the 

sign of the non-linear tensor is altered after every coherence length, a modal analysis 

of structures, which are z-variant and materials with non-linear properties, is clearly 

less than satisfactory. The problem can thus be re-defined as follows: To find the 

electromagnetic field inside a device given that the input field is known and the 

boundary conditions defined. This problem statement can be described using the 

wave equation 

2.79 

For simplicity, only a scalar approximation will be considered where all the fields are 

totally determined by knowing one component. The formalism could be easily 

extended to the vectorial case where, in the above equation, an additional term 

involving the derivative with respect to z is included. This scalar approximation is 

quite often used since the field distributions are usually very similar to those of the 

TE or TM polarisation. 

2.5.1 Paraxial Approximation 

The problem described by equation (2.79) is quite general and difficult to solve 

directly. In cases where the direction of propagation is well defined, then a simple 

approximation is appropriate and equation (2.79) could be written as follows for a 

steady state or time harmonic case 

2.80 

where <p is for the electromagnetic field, in the case of TE polarisation thi s will be Ey 

mode. In the above 
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2.81 

where n2 (x, y, z) is the refractive index profile in the guide. The electromagnetic 

field can be written as follows 

l/>(x, y, z) = l/>(x, y, z)e - jf1< 2.82 

where 13 is the phase constant or the reference value of the wavenumber. If the 

following two assumptions are now made 

1. That the field inside the guide structure can be represented by a field with 

narrow angular spectrum 

2. That the waveguide structure has a definitely marked longitudinal direction 

(z) and the propagation occurs mainly in that direction, 

then the paraxial or slowly varying amplitude approximation can be made. If the 

value of 13 is now chosen such that it forms a central estimate of the value in the 

spectrum, then the variation of the fields with z will be dictated primarily by the 

exponential factor in equation (2.82). The term cp(x, y , z), will only vary slowly with 

the axial co-ordinate z. Substituting for the field in the governing differential 

equation (2.80) and omitting the exponent (as it is a common factor), the following is 

obtained 

2.83 

since cj>(x, y , z) varies slowly in the axial direction, the second order z derivative can 

be ignored to give the following paraxial equation with 13 2 = k;n; 
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2.84 

2.5.2 Methods of Solution 

The equation obtained above can be solved numerically using one of a variety of 

methods. Most of the solution methods rely on z-stepping algorithms where the z­

axis is divided into a succession of discrete steps beginning with z = 0 and so on. 

Instead of seeking a solution over the entire domain of z, approximate solutions are 

sought at the defined steps starting with an initially known solution at z = O. The 

solution at the ith step is computed from a recurrence relation, that is an algebraic 

equation that relates the solutions at two or more successive steps. Some of the 

methods allow the use of different step lengths while others require uniform steps. 

All the algorithms, however, rely on the more traditional numerical methods 

described already as for example, all the derivatives can be approximated using the 

finite difference scheme. In this the finite difference method is used in both the 

transverse and longitudinal directions and could also be used in conjunction with the 

finite element method. In such a scheme, the finite element method is used in the 

transverse direction while the finite difference method is used in the axial direction. 

In this thesis, the combined finite difference and finite element method will be used 

in the solution of a range of problems. 

2.5.2.1 Finite DifferencelFinite Element Algorithm 

In this section, methods are described that consist of establishing a finite difference 

approximation for the longitudinal direction. The first order derivatives are 

approximated using the finite differences and with the fields known at an initial 

level, a stepping algorithm is initiated to calculate the field at the next step. 
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2.5.2.1.1 Forward Difference Scheme 

As an example, consider equation (2.84), where a z-stepping algorithm can be 

established if the equation is written in the form 

2.85 

The first order z-derivative can now be approximated using the finite differences: for 

example using the forward difference the following is obtained 

2.86 

Making this substitution in equation (2.85) the following will now be obtained 

2.87 

In the above lPk is the value of the field as a function of x and y but evaluated at a k­

step in the z-direction. The right hand side of the above equation can now be 

implemented using the finite element method. The resulting matrix will be of the 

form 

2.88 

The solution to the forward difference scheme is usually unstable. A restrictive 

relation also exists between the discretisation in the transverse direction and that of 

the longitudinal direction, which needs to be satisfied for a convergence of the 

algorithm. 
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2.5.2.1.2 Backward Difference Scheme 

In this method, the field is evaluated at the forward end of the z-step. If step k + I is 

considered as the current step in the algorithm, a backward difference approximation 

will be given by 

2.89 

The right hand side is evaluated at the k + 1 step and the resultant matrix will be of 

the form 

2.90 

This equation will result in a stable numerical solution. There are no limitations on 

the size of the steps in the z direction for convergence however the approximation in 

the z direction is only accurate to the first order. 

2.5.2.1.3 The Crank-Nicolson Method 

Better results than above could be obtained with a second order approximation for 

the z-derivative if instead of equation (2.86) the following substitution is rather made 

2.91 

This substitution would however necessitate calculating the field at two z steps 

simultaneously (k and k + 1 ). The resulting algorithm from this approximation would 

be numerically unstable. 
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A better implementation of the same method can be achieved if the fields are 

evaluated at some intermediate point, that is say at (k + 0.5), where making the 

necessary substitutions will result in an equation of the form 

2.92 

Without actually calculating the fields at the intermediate points, they could still be 

evaluated by considering them to be the average of the fields at the k and k + 1 steps 

such that 

n,k+1 n,k 
c/J (k+O.5) = 'I' + 'I' 

2 

2.5.2.1.4 The e· Method 

Equation (2.84) can be written in the form 

aac/J = Ac/J + B 
z 

The e method will then give the following approximation 

2.93 

2.94 

2.95 

where 0 ~ e ~ 1 . A rearrangement of the terms in the above equation will result in 

84 



Chapter 2 The Finite Element Method 

The three cases previously considered can be regarded as the specialised forms of the 

above generalisation. It can be verified that for 8 = 0 the forward difference scheme 

is obtained. For 8 = I the equation will correspond to the backward difference 

scheme and for () = 0.5 the Crank-Nicolson algorithm is obtained. 

Summary 

This chapter has considered the general formulation of the finite element method for 

optical waveguide problems. Various aspects of the implementation of the method 

have been considered, including domain discretisation, shape functions and field 

representation. The properties of the various formulations have been presented. The 

development of the vector H-field formulation has been considered in detail. The 

chapter also has reviewed means of eliminating spurious solutions, which affect the 

vector H-field formulation. The infinite element for open boundary type problems 

has also been considered. 

In addition to the finite element method, this chapter also considered the various 

algorithms of the beam propagation method. The beam propagation method will be 

adopted in conjunction with the finite element method in the study of second 

harmonic generation. This chapter forms the basics of the work described in 

subsequent chapters of this thesis. 
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Chapter Three 

Theory of Second harmonic Generation 
IM .Ut .Ui a , LiS , a . wAR L ~ .. , . .1 , ..... hUL J & 2! . __ .. ~ £ .. ... ~. L L . 

3.1 Introduction 

Since the first demonstration of the efficient conversion of the fundamental to the 

second harmonic wavelength, in quartz crystal, (Franken et al. 1961, 1963), there has 

been a growing interest in the practical uses of this phenomenon. Such a possibility 

could make available powerful sources of coherent radiation, which had hitherto 

been unattainable and would lead, to major improvements in fluorescence based 

bioanalytical instrumentation and high-end reprographic systems. As an alternative 

to air-cooled argon ion and He-Cd lasers, non-linear frequency upconversion of infra 

red laser diodes or diode pumped solid state lasers has emerged as a basic means of 

generating blue or green Jaser light. Although compact blue-green lasers were 

predicted nearly three decades ago, significant progress in their realisation was only 

made with the advent of high powered GaAlAs diode laser. 

Traditionally, blue-green laser generation has been accomplished by either second 

harmonic generation or by sum frequency mixing. In both processes, the output is 

proportional to the length of the mixing crystal, the square of its non-linear optical 
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coefficient and a phase matching term. In the case of second harmonic generation, 

the power also varies as the square of the intensity of the input field. In the case of 

sum frequency generation, the output is proportional to the product of the intensities 

of the two input fields. Due to their relatively low output powers, continuous wave 

diodes and diode pumped solid state lasers cannot be used in single pass systems to 

produce efficient frequency conversion. 

Two main techniques have been developed for increasing the conversion efficiency 

of diode based harmonic generators in order to increase output power (Dixon, 1993). 

In the first approach, the non-linear crystal is placed inside an optical resonator. This 

would result in an increase of the incident power at the fundamental wavelength. 

There are two main ways in which this could be realised. In the first the non-linear 

crystal is placed inside the resonator of the fundamental wavelength laser. Chinn, 

(Chinn, 1976), first proposed the intracavity method, of efficiently generating the 

second harmonic wavelength. Since the cavities of the diode pumped solid state 

lasers have low losses the intracavity power can be more that 100 times the 

maximum output power, (Dixon, 1993). Such high intensity would significantly 

increase the conversion efficiency. In a practical device, a high reflectivity mirror is 

used in place of a conventional output coupler and the non-linear process is used to 

couple power from the cavity. Such devices will operate at efficiencies exceeding 

10%; their output power however fluctuates chaotically. These fluctuations were 

caused by the intracavity nonlinear process and by variations in power distribution 

between the different polarisation states and laser transition (Dixon, 1993). Attempts 

at controlling the fluctuations using electronic feedback techniques were 

unsuccessful. 

In the second method, a single frequency input beam is spatially and spectrally mode 

matched to an external optical resonator containing the non-linear crystal (Ashkin et 

al., 1966). Spatial mode matching is achieved by matching the phase-front curvature 

and diameter of the input beam to the fundamental mode of the cavity. Spectral mode 

matching occurs when the round trip phase shift experienced by the light injected 

into the resonator is equal to an integral multiple of 21r. With these conditions 
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satisfied, the intracavity power can exceed the input by the magnitude of the order of 

two. 

The other technique for increasing efficiency involves the confinement of the input 

beam in a single mode waveguide, which prevents diffraction. This results in an 

increase in the input intensity and hence more efficiency. Several efficient second 

harmonic generation has been demonstrated using this technique in different 

materials such as lithium niobate, lithium tantalate and potassium titanyl phosphate 

(Fejer et al., 1992). In the typical waveguide for frequency doubling, the output from 

a single-stripe, index guided GaAIAs diode laser at 830 nm is focussed onto a lithium 

niobate channel waveguide to produce a harmonic at 415 nm. For efficient second 

harmonic generation, the harmonic and fundamental must travel through the 

waveguide with a fixed phase relationship. 

3.2 On the Physical origin of the Non-linear Tensor 

3.2.1 Linear Model 

The physics underlying the theory of second harmonic generation is that of the non­

linearity of the refractive index. The physical origin of the refractive index is thus 

considered in this section. 

The Lorentz model of an atom consists of a single electron and a nucleus. If an 

alternating electric field is applied to this atom then a polarisation of the same 

frequency as the applied electric field is induced. The electron will now oscillate 

about its equilibrium position, thus forming a dipole, which in turn radiates an 

electromagnetic wave of the same frequency as the applied electric field but of a 

different phase. This electron can be described mathematically as a harmonic 

oscillator and its equation of motion given by 
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d
2 
r dr 2 e 

- 2 +2y-+w r=--E 
dt dt n m 

3.1 

In the above, r is the displacement of the electron from its equi librium position, m is 

the mass of the electron of charge e, w" is the natural frequency and y is the 

restoring force. The applied electric field E is given as 

E =E(W)e -J01 +E*(W)e +J01 3.2 

where E* (W) = E{-w) is the complex conjugate of the applied electric field . A 

substitution of the above in equation (3.1) will result in a linear equation (Zernike 

and Midwinter, 1973) the solution of which is given by 

e e- JIlX 

r = -- E{W) 2 . 2 + complex conjugate 
m W o -2JYw-w 

3.3 

For a medium with an electron density N, radiating In the same direction, the 

polarisation is defined as 

Ne 2 E(w)e-jllX 
p = -- 2 • 2 + complex conjugate 

m Wo - 2JYw-w 
3.4 

Making the following substitution 

3.5 

in equation (3.4), the following is obtained 

p = X(w )E(w)e - jllX + complex conjugate 3.6 
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This indeed does show that the induced polarisation is proportional to the applied 

electric field and of the same frequency. This value is used as source term in 

Maxwell's equation. 

In some crystalline materials, the interactions between the atoms are not in the same 

direction i.e. all the atoms do not radiate in the same direction. Such materials are 

said to display anisotropy. In such crystals, the dielectric constant is not a scalar 

quantity but a second rank tensor, since it relates the displacement in one direction 

with the fields in the three directions. Equation (1.5) can therefore be written as 

i = 1,2,3 3.7 

In matrix form this can be written as 

_1 .[~x J=[I+ XXX 
£ y X yx 

(} D z Xv 

3.8 

Such materials are only able to transmit plane-polarised waves in one of two 

mutually orthogonal directions. These polarisations will 'see' different refractive 

indices. Incident light that is not plane-polarised is decomposed into two linearly 

polarised beams in the allowed directions. To find the two allowed directions of 

polarisation and the refractive indices in these directions, the index ellipsoid is used 

(Zernike and Midwinter, 1973) 

3.9 

Here, x, y and z are optical axes along which polarisation occurs. In some optically 

anisotropic materials, the three axes of the index ellipsoid are unequal, such crystals 

are called biaxial. In such crystals two optic axes can be defined. In uniaxial crystals, 
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two of the three axes are equal . In such a case the optic axis is perpendicular to the 

plane of the two equal axes. In such a case equation 3.8 reduces to 

o 
1+ X.I' 

o 

3.2.2 Optical Non-linear Susceptibility 

3.10 

It has been seen In the previous section that the polarisation in a material is 

proportional to the inducing field. This polarisation was completely linear: an 

increase in the field, by a factor of rn, will result in an increase of the polarisation, by 

the same factor. Some materials however do have non-linear properties, as such in 

addition to the linear response the field produces a polarisation proportional to the 

square of the field . Similar examples of non-linear dependence are known in other 

areas of physics. Perhaps the best known example is the break down of Hooke's law 

at large enough stresses. Polarisation is thus linear for certain limited values of the 

field strength. With the advent of the laser, much higher field strengths have become 

attainable and hence non-linear polarisation takes on new importance. 

The non-linear response of the medium can lead to an exchange of energy between 

electromagnetic fields of different frequencies. The two most important applications 

of such a phenomenon are parametric frequency conversion and second harmonic 

generation. If the refractive index of such a crystal is modulated by a field of 

frequency m2 , then a wave of frequency ml passing through the crystal will be phase 

modulated giving rise to side bands at combination frequencies. Modulating the 

parameters of the crystal can thus create different frequencies. The modulating field 

m2 is itself affected by the modulated refractive index and can thus give rise to a 

harmonic overtone at 2m
2

, 
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The interactions between the different fields can be attributed to the non-linearity of 

polarisation. Non-linear terms can therefore be included in the polarisation such that 

equation (3.6) can be written as 

3.11 

where X(2) and X(3) are constants, the second and third order susceptibilities. Since in 

crystals with a centre of symmetry, the even numbered non-linearities are identically 

equal to zero, the polarisation ~ due to the first non-linear term only can be written 

as follows 

3.12 

The non-linear polarisation can be described in terms of the an harmonic oscillator. It 

is known that optical polarisation is due to the outer bound electrons that are 

displaced by the optical field. The displaced electrons will be subject to a restoring 

force, if this is included in the equation of motion of the electron then the following 

is obtained (Y ari v, 1971) 

d
2 
r dr 2 2 e 

-2 +2y-+m r-l=r =--E 
dt dt (I ~ m 3.13 

If the following solution is assumed 

3.14 

where rl = a l El and this is substituted into equation (3.13) and collecting terms of 

the same order, the following is obtained (Zernike and Midwinter, 1973) 
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d 2 r, dr, e 
__ I +2y_1 +w 2 r =--E 
dt 2 dt () 1 m 

3.15 

d2~ d~ 2 2 
- 2-+2y-+w"r2 =~ rl dt dt 

3.16 

If the interacting electric field is defined as 

" 3.17 

A substitution of equation (3.17) in equation (3.15) will yield 

3.18 

Equating the sums of the individual terms at each frequency the following is obtained 

3.19 

This result is similar to that found in the linear case only that it has been extended to 

more than one frequency. This result is the basis for finding non-linear terms of 

higher order. Substituting the above into equation (3.16) and using the relation 

3.20 

where m and n has the same range of values. It follows that 
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3.21 

where 

3.22 

A power series can then be used to represent the polarisation density. For the linear 

polarisation this is 

P, . = ~X(I)(W )E(m )e - jw"r 
Imea r £..J fI n 3.23 

where 

I () Ne
2 

1 X m = ---"'7'""------::-
m2 2' 2 m () - Jym" - w" 

3.24 

For the second order polarisation, the following is obtained 

p, = ~ ~x(2) (m m )E(w )E(m )e - j(w,,+wm)r 
sec £..J £..J n 'm n m 3.25 

n m 

In the above 

x(2) (m m ) = --~f.J--(I)(m )!x (I)(m )!x (I)(W + m )] 
n' III N 2e3 IX n 11/ "Ill 

3.26 

The second order polarisation is thus due to the non-linear term ~ r2 in the equation 

for the anharmonic oscillator. It will be observed from equation (3 .25) that it contains 
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terms for all possible values of n and m, ± 1 and ± 2. Equation (3.26) also shows that 

the second order susceptibility X(2) depends on the product of the first order 

susceptibilities of the frequencies involved in the interaction. 

Henceforth P will be used for the second order polarisation and X 2 will be used for 

the second order non-linear susceptibility. Thus far, values have been represented as 

scalar quantities, which is accurate in the one-dimensional case. In reality however, 

they are vector quantities, as such X is a tensor of the third rank and equation (3.25) 

can be rewritten taken this into account to give 

p = ~ ~X (0) 0) 0) )E (0) )E (0) \~ - j(w"+w,,, )1 
J(cu lI + m ) £..J£..J ijk n+m' n' m j 11 k mF 3.27 

jk nm 

In the above i, j, k correspond to the three principal axes m the crystal and 

Equation (3.26) was generalised into three dimensions (Miller, (1964), Garrett and 

Robinson (1966» to obtain the following rule, also known as Miller's rule 

3.28 

The factor llijk was found to be remarkably constant over a wide range of materials. 

This has proved to be useful in the search for new materials. The observed constancy 

of the factor !ljjk might suggest that the large variations in the non-linear 

susceptibility might reflect their dependence on the linear susceptibility. 

Equation (3.25) can be written in the form 

3.29 

which from equation (3.12) gives 
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3.30 

The tensor d ·.k can be contracted to d . which forms a 3x6 matrix that operates on 
lj lj 

the field which is written in column vector form to yield 

E 2 
x 

[Pl[d ll 

E 2 

d l2 d l3 d l4 d l5 d16

] 

Y 

E 2 

Py - d 21 d 22 d 23 d 24 d 25 d 26 
z 3.31 

Pz d 31 d 32 d 33 d 34 d 35 d 36 

2E
Z
E y 

2Ez E x 

2EXE y 

As an example in films of suitably oriented GaAs or in hexagonal crystals such as 

CdS or ZnO with the c axis along the z direction, the nonlinear polarization term will 

only have a z component, such that, 

3.32 

For a x-cut proton exchange LiNb03 waveguide, the optical axis c is parallel to the y­

axis . In these guides only TE modes having components Ey, Hx and Hz can propagate. 

Assuming constant amplitude of the fundamental field, the non-linear polarisation 

can be written as 

P (x z) = £ d E 2 (x)e - j
2fJr: 

y ' () 33 f y 3.33 

In a Z-cut waveguide, the optical axis c is parallel to the x-axis. In these guides only 

TM modes having components Hy , Ex and Ez can propagate. The nonlinear 

polarization is given by 
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3.34 

3.35 

In both cases, the light propagates in the z-direction. 

3.3 Formulation of the Non-linear Interaction Equation 

In this section, consideration is given to how the wave equations describing the non­

linear interactions in crystals are derived. Following the derivation by Zernike and 

Midwinter (1973) the non-linear polarisation is inserted as a source term in 

Maxwell's equations 

1 d D 
VxH=-­

C d t 

1 d 
VxE = ---C,uH) 

cdt 

D =£E+4nP 

3.36 

3.37 

3.38 

The linear polarisation is included in £ and P is the non-linear polarisation. 

Assuming that the material is non-conducting and taking the curl of both sides of the 

curl of E, we obtain 

J.! d VxVxE = ---(VxH) 
cat 

3.39 
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a (1 a J vv ·E- V 2E = _.£1_ --(eE+4nP) 
c at cat 

3.40 

For a nonconducting medium, V· E = 0 

3.41 

3.42 

3.43 

If the discussion is then limited to one dimension, by assuming that %x = %, = 0 

and to the interaction of three travelling waves defined as; 

E, (z,t) = E, (z)e - j(lqt- k, z) 

E2 (z,t) = E2 (z)e - j
(C02t-k2Z ) 

E
3
(z,t) = E

3
(z)e - j (COJt-kJz) 

3.44 

where the subscripts 1,2,3 stand for the different frequencies present with the 

polarisation defined as 

~ (z, t) = 4dE; (z)E
3 
(z)e - jl (COJ-C02)t-(kJ-k2)z I 

P2 (z,t) = 4dE3 (z)E; (z)e-jl (COJ-IlI,)t-(kJ-k,) zl 

P
3 
(z, t) = 4dE, ( z)E

2 
(z)e - jI(IlIJ +1lI2)t -(k ,+ k2)z! 

then, 

a2 p' 
__ I = -(m - m )24dE*(z)E (z)e - jl (W, -1lI2)t-(kJ-k2)zl a t 2 3 2 2 3 
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Assuming the variation of the field amplitude is small such that k dE » d 2;- and 
dz dz 

making the following substitution 

3.47 

we obtain the following 

= (2 j k, ~' - k,' E, (z) }-J'."-"" 3.48 

3.49 

3.50 

Making this substituting for the differentials the following is obtained 
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3.51 

then 

3.52 

3.53 

3.54 

Similarly, 

3.55 

and 

3.56 

These are the basic equations, which describe non-linear parametric interactions. The 

three most common forms of which are 
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1. Second harmonic generation in which part of the energy of an optical wave at 

frequency w is converted to that of a wave at frequency 2(0. 

2. Parametric oscillation in which a strong pump at w) causes the simultaneous 

generation in a nonlinear crystal of radiation at ill) and ~ such that 

3. Frequency up-conversIOn In which a weak signal of low frequency w) is 

converted coherently to a signal of higher frequency w) by mixing with a 

strong laser field at w2 such that (02 = W 3 - (01 

It can be noted that they are coupled through the non-linear coefficient d. Each of 

the equations relates the rate of change of the amplitude at a particular frequency 

with distance with the rate of change of amplitude at the other two frequencies. They 

also show the phase difference between the polarisation wave and the 

electromagnetic wave, which can be written as 

3.57. 

3.4 Optical Second Harmonic Generation 

From the above amplitude equations, one can then obtain the equations governing 

sum frequency generation, difference frequency generation and second harmonic 

generation. Second harmonic generation is a special case of frequency mixing when 

it is considered that the two input frequencies are equal, thus (0 2 = 2w) . As before, 

the following equations can be derived: 

101 



Chapter 3 Theory of Second Harmonic Generation 

3.58 

3.59 

3.60 

3.4.1 Classification of SHG 

Principally, SHG can be broadly classified into two types (Hashizume, 1992); Type I 

in which there is a conversion from a fundamental guided mode into a second 

harmonic guided mode, known as the guided-guided SHG or second harmonic 

radiation mode. The guided-guided mode has four possible modes: 

Guided TE( ill ) to Guided TE(2 ill ) 

Guided TE( ill ) to Guided TM(2 ill ) 

Guided TM( m ) to Guided TM(2 ill ) 

Guided TM( m ) to Guided TE(2 ill ). 

In this type of conversion, both the fundamental and the second harmonic waves are 

tightly 'confined in the guiding regions of the waveguide, hence making it ideal for 

use in integrated optics. It however requires critical control of the waveguide 

parameters for phase matching. 

The conversion from a fundamental guided mode into a second harmonic radiation 

mode is also known as the Cerenkov type SHG. The possible modes of conversion 

are: 

Guided TE( (J) ) to Radiation TE(2 ill ) 
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Guided TM( w ) to Radiation TE(2 m) 

Guided TE( m ) to Radiation TM(2 m) 

Guided TM( w ) to Radiation TM(2 w ) 

Type IT conversion: 

Guided (TE( w) + TM( w)) to 

Guided (TE( w ) + TM( w )) to 

Radiation TE(2 w) 

Radiation TM(2 w ). 

Unlike guided modes, which are discrete, radiation modes have a continuous 

spectrum. Phase matching is automatically satisfied as long as the phase velocity of 

the guided fundamental mode is faster than the SH wave in the substrate. A 

necessary condition for this being the effective index of the fundamental mode is 

smaller than the substrate refractive index of the SH, nW < n;w . This aHows the SH 

to be radiated at a finite angle into the substrate. 

In this work, we will consider the guided-guided type of conversion and mode I 

configuration of the Cerenkov type conversion. 

3.4.2 Derivation of Second Harmonic Equation 

In this section the second Harmonic wave equation is derived in a form suitable for 

solving using a numerical method, namely the finite element method. 

Using the concept of the nonlinear polarization and assuming that this is related to 

the electric field of the electromagnetic wave by the scaJar equation as shown 

previously, 

p NL = 2£ dE2 
o 3.6J 

where d is a coefficient whose dimension is the inverse of the electric field. 
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It has also been shown previously that the physical origins of the non-linear 

polarisation can be attributed to the non-uniform deformation of the outer electrons 

of an atom or atomic system. If a monochromatic plane wave propagating through a 

non-linear crystal in the z direction is considered, then the electric field can be 

written as 

1 { . Ew(z,t) =- E( z, w)exp[J(wt-kw z) ]+c.c}, 
2 

3.62 

where c.c is the complex conjugate and kw = ~ = nww. 
Cw Co 

In an anisotropic material, the above scalar relation between the non-linear 

polarisation and the electric field is not strictly valid. A tensor relation of the form 

pNI. = eJd]E
2 

can be established. It can be shown for an anisotropic material that, for 

a given direction of propagation, two different linearly polarised plane waves can 

propagate. Corresponding to these two different polarisation are two refractive 

indices, the ordinary and the extraordinary. Due to this phenomenon, the electric 

field, EW(r, t), of the electromagnetic wave at frequency wand at a given point rand 

the non-linear polarisation at 2 w, p~~ (r, t) can be written in the form 

EW(r, t)=~ [Ew (r,w) exp(jwt) + c.c.] 3.63 

P;~(r, t)=i [p2W (r,2w)exp(2jwt) + c.c.], 3.64 

a tensor relation can be established between the non-linear polarisation at 2 wand the 

electric field at w. 

The second harmonic polarisation component in the j direction of the crystal is 

therefore 
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p2W ~ d 2w EW E W 
j = 4..J £ (} ijk j k 3.65 

j .k=1.2.3 

Having derived an expression for the non-linear polarisation, it is now possible to 

derive equations describing the propagation the second harmonic wave through a 

crystal. Using Maxwell's equations as the starting point and by inserting the non­

linear polarisation as a source term the following can be written 

dB 
VxE=--

dt 

dD 
VxH=-

dt 

B =,uH 

D=£ E+pL+pNL =£ [£]E+£ pNL o (} () 

3.66 

3.67 

3.68 

3.69 

Substituting equation (3.68) into (3.66) and taking the curl of both sides of equation 

(3.66), the following is obtained 

d 
VxVxE = -,u -(VxH) () d t 

a a VxH = £ r£]_E+£ rd]_E2 

"~at (J~ at 

3.70 

3.71a 

3.71b 

3.72a 

3.72b 
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3.72c 

3.72d 

3.72e 

3.73 

The above equation describes the propagation of waves in a crystal in the presence of 

a forcing function. It must be satisfied independently by each of the waves present in 

the crystal. For the second harmonic wave, therefore, we obtain the following, 

3.74a 

3.74b 

In a more general form, the above equation can be written as 

3.75 

For different crystal cuts and orientations we will obtain different nonlinear 

polarization terms for which we solve for the second harmonic field. To solve this 

equation, we first set the right hand side to zero and find the field distribution at the 

fundamental frequency. Knowing the field we can find the nonlinear polarization at 

the harmonic frequency using the tensor relation. This is then inserted into the above 

equation to obtain the field at the harmonic frequency. 
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3.76 

where P is the calculated non-linear polarisation. 

3.4.3 Variational expression for the S.H field equation 

It can be shown that the functional which minimises the above equation is of the 

form 

p~ JJ ~ {(:= J +(: J dxdy + OCd<L
2
- Pi.) JJE

2
dxdy + JJ P EdXdY} 

3.77 

An equation of the form Lu = 1 is a deterministic problem, the solution of which is 

uniquely determined by the source term f L is an operator and u is the function 

sought. One way of solving such a problem is to find a weak formulation of it, which 

satisfies certain specified conditions. This weak formulation is also known as the 

variational formulation the solution of which is also the solution of the original 

problem, provided that the specified conditions are satisfied. 

If it is assumed that Uo is a solution of our deterministic problem, then the functional 

sought is of the form 

Fu = (Lu, u)- 2(1, u) 3.78 

Since Uo is a solution we can say that L Uo = f Substituting for 1 in the above we 

obtain 
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3.79 

It is obvious however that 

Fu = (Lu, u) -(Lu o ' u)-(u,Lu o ) 3.80a 

3.80b 

3.80c 

3.80d 

Assuming that the operator L = -V 2
, then 

(Lu, v) = -f vV 2 u dO 3.81 
n 

From Green's identity theorem the following is obtained 

f v~s = fVuVu dO+ f vV 2 u dO 
n n n 

3.82 

so that 

)Lu, v( = fVuVu dO- f v~s 
n ," 

3.82 

If the operator is given explicitly by 
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3.83 

then 

F = ff (V x E*). ([J.l r' V x E )dQ - ff E*OO2EEdQ + 2joo ff pNLE*dQ 3.86 
n n n 

BF = ff (V x BE ' ). ([J.l r' V x E )dQ - ff BE*OO 2EEdQ + 2joo ff pNLBE*dQ 3.87 
n n n 

using the vector formula 

(VxoE)*(VXE)=oE*[VxVxE]+V.[oE* xVxE] 3.88 

of= ffoE*[VxVXE+k2E-2pNLPQ- ffV .[oExVXE]dQ 3.89 
n n 

A minimisation of the above functional for first order triangular elements will yield 

[S][E] + [C][E] = [T] 3.90 

[S] is a real symmetric matrix, [C] is a complex symmetric matrix and [T] is the 

forcing function. 
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3.5 Phase Matching 

The results from the previous section can be used to find the second harmonic 

conversion efficiency. The power per unit area can be defined with the relation 

p 2w = power 
Area 

3.91 

which is the second harmonic output power density. From which the conversion 

efficiency for a crystal of length L, can be written as (Y ariv, 1989) 

3.92 

This last result indicates that for efficient SHG 

~k =0 

or 

l.e. 

It follows that the output field is the coherent sum of the contributions generated 

along the length of the crystal. For equal phase velocities, the fundamental and the 

second harmonic radiation are equal and all the contributions add constructively and 

the output will be proportional to the crystal length. If this is the case, then it is said 
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to be phase matched. If, however, ~k i= 0 as is generally the case, then the second 

harmonic wave generated at some point (say ZI) having propagated to another point 

(say Z2) will be out of phase with the second harmonic wave generated at the point 

(Z2). This will result in a destructive interference described by the factor 

:iI)2 ML 
s10 --

2 

(~J 

The two adjacent peaks of the spatial interference are separated by the coherence 

length defined as 

3.93 

This length le, is a measure of the maximum crystal length that is useful in producing 

second harmonic power. This useful length, le, can be attributed to the di spersion in 

the refractive indices of the non-linear crystal and only several microns for SHG of 

visible radiation. The efficiency of the non-phase-matched interactions is thus much 

smaller than of phase matched interactions and in practical applications is thus of no 

use. 

Since the refractive index increases with frequency, equation 3.93 (above) could be 

rewritten in the following form for k(w) = wnW ; 

~ = k(2w) _ 2k(w) = 2w (n 2W _ nW) 
c 

It follows that 

c 

3.94 
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l - ne _ It 
C - w{n 200 _ n £0 ) - 2{n 2 £0 _ n £0 ) 

3.95 

where It is the free space wavelength of the fundamental beam. 

The phase matching requirement is that ~k = 0 . By far the commonest technique for 

meeting this requirement makes use of the natural birefringence of anisotropic 

crystals, i.e. the difference between the refractive indices of orthogonally polarised 

waves. For some crystals there is a balance between the wavelength dependence of 

the refractive indices (dispersion) and the polarisation dependence of the refractive 

indices (birefringence). In such cases it is then possible for the phase velocity of the 

second harmonic wave polarised in one direction to equal that of the fundamental 

polarised wave in the orthogonal direction. Only a small number of crystals meet this 

criterion: however, until recently, birefringent phase matching has been the basis of 

almost all practical frequency conversion devices. 

In phase matched devices, the efficiency will be proportional to the square of the 

non-linear susceptibility tensor and the length of the crystal but it varies linearly with 

input intensity. In typical non-linear materials, an efficiency of about 50% can be 

achieved with input intensities of 1 - 100 MW/cm2 (Fejer, 1994). Such intensities 

can be easily achieved in loosely focused pulsed laser beams with high peak powers. 

In continuous wave lasers, however, to achleve such intensities extremely tight focal 

spots will be required which in turn leads to diffraction. One way to overcome such 

shortcomings is to confine the crystal inside a resonator. 
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3.5.1 Angle phase matching 

1.60 

1.5~ 
)( .. 
-0 
E 

1.50 

1.45 

-------....... ----. 
Extraordinary - - - - - -

Wavelength (Il) 

Fig 3.1 Angle Phase matching in KDP (Zernike and Midwinter, 1973) 

True phase matching can be obtained by using the natural birefringence of uniaxial 

crystals. This method was first described by Maker et al., (1962) and independently 

by Giordmaine, (1962). Given a negative uniaxial crystal in which the ordinary index 

is larger than the extraordinary index, equal refractive indices are required for the 

second harmonic and the fundamental. If it is required to convert a fundamental 

wave at 632.8 nm to a second harmonic at 316.4nm then, from Fig. 3.1 (Zernike and 

Midwinter, 1973), it can be seen that the ordinary index at 632.8nm is larger than the 

extraordinary index at the same wavelength. Changing the angle between the wave 

normal and the optic axis can be used to vary the index for the extraordinary wave. 

Using the ordinary ray as the fundamental and the extraordinary ray as the second 

harmonic, it is possible to transmit the wave at an angle () to the optic axis, such that 

the refractive index for the input wave is exactly equal to that of the output second 

harmonic wave. 

The main disadvantage of angle phase matching is that the extraordinary beam at an 

intermediate angle does not overlap the ordinary wave. It would follow that the 

output power would not be proportional to the square of the interaction length. This 

effect is more serious in type IT interactions where the two fundamental beams do not 
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overlap completely. The polarisation wave thus simply disappears after a certain 

crystal length. 

3.5.2 Quasi-Phase matching 

To develop crystals that meet the phase matching requirements for efficient 

frequency conversion is a time consuming process, often requiring more than ten 

years between discovery and commercialisation (Fejer, 1994). Many attractive 

materials are excluded because of the very limited wavelength range over which 

birefringence phase matching can be achieved. In general therefore, the suitability of 

a material for frequency conversion applications is a complex function of its various 

optical parameters. A method to extend the range of usable materials and to obtain a 

significant increase in power would therefore be most welcome. If the phase 

difference between the polarisation wave and input electromagnetic wave could be 

changed, every coherence length by 1C through the introduction of a structural 
2 

periodicity, then it would be possible to correct the phase mismatch. This method of 

obtaining phase matching is known as quasi-phase matching (QPM) and was first 

proposed by Amstrong et al. (1962). 

An efficient method of realising quasi-phase matching involves a sign change of the 

non-linear optical susceptibility tensor. This sign change resets the relative phase of 

the non-linear polarisation and the generated wave every time the phase slips by 1C. 

This will result in power flowing monotonically from the fundamental to the second 

harmonic field. Quasi-phase matching has major practical advantages in that it 

eliminates any dependence of device performance on the birefringence properties of 

the material. It is possible to use a non-linear material over its entire transparency 

range. The method also allows the use of the largest component of the non-linear 

susceptibility tensor. 
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The simplest way of achieving quasi-phase matching is to make thin plates of the 

crystal one coherence length thick and stacking them alternately such that the 

polarisation wave will undergo a 1800 phase change from one plate to the other. The 

experimental difficulties of such an approach are obvious. The micro spatial scale 

required for plates makes this concept rather difficult to implement. The plates would 

also be required to be in optical contact. 

3.6 Summary 

This chapter has discussed the theory of second harmonic generation. The origin of 

nonlinearity in optical materials is examined. Following Zernike and Midwinter 

(1973), an attempt is made at a detailed derivation of the nonlinear interaction 

equation, which is at the heart of nonlinear phenomena. The classification of SHG is 

then considered. A finite element variational formulation of the non linear equation is 

then obtained from first principles. The chapter concludes with a look at methods 

used to increase the second harmonic output. 
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Ch.apter Four 

Finite Element Analysis of Optical Wave guides 

4.1. Introduction 

In this chapter the finite element method is applied to the analysis of optical 

waveguides. Results are presented for anisotropic waveguides, with an arbitrary 

permittivity tensor, being diffused in both the transverse directions and by using the 

finite element method with the vector H-field formulation for the analysis. The 

importance of considering the waveguide core dimensions to be greater than the 

diffusion depth in both the transverse directions, the use of extrapolation techniques 

and of a symmetry plane for anisotropic waveguides are also discussed. The 

modelling of asymmetric directional couplers is also considered. 

Dielectric integrated optical channel waveguides are employed in a large number of 

optical devices, such as lasers (Webjorn et al., 1997), switches (Wongcharoen et al., 

1997), modulators (Anwar et al., 1999), phase-shifters (Bersiner et al., 1991), 

amplifiers (Helmfrid et al., 1993), parametric oscillators (Bava et al., 1987) and 

cascaded non-linear devices (Ironside et al., 1993). There is a growing interest in the 

accurate characterisation of advanced optical guided-wave devices for optimisation 
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of their design. Besides semiconductor waveguides, there has been considerable 

interest in guides formed by silver-sodium exchange, thermal back-diffusion of K+ 

ions in soda lime glass, proton exchange in LiNb03 or in LiTa0 3 , annealed proton 

exchange in LiNb0 3 and Ti indiffusion of LiNb0
3

, which has received considerable 

attention. Ti:LiNb03 devices are particularly important because of their properties 

of low loss, their large electro-optic, piezo-electric, and elasto-optic coefficients and 

their high second-order nonlinearity (Strake et al. 1988). However due to the nature 

of the fabrication process, all of the above devices will result in a waveguide with a 

diffused refractive index profile and in any case, one which is anisotropic in nature. 

Over the years, several methods have been developed for the analysis of waveguide 

devices. These can be classified broadly into two groups: approximate analytical 

methods and numerical methods. The first group includes such approaches as 

circular harmonic point-matching (Goell, 1969), the effective index method (Hocker 

and Burns, 1977), the spectral index method (Burke, 1990), the matrix method 

(Harrington, 1967) and the method of lines (Worm and Pregla, 1984). Some of the 

approximate methods provide very good results for the analysis of waveguides when 

operating far away from cut-off. Goell (1969) employed the method of circular 

harmonic point matching in the analysis of step index rectangular optical 

waveguides. The approximate method of Marcatili (1969), in which the field in the 

corner regions of the guide is ignored, has also been used for the analysis of step 

index guides. Many research workers, in view of its simplicity, have extensively 

used the effective index method, first introduced by Knox and Toulois (1970). 

However, many of these methods are not very suitable for the analysis of a wide 

range of important practical, arbitrarily shaped, graded index and anisotropic 

waveguides and often not so accurate particularly when operating as a single mode 

waveguide and when operating close to cutoff. 

In the last two decades, numerical methods have been widely used in the study of 

optical guided-wave devices due to the availability of faster and cheaper computer 

power. A numerical method based on a vector integral equation has been used by 
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Pichot (1982) for the analysis of diffused channel waveguides. Sharma and Bindal 

(1992) have used a variational approach based on the Hermite-Gaussian trial 

functions to analyze diffused planar and channel waveguides. Schweig and Bridges 

(1984) and Lagu and Ramaswamy (1986) have employed the variational approach in 

the finite difference method (FDM) for the analysis of diffused channel waveguides. 

A method based on the direct solution of the vector wave equation, in terms of the 

transverse magnetic field, using a five-point finite difference scheme and which 

avoids spurious modes, has been used by Schulz et al. (1990). The beam propagation 

method (BPM) employed by Feit and Fleck (1978) is useful in the analysis of z­

dependent guided wave devices for finding modal solutions, but with constraints on 

sampling points and refractive index changes. 

However, for the modal solutions of z-independent waveguides, the finite element 

method (FEM) has established itself as a powerful, versatile and accurate method. 

Rahman and Davies (1984a,b) had developed and refined (Rahman and Davies, 

1984c) the use of the vector H-field formulation for a wide range of optical 

waveguides based on the finite element method and this approach will be adopted 

and extended in this thesis. 

In this section of the thesis, results are presented for waveguides diffused in both the 

transverse directions with isotropic, uniaxial and generally anisotropic refractive 

indices (Katsriku et ai., 1996). The importance of considering the case where the 

variable index waveguide core dimensions are greater than the diffusion depth in the 

transverse directions, which other workers neglect, is demonstrated and the validity 

of the application of the symmetry plane for anisotropic waveguides is also 

discussed. 

The method developed in this section is in anticipation of work to be done in second 

harmonic generation in lithium niobate (LiNb03) guides. Since LiNb03 has a high 

nonlinear susceptibility tensor, it provides a useful material base for the design of 

guided wave devices. In such waveguides, it is possible to satisfy the phase matching 
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condition using the general anisotropy of the material and when this is not possible 

then the quasi-phase matching principle can be adopted. The ability to accurately 

model such waveguides is therefore of importance. 

4.2. Waveguides 

Two main categories of optical waveguides can be identified 

a) waveguides for optical integrated circuits and 

b) optical fibers. 

Such waveguides are primarily for the guiding and processing of light. The 

technology relies on dielectric materials, a thin film of high refractive index 

sandwiched between a substrate of lower refractive index and an upper cladding 

(usually air) also of lower refractive index. This is achieved by using small amounts 

of titanium (Ti) to dope LiNb03 crystal and hence increase the index of refraction 

locally. Such an arrangement enables light to be trapped locally inside the film and 

hence achieving waveguiding. The higher the refractive index of the film, the more 

tightly confined is the light inside the guide. The refractive index in turn depends on 

the film thickness. The change in refractive index of the various sections of the 

waveguide can be classified as either step index or graded. In the step index guide, 

the refractive index changes in discrete steps at the boundaries of the sections. In 

graded index guides, the refractive index changes slowly throughout the guide. 

Essentially these types of waveguides are the basis of electro-optic and acousto-optic 

technology; the optical signal is modulated by means of an electrically or 

acoustically induced change in the optical characteristics of the crystal, including 

phase, amplitude, polarisation, frequency and direction of propagation. This 

technology can be applied in the implementation of major devices including second 

harmonic devices. 
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4.2.1 Fabrication Techniques 

Titanium diffused lithium niobate (Ti- LiNb03) waveguides were first fabricated by 

Schmidt and Karninow, (1974). These early guides were multimode and planar but 

soon after single mode channel guides were also demonstrated (Schmidt and 

Kaminow, 1975). Using ultra violet exposure through a mask, the desired waveguide 

pattern is formed on LiNb03 substrate. Titanium, of carefully controlled thickness, is 

then deposited over the entire crystal by means of either electron beam or radio 

frequency sputtering. The undesired metal is then got rid off either by dissolving the 

photoresist or ecthing. To obtain diffusion, the guide is placed in a furnace with 

temperature ranging from 980°C to 10500C for up to 12 hours. 

The general schematic of the waveguide to be considered is shown in Fig 4.1. The 

guide refractive index given by n(x, y) is slowly decreasing in both the x- and y­

transverse directions. For a 2-D diffused guide, the diffusion profile can be expressed 

approximately as: 

n(x, y) = n.,. + (ng - n.Jf(x)· g(y) 4.1 

where f(x) and g(y) are spatial functions of Dx and D y ' the diffusion length in 

the x- and y-direction and ng and n, are the refractive indices of the guide core and 

substrate respectively. In a step index guide n(x, y) = nil ' a constant and the guide 

dimensions are defined by the width a and depth b. The width and height of the core 

for a diffused guide are often given by the diffusion width, D x and the diffusion 

depth, Dy respectively. It is often assumed by other workers (Pichot, 1982, Sharma 

and Bindal, 1993, Lagu and Ramaswamy, 1986, Schulz et al., 1990 and Fleck and 

Feit, 1978), that outside the guide cross-section, defined by a and b, the refractive 
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index is constant and equal to n,. , which is not strictly correct. In this thesis initially 

a waveguide with uniform cross-section will be assumed. The guide is z-invariant 

and the refractive index does not change with the propagation direction. In the 

analysis of the propagation characteristics of practical waveguides, such an 

assumption is indispensable. Initially though, for the purpose of benchmarking, 

results will be obtained for planar waveguides with 

i) step isotropic 

ii) diffused isotropic 

iii) step anisotropic and 

iv) diffused anisotropic refractive indices. 

Subsequently more realistic optical waveguides with optical energy confined in both 

transversve directions are considered. 

Cladding ne 

! 
Guide core I 

b 
n(x,y) 

2D-L 

II 

, .------ ------ ------------ ----------------------------------------------------------.---------------------------------------f 

( a 
) 

Substrate, ns 

Fig 4.1 Schematic showing the general structure of the waveguide under 
consideration. 
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The following two dimensional Helmholtz equation describes the propagation of the 

electromagnetic field in terms of the vector magnetic field H, in the guide: 

4.2 

where f3 is the propagation constant, n, the refractive index and k the free-space 

wavenumber. 

In the FEM, the guide cross section is divided into a finite number of triangular 

elements to represent the problem. The FEM also allows each element to have a 

different but piecewise-constant refractive index constant refractive index. This 

property enables the FEM to be applied to the analysis of arbitrarily shaped diffused 

anisotropic waveguides. 

In general, the permittivity tensor, f, which defines the anisotropy of the material 

may be written as 

4.3 

Two classes of anisotropic materials can be defined: those in which the natural 

modes of propagation are linearly polarised and those in which they are circularly 

polarised. For the first class of materials, the permittivity and permeability 

components respectively are symmetric, i.e. Eij = Eji and l1ij = I1ji (Ramo et al., 

1994). The second group, known as gyrotropic materials, is those in which the 

natural modes of propagation are circularly polarised waves. In a loss-free gyrotropic 

material, the permittivity and permeability components are anti-symmetric, having 

Eij = -Eji and l1ij = -11 ji' An anisotropic material is said to be uniaxial when the 
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elements above and below the principal diagonal are zero and two of the elements in 

the principal diagonal are equal. A biaxial material on the other hand has all off­

diagonal elements equal to zero and all the three elements in the principal diagonal 

are unequal. 

This chapter will be concerned with loss-less anisotropic media in which £ is a 

tensor with real components £ij = £ji. In particular, results for uniaxial anisotropic 

materials and anisotropic materials with off-diagonal terms in the x - y plane will be 

presented. 

The full vector H-field formulation with the penalty term is given as 

(02 = f (VxH)* £-1 (x, y)(Vx H)dQ+a f (V· Hr (V· H)dQ 

fH· ·p·Hdn 
4.4 

where a is the dimensionless penalty parameter, ill is the angular frequency and H 

is the vector magnetic field at the nodal points (Rahman and Davies, 1984c). It will 

be assumed that the material is loss-less and the usual time (t) and axial (z) 

dependence of the field in the form exp[J(rot - /3z)] is considered throughout. 

However, waveguides with loss or gain can be characterised using the perturbation 

technique (Themistos et al., 1995) or by using magnetic field formulation involving 

only the transverse components (Abid et ai., 1993). 

Minimisation of the variational functional (4.4), with respect to each of the unknown 

nodal field components, H x ' Hy and H z will yield a stationary solution in the form 

of a set of linear algebraic eigenvalue equations, i.e. 

[A ]{ x } - ffi 
2 [B]{ x} = 0 4.5 
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where [A] is a complex Herrnitian matrix, [B] is a real symmetric and positive 

definite matrix, oi is the eigenvalue, and {x} is the eigenvector. For the loss-less 

case, a general phase difference of 900 between the axial and transverse components 

of H allows the transformation of A into a real symmetric matrix (Rahman and 

Davies, 1984b). A solution of the above eigenvalue equation for a given value of f3 

will yield a set of eigenvalues (0)2) with a corresponding eigenvector {x} set 

representing the three components of the H-field at each of the nodes. To obtain the 

complete (j) / f3 dispersion curves, a set of values of 0) and f3 are obtained for each 

mode. If it is necessary to obtain the propagation constant, f3, for a given 

wavelength, then this can be achieved by using 2 to 3 iterations. 

4.3. Results 

In this section, results for various types of waveguides are presented. Using the FEM, 

results are given and compared for planar diffused waveguides with isotropic and 

anisotropic refractive indices. Results are also presented for the channel waveguide 

diffused in both transverse directions. The diffusion profiles in the x and y directions 

could be defined by any arbitrary function, and both isotropic and anisotropic 

channel waveguides are considered. 

4.3.1. Planar waveguides 

Initially, the accuracy of the finite element method is demonstrated by comparing 

with the exact analytical solution for a simple slab waveguide. This is the simplest of 

all optical waveguides. It confines the light only in the direction of the guide 

thickness. In a three layer asymmetric step index slab waveguide the following 

condition is true: ne ~ n" < ng • A symmetric waveguide is considered here, the 

parameters of which are defined as follows, where the wavelength, A = 1.3J1m and 
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the refractive indices of the cover, film guide and substrate are ne= 1.4, ng = 1.5, ns 

= 1.4 respectively. The finite element solutions using different mesh divisions are 

shown in Table 4.1. The exact effective index (ne = f3/ k,, )ror the waveguide is 

1.457728, which has been obtained by solving the transcendental equation. It can be 

seen, from Table 4.1, that the accuracy of the finite element solution depends on the 

mesh refinement, in a similar way to most of the other numerical methods. In many 

practical waveguides an analytical solution is not available and a numerical 

technique has to be considered. The computational resources available could 

therefore limit the accuracy of finite element solutions, like many other numerical 

methods. For such problems, it is often necessary to extrapolate the results as the 

limits of computational facilities available are reached. Here two different 

extrapolation techniques, Aitken's extrapolation method (Rahman and Davies, 1985) 

and an extrapolation method given by Koshiba (Koshiba, 1992) are compared. 

In Aitkens' method, the extrapolated result is obtained from three successive mesh 

divisions with a fixed geometric ratio, using the following equation 

( )
2 

X -x X = X _ ,+1 , 
- ,+1 

X'+I - 2xr + X'_I 
4.6 

where x_ is the extrapolated result and x,_p x, and X,+I' are results obtained from 

three successive mesh divisions. In using the above formula, it is important to 

maintain a constant ratio of proportionality. 

The extrapolation procedure suggested by Koshiba (1992) is as follows 

k 2 2k2 e - 02 -q 01 
0- - 1 2 -q 

4.7 

where kL is the extrapolated solution and kgl and kg2 are solutions obtained using 

N El' and N E2 elements respectively with N El < N E2 ' and q == ~N ~ E2 . In this 

approach, results for only two mesh divisions are required with any arbitrary ratio. 
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Mesh FEM Aitken's Koshiba's 

Extrapolation Extrapolation 

50 1.457614 - -

100 1.457707 - -

200 1.457723 1.457726 1.457759 

400 1.457727 1.457728 1.457734 

800 1.457728 1.457728 1.457730 

1600 1.457728 1.457728 1.457728 

Table 4.1. Comparison of the effective index values obtained using the FEM with 

different extrapolation techniques. The exact analytical solution is ne = 1.457728 

The raw finite element results are shown in column 2 of Table 4.1, and in columns 3 

and 4 the extrapolated results are shown using Aitkens' (Rahman and Davies, 1985) 

and Koshiba's, (Koshiba, 1992) approaches respectively. The extrapolated results 

using Aitkens' approach is shown in column 3, where any of its values in any row is 

obtained by using the three successive raw FEM results of column 2, including the 

two previous rows and the present row. The extrapolated results using Koshiba's 

approach is shown in column 4 and its value in any row is obtained by using the raw 

FEM of the present row and the previous row. Although, Aiken's extrapolation 

required three sets of results with constant geometric ratio, it can be seen from the 

table that this approach converges faster than the approach given by Koshiba, as 

such, in this work Aitkens' method of extrapolation has been used. 

4.3.2. Diffused Planar Isotropic Waveguide 

Next the accuracy of the finite element method is tested for diffused planar 

waveguides. Many fabrication processes lead to a graded index of the film. The 

refractive index profile for such waveguides can be described using the following 
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y>O 4.8a 

y<o 4.8b 

In the above, g(y) is the distribution function which describes the diffusion profile of 

the refractive index in the guide. The particular profile assumed will depend on the 

fabrication process used. Various distribution functions are used to approximate the 

refractive index in the core of the waveguide. Results for a waveguide having the 

following diffusion profiles: exponential, Gaussian and complimentary error function 

(CEF), in the y direction, are shown in Table 4.2 for various approaches taken. In this 

example, the wavelength A = 1.3J.1m, the refractive indices of the cover and substrate 

are ne = 1.0, and ns = 2.177 respectively and /).n = 0.043 is the maximum change in 

the refractive index between the core and the substrate. The normalized frequency, V, 

is defined as V = kob~2n\. /).n , where b is waveguide depth and k(} the wavenumber. 

For a diffused waveguide, the diffusion depth D y ' can be considered as the 

waveguide depth b for defining the normalized frequency. The propagation constants 

may be computed for various values of V . From the results presented in Table 4.2, it 

can be observed that the finite element (FE) solutions compare very well with those 

obtained by Sharma and Bindal (1993) and are better than those obtained by the 

Rerrnite-Gaussian (RG), Evanescent Rerrnite-Gaussian (ERG) and the cosine­

exponential methods (CE) (Sharma and Bindal, 1993). It is believed that the finite 

element approach using 800 mesh points is more accurate than the results of Sharma 

and Bindal, using a numerical approach, which they have referred to as 'exact'. It 

should be noted that most practical waveguides have 2-D confinement, for which 

analytical solutions are not possible. In such cases numerical methods of evaluation 

have to be employed. 
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g(y) V Sharma FEM CE EHG HG 

e{(:, n 2.0 0.082 0.081 0.078 0.044 0.005 

3.0 0.275 0.272 0.270 0.263 0.216 

4.0 0.4l3 0.409 0.408 0.408 0.370 

ex{-:, J 
2.0 0.105 0.104 0.100 0.087 0.066 

3.0 0.229 0.227 0.223 0.218 0.193 

4.0 0.321 0.318 0.316 0.313 0.289 

ortc( Db, J 
3.0 0.068 0.067 0.064 0.041 0.015 

4.0 0.169 0.168 0.164 0.154 0.121 

v = koa.J2n stln; ne = 1.0, ns = 2.177, tln = 0.043, A = 1.3J..lm 

Table 4.2. Normalized propagation constant, B= [(f3 / ko )2 - n; ] / 2nstln, for 

diffused planar waveguides obtained by different methods. 

4.3.3. Diffused Planar Anisotropic Waveguide 

The Y-cut, X-propagation LiNb0 3 planar anisotropic optical waveguide with the 

optical axis in the x-y plane at an optical angle () to the x-axis has also been studied. 

The refractive index profiles for both the ordinary and extraordinary rays in the guide 

core may be defined respectively as: 

no (y) = n os + &lo . g(y) y>O 4.9a 
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y>O 4.9b 

where nos and nes are the substrate refractive indices, D..1ln and D..ne are the 

maximum changes in refractive indices between the core and the substrate for the 

ordinary and extraordinary rays respectively and g(y) has a Gaussian profile. It is 

assumed that the top cladding layer is air with an isotropic refractive index ne = 1. O. 

The non-zero elements of the relative permittivity tensor in the guide region are 

given by 

4. lOa 

4. lOb 

4.lOc 

4.lOd 

The effective indices for the first four modes when D y = 5 pm and the first two 

modes when Dy = 3 pm, are calculated using the FEM and compared in Table 4.3 

with results available in the literature (Koshiba, 1992). In this example, the guide 

parameters are defined as follows: ()= Oil, A = 0.6328pm, nos = 2.286, nes= 2.2 

and /).ne = /).no = 0.01. In Table 4.3, results obtained in this work are compared with 

those obtained by Koshiba (1992) using the FEM, the differential numbered solution 

(DNS), the multilayer approximation method (MAM), and the WKB method 

(Yamanouchi et al., 1978). The results obtained show very good agreement with 

those obtained previously (Koshiba, 1992). The results presented by the authors 

would be expected to be more accurate than those of Koshiba (1992) since in this 

calculation 800 first order elements are used, which represents a much finer mesh 
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compared to the 20 second order elements used by Koshiba. The computational time 

required for our mesh is approximately 8s on a SUN Sparc2 workstation. These FEM 

results have been tested using Aitken's extrapolation and have shown excellent 

convergence. 

Dy Mode FEM Koshiba DNS MAM WKB 

3.0 0 2.20582 2.20581 2.20581 2.20583 2.20577 

1 2.20159 2.20158 2.20159 2.20160 2.20155 

0 2.20736 2.20734 2.20734 2.20738 2.20735 

5.0 1 2.20427 2.20426 2.20430 2.20430 2.20426 

2 2.20184 2.20184 2.20184 2.20187 2.20184 

3 2.20028 2.20027 2.20028 2.20027 2.20027 

Table 4.3 Effective index results for a diffused anisotropic planar waveguide 

4.3.4. Diffused Channel Isotropic Waveguides 

It is possible to represent accurately any waveguide with an arbitrary cross-section 

and refractive index profile, which may arise as a result of the complex diffusion 

chemistry using the finite element method. However, to test the utility of the FEM 

and to compare our results with other reported results, the index profile is considered 

to be the simple product of two functions, fix) and g(y), where f(x) and g(y) can 

be defined by any two given functions. The form of these functions is determined by 

the fabrication method of the device. In Ti: LiNbO 3' the refractive index profile has 

been empirically approximated by Gaussian, exponential or complimentary error 

functions by various authors. However, it should be noted that in practical 

waveguides, the index profiles might not be a simple product of the two transverse 
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direction profiles. The FEM can model any such arbitrary variations, which other 

methods will not be able to tackle. 

In this section, the FEM method is applied to the analysis of 2-D diffused channel 

waveguides with various refractive index distributions. The index distribution in the 

x and y direction,fix) and g(y), is defined by anyone of the following functions: 

{

exP(-x 2 
/ D; ) 

f(x) = exp(-x / DJ 

erfc(x / D.) 

{

exp( _y2 / D 2) 

g(y) = exp(-y / DyY) 

erfc(y / D ) 
Y 

4.l1a 

4.llb 

In the next example, it is assumed that c" = 1, c2 = 2.1, cmax = 1.052 . c2 and a / b = I. 

The normalized frequency is defined as V = k() a~cmax - c2 , wavenumber, 

ko = 2n / Ao, where a is the guide width, b is the guide depth and a/b is the aspect 

ratio. In this example, the available one-fold symmetry has been exploited and an 

irregular mesh (a greater number of divisions in the guide core and lesser number in 

the cladding) has been used to represent one half of the guide cross-section. In the 

first example a = 2Dx since one fold symmetry has been used and b = Dy • In Fig. 

4.2, results for a Gaussian-Gaussian diffused index profile are compared with those 

obtained by Lagu et at. (1986), Schulz et al. (1990) and Sharma and Bindal (1992). 

These results show very good agreement with those obtained by Schulz et al. (1990) 

who have used a vector finite difference formulation . The present results differ 

slightly from those obtained by Lagu et al. (1986) who used a scalar formulation, 

which did not take into consideration the hybrid nature of the modes. These results 

differ significantly from those obtained by Sharma and Bindal (1992). However, it 

should be noted that the normalized frequency as defined by them, V = k() W .J2n,. !1n , 
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differs from that used by Schulz et al. (1990), Lagu et al. (1986) and as was defined 

in the present work, being V = koa..Jcmax - c2 ' where 2W is the initial metal strip 

width. The results of Sharma and Bindal therefore cannot be directly compared with 

those of Schulz et al. (1990) and Lagu et al. (1986). Their claim (Sharma and Bindal, 

1992), therefore, of presenting a better method can be attributed to the discrepancy in 

defining V and therefore, in our opinion, may not be valid. 
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The variation of the normalised propagation constant with the 

normalised waveguide dimension for a gaussian-gaussian diffused waveguide. 

The effect of considering waveguide dimensions, which are greater than the diffusion 

depth, has also been studied in this work. In most of the literature, the region of the 

guide core generally considered to have a diffused profile is defined by a and b 

which are equal to 2D x and D y respectively (see Fig. 4.1). Outside this region, the 

refractive index is assumed to be constant, equal to the substrate index. In Fig. 4.3, 

the dispersion characteristics of the Hr, and Hr2 modes are shown for a guide with 

Gaussian index profiles in both the transverse directions. In this case the refractive 

indices of the substrate and the core region are given as c2 = 2.1, cmax = 1.052 c2, 
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respectively. In the example, the diffusion depth and the diffusion width are taken as 

Dy = 2Dx = 6J1m. In the first approach, the guide core is defined by the diffusion 

depth and width, i.e. D y = b, and similarly, 2D x = Q. This is the approach adopted 

by most of the other research workers, whereas in reality, the refractive index 

profiles do not suddenly become uniform beyond the distances Dy and Dx. Thus the 

inaccuracy due to the first approach is tested by considering the effect of the guide 

dimensions being greater than the diffusion depth in both transverse directions i.e. 

D y < band 2D x < Q. For a well confined mode, the results are similar in both 

approaches. However, as can be seen from Fig. 4.3, the approximate results start 

diverging near the cutoff from the more accurate solution. Most of the practical 

waveguides are designed as single mode waveguide and in this operating region it is 

shown that the simple approximate approach differs considerably from the more 

exact representation. From these results, we believe, it would be appropriate to use 

guide dimensions larger than the diffusion distances, particularly near the cutoff. 
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The effect of guide structure on dispersion characteristics of a 

Gaussian-Gaussian diffused channel waveguide for the first two guasi-TE modes. 
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4.3.5. Anisotropic diffused channel waveguides 

Next, anisotropic waveguides with diffused refractive index profiles in both 

transverse directions are considered. In this example, it is assumed that the optical 

axis is in the direction of the x-axis and hence the relative permittivity tensor will 

have only diagonal elements. In the general expression relating to the permittivity 

tensor equation (4.10), this is equivalent to e = 0°. In the example, various 

parameters involved may be defined as n e.l. = 2.20, n o.\' = 2.286, n Oli = 2.21, 

nOli = 2.296, D x = 3.0J..lm and D y = 6.0J..lm. In Fig. 4.4, the dispersion characteristics 

of a waveguide with a Gaussian diffusion profile in the x-direction and different 

diffusion profile namely, Gaussian, exponential and complimentary error functions 

(CEF) in the y-direction are shown. It should be noted that any other function of x 

and y could have been used to represent the diffusion in the guide. It can be seen that 

the effective index of the fundamental H~I mode depends strongly on the diffusion 

profile assumed in the simulation. 

Again, in this example, the symmetry of the waveguide has been exploited. The 

importance of using such symmetry lies in being able either to employ higher mesh 

refinement to obtain more accurate results or simply to reduce computational time. In 

a channel waveguide, the y-axis is chosen as the line of symmetry. The required 

boundary condition n x H = 0 or n· H = 0 can be easily realised in an isotropic or 

anisotropic waveguide, with only diagonal elements, where n is the unit vector 

normal to the symmetry plane. In this example, if the boundary condition, n x H = 0, 

is used along the symmetry plane to obtain the dominant quasi TM mode, then this 

will also yield all the H~n modes with m being odd. This boundary condition will 

also yield the H~n mode with m being even. Similarly if the boundary condition 

n· H = 0 is implemented then this will yield all the H~m modes with m being even. 
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Fig.4.4. Dispersion characteristics of a rotated y-cut LiNb03 waveguide with 

Gaussian index in the x-direction and various index profiles in the y-direction. 

Again, a waveguide with only diagonal elements in its relative permitivity tensor but 

with e = 90° has been studied. The other waveguide parameters are ne" = 2.20, 

no, = 2.286, n = 2.21, n = 2.296, D = 3.011»1 and D = 6.011»1. The diffusion . eg OB x fAA'· Y fAA'· 

profile in the y-direction is an exponential function and in the x-direction, a Gaussian 

function. The dispersion curves for the first four H~n modes of the waveguide are 

shown in Fig. 4.5. With e = 90°, the optical axis is in the direction of the y-axis. It 

can be seen that, for this crystal orientation, the H~n (quasi-TE) modes see the 

ordinary refractive index of the guide. The boundary condition n· H = 0 has been 

used along the symmetry plane, giving the H~n mode with m as odd. 
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Fig. 4.5. Dispersion characteristics of a diffused anisotropic waveguide with 

optical axis at 90°. 

4.3.6 Anisotropic diffused waveguides with arbitrary 

permittivity tensor 

From the permittivity relations given in equation (4.10), it is clear that at (J = 00 or 

90
0

, the permittivity tensor will reduce to one with only diagonal elements and 

modes will be dominantly either vertically or horizontally polarised. A waveguide 

having such a permittivity tensor could therefore be used as a mode discriminator, to 
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separate the TE and TM modes. When ():;t. n7r (n = 0,1,2,3), the off-diagonal terms 
2 

do not vanish and the mode polarization is more complex. This type of waveguide, 

either passive or exploiting electro-optic effects, could be used as polarisation 

converters (Tzolov and Fontaine, 1996). In this section, results are presented for our 

study of anisotropic channel waveguides with the optical axis lying in the x-y plane 

and hence the permittivity tensor will have off-diagonal elements. It can be shown 

that, as the optical angle is varied from 0° to 90°, the dominant mode changes from 

horizontal polarization to vertical polarization. When the optical axis is at 45°, the 

amplitude of the Hx field is approximately equal to that of the Hy field. Although a 

physical symmetry of the guide exists, since both the Hx and Hy components are 

equal, neither the n x H = 0 nor n· H = 0 boundary conditions can be imposed to 

exploit this symmetry. It is therefore appropriate to use the full waveguide to 

compute the waveguide modes when ():;t. n7r (n = 0,1,2,3). 
2 

Fig. 4.6. The relative strength and orientation of the H field for anisotropic 

waveguide with optical axis at 45°. 

The orientation and relative strength of the vector H-field in a full waveguide at 

() = 45° is shown in Fig. 4.6 when A = 0.6328J1l1l. The field amplitude is a 
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maximum at the centre of the guide and reduces along the transverse directions. The 

other waveguide parameters are the same as are given in the example for Figs. 4.4 

and 4.5. It has been checked that the Hx and Hy field components are individually 

symmetrical about the y-axis and the total vector magnetic is directed along the 

optical axis (see Fig 4.8). For the dominant modes, both the Hx and Hy components 

are maximum along the y-axis, and Hx :::Hy, that is both are even functions and in 

this case neither the n x H = 0 nor the n · H = 0 boundary condition is applicable. 

It would appear from the above results that for () = 00 or 90°, it is best to impose 

symmetry to take full advantage of the reduced computational time and higher 

accuracy. The full waveguide should be used for cases when () '# 0° ,90° , to obtain 

both accurate and physically meaningful results. For other angles, say 

() = 30° or 60" both Hx and Hy components are maxima along the y-axis but their 

maximum values are different. The boundary condition of n x H = 0 or n· H = 0 

can therefore be easily realized in an isotropic or anisotropic waveguide, with only 

diagonal elements, because of the dominance of one of the modes and the absence of 

the other. The dispersion characteristics of the first two modes of the waveguide 

considered are shown in Fig 4.7 for () = 45°. 
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Dispersion characteristics of the first two modes of a diffused 

anisotropic waveguide with optical axis at 45°. 

In Fig 4.8, the results from the numerical simulation, which checks the symmetry 

condition, are presented for two different modes. In the simulation, steps were taken 

to ensure that, in the waveguide region, a proportionately equal number of elements 

were used. The results show very good agreement, an indication that for the same 

number of elements, it did not matter whether symmetry was imposed. It must be 

noted however that the use of symmetry will allow the use of a greater number of 

mesh divisions, hence leading to an improvement in accuracy. 
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Fig. 4.9. Variation of the effective index with the optical axis angle, for the 

ordinary mode. 
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Very often it is useful to find the effective index at a particular angle. This might be 

the case, for example, in second harmonic generation, when at a particular angle, the 

ordinary and extraordinary refractive indices might be equal. Such information will 

be useful in designing phase matched guides. Fig 4.9 shows the dependence of the 

refractive index of the fundamental mode on the angle. It can be seen that as the 

angle is varied from () = 0° to () = 90°, the field changes from a purely H~I to a 

purely H~I for the ordinary wave. The direction of the magnetic field will vary from 

nearly parallel to nearly normal to the optic axis. Fig 4.10 shows similar results for 

the extraordinary wave. Such knowledge could prove useful in the design of a mode 

separator or discriminator to separate the TB and TM modes. 
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Fig. 4.10 Variation of the effective index with the optical axis angle, for the 

extraordinary mode. 
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4.4. Asymmetric Directional Couplers 

This section briefly explores the application of the finite element method to coupled 

mode devices. These devices are important in the design of compact photonic 

systems. These devices (directional couplers) belong to a class of passive devices in 

which power exchange takes place between two modes, which are in close proximity 

to each other. A directional coupler is made up of two waveguides parallel to each 

other such that the evanescent field of one guide penetrates the other and optical 

power is coupled into the propagating mode of the latter guide. The coupling length, 

Le, is defined as the distance over which maximum power transfer occurs. This 

depends on the structure and refractive indices of the waveguides making up the 

directional coupler and the distance of separation between the guides. Fig 4.11 

illustrates the coupling between two guides. Beyond the coupling length, the power 

is coupled back into the original guide, and power transfer is thus periodic along the 

axial direction. 

Input 

z=o Z=4 Z=24 

Fig 4.11 Diagrammatic representation of a directional coupler 

Directional couplers are used in a variety of integrated optical devices including 

Rower dividers (Hotta et al., 1994), input-output couplers (Rajarajan et al., 1999), 
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modulators (Anwar et al., 1999), filters, switches (Jenkins et al., 1994), polarisers 

(Tzolov and Fontaine, 1996) and spot size expanders, (Rajarajan et aI., 1998). More 

recently they have been used in the enhancement of the second harmonic power 

output (Hempelmann, 1999). An accurate knowledge of the propagation 

characteristics is thus essential. For illustrative purposes, the FEM developed here is 

applied to the characterisation of such a device. Guide one is formed by field assisted 

K+ - Na+ exchange. It is assumed that the refractive index profile is step index in both 

the lateral and transversal dimensions. It is assumed that there is as much side­

diffusion as depth diffusion such that d, :::: d, and w is the guide width. Due to stress, 

the guide will be anisotropic with the following parameters: 

TE-polarisation: 

TM-polarisation: 

05: x5: d, 

otherwise 

- (d[ + wI2)5: y 5: (d, + w12) 

otherwise 

The following relation defines the refractive index profile 

n(x, y) = n.l• + (n g - nJf(x/d,)· g(y) 

4.12a 

4.l2b 

4.13 

The second guide is formed by thermal Ag+ - Na+ exchange. The refractive index 

change at the surface is given by fill = 1.0 X 10-2
. No anisotropy is assumed for this 

waveguide. The refractive index is approximated by the complementary error 

function in the x-direction. Such an approximation is valid and has been verified 
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experimentally for planar waveguides. The refractive index in the y-direction is 

represented by sum of error functions. 

4.14a 

4.14b 

n 2 (x y) =n 2 +(n 2 -n2 )f(x/d) . g(2y/w) 
, ,\' g ,\' g(O/w) 4.15 

The denominator g(O/w) has been included for the purpose of normalising the 

refractive index change. The diffusion depth is d = d eryc = 0.636-1 xdl/e ' 

The dispersion characteristics of the individual waveguides are calculated at first. 

The modal fields of both individual guides may then be used to design the 

asymmetrical coupler approximately using simple coupled mode theory or improved 

coupled mode theory. The following parameters are common to both waveguides: 

for both guides the substrate index is n" = 1.512, 

for both guides the upper cladding index is ne = 1.0, 

the wavelength region of interest is between A = (0.55 to 0.70)J1m , and 

the mask has widths between w = (1.8 to 4.0)J1m. 

A comparison of the results obtained using the finite element method with the 

effective index method (Gwneuch, 1995), are shown in Table 4.4 for both Gaussian 

and complimentary error function index profiles. In this case the refractive index 

profile is unnormalised. The refractive index at the core of the film is 1.522 and the 

aspect ratio is given as w = 1. Table 4.5 shows the relative error between the FEM 
d 
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and the ElM near to cutoff. It can be seen from the table that as the mode approaches 

cutoff, the relative error also increases. This can also be deduced from table 4.4 

Propagation constant 

FEM ElM 

V = 27rd ~n2 _n 2 Erfc Gaussian Erfc Gaussian 
A f ,I' 

8 0.09828 0.21795 0.0963 0.2117 

10 0.14695 0.26944 0.1443 0.2630 

12 0.18478 0.30612 0.1820 0.2996 

Table 4.4 A comparison of the FEM with the ElM for complimentary error function 

and Gaussian function in a directional coupler. 

Propagation constant 

(with normalised refractive index profile ) 

FEM ElM 

V = 2nd ~n2 _n2 Erfc Erfc Rei. error % 
It f ,\' 

4.5 0.08649 0.0919 +5.9 

5 0.12967 0.1318 +1.6 

5.97 0.20545 0.2040 -0.7 

Table 4.5 Showing the relative error in the normalised refractive index between 

the FEM and the ElM for the complimentary error function. 
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4.5. Summary 

Using the vector H-field finite element formulation, waveguides with an arbitrary 

index distribution in both the transverse directions have been investigated, as were 

waveguides with an arbitrary permittivity tensor. The effect of anisotropy on the 

symmetry of the guide has been reported. To test the accuracy of the FEM initially 

some planar examples were considered where a FEM solution was obtained for a 

simple planar waveguide and compared with the exact solution obtained by solving 

the transcedental equation. Since computational resources can limit the accuracy of 

the FEM, two extrapolation techniques used in improving the accuracy of the finite 

element solution were tested. It was shown that Aitkens' extrapolation technique 

converges faster than the approach adopted by Koshiba. So far, many workers have 

assumed that in diffused waveguides, the diffusion parameters are equal to the guide 

dimensions. In this chapter, it has also been shown that for waveguides with diffused 

index profiles, better results are obtained near cut off if the waveguide dimensions 

are assumed to be greater than the diffusion parameters. Anisotropy of the waveguide 

was investigated and results were presented for a two dimensional diffused 

waveguide with an arbitrary permittivity tensor. It has been shown that in analyzing 

anisotropic waveguides with an off-diagonal refractive index tensor, it is not possible 

to exploit the physical symmetry of the guide to achieve computational efficiency. In 

the simulation and optimization of second harmonic generators where phase 

matching is achieved due to the birefringence of the material or in an electrooptic 

modulator where the applied modulating potential introduces off-diagonal tensor 

refractive indices, cascaded nonlinear devices or erbium doped amplifiers, the 

adoption of the above analysis technique would be of particular value. 
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Chapter Five 

Numerical Modelling of Second Harmonic 
Generation in Optical Waveguides Using the Finite 
Element Method 

I. Introduction 

A numerical study of Second Harmonic Generation in optical waveguides is 

presented using the finite element method and the Crank-Nicholson split-step 

procedure. Results are given for a Cerenkov radiation scheme in both planar and 

channel waveguides. Also presented are results obtained on frequency doubling for 

guided modes in both planar and channel waveguides, using the quasi-phase 

matching scheme. 

The demand for compact and robust solid-state sources, emitting coherent blue 

radiation for data storage and laser printing as well as all-optical switching 

applications has intensified the search for appropriate materials from which they may 

be fabricated. This is evident from the number of recent publications in the field, 

(Hashizume et al., 1992, Li et al., 1990, Hayata and Koshiba, 1991, Suhara and 

Nishiahara, 1990, Mizuuchi et al., 1994, Delacourt et al., 1994). Reliable coherent 
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radiation on this wavelength band is still difficult to obtain directly, and second 

harmonic generation (SHG) is one convenient alternative method of obtaining a 

compact, coherent source of blue radiation. This has the potentially of offering high 

conversion efficiencies (Suhara and Nishiahara, 1990, Mizuuchi et al., 1994, 

Reneger and Sohler, 1988, Kinkata et al., 1996, Leo et aI., 1992, Fluck et al., 1996). 

As a phenomenon, SHG was first observed in the early 1960s, yet its exploitation has 

been rendered difficult by technological problems as well as finding materials that 

meet the phase matching requirements. The need to model such devices accurately 

and efficiently becomes even more urgent as a means of cutting down on 

developmental costs, thus enhancing the productivity of the search. It is quite 

difficult to model non-linear devices accurately using analytical methods, and so 

several numerical methods have been proposed and developed (Masoudi and Arnold, 

1995, Yevick, 1994, Krijnen et al., 1996, Hayata and Koshiba, 1991, Mahalakshrni et 

aI., 1996). The difficulties encountered in modelling such devices accurately has 

meant that approximations, such as a reduced geometry, or a planar representation of 

a two dimensional structure are often employed (Hayata and Koshiba, 1991, 

Mahalakshrni et aI., 1996). The FEM has previously been shown to be a very 

powerful, accurate and versatile method (Rahman and Davies, 1984a), useful in 

obtaining the modal solution of any waveguide medium with an arbitrary diffusion 

profile and anisotropic properties. Waveguides structures having such characteristics 

are particularly suitable for SHG. In this section of the thesis, results are presented on 

the SHG process in optical waveguides using the finite element-based beam 

propagation method (FE-BPM) and the split-step Crank-Nicholson procedure, where 

both planar and channel waveguides are considered. Two major schemes for 

obtaining second harmonic radiation are studied, these being the birefringent phase 

matching and the quasi-phase matching techniques. 
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5.2 Theoretical Background 

When electromagnetic radiation propagates through certain a class of crystals, the 

non-linear dielectric properties of the material induce in it a polarisation. It is well 

known that the mathematical representation of this induced polarisation in the crystal 

contains a higher order term, proportional to the quadratic of the non-linear 

susceptibility and to the square of the applied electric field. The non-linear response 

of the material may lead to an exchange of energy between the electromagnetic fields 

propagating at different frequencies Yariv (1989). One important application of such 

a phenomenon is in second harmonic generation in which part of the energy of the 

input field, at a frequency, ffi, is transferred to a field at double that frequency, 2w. 

The non-linear susceptibility term is the index of proportionality between the induced 

polarisation and the propagating fields and is defined as 

P =2dE·E 5.1 

where P is the non-linear polarisation, E is the field and d is the non-linear 

susceptibility tensor. 

However, due to symmetry requirements, only materials from the non­

centrosymmetric point group have a quadratic non-linear susceptibility term Fejer 

(1994) i.e. they posses a non-vanishing tensor term. In general, the induced 

polarisation can be written as follows (Yariv, 1989): 

E2 
x 

Px d ll d l2 

E2 
d l3 d l4 d l5 d l6 

y 

E2 
Py = d21 d22 d 23 d24 d25 d26 

z 
5.2 

Pz d31 d32 d33 d34 d35 d36 
2EzE y 

2EzE x 

2ExEy 
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where Px ' Py , and Pz are the components of the non-linear polarisation expressed in 

terms of the non-linear coefficient tensor, d
lllll 

(m = 1...3, n = 1 ... 6) and 

Ex, E y and Ez are the amplitudes of the fundamental electric fields. The specific 

form of the tensor depends on the point-group symmetry to which the crystal 

belongs. The small magnitude of the non-linear susceptibility tensor and phase 

velocity dispersion does not enable high output powers of the generated second 

harmonic radiation to be obtained. 

5.2.1 Coupled Wave Equations 

From Maxwell's equation, the propagation of an optical field in a given material can 

be written as 

5.3 

and considering two fields propagating at two different frequencies in the material, 

the total optical field, et>, can be written as (Weitzman and Osterberg, 1993) 

et>(x,y,z,t) = ~ {et> I (x,y)exp[j(wt - ,Bz)] + et> 2 (x,y,z)exp[j(2wt - 2,Bz)] + c.c} 5.4 

where et> 2 is the slowly varying amplitude of the generated second harmonic field, 

<1>( is the input field of the fundamental wave, P NI. is the non-linear polarisation, q 

and pz relate to the refractive index of the guide, k" is the wave number, co is the 

angular frequency and ,B is the propagation constant of the fundamental wave and 

C.c. is the complex conjugate. From the above equations, making the assumptions 

that the fundamental field is independent of the direction of propagation z, and that 
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P NL = 0 for the fundamental field, the following coupled non-linear parabolic 

equations can be derived: 

5.5 

5.6 

The subscripts I and 2 denote the fundamental and second harmonic respectively. 

For the TE modes, <l> = E x' P x = n x / n y ' P y = P z = 1, q = n; and for TM modes 

<l>=E y ' px=ljn: , py =l/n; ,pz =l/n; ,q=l. For diy, nx =nz =no ' the 

ordinary refractive index and n y = ne ' the extraordinary refractive index, for a planar 

.d d wavegUl e - = 0 . 
dX 

5.2.2 Phase Matching Techniques 

The magnitude of the second harmonic power generated depends critically on the 

waveguide parameters and on the non-linear tensor. As mentioned earlier, the small 

magnitude of the non-linear tensor and the phase velocity dispersion affect the level 

of output power generated. Research in the area of second harmonic generation is 

therefore mainly directed at finding new materials with a high non-linear 

susceptibility tensor and at ways of reducing phase velocity dispersion and hence 

obtaining phase matching. This study uses the latter methods. 

To obtain acceptable conversion efficiency, a high input intensity and large 

nonlinearity are required. High pump power density may be obtained through the use 

of appropriate optical resonator geometry. This however requires the accurate 
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matching of pump laser and resonator wavelength. This can be done by employing, 

for example, mode-locking techniques. High pump power density can also be 

obtained by confining the pump light within the nonlinear part of the optical 

waveguide, rather than focus it into the bulk material. This can, however, lead to a 

narrow tolerance in pump wavelength and it might be difficult to achieve in 

semiconductor lasers with an extended temperature range. 

The efficiency of the second harmonic generation depends critically on the 

waveguide parameters, thus requiring tight control of the guide thickness. A number 

of techniques exist for obtaining phase matching and these include birefringent phase 

matching and quasi-phase matching (QPM). Birefringent phase matching is a 

frequently used technique. It is based on the anisotropic properties of crystals, in 

which it is possible to make, as a fundamental input, an ordinary wave and for the 

output, an extraordinary wave or vice versa, depending on whether the crystal has 

negative or positive birefringence (Harvey, 1970). The phase velocities can be 

matched by choosing the particular angle between the direction of propagation and 

the optical axis. This results in the two waves 'seeing' different refractive indices. 

Birefringent phase matching is thus based on the difference between the refractive 

indices of the orthogonaliy polarised waves in the medium. Due to this difference, it 

is possible to have a situation where the phase velocity of the second harmonic wave 

equals that of the orthogonally polarised fundamental wave, because the refractive 

index, as 'seen' by the fundamental wave, is different from that of the generated 

second harmonic wave. The second harmonic field is thus radiated into the substrate 

at a known angle with respect to the propagation direction. This angle at which the 

second harmonic field is radiated is defined by cos e = n ei! (00) where n ei! (00) is the 
n .\'ub (200) 

effective fundamental refractive index and nl'llh (200) is substrate index of second 

harmonic. The bandwidth over which this occurs is very narrow, thereby limiting the 

transparency range of the material. Until recently, all frequency conversion devices 

were based on this method, despite the fact that only a few materials meet this 
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requirement. Since the generated second harmonic wave is radiated, special steps 

must be taken to ensure its efficient collection. 

In isotropic media with normal dispersion, the phase matching conditions cannot be 

satisfied as in anisotropic materials since the refractive index is frequency dependent 

(Harvey, 1970). Other methods are therefore used to obtain phase matching. In quasi­

phase matching (QPM), the non-linear coefficient is modulated by the periodic 

reversal of the ferroelectric domains after each coherence length. The effect of this is 

to negate any build-up of the phase mismatch. The device performance is therefore 

not dependent on the anisotropic properties of the material, hence making it possible 

to use the material over its entire transparency range. Another technique is domain 

disordering in which the non-linear susceptibility tensor is periodically destroyed in 

alternate half periods of the waveguide structure (Masoudi et aI., 1995). Generation 

of the second harmonic wave by this method is ideal for use in integrated optics due 

to its narrow confinement. It also requires, however, that the waveguide parameters 

are tightly controlled. 

5.2.3 Propagation in Linear medium 

For the purpose of comparison, equations describing the propagation of the TB wave 

profile in planar waveguides are derived. The waveguide was assumed to be linear 

and isotropic and capable of single mode operation. The initial wave profile was 

obtained by solving the eigenvalue problem using the well-developed FEM. The 

equation describing the propagation of a wave profile in an isotropic is given as 

- j2 {Jp al/J + a 2l/J + a 2l/J _ {J 2l/J + en 2l/J = 0 az ax2 ay2 0 

5.7 

Application of the finite element method (Appendix 4) to the above yields the 

following matrix equation 
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5.8 

where 

5.9a 
e 

5.9b 
e 

where {N} and {N x} have been defined earlier as the element shape function and its 

derivative. The element shape function and its derivative for second order linear 

elements are given as follows 

f{N}{NY dxdy =~[ ~1 
-1 

1~] 4 
e 30 

2 2 

5.10 

and 

f {N x }{N x Y dxdy = _1 [~ 
1 -8] 7 -8 

e 3le -8 16 -8 

5.11 

respecti vel y. 

For propagation analysis, the finite difference method is applied to equation (5.1) 

over the small interval i&. :::; Z :::; (i + &.) along the direction of propagation. This will 

yield a matrix equation for the evolution of the wavefront in the form 

154 



Chapter 5 Numerical Modelling of SHG in Optical waveguides using the FEM 

This equation can be transformed into an equivalent matrix equation of the form 

Ax = b by carrying out the following algebraic manipulations 

multiplying out the above and rearranging the terms the following is obtained 

- j2j3[Bl{<t>LI +&[Al- j32[Bl~{<t>LI + j2j3[Bl{<t>1 

+&[Al- j3 2[BIXI -8){<t>} = {a} 

The above can be rearranged to give 

5.14 

5.15 

(- j2/3[Bl-&QA1- /3 2[BIXI-8)X<t>} 

Making the following substitutions 

5. l6a 

and 

5.16b 

equation (5.15) can be written as 

[L(8)J {<t> }i+1 = [L(I- 8)J {<t> 1 5.17 

The wavefront at each (i+ l)th step is given by 
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{cp LI = [L(8 )];1 [L(l- 8)1 {CP}i 5.18 

The artificial parameter 8 determjnes which propagation scheme is being used. If 

equal to zero, the forward difference scheme is obtained and equation (5 .16) will be 

reduced to the following 

L(8)= -j2/3{Bl 5.l9a 

5.19b 

The backward difference scheme can be obtained by equating e = 1 , in which case 

equation (5.16) becomes 

5.20a 

and 

L(1-8) = - j2f3{B}i 5.20b 

In the Crank-Nicolson scheme, theta is assigned the value of 0.5. It has been shown 

that with e = 0.5, the numerical stability of the solution is guaranteed. Equation 

(5.16) can then be written as 

5.21a 

and 

5.21b 
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5.2.4 Power Calculation 

In second harmonic generation, a wave at a fundamental frequency, W I , is converted 

into a second harmonic wave at a frequency, w2 • In this process, the main interest is 

in finding the amount of power at the fundamental wavelength that has been 

transferred to the second harmonic wavelength. In second harmonic analysis, 

therefore, an input field profile at the fundamental frequency is obtained and the 

energy or power contained in that field profile is calculated using the relation 

E: I x Hmi' The fundamental field is then used as a source term to find the second 

harmonic field. The power contained in the second harmonic field is calculated using 

the relation E:2 x Hm2 . In the following, an outline is given of how the power within 

the guide cross-section can be calculated using the element shape functions of the 

finite element formulation . 

The power in an electromagnetic field can be defined using the Pyonting vector 

a x a y az 
E* xH= E* E* E* x y z 

Hx Hy Hz 
5.22 

S = fE* xHd~ 5.23 

In the above the integration is carried out over each element cross section; the 

interest is in the propagation direction and hence the following is obtained 
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fE* X Hdd = f (E: H y - E~Hx )dd 5.24 
~ 

To simplify the above, a relation is established between the E and the H components 

so that the final expression is in one variable only. From Maxwell' s equations it is 

found that: 

x y z 
V xH* = jWcE* = dx dy dz 5.25 

H* 
x H* y H* z 

from which the following is obtained 

jcW(E:X + E*- + E*- )= (dB; _ dB~ }_(dB; _ dB: Jy +(dH~ _ dB: } 5.26 
yy zz dy dz dx dZ dX dy 

Equating terms with equal coefficients; 

d 
The a component can be replaced with - jf3 

z 

d * * f3 . * H . * * 1 dB * jcwE = __ l. + jf3H => E . = _____ l. +-H 
x dy y x jcw dy Wc y 
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. E* aH; 'f3H* E* 1 aH; f3 H* J£W =-" + J => =--"--
Y ax x Y j£w ax W£ x 

5.28b 

Substituting the above in the Pyonting vector, the following is obtained 

f_I (f3H" - . aH; '6 __ 1 (_ f3H* . aH; 1 d!1 
1:,(1)£ Y J ay f Y (j)£ x + J ax JO-x 

5.29 

f[_1 (OH* H f3H* H )- _1 (. aH; H . aH; r ] d!:l 
t:" W£ \jJ Y Y + x x w£ J ax x + J ay Y 

x 

5.30 

From the representation of the fie ld in triangular elements using shape functions, the 

following can be written 

Making use of the above and their corresponding transpositions, equation (5 .30) 

becomes 

5.31 

!:l !:l !:l 

N2 -
N,N 2 N,N 2 6 12 12 , 

!1 [NY[N]= N2N) N2 N2N3 
!1 !1 

5.32 = -2 12 6 12 
N3NI N3N2 N2 

!1 !1 !:l 3 -
12 12 6 
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oN,N, oN,N2 oN,N3 

o[NY[N] 
ox ox ox 

oN2N, ON2N2 ON2N3 = ox ox ox ox 
ON3N, ON3N2 ON3N3 

ox ox ox 

From equation (2.57) the following can be obtajned 

Similarly, 

oN,N, 

o[NY[N] 
oy 

oN2N, 
= oy oy 

aN3N, 
ay 

a2N2 a2N3 

aSN2 aSN3 

agN 2 agN3 

oN,N2 
oy 

oN,N3 

ay 
aN2N2 aN2N3 

oy ay 
aN3N2 aN3N3 

oy oy 

d ak· aN, . aN2 _ . aN 3 _ 
an m 109 the following substitutions - = a3' -- - a6 ' - - a9 ay oy ay 
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A substitution of the above In equation (5.31), and noting that 

f N ,dll =f N 2dll = f N 3dll = ~ results in the power equation becoming 

1 1 - -
2 2 2 2 

fJ {HyY ~ 1 ~{Hy }+{Hx Y ~ 1 ~{HJ we 2 2 
1 1 1 -
2 2 2 2 

[ a, 
a2 a2 a2 a2 

a, J __ I {H Y jll a as as {HJ+{HzY jll as as as {H y } we Z 3 5 3 
as as as as as as 

5.37 

5.3 Results of the Simulation 

In this section, the numerical method developed in this research project will be 

applied to the simulation of various types of nonlinear waveguides. Initially the one­

dimensional planar structure will be considered. The method will then be extended to 

two-dimensional structures. A number of schemes for improving the output power 

will also be examined. 

5.3.1 Planar Waveguides 

The finite element method (FEM) has previously been shown to be useful in the 

analysis of optical waveguides, particularly in obtaining a modal solution (Rahman 

and Davies, 1984a). In this section, the finite element method is applied to the 

analysis of the second order non-linear process of second harmonic generation in 

planar waveguides. To test the accuracy of the present method, results obtained are 

first compared with those previously published. Applying the FEM to equation (5.5) 
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and assuming a stationary analysis, the following matrix equation is obtained for the 

modal analysis model (Rahman and Davies, I 984b) 

[A ]{ <I> } + ffi 2 [B]{ <I>} = 0 5.38 

where [A] is a complex Hermitian matrix, [B] is a real symmetric and positive 

definite matrix, (J)2 is the eigenvalue, and {<I>} is the eigenvector. 

Applying the FEM to equation (5.6) will yield the following matrix equation for the 

propagation model: 

5.39 

Equation (5.39) may be solved using a split-step procedure; the propagation step in 

which the finite difference method is applied within a short interval and the non­

linear step where the effect of the non-linear term is considered. Such a procedure 

will yield a matrix equation of the form (Hayata et al., 1991) 

5.40 

where 

L(8) = - j4/3[B]+ 8&([A]- 4/3 2 [n]) 5.41 

and 8, as stated previously, is an artificial parameter which controls stability of 

solution. For the Crank-Nicholson scheme, 8 = 0.5, which provides a stable solution 

unconditionally. 
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5.3.1.1 The non-linear Tensor for TE mode 

In equation (5.40), the profile of the non-linear polarisation can be written as 

Koshiba (1992) 

2e 
IjI NL = ---:- (i x • P NlJ 

" 
5.42 

for the TE mode, where ix is the unit vector in the x-direction. For the direction under 

consideration, the electric fields of the TE mode can be approximated as follows 

e xl = q>1' 

Making this substitution in equation (5.2), the following is obtained 

Px dl,e;, 
PNL = 0 =c" d2l e;1 5.43 

0 d3l e;1 

The non-linear tensor d is different for different crystal orientations. In LiNb03 when 

cl/x, d
" 

= d33 , d 21 = 0, and d31 = 0 and the non-linear polarisation becomes 

5.44 

The refractive indices for this orientation are also given by the following 

For c//y, the following tensor values are obtained 
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Making this substitution in equation (5.2) the following is obtained 

Px 0 

PNL = 0 = Co d3 ,e;, 5.45 

o -d22 e;, 

This shows that no polarisation term is obtained for the TE mode in a crystal cut with 

c/ly. 

Similarly when C/lz the following is obtained 

Px 0 

PNL = 0 =£ 
0 - d 22e;, 5.46 

0 d3,e;, 

Again no polarisation is generated in a crystal cut with c//z. 

5.3.1.2 The non-linear Tensor for TM mode 

For the TM mode, the source field is given by the following 

5.47 
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where iy and iz are unit vectors In the y and z directions respectively. The 

approximate values of the fundamental electric fields can be expressed as 

ex l = 0, z(,/3 AI 
e y l = - n 2k 'f'1 

y " 

Using these values in the second order non-linear polarisation term, the fo llowing 

equation is obtained 

0 

Px 
e2 

d
" 

d l6 
y 
2 

Py =e" d 21 d 26 
ez 

Pz d 31 d 36 
2e

Z
ey 

0 

0 

It follows that 

Px dl 2e~ + d 13 e: + 2d l4e ye
Z 

Py = en d22e~ + d 23 e: + 2d24eyeZ 

Pz d32e~ + d 33e; + 2d34e ye
Z 

5.48 

5.49 

Different crystal orientations will give different values of the non-linear polarisat ion 

since a different tensor is operative. 

For cl/x, the non-linear polarisation is as follows 

Px d3 le ~ + d 3l e: 
Py =e" d22e~ - d 22 e: 5.50 
Pz - 2d22eyeZ 

For c//y, the non-linear polarisation is as follows 
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Px 0 

Py =co d33e~ + d3le; 5.51 

Pz d 22 e; + 2d,se yeZ 

For c1/z, the non-linear polarisation is as follows 

Px 0 

Py = Co d 22 e; + 2d lS eyez 5.52 

Pz d3 le ~ + d 33 e; 

For a TM mode with c//y, equation (5 .51 ) is substituted in (5.47) to give 

5.53 

5.3.2 Cerenkov radiation scheme 

The first extensive theoretical treatment of Cerenkov radiation scheme was provided 

by Sanford and Connors (1989). As in such other work, the model makes the 

following assumptions 

• a quasi slab approximation 

• no depletion of the pump beam by losses 

• no depletion of the pump beam by second harmonic conversion 

• a simple TE or TM polarisation 

The Cerenkov radiation scheme makes use of the phase matching existing between 

the fundamental guided mode and the second harmonic radiation mode. In this type 

of scheme, the generated second harmonic wave in the non-linear medium travels 

with a phase velocity faster than that in the substrate. As a result of this, the 

166 



Chapter 5 Numerical Modelling of SHG in Optical waveguides using the FEM 

generated second harmonic wave is radiated into the substrate at an angle satisfying 

the phase matching condition (see Fig 5.1). 

Input field 
Film 

Substrate Radiated SH 

Fig 5.1 Schematic representation of the Cherenkov scheme in planar waveguide. 

The wavelength (A) dependencies of the ordinary and extraordinary refractive indices 

no and ne' respectively of the material substrate (LiNb03) are given as follows 

(Smith et al., 1976) 

n 2 =4.9048- 0.11768 -0.027169A? 
o 0.04750 - A? 

5.54a 

n 2 = 4.5820 _ 0.099169 _ 0.021950A} 
e 0.044432 _ A? 

5.54b 

In this study the orientation of the crystalline axis is assumed to be c//y for the TM 

mode, which is considered here. The explicit form of the second order nonlinear 

optical tensor for such a crystalline orientation is given as 

o o o 
o 5.55 
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The values of the non-linear tensor terms used in this simulation are given as 

d 22 =-4.0xlO-12 mIV, d33 =-34xlO-12 mIV 

(Hayata and Koshiba, 1991). The guide dimensions considered in this work are 

Y film = 0.525J.1m, where Y film is the height of the guide and Y.l'lllm is the height of the 

substrate. Three cases labelled A, Band C, with respect to the non-linear term are 

considered, where in case A, the guide is assumed to be linear, and the non-linear 

susceptibility tensor [d]fiIm = 0; however, the substrate is non-linear. In case B, the 

non-linear susceptibility tensor in both the guide and the substrate are equal i.e. , 

[d]subst = [d]film and in case C both the substrate and guide are non-linear with the 

same magnitude of the non-linear tensor but with different signs i. e. 

[dlsubst = -[d]film . The above three cases may occur depending on the actual 

manufacturing process. 

o 2 3 

Y f..Lm 

Fig 5.2. Profile of the input field. 

4 5 6 

The field profile of the fundamental TM mode at A =1.06 J.1m is obtained by way of a 

modal analysis using the FEM procedure. The profile of this field, which is launched 

at the input to the guide, is shown in Fig. 5.2. The guide core is within the following 
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limits 0.8 $; y $; 1.325,um. It can be observed that the field profile penetrates only 

slightly into the top air-cladding region but, however, decays much more slowly into 

the lower substrate region. This fundamental field generates the second harmonic 

field and its evolution along the optical structure is followed by the step-by-step 

solution of equation (5.9). 

3.0 

2.5 

.:! 
c: 
:::J 

~ 2.0 

I 
oS 1.5 

f 
oS 1.0 
lZ 
~ 

0.5 

O.OT-.-~-=-:..=r--r----.--,--.---.--,---, 

o 2 4 6 8 10 12 14 16 18 20 

YJ.l-m 

Fig 5.3a Radiated second harmonic field at Z=10.6pm 

The evolution of the second harmonic field profile as it propagates in the z-direction 

is shown in Figure 5.3 for five different propagation distances (Z=1O.6,Um, 15.9,um, 

26.5,urn, 30.6,urn and 47.7 ,urn), for case A, when the substrate is nonlinear. 
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3.0*10" 

2.5*10" 

2.0*10" 

1.5*10" 

1.0*10" 

5.0*10'7 

0 .0·10°-¥-r--,-~=;:::=::::=-r-'""T'"""-.------r-.---. 

o 2 4 6 8 10 12 14 16 18 20 

y 

Fig 5.3b. Radiated second harmonic field at Z=15.9pm 

3.0 

2.5 

0.5 

0.OT-,-,----,-.-4-==~==r=-,_.......,.__, 

o 2 4 6 8 10 12 14 16 18 20 

Fig 5.3c. Radiated second harmonic field at Z=26.5pm 
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5.0'10" 

0.O'10'T --r-,--,--.--r--.-=.,...-=r=y===, 
o 2 4 6 8 10 12 14 

Y 

16 18 20 

Fig 5.3d. Radiated second harmonic field at Z=30.6J.1m 

2 .5'10~ 

5.0'10" 

0 .0·10'T-'--r-.--r-~-.,--r---.-...........:=r=-,---; 
o 2 4 6 8 10 12 14 16 18 20 

YJ.Lm .. 

Fig 5.3e. Radiated second harmonic field at Z=47.7J.1m 

The continuous spectrum of the radiated mode as it radiates into the substrate can be 

observed. From Fig. 5.3a, it can be observed that the second harmonic field has 

penetrated a distance of up to 4J.1m into the substrate. It can also be seen from Fig. 

5.3b, at Z=15.9J.1m that the second harmonic field has penetrated further into the 

substrate region. Fig. 5.3c shows the second harmonic field at Z=26.5J1m and 

although it has penetrated well into the substrate region, it can be noticed that the 
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maximum field amplitude remains unchanged in all three cases. In Figs 5.3d and e, 

the second harmonic fields are also shown at Z=30.6j1m and Z=47.7 j1m, respectively. 

The results obtained in this work show very close agreement with those obtained by 

Mahalakshmi et al. (1996). 
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:l 

~ 
I!! 
~ 
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.. - --_._._-_._ ..... __ .. __ .. __ ._. __ . __ ... _._-_._-_._._. __ ..... --
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Propagation distance = 0.1 A 'Z!-'-m 

Fig 5.4. Second harmonic power as a linear function of propagation distance for all 

three cases. 

The total power carried by the second harmonic wave is calculated by integrating the 

Poynting vector over the waveguide cross-section for each longitudinal position. Fig. 

5.4 shows the generated second harmonic power as a linear function of the 

propagation distance, for all three cases. In case C, when the magnitude of the tensor 

terms in the guide and in the substrate are equal but of opposite sign, the intensity of 

the generated second harmonic radiation is higher than that of cases A and B at any 

given longitudinal distance. The significant increase in the radiated power in case C 

might be attributed to phase matching due to domain inversion (similar to quasi­

phase matching in guided structures), as the radiated wave propagates in the yz plane. 

This will suggest that a substantial increase in second harmonic output could be 

obtained by carefully considering the phase matching requirements along the y-axis 
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in a Cerenkov radiation scheme. The results obtained in this work show very close 

agreement with those obtained by Hayata and Koshiba (1991). It should be noted, 

however, that second order line elements were used in the work of Hayata and 

Koshiba (1991), whilst first order linear elements have been employed in these 

simulations. 

5.3.3 Quasi-phase matching 

The Cerenkov radiation scheme has proved to be a useful source of generating 

second harmonic radiation. However, because the generated wave is radiated over a 

wide area, it has not found wide application in integrated optics, which requires a 

narrow confinement of the generated beam. In many instances, special steps have to 

be taken to ensure that generated output is usefully directed. In the next case, an 

isotropic step index planar waveguide is considered. The parameters of such a 

waveguide are defined as follows: the pump wavelength Aw =0.84,um, the waveguide 

thickness d = 3pm, the refractive index of the substrate at Aw is n,:o = 2.172, the 

refractive index of substrate at the second harmonic wavelength, n,;w = 2.309, and 

the index step between guide and substrate is L1n = 0.01. In this simulation, it is 

assumed that the index change, I1n, is the same at both wavelengths and the value of 

the nonlinear susceptibility is as previously defined. The effective indexes of the 

fundamental wave and the second harmonic have been found to be 2. 1790 and 

2.3181 respectively. Fig.5.5 shows the evolution of the second harmonic power 

without any phase matching. The fundamental and the second harmonic wave will 

travel at different velocities due to normal dispersion in the material. The direction of 

flow of power between the two waves is dependent on their relative phases. A 

continuous change in the direction of flow of power is therefore obtained as a result 

of the continuous change in phase velocity between the two waves. Since the 

fundamental and the second harmonic waves are not phase matched, an efficient and 

complete exchange of power between them is not possible and, as expected, the 
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power builds up to a maximum (over the coherence length) and then dissipates due to 

the phase mismatch. 

1.2"10·' 

1.0"10" 

8.0"10·' 

I 6.0"10·' Q. 

4.0"10·' 

2.0"10·' 

0 .0*10' Z 
0 50 100 150 200 

Propagation distance,; 0.1 A ·Zf..!.m 

Fig 5.5. Second harmonic generation in planar waveguide without quasi phase 

matching. 

Modulating the non-linear term can, substantially increase the second harmonic 

power generated. Depending on the periodicity of modulation, different orders can be 

identified. Fig 5.6 shows QPM second harmonic generation using first order 

modulation, i.e. periodically modulating the nonlinear term in alternate half-periods. 

As expected, the second harmonic power is seen to build up. During the simulations, 

it was tested and found that the integrity of the second harmonic field profile is 

preserved during the period of propagation. 
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Fig. 5.6. QPM second harmonic generation in LiNb03. 

This form of modulation of the nonlinear term may however, not always be possible 

or difficult to fabricate, in which case a higher order modulation might be employed. 

The first and third order modulations are shown in Fig. 5.7. For the higher order 

modulation, the period of modulation is longer and hence easier to fabricate. It must 

be noted however that the first order modulation achieves the most rapid growth in 

output power. 
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OPM (Third Order) 

2 .0 

~ 
§ 
?:-
~ 1 .5 

.5 
:D 
~ 1.0 

J: 
(I) NonOPM 

0 .5 

0.0 T""''--T----===~::::::"......~---==r__...:::::::...=~/__r==---=='''1_ I: I ~ I : I ~ I : I ~ I ! I ~ I t r~::~~~ 
0 2 4 6 6 10 12 14 

Propagation distance, J...lm 

Fig. 5.7. Generated second harmonic with and without modulation. 
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5.3.4 Channel Waveguides 

Cerenkov Scheme: Whilst planar waveguides allow for a comparatively easy 

analysis and modeling, practical waveguides are two dimensional devices. In this 

section, second harmonic generation is considered in channel waveguides with two 

transverse dimensional confinement (see Fig 4.1). The input field obtained from the 

vector H-field finite element based modal analysis is shown in Fig. 5.8. In the first 

instance, the Cerenkov radiation scheme is considered with waveguide parameters 

similar to those used for the planar guide already considered. The waveguide 

dimensions are, however, given as w = 2J.1m and d = 0.525pm. Here, w is the guide 

width and d is the guide depth. The evolution of the second harmonic field profile as 

it propagates in the z-direction is shown in Figures 5.9, 5.10, 5.11 and 5.12 for four 

different propagation distances (z=1.5J.1m, 2.65pm, 3.82J.1m and 4.77J.1m), for case A, 

when the substrate is nonlinear. 
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4 
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"0 
m 
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~ 
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Fig.5.8 Field profile of the fundamental input mode. 
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From Fig. 5.9a, it can be observed that the second harmonic (SH) field has penetrated 

slightly into the substrate but its peak however is still in the guiding layer. Fig 9b 

shows a three dimensional view of the same field plot. It can be observed from Fig 

5.lOa that a substantial amount of the second harmonic field has now penetrated 

further into the substrate region, this is after a propagation distance of 2.65.um. Fig. 

5.11 shows the second harmonic field at z=3.82J.lm, the peak having moved almost 

totally into the substrate. Fig. 5.12 shows the second harmonic field at z=4.77 J.lm, in 

this case the field now being wholly in the substrate. 
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Fig. 5.9a A two dimensional plot of the radiated SH after a propagation distance of 

1.5Jlffi. 
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Generated Second Harmonic Wave at Z=1.5,um 

o· 

Fig. 5.9b A three dimensional plot of the field profile after a propagation distance of 

1.5~m. 
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Fig. 5.lOa A two dimensional plot of the field penetration after a propagation of 

2.65,um 
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Fig.5.lOb A three dimensional plot of the field profile after a propagation distance of 

2.65,um. 

Fig.5.Il A three dimensional plot of the field profile after a propagation distance of 

3.82,um. 
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Fig.5.12. A two-dimensional plot of the field profile after a propagation distance of 

4.77Ilm. 

An observation of the 3-d plots would indicate that the magnitude of the generated 

power remains the same in all cases; however, with increasing propagation distance 

the field penetrates deeper into the substrate. The total power is of course higher even 

though the magnitude remains almost constant. This can be explained by the fact that 

with increasing distance, the field is more spread. It should also be noted that the 

amplitude is equal to that of the planar structure seen earlier. Fig. 5.13 shows the 

generated second harmonic power as a linear function of the propagation distance, 

for all three cases. The three cases labelled A, Band e, with respect to the non-linear 

term are as follows: case A, the guide is assumed to be linear, and the non-linear 

susceptibility tensor [d]fiIm =0; however, the substrate is non-linear. In case B, the 

non-linear susceptibility tensor in both the guide and the substrate are equal i. e., 

[d]subst = [d]fiIm and in case e both the substrate and guide are non-linear with the 

same magnitude of the non-linear tensor but with different signs i.e. 
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[d]subst = -[d]tiIm . In case C, when the magnitude of the tensor terms in the guide 

and in the substrate are equal but of opposite sign, the intensity of the generated 

second harmonic radiation is higher than that of cases A and B at any given 

longitudinal distance. Again this significant increase in the radiated power in case C 

might be attributed to phase matching due to domain inversion (similar to quasi­

phase matching in guided structures), as the radiated wave propagates in the yz plane. 

The evolution of the field profile and SH power generation along the longitudinal 

direction, as shown in Figs 9, 10, 11 and 12, indicates that although the total power 

increases, however, it also radiates deeper into the substrate region which makes it 

unsuitable for use in guided wave applications. 

2.0"10·' 
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Fig. 5.13. The second harmonic power as a linear function of propagation distance. 

5.3.5 Quasi-phase matching scheme 

For quasi-phase matching scheme, an isotropic waveguide is now considered, of the 

type given in earlier work (Delacourt et al., 1994). The waveguide parameters are as 

follows; 'A f = 0.84flm, waveguide thickness d = 3J.lm, guide width w = 3flm, 
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refractive index of substrate at fundamental wavelength, A. J ' n.~ = 2.172, refractive 

index of substrate at second harmonic wavelength, n;w = 2.309 and the index step 

between guide and substrate is L1n = 0.01. For simplicity, it is assumed that this 

index change, tln, is the same at both wavelengths and the value of the nonlinear 

susceptibility as previously defined are given by d l5 = d33 = -5.9 X 10- 12 m / V, 

d 22 = -4.0 X 10-12 m/V, d33 = -34 X 10-12 m / V (Hayata and Koshiba, 1991). The 

numerical method adopted in this work can be used to consider any realistic index 

profile, for the fundamental and second harmonic waves. In this case, the guide is 

first considered without quasi-phase matching. The effective indices of the 

fundamental and the second harmonic waves have been found from a modal solution 

to be 2.1769 and 2.3178 respectively. From the relation L e = ~ , with 
Ll~ 

tl~ = ~2(() - ~(()' a coherence length Le = 1.5J.lm is obtained, where ~ 2 (() and ~(() are 

the propagation constants of the harmonic and fundamental waves respectively. 
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Fig. 5.14. Non QPM second harmonic generation in channel waveguide. 
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This result agrees very closely with what was obtained by Delacourt et al. (1994). 

This is also confirmed in our numerical analysis using the BPM. It can be observed 

in Fig. 5.14 that the maximum harmonic power is attained after propagating 1.5~m, 

which is equal to the coherence length, and which also agrees with the modal 

solution. Since the fundamental and the second harmonic waves are not phase 

matched, an efficient exchange of power between them is not possible and as 

expected, the power builds up to its maximum over the coherence length and then 

dissipates due to the phase mismatch. 

Fig.5.15a shows the second harmonic field profile at maximum power i. e. after 

propagating a distance equal to one unit of coherence length. This figure clearly 

shows the field is well confined within the guiding section of the waveguide. It will 

be noticed that the integrity of the input field has not been compromised. A three 

dimensional representation of the field is shown in Fig. 5.15b. 

7.5 

5.0 

2.5 

-5.0 -2.5 0.0 2.5 5.0 
Fig. 5.15a. A two-dimensional representation of the propagating field after one 

coherence length of propagation. 
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o 

Fig 5.l5b A three-dimensional representation of the propagating field after one 

coherence length of propagation. 

As in the case of the planar waveguide, modulating the nonlinear term can 

substantially increase the second harmonic power generated. Fig. 5.16 shows the 

effect of applying the quasi-phase matching technique of domain reversal, i.e. 

periodically modulating the nonlinear term in alternate half-periods. As expected, the 

second harmonic power is seen to build up. The integrity of the second harmonic 

field profile has been preserved during the period of propagation. It was tested and 

found that the generated SH wave remained confined within the guiding region. It 

was also observed that, as the propagation distance increases, the magnitude of the 

field profile also increases however, its profile remain quite similar. 
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Fig 5.16 Demonstrating the effect of QPM 

IV. Summary 

In this section of the thesis, results for second harmonic generation by the Cerenkov 

and QPM approaches have been shown in optical waveguides with both I-D and 2-D 

confinement. The evolution of the second harmonic for various cases and the 

generation of second harmonic power are also illustrated. In the simulation, the 

vector finite element method is used to find the modal solutions following which the 

FEM-based BPM program has been used to study the evolution of the second 

harmonic waves along the waveguide structure. The numerical approach developed 

here is accurate, computationally efficient and also very versatile. It allows both 

practical and realistic waveguide structures with anisotropic material properties, 

diffused in both the transverse directions and with 2-D confinement to be considered. 

This approach can be used to optimise device designs for any particular operation. It 

could also be extended to the study of the phenomenon of cascaded second harmonic 

generation. 
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Chapter Six 

Finite Element Analysis of Second Harmonic 
Generation in AIGaAs Waveguides 

6.1 Introduction 

The rigorous and efficient FEM based beam propagation method is used to model 

SHG in semiconductor waveguides. The effect of material loss on the overall 

efficiency of SHG is also analysed. It is shown that under certain conditions, GaAIAs 

based devices with a lower non-linear susceptibility tensor could be more efficient 

than GaAs with a higher non-linear susceptibility tensor due to their low material 

loss. Numerical results are also presented, of the effect of domain fabrication error, 

in the case of quasi phase matched devices on the efficiency of SHG. 

The prospect of building compact and robust solid state devices emitting short and 

coherent wavelengths which are important in data storage, laser printing and all­

optical switching applications has been given considerable impetus by recent 

advances in semiconductor fabricating technology. It has been difficult to exploit 

fully the phenomenon of second harmonic generation (SHG) due to both 

technological problems as well as the need to find suitable materials that meet the 

required phase matching conditions (Fujimura et al., 1993), particularly in isotropic 

crystals due to the normal dispersion of the material. Earlier work had therefore 
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focused on achieving phase matching using the natural birefringence of the material; 

however, for a given material, the wavelength range over which birefringent phase 

matching can be achieved practically is very narrow, thereby limiting the use of 

materials which could otherwise be attractive. 

With recent progress in semiconductor fabrication technology, these formerly 

rejected materials are now being examined with renewed interest. Materials such as 

GaAs are reported to have a high non-linear coefficient, several orders higher than in 

most anisotropic materials, making them suitable candidates for all-optical switching 

applications as well as a source of blue light. In such materials, because of normal 

dispersion, the phase matching conditions cannot be satisfied since the refractive 

index is frequency dependent (Harvey, 1970). It is therefore necessary to correct the 

phase mismatch at regular intervals. One technique used to achieve this (as discussed 

in the previous chapter) is known quasi-phase matching (QPM), where the phase 

difference between the two interacting waves is corrected at regular intervals by 

means of a structural periodicity built into the nonlinear material at the stage of 

fabrication (Yoo et al., 1995). Quasi-phase matched second harmonic generation has 

been achieved in such materials as LiNb03, LiTa03 and KTP. Among the suggested 

methods for phase matching are domain inversion, domain disordering and wafer 

bonding. In domain inversion, the sign of the nonlinear tensor is reversed in alternate 

domains of the waveguide structure. In LiNb03 for example, the technique of 

ferroelectric domain inversion has been well studied and developed and is at the 

stage of commercial exploitation. However, when domain inversion is not possible 

then an alternative technique, domain disordering could be employed. Under this 

technique, the non-linear susceptibility tensor is periodically destroyed in alternate 

half periods of the waveguide structure (lones-Bey, 1998). In general, the output 

power from this method is lower than that achieved in domain reversal. In wafer 

bonding of GaAs material, wafers grown by metal organic chemical vapour 

deposition (MOCVD) are bonded such that the [110] directions of neighbouring 

wafers are parallel to each other (Y 00 et al., 1995). 
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If shorter wavelengths can be obtained by means of second harmonic generation in 

semiconductor materials, then monolithically integrating the source wave and the 

generated second harmonic wave becomes a real possibility. In integrated optical 

semiconductor waveguides the high index difference between the substrate and the 

core leads to tightly confined modes, which enhances second harmonic generation by 

this method. However, GaAs is also known to have very high absorption loss, 

particularly at shorter wavelengths. The role of numerical simulation in the study, 

development and evaluation of such GaAs based systems, particularly in the effect of 

material loss, can be immensely important for design optimisation. 

The powerful, accurate and versatile finite element method with the vector H-field 

(Rahman and Davies, 1985) has previously been used to find modal solutions for 

semiconductor optical waveguides, and later on for waveguides with diffused index 

profile and arbitrary guide parameters (Katsriku et al., 1996). It has also proved 

useful in obtaining modal fields for the modelling of second harmonic generation in 

LiNb03 waveguides, which is an important material for SHG parameters (Katsriku et 

aI., 1997). However for the study of the evolution of the harmonic field, the finite 

element-based beam propagation method (BPM) parameters (Katsriku et al., 1996, 

Hayata and Koshiba, 1991) is the most suitable, when compared to the modal 

solution approach which only provides a static solution. 

GaAs is a reliable source of high power infrared wavelengths, having a high non­

linear susceptibility tensor and providing good confinement of the waveguide modes, 

and thus, could provide a useful source of s.econd harmonic power. However, it also 

suffers from high absorption loss, with the loss factor strongly dependent on 

wavelength. On the other hand, although AIGaAs has a smaller non-linear 

susceptibility value compared to GaAs, to compensate that, it has a much lower loss 

factor. Given the characteristics of these materials, it is important to evaluate 

numerically the opportunity and scope provided by devices built on such material 

systems. For such an analysis, a rigorous model is required. In this Chapter the use of 

the numerically efficient finite element-based BPM to model second harmonic 
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generation in a waveguide of practical interest is reported. In particular, using this 

modelling approach, the effect of loss on the overall efficiency of the generated 

second harmonic power is reported. It is also shown that a better efficiency is 

achieved by use of Ga Al As as the core material, rather than GaAs. 
x I-x 

6.2 Theoretical Background 

Optical waveguiding in any material requires a controlled variation of the refractive 

index in the plane perpendicular to the direction of power flow. In semiconductor 

materials, just as in any other material, there must be a region of higher refractive 

index than its surroundings. In the group Ill-V compounds, the index can be varied 

by means of changing the electrical properties. Strain and/or electric fields could also 

be applied to alter the refractive index locally. Epitaxial growth techniques can be 

used to obtain alloy compositions of graded or step types, where the refractive index 

of such materials is a function of the alloy composition. A good lattice match 

between the epitaxial layer and the substrate is required in order to avoid the 

formation of dislocations and strains at the interface. AII _xGaxAs is found to be lattice 

matched to GaAs over the entire range, from GaAs to AlAs. The optical properties of 

the All-xGaxAs alloy have been previously reported (Adachi, 1985, 1988, 1989; 

Jenkins, 1990). Following the approach of Jenkins, the refractive index of All _xGaxAs 

is obtained as a function of the aluminium concentration for different wavelengths by 

developing a computer code to find the contribution of each energy band structure to 

the refractive index. In the model, the real and imaginary parts of the dielectric 

function are approximated by several terms, which are explicit functions of energy. 

The index of refraction is then obtained as a function of energy and aluminium 

composition in All _xGaxAs. Fig 6.1 shows the plot of refractive index against 

fractional aluminium for various wavelengths of interest. 

It has previously been stated that when electromagnetic radiation propagates through 

a certain class of crystals, the non-linear dielectric properties of the material induce 
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in it a polarisation. It is well known that the mathematical representation of this 

induced polarisation in the crystal contains a higher order term, proportional to the 

quadratic of the non-linear susceptibility and to the square of the applied electric 

field. The non-linear response of the material may lead to an exchange of energy 

between the electromagnetic fields propagating at different frequencies. An 

important application of this is in SHG in which part of the energy of the input field 

at an angular frequency, (J), is transferred to a field at double that frequency, 2(J). In 

general due to lack of phase matching, the wave at 201 will propagate at a velocity 

not equal to that of the fundamental wave. As a result, the amplitude of the second 

harmonic builds up to a maximum and then dissipates . The distance over which the 

amplitude of the second harmonic reaches its first maximum is the coherence length, 

le and is given by 

L = 2rr 
c /1[3 

6.1 

where /1[3 = 2[3w - f32W 

[3w and [32W are the normalised propagation constants at the fundamental and 

harmonic wavelengths respectively. 

In the case of index matched second harmonic generation, the coherence length is 

infinite and the amplitude of the second harmonic wave builds up continuously. 

However, in most cases, the two fields are not index matched and the generated wave 

periodically builds up and dissipates unless special phase matching conditions are 

considered. 

190 



Chapter 6 SHG in Semiconductor waveguides 

4.2 

4.0 

3.8 

..... ~ .. A=0.775.um 

3.6 

..... 
A=0.532.um 

3.4 

3.2 

3.0 A=1.064.um 
". 

0.0 0.2 0.4 0.6 0.8 1.0 

Fig 6.1 Dependence of refractive index on fractional aluminium concentration, l-x 

In order to obtain phase matching, a number of techniques are employed. In isotropic 

media with normal dispersion, the quasi phase matching (QPM) technique is used. In 

this technique, the non-linear coefficient is modulated by the periodic reversal of the 

domain structure. A variation on this technique is domain disordering in which the 

non-linear susceptibility tensor is periodicaBy destroyed in alternate half periods. 

These techniques are particularly useful in cubic crystals, which would otherwise not 

be viable candidates for second harmonic generation. 

An important characteristic of an optical waveguide to be considered is the loss or 

attenuation. Loss in semiconductor waveguides can be attributed primariJy to 

scattering, radiation and absorption. Radiation loss is a significant factor in bent 

waveguides whilst scattering losses are predominant in dielectric waveguides. 
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Absorption loss is the most important source of loss in semiconductor waveguides. A 

useful estimate of the total absorption in a waveguide can be expressed as a sum of 

the individual components (Aitchison et al., 1997) 

a = Ia,I'-' 6.2 
,=0 

where a is the photon absorption coefficient and I the intensity. The waveguide loss 

in both GaAs and Alo.sGao.2As are shown in Fig 6.2 and Fig 6.3 respectively for a 

wavelength of 0.532J1m. A comparison of the diagrams (Fig 6.2a and Fig 6.3a) 

shows clearly how much higher is the loss coefficient of GaAs compared to 

Alo.sGao.2As. In GaAs the loss coefficient is nearly zero after a propagation distance 

of just 0.6,um. In Alo.sGao.2As this coefficient is still not zero after a propagation 

distance of about l00,um. Similarly, a loss factor of -30dB is attained only after a 

distance of 0.4 ,urn in GaAs (Fig 6.2b) whilst a similar loss factor is attained after a 

propagation distance of about 100,um in Alo.sGao.2As (Fig 6.3b). 
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6.3 Numerical Method 

Following from Maxwell's equations, the propagation of an optical field in a given 

material can be deduced as 

6.3 

where P NL' <1>, are the non-linear polarisation, the modal field profile, the 

propagation constant and wavenumber respectively, and q and pz relate to the 

refractive index of the guide. V is the Laplacian operator in 3 dimensions. 

Considering the total optical field of two waves propagating at different frequencies 

in a material and making the assumption that the fundamental field is independent of 

the direction of propagation, z, the following propagation equations can be derived 

for both the fundamental and the second harmonic fields respectively: 

6.4 

6.5 

where p x . P y. P l and q are as previously defined, the refractive indices in x, y, Z 

directions and the subscripts 1 and 2 denotes the fundamental and the second 

harmonic respectively. If necessary, depletion of the fundamental field can easily be 

incorporated in the simulations. 

Applying the FEM to equation (6.5) above will yield the following matrix equation 

for the propagation model: 
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- j4/3[B 2J dj:} + ([A 2J-4/32 [B 2w ]){cp} = {PNJ 6.6 

where 

[A 2w ]= I, fJ [Q2W k(;{N}{NY - p X2wk(;{N x}{N x Y - p Y2wk}{N y XN y Y]dxdy 
e e 

e e 

This equation may be solved using a split-step procedure: the propagation step in 

which the finite difference method is applied within a short interval and the non­

linear step where the effect of the nonlinear term is considered. Such a procedure will 

yield a matrix equation of the form 

6.7 

where 

and e is an artificial parameter which controls stability of solution. For the Crank­

Nicholson scheme, e = 0.5 provides unconditionally a stable solution. 

6.4 Results 

The waveguide under consideration, shown in Fig.6.4, has an air cladding and, the 

substrate is made of AlAs with a core of GaxAll _xAs. Here, W is the guide width, h is 

the height of the rib and t is the height of the slab waveguide underneath. The 

waveguide core and substrate refractive indexes for such a device with GaAs as the 

core at a wavelength of A = 1.064,um is given by n ll i = 3.48 and n.
d 

= 2.93, 
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respectively, and by ng2 = 4.13 and n,'2 = 3.23, respectively at a wavelength of 

A. = 0.532J1m . At a fractional aluminium concentration of x = 0.2 and a fundamental 

wavelength of 1.064,um, the substrate and core indexes are n sJ= 2.93 and ngJ= 3.05, 

respectively and the respective index values at second harmonic wavelength of 

0.532J1m are ns2 = 3.23 and ng2 = 3.50. These values of the refractive indices were 

calculated following Jenkins (1990) and compared with values given by Whitbread 

and Robson (1994). Fig. 6.4 also shows the Hy field profile for the fundamental 

quasi-TE field profile obtained from the modal analysis using the vector H-field 

formulation for the Gao,2Alo,sAs waveguide. The waveguide is assumed to have the 

following dimensions, W = 1.0,um, h = 1.0,um and t = 0.2,um. At the fundamental 

frequency, such a guide will support two quasi-TE modes. 

3.5 

1.5 
Substrate, AlAs 

1.0 

0.5 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

Fig 6.4 Diagrammatic representation of a waveguide structure with confinement of 

the fundamental wave. 
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The spot size of the fundamental mode has been calculated to be 0.326 J1m 2 with a 

confinement factor of 88.43%. It can be observed that, for the fundamental mode, the 

field spreads just slightly outside the waveguide region. The peak of the field, 

however, is confined within the guide core. The input power is assumed to be 20 W 

for the SHG simulation. Fig. 6.5 illustrates the confinement of the generated second 

harmonic field after one coherence length of propagation. At this shorter wavelength, 

the confinement factor has increased to 99.88% and the spot size reduced to 

0.26 J1m 2. At the second harmonic wavelength, the guide is capable of supporting 

seven modes. This field plot was obtained using the finite element-based BPM and, 

as can be observed, the field is much better confined than the fundamental wave. 
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Fig 6.5 Diagrammatic representation of a waveguide structure with confinement of 

the second harmonic wave. 

198 



Chapter 6 SHG in Semiconductor waveguides 

On the other hand, a guide with a GaAs core would support 5 modes at the 

fundamental wavelength, and the fundamental mode will have a confinement factor 

99.55% and a spot size of 0.265 pm2 . At the harmonic wavelength, this guide could 

support nine modes where the fundamental has a confinement factor of 99.98% and a 

spot size 0.248 J.1m 2 . The index change (~n) between the substrate and the core at the 

harmonic wavelength is much greater and also the waveguide dimensions are now 

twice those of the wavelength, which results in a much better field confinement. 

GaAs has a high non-linear coefficient (565pm/V), thereby making it a suitable 

candidate for second harmonic generation. However, it has one major drawback, its 

high absorption loss at shorter wavelengths (Whitbread and Robson, 1994). At a 

wavelength of A= 0.532Ilm, the absorption coefficient is given as (1;=8/ J.1m. On the 

other hand, Gao.2Alo.gAs which has a much lower non-linear coefficient of 1 13pm/V , 

compared to GaAs, has correspondingly a low absorption coefficient, quoted at 

ex =0.OO9/J..lffi. In the following sections, the effects of these parameters on second 

harmonic generation are investigated. 

An important application of numerical methods is in design optimisation. In this 

section, it is shown how the finite element method could be employed to optimise the 

guide parameters. In the experiment, the generated second harmonic power is 

obtained after one coherence length for different guide dimensions. It can be seen 

from Fig 6.6 that the output power increases with increased aluminium concentration 

in the substrate. 

Fig 6.7 shows the results from simulation for a guide with the specified dimensions, 

W = 1.0J1,m, h = 1.0J.1m and t = 0.2J1m. The overlap integral is constant throughout the 

range of GaAs to AlAs. The spot size of both the fundamental and the second 

harmonic are seen to decrease slightly with increased aluminium concentration. 
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6.4.1 SHG in Lossless Devices 

In this initial simulation, the material is assumed to be lossless in order to study the 

generation of the second harmonic. In Fig. 6.8, the variation of the second harmonic 

power, the spot size of the harmonic field and the overlap between the fundamental 

and harmonic fields with propagation distance is shown for Gao.2Alo.gAs. As the two 

modes are not phase matched, the efficiency of the second harmonic periodically 

increases and decreases, as would be expected. The spot size of the second harmonic 

field shows transient characteristics at the location of low power z=mLe, where Le, as 

previously defined, is the coherence length and m is an integer. The overlap also 

shows a sharp fall at about the same point. This transient characteristic can be 

attributed to very low power resulting in inaccuracy in the calculations in the 

presence of numerical noise. It can be observed from this figure that the maximum 

efficiency, after one coherence length, is about 0.001 %. Since in this simulation it 

has been assumed that the fundamental power is not depleted, its spot size remains 

constant and hence has not been shown in the figure. 
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In Fig. 6.9 two schemes are illustrated by which greater second harmonic efficiency 

can be achieved in a semiconductor waveguide. The cyclic build up and dissipation 

of the second harmonic wave when phase matching is not employed is labelled as A. 

In the first scheme, labelled D, the non-linear coefficient is destroyed in alternate half 

periods of the waveguide. In this instance, since the non-linear susceptibility tensor d 

= 0, in the alternate half period no second harmonic wave is generated and hence no 

phase mismatch takes place, and as a result, the power already generated remains 

undepleted. In semiconductor waveguides, a periodic reversal of the non-linear 

coefficient has been demonstrated by use of wafer bonding (Yoo et al., 1995), and 

the SHG signal produced by this scheme is labelled as C in this figure. In this case, a 

reversal of the sign of the non-linear susceptibility results in the correction of the 

phase mismatch therefore enabling the generated power to grow. It can be seen that 

the latter method achieves a much greater efficiency than the former and very high 

efficiency can be obtained, either by increasing the device length or by increasing the 

power of the fundamental mode. 
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Fig 6.9 Illustration of two schemes by which output power could be increased: 

scheme B shows domain destruction, and scheme C shows domain reversal. 
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6.4.2 Perfectly Phase Matched Devices without Loss 

As noted earlier, GaAs has a high non-linear coefficient. It will be illustrative 

therefore to compare the second harmonic generation in a lossless, perfectly phase 

matched, GaAs device with that of GaxAlI_xAs. As can be observed from Fig. 6.10, in 

the absence of absorption losses, the efficiency of GaAs is very high, thereby 

implying that it is the more suitable material for second harmonic generation than 

GaxAlI_xAs. After a propagation distance of 1O,um, the efficiency of a GaAs based 

device has grown to over 6% whilst that of a GaxAlI_xAs based device is still less 

than 0.5%. Such growth in output power can be attributed entirely to the higher 

nonlinear susceptibility tensor of GaAs. However it will be shown later on that high 

absorption losses reduce the efficiency to such a level that GaxAlI-xAs becomes more 

efficient. 

6 

cfl. 
- 5 ~ 

(.) 
c: 
ID 
'0 = 4 
ID 
.2 
c: 
o 3 
E 
ca ..c 
-g 2 
o 
(.) 
ID 

Cl) 

1 

o 1 

- AIGaAs 
-- GaAs 

2 3 4 5 6 7 8 

Propagation distance, ,urn 
9 

Fig 6.10 Comparison of SHG efficiency in QPM GaAs and AlGaAs devices. 

203 

10 



Chapter 6 SHG in Semiconductor waveguides 

6.4.3 Effect of Inaccuracy in Phase Matching due to Fabrication 

In this section, results are presented on the effect of fabrication errors, which can 

build up during quasi phase matching. As is well known, during quasi phase 

matching, the sign of the non-linear susceptibility tensor is reversed in alternate 

domains. Perfectly periodic alternating domain structures are difficult, if not 

impossible, to fabricate. In a perfect QPM structure, the sign reversal occurs after a 

length defined by le, the coherence length. Assuming an error !lIe = le - ( during 

fabrication, where l: is the actual designed value and le is the desired value and 

assuming also that the device is of N domains, then over the entire device length the 

accumulated error is given by N!lle. 

If the device is sufficiently long, there then comes a point when the accumulated 

error becomes equal to the coherence length 

NI!ll = I 
c c 6.8 

where NI (:;t N) is an integral number of domain lengths after which the condition of 

the equation above is obtained. At this point, sign reversal is actually reversed by the 

accumulated error and beyond this point a gradual reduction in generated power will 

start. It follows from the above discussion that errors in the fabrication proce s of 

domains will lead to a periodic destruction of the QPM second harmonic generation 

process. Fig 6.11 a illustrates this effect. In the diagram it is assumed that the error is 

a reasonable +/- 1 %. Initially this effect is not noticeable, but as the propagation 

distance increases, the impact of the error becomes evident. Fig 6.11 b shows a 

magnified view of the diagram for a propagation distance of between 5 to 6 f.1m. 
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It is shown here that the output power depends critically on how accurately the 

domain lengths can be fabricated. The situation is well illustrated in Fig. 6.12, where 

two cases are compared to that of the ideal case. As will be observed from the figure, 

even a 1 % error in the fabrication of the domain length could lead to a considerable 

reduction in the generated second harmonic power. This result is quite informative 

about the length over which to operate the device. As Fig. 6.12 would suggest, 

operating the device at 50 J1m could result in almost zero efficiency if the error in the 

domain length is just 2%, instead of the expected efficiency of about 10%. This 

drastic reduction in output power, as explained, can be attributed to the fact that over 

a long distance, the error in not being able to determine precisely where to reverse 

the sign of the non-linear tensor builds up, such that the waves go out of phase. On 

the other hand, designing the device to operate at 20 J1m will reduce the output 

power; however, the output is reasonably stable even with the fabrication error at 

2%. This situation is clearly illustrated in Fig. 6.13. As can be seen, the domain 

inversion after a certain length does not occur after an integer number of coherence 

lengths. It can be noted that at z = 41 J1m, the efficiency of the SHG is 5.5% and the 

slope of the curve is higher for perfectly matched QPM operation. On the other hand, 

when the fabrication error causes a domain length deviation of 1 % only, not only is 

the SHG efficiency smaller, but its rate of increase is also smaller. This reduction in 

efficiency is due to the build up of the phase mismatch error. The dotted curve 

clearly shows that within a coherent length, efficiency both increases and decreases, 

which leads to an overall reduction in efficiency. 
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6.4.4 Effect of Loss 

As noted earlier, GaAs is a lossy material with very high absorption coefficient. This 

loss factor is modelled in the finite element method through the use of a complex 

refractive index, given by (Adachi, 1989) 

n' (co) = n(co)+ jr(co) 6.9 

where r = aA/4prr, a is the absorption coefficient and A is the wavelength. Using the 

given values of a, r has been calculated to be 0.338 and 0.0017 at the second 

harmonic wavelength for both GaAs and Gao.2Alo.sAs respectively. The absorption 

coefficient at the fundamental frequency for both devices is very low and hence has 

been neglected. BPM simulations with these complex refractive index data have been 

carried out. The modal losses for the waveguide with GaAs as core have been 

calculated at the second harmonic frequency of )':0.532,um, as -90dBI ,urn, and for a 

Gaa.2A1o.sAs core, the loss has been calculated to be only -O.3dBI pm. 

The effect of this material loss is now being taken into consideration and the 

simulated result is shown in Fig. 6.14 for GaAs. For the purpose of comparison, Fig. 

6.14 shows the stimulated results for second harmonic generation in GaAs, without 

loss and without QPM, as a solid line. The broken line shows the curve obtained 

when the device is simulated without QPM, but taking into consideration the effect 

of loss. As can be observed, with no QPM, the generated second harmonic power 

builds up, but slowly, until the first coherence length, slowly dissipates in the next 

period and then settles to a constant value with a small damped oscillation. The 

maximum efficiency attained is just about 2.8 x 10-3% as compared to the lossless 

case where efficiency of up to about 8.4 x 10-3% was obtained. The inability to 

produce high output power at the second harmonic can be attributed entirely to the 

very high loss of GaAs. The dotted line shows the curve for the power generated 

when the device is QPM and simulated taking inot account the effect of loss. An 
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attempt at introducing QPM does not lead to any appreciable increase in the 

efficiency of the generated second harmonic power. As can be seen from Fig. 6.14, 

the efficiency curve of the generated second harmonic power assumes a periodic 

nature after the first coherence length. 
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Fig 6.14 The effect ofloss on SHG in GaAs with and without QPM. 

The maximum efficiency obtained is 4 x 10-3%. As is seen in the figure, without 

QPM the power generated is attenuated very rapidly. With the introduction of QPM 

however, some form of periodicity is maintained. This periodicity can be directly 

attributed to the absorption loss, which effectively nullifies the effect of QPM. 

Fig. 6.15 and Fig 6.16 compares SHG in Gao.2Alo.sAs for both lossy and lossless 

cases. In this case the maximum power generated after one le is about 4.5 x 10-4% 

(without loss), which is about 20 times smaller than a comparative case in lossless 

GaAs (8.4 x 10-3%). However it can be observed that the introduction of loss factor 

does not lead to any appreciable attenuation of the generated power. As can also be 

seen, the loss is small and the difference between this and case of no loss is hardly 

noticeable over very short distances. The reduction in generated power becomes 
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evident only after about 1.5.um, the maximum power attained as will be expected is 

lower than in the case of GaAs. 
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Fig 6.15 The effect of loss on second harmonic power in AIGaAs without QPM 

In Fig. 6.16 quasi phase matched second harmonic generation in a lossy device is 

compared with that of the lossless case. The results show that over very short 

distances, hardly any differences are observed. 
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Fig 6.16 A comparison of second harmonic output power in a loss less QPM AlGaAs 

device with second harmonic power in a lossy QPM AIGaAs device. 

In Fig. 6.17, SHG in a lossy Gao.2Alo.sAs with QPM is compared with SHG in a 

lossy GaAs, and also with QPM. It can be seen that initially, within the first half of 

the coherence length, the power generated by the GaAs device builds up more 

rapidly than that of Gao.2Alo.8As. However as the propagation distance increases, the 

effect of high absorption losses in GaAs become evident and the power generated by 

Gao.2Alo.sAs device becomes greater. In a perfectly quasi phase matched device, the 

efficiency will continue to increase with distance. It can be seen, therefore, that 

although GaAs has a higher non-linear coefficient, its high loss makes it less efficient 

than Gao.2Alo.sAs. 
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A comparison of QPM second harmonic output power in lossy GaAs 

and AIGaAs devices. 

The loss factor assumed for GaAs in the present simulation shows that not much 

second harmonic power is generated. If, however, the loss factor can be reduced by 

some novel growth technique, then the device could become more efficient. Fig. 

6.18a shows the efficiency of second harmonic generation in GaAs for various 

assumed values of the absorption coefficient, without QPM. It will be observed that 

the lower the loss, the more efficient the device. The effect of loss is still noticeable 

in the damped oscillation. With lower loss facto!", the oscillation lasts longer and the 

average output is also slightly higher. With a high loss factor, the oscillation is 

strongly damped. 
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Fig 6.18 Numerical simulation of various assumed loss values in a) non-QPM GaAs 

device and b) QPM GaAs device. 

Fig 6.18b shows SHG in GaAs with QPM for the different values of the absorption 

coefficient considered in Fig 6.9a. It is possible, therefore, to increase the efficiency 

213 



Chapter 6 SHG in Semiconductor waveguides 

of the device by reducing the loss factor. As would be observed, reducing the loss by 

a factor of 2 leads to a corresponding increase in efficiency over the coherence 

length. Over very short distances, this could still be more efficient than for 

Gao.2Alo.sAs, but it settles down to much lower values than can be achieved in 

GaAlAs over longer distances. 

It is well known that increasing the input power could increase the efficiency of the 

output second harmonic power. Fig. 6.19 shows the variation of efficiency with input 

power for a perfectly quasi phase matched Gao.2Alo.sAs device, at a distance of 

10 J.ll11 . The figure also shows results when the device is assumed to have 1 % and 2% 

error in fabrication. Fig. 6.20 compares the generated power for different input 

values of power over a fixed device length. When the input power is increased by a 

factor of 10, the efficiency also increases by the same factor and hence the overall 

power output is increased by 100 times. 
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6.S Summary 

An accurate and efficient numerical method has been described for the study of 

second harmonic generation in semiconductor waveguides. The monolithic 

integration of the fundamental source with the second harmonic is possible in 

semiconductor waveguides. It is shown that fabrication tolerances leading to errors in 

the domain length could result in a substantial reduction in the generated power. 

GaAs has a high nonlinear susceptibility compared to AlGaAs: it has, however, a 

much higher loss factor. In an accurate model therefore, it is important to incorporate 

this loss factor. 

In this chapter, numerically simulated results have been presented for second 

harmonic generation, after taking into consideration this loss factor. These results 
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demonstrate that for the reported values of non-linear susceptibility tensor and loss 

factor, Gao.2Alo.8As appears to be a better material for second harmonic generation. 

However it is also shown that if material loss can be reduced in GaAs, then a greater 

efficiency can be obtained with this material. 

Although there has been a substantial level of research work carried out to achieve 

optical switching using the third order non linearity, the unavailability of suitable 

materials with high non-linear coefficients has made it difficult to achieve low power 

optical switching. This has led to a shift of interest to the use of cascaded second 

order non-linear effects for all optical switching. The numerical approach presented 

here will help in the study and optimisation of such devices, and this method can also 

be employed in modelling second harmonic generation in multiple quantum wells. 

Although it has been reported that the MQW region can have a greater non-linear 

coefficient, thus far this parameter has not been adequately characterised. As 

fabrication technology improves and material data become available, the device 

parameters can be optirnised and the model is seen to be capable of incorporating 

important features such as material anisotropy, loss factor and diffused index 

profiles. 
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Chapter Seven 

Cascaded Second Harmonic Generation 

7.1 Introduction 

Integrated all-optical switching devices will form a fundamental component in future 

communication systems. Many important applications of the second order nonlinear 

process are well known and documented. Research activity in this field has focused 

primarily on the generation of new frequencies as well as finding materials with high 

nonlinear term (Aitchison 1997, 1998). Advances in second harmonic generation, 

particularly the enhancement of the magnitude of the second order nonlinearity has 

led to a renewed interest in the cascaded process, having great potential for use in all 

optical switches, all optical transistors, wavelength division multiplexing, directional 

couplers and intensity-dependent phase modulation (Torruellas 1994, Kelaidis 1994, 

Aitchison, 1995, 1997, 1998). In second harmonic generation, for example, the focus 

has been on the production of a second harmonic wavelength and the maximisation 

of the efficiency of the process. In this, the wave of interest has been the generated 

second harmonic beam and the focus has been on how to achieve phase matching in 

order to maximise the transfer of power from the fundamental to the harmonic 
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(Stegeman, 1996). Various schemes have therefore been designed to ensure that the 

beams are phase matched, the necessary condition for the maximum transfer of 

power between the fundamental and the second harmonic. In this, often it is assumed 

that the fundamental beam is not affected by the harmonic. At very low intensities 

such an assumption may be valid. The source beam is, however, provided by a highly 

focused laser beam with high intensity. Under such a condition, the said assumption 

will not be valid and hence the need is to study the effect of the generated second 

harmonic on the fundamental. This is known as the cascaded effect and has found 

application in all-optical switching. The theoretical predictions for the cascaded 

process have been known since the early days of second harmonic generation. It has 

been known that, far from phase matching and in the presence of an intense source, 

the generated second harmonic can interfere with the fundamental, resulting in the 

mimicking of the third order processes. This cascaded process can now produce 

effects several orders of magnitude larger than the traditional third order process 

(Torruellas 1994). The need to model such devices accurately and efficiently is thus 

urgent, and will serve in cutting down developmental costs, thus enhancing 

productivity. The difficulty in modelling such devices accurately has meant that 

approximations such as reduced geometry or an undepleted pump beam are often 

employed. The undepleted pump approximation assumes that the depletion of energy 

from the pump beam is minimal and can therefore be neglected. In second harmonic 

generation, high input intensities are required. From the theory of nonlinear optics 

(Bloembergen, 1965), it is known that such an assumption is only valid at low input 

intensities. In other words the assumption fails for cases of particular interest. 

7.2 Numerical Formulation 

Using Maxwell's equations for the propagation of an optical field in a given medium, 

then 

7.1 
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where PNL is the nonlinear polarization, l/J is the modal field profile, f3 is the 

propagation constant and ko is the wavenumber. The indices of refraction of the 

guide are defined through q and Pz. If the total field of two waves propagating at 

different frequencies is now considered, then the following coupled propagation 

equations can be derived for both the fundamental and second harmonic fields 

respectively: 

(}2<1» (} 2<1» f3 2 2 ) 
Px ) (}x 2 + p y ) a;- PzI <1» + q)k() <1» = PNL 7.2 

The subscripts 1 and 2 denote the fundamental and second harmonic respectively. 

For the TE modes, <I> = E x ' Px = nx/ny , Py = p z = 1, q = n ; and for TM modes 

<I>=Ey' Px =ljn~ , Py =l/n: ,Pz =l/n;, q=l . For c/ly, nx =nz =no ' the 

ordinary refractive index and ny = ne' the extraordinary refractive index, for a planar 

·d () wavegUl e - = 0 . 
(}x 

The non linear polarization is defined for both the fundamental and harmonic fields 

as P~L = 2dE) E2 and P;L = 2dE) E) respectively. 

Application of the finite element method to the equations above will yield the 

following matrix equation for the propagation models of both the fundamental and 

harmonic fields: 

7.4 

7.5 

where 
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[AaJ= Lff k~qw {N}{NY - Pxwk;{Nx}{NxY - Pywk,;{N y){N y r ]dxdy 
e 

[Bw1= Lff[k;Pzw{N}{NY]dxdy 
e 

[A 2J= :~:JJlk,;q2W{N}{NY - PX2Wk,; {Nx}{NJT - P)'2W k,;{N yRNyY judy 
e 

and 

[B 2W ]= Lff[k;PZ2W{N}{NY ]dxdy 
e 

These equations (7.4 and 7.5) may be solved using a split-step procedure; the 

propagation step in which the finite difference method is applied within a short 

interval and the non-linear step where the effect of the non-linear term is considered. 

Such a procedure will yield a matrix equation of the form (Hayata et al. 1991) 

where 

L)e)=-j2f3w[B wl + &e([A Jj -f3~[BJJ 

Lw(l-e)= - j2f3(JB w l +&(l-eX[AJj - f3~ [Bw]J 

L2w (e) = - j4f32w [8 2(,J + &e([A 2w 1- f3~JB 2W]J 

and 
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7.3 Results of Numerical Simulations 

7.3.1 Idealised waveguide 

In the first instance, to test the accuracy of our method, the results obtained here will 

be compared to those obtained by Masoudi and Arnold (Masoudi and Arnold, 

1995a). The waveguide to be considered is illustrated in Fig 7.1. The dimensions of 

the guide are as shown. The fundamental wavelength is given as Am = 1.55J1m and 

the second harmonic wavelength is A2m = 0.775J1m. The refractive index parameters 

of the guide are chosen such that it is nearly perfectly phase matched. The index of 

refraction for the fundamental wavelength is n il ) = 3.44 . Using the finite element 

method, the index of refraction at the second harmonic wavelength for which the two 

waves are nearly perfectly phase matched is obtained as n ll2 = 3.401473. 

2.0 

1.1 arr 

ng 

nlllb 

Fig 7.1 Diagrammatic representation of rib waveguide used in the simulations, guide 

dimensions in /.lm . 
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The refractive index of the substrate for both wavelengths is given as n"ub = 3.34. 

The nonlinear tensor value is assumed to be 300 pm/V. Using the modal analysis 

method, the effective indices of both the fundamental and harmonic wavelength were 

found to be identical, n~ff = n;ff = 3.385330 as expected. In Fig. 7.2 the transfer of 

power from the fundamental to the generated second harmonic along the axial 

direction is shown. The power is normalised for both the fundamental and second 

harmonic fields. The results obtained here show excellent agreement with those 

obtained by Masoudi and Arnold (Masoudi and Arnold, 1995a). From the diagram, it 

can be seen that in an idealised devise with an input power of 27 W, the maximum 

power transfer from the fundamental to the second harmonic is achieved after a 

propagation distance of 400,um. 
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Fig. 7.2. Showing the transfer of power from the fundamental to the generated 

second harmonic in an idealised phase matched waveguide. 
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Assuming no waveguide losses, Fig. 7.3 shows the field profiles of both the 

fundamental and second harmonic at different propagation distances. As the 

diagrams show the integrity of the field profile for both waves is maintained during 

the course of propagation. It can be clearly seen that as the second harmonic gains in 

intensity, the intensity of the fundamental decreases. It can be seen that the 

normalised fundamental power is initially high but then decreases with propagation 

distance. At a distance of 12,um the fundamental power has a value of about 105 a.u. 

(Fig. 7.3a). This value then decreases to 65 a.u. in Fig. 7.3c and decreases to a 

minimum value of 15 at a distance of 400,um or thereabouts. At the same time, the 

normalised second harmonic power increases from a minimum value (20 a.u. in Fig. 

7.3b) at 12,um through (90 a.u. in Fig. 7.3d) to a maximum value (120 a.u. in Fig. 

7.3f) at a propagation distance of 400,um. These results are in line with the situation 

depicted in Fig. 7.2 of the transfer of power between the fundamental and the second 

harmonic. As can be observed from Fig. 7.2, power is continuously transferred from 

the fundamental to the harmonic. Initially the harmonic power is zero whilst the 

fundamental is at maximum. The fundamental power is higher than the harmonic 

until a propagation distance of about 125J1m. After this point the second harmonic 

power in the guide is greater than the fundamental, however power continues to be 

transferred from the fundamental to the harmonic. From the plots of the field 

profiles, it would also be noticed that the magnitude of the second harmonic power is 

slightly higher than the corresponding value of the fundamental power. In Fig. 7.3f 

for example, when maximum conversion has taken place, the magnitude of the 

second harmonic is higher than that of the fundamental in Fig. 7.3a when conversion 

is just beginning. Similarly the magnitude of the harmonic power in Fig. 7.3b is 

slightly higher than that of the fundamental in Fig. 7.3e. This observation can be 

explained in terms of the field confinement. As the second harmonic field is more 

confined, it follows that the field intensity should be higher. 
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Fig. 7.3a. Fundamental field at a propagation distance of 12.um. 

Fig. 7.3b. Second harmonic field at a propagation distance of 12.um. 

224 



Chapter 7 Cascaded Second Harmonic Generation 

Fig. 7.3c. Fundamental field at a propagation distance of 75J1m. 

Fig. 7.3d. Second harmonic field at a propagation distance of 75J1m. 
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Fig. 7.3e. Fundamental field at a propagation distance of 400,um. 

Fig. 7.3f. Second harmonic field at a propagation distance of 400,um 
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In Fig 7.4 the power transfer between the fundamental and second harmonic is 

compared for two different input power levels of the fundamental. It can be observed 

that the total power transfer is achieved much faster for a higher input power. The 

diagram also shows the overlap integral and the spot size for the harmonic field. As 

can be seen, the overlap is minimal when maximum conversion has been achieved. 

As was observed in Fig. 7.2 power is transferred from the fundamental to the 

harmonic. It can be seen, however, from Fig. 7.4 that for an input power of 60W, the 

situation is reversed and power is now transferred from the harmonic to the 

fundamental. This occurs at a distance of about 29511m after maximum power 

transfer has taken place from the fundamental to the harmonic. 
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Fig 7.4. Comparing the efficiency of output for two different input powers. 

This situation again reverses after a propagation distance of nearly 600l1m. This 

effect is quite similar to what occurs in non-phase matched devices when power is 

continuously transferred between the fundamental and the harmonic. This result is 
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what would be expected as the waves are coupled and shows agreement with what 

has been previously reported (Masoudi and Arnold, 1995b). 

Fig 7.5 shows the dependence of the conversion efficiency on a number of factors. 

From the diagram it can be deduced that the higher the input power, the more 

efficient the conversion rate. The conversion rate was calculated after a fixed 

propagation distance. The residual power is also minimal. The diagram also shows 

that at higher powers, a maximum conversion is obtained after a short propagation 

distance. 
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Fig 7.5 Dependence of second harmonic power on input power. 

50 

7.3.2 Second Harmonic generation in Practical waveguide 

In the previous section, cascaded second harmonic generation In an idealised 

waveguide had been considered. In this, the guide parameters were carefully chosen 

such that the two waves were phased matched. In this section, results are presented 
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for cascaded second harmonic generation in a waveguide of practical importance. 

The guide parameters are as given in (Masoudi and Arnold 1995b), n su/J = 3.34, 

n: = 3.5 and n;w = 3.6 . The fundamental wavelength again was taken as 

A", = 1.55J1m, which corresponds to low loss optical communications wavelength. 

Applying the modal solution of the finite element method, the following effective 

indices were obtained for the first guide mode for both fields n~f = 3.446033 and 

n;!J = 3.583327 . From these results the coherence length is calculated to be le = 

2.82,um. Again these results show very good agreement with those previously 

obtained (Masoudi and Arnold, 1995b). Fig. 7.6 shows the generated second 

harmonic power and the depletion in the fundamental power for a non-phase 

matched device at low input powers (20W). From the figure the coherence length can 

be deduced to be in the region of 2.8,um, this shows very good agreement with the 

calculated value of 2.82,um. 
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The next example to be considered is the waveguide previously discussed in Chapter 

6, shown in Fig 6.4. which has an air cladding, where the substrate is made of AlAs 

with a core of GaxAll _xAs. The waveguide is assumed to have the following 

dimensions, W=l.O,um, h=l.O,uin and t=O.2,um. At the fundamental frequency, such a 

guide will support two quasi-TE modes. At a fractional aluminium concentration of 

x=O.2 and a fundamental wavelength of I.064,um, the substrate and core indexes are 

nsl=2.93 and ngl=3.05, respectively and the respective index values at second 

harmonic wavelength of O.532,um are ns2=3.23 and ng2=3.50 (Whitbread and Robson, 

1994). As was previously seen waveguide loss in such a waveguide is minimal and 

hence for the sake of simplicity loss will be neglected. The effective index for the 

fundamental and harmonic waves are found to be n~t = 2.982967 and 

n;!f = 3.483319 respectively. 

If the technique of quasi phase matching were to be applied to the device then it is 

possible to increase output power. As can be noted from Fig 7.7 almost total 

conversion (99.5%) is achieved from the fundamental to the second harmonic after 

about lOO,um. After which there is the down conversion of the second harmonic to 

the fundamental. This again is what should be expected because of coupling between 

the fundamental wave and the second harmonic. 

The next example investigates the effect of intense input beams such as occurs in 

laser systems on the second order process. Fig. 7.8 shows what occurs as the input 

power is increased by several orders of magnitude in non-quasi phase matched 

systems. It can be noted that the power exchange process becomes incomplete, with 

only a partial conversion of the fundamental to the second harmonic. This is 

reminiscent of the reported phenomenon where in the presence of intense input 

beams and far from phase matching the fundamental beam and the second harmonic 

beam appear to travel independent of each other in the device (Torruellas et al. 1994, 

Stegeman 1996). 
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As the input power is further increased, this effect becomes even more pronounced. 

The two waves begin to travel within the medium affecting each other only 

minimally. This is more clearly shown in Fig 7.9 and Fig 7.10. It is interesting to 

note that the conversion level is at about 50%. In other words about half of the power 

travels as a fundamental wave and the other half travels as a harmonic wave. 
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7.4 Summary 

In this chapter the importance of taking into consideration the depletion of the 

fundamental beam is modelled. Maxwell's equation for the propagation of waves is 

written such that the fundamental wave is coupled to the harmonic wave through a 

source term. Results are compared with previously published data. For an idealised 

phase matched waveguide it is shown how the fundamental is converted into the 

second harmonic. It is seen that if allowed to propagate for sufficiently long 

distances all of the fundamental will be converted to the second harmonic. After 

maximum power has been transferred to the harmonic, it is observed that the 

harmonic power is then transferred to the fundamental. A practical waveguide in 

which the technique of quasi phase matching is applied is then considered. The 

conversion process is shown for different levels of input power. It is seen that at 

sufficiently high input powers, the generated second harmonic and the fundamental 

will travel independently of each other. 
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Chapter Eight 

Conclusion and Suggestions for Future Work 

& & . 3d 

8.1.1 General Conclusions 

The primary objective of this work has been to develop a numerical method based on the 

finite element formulation and the beam propagation method for the characterisation of 

second harmonic generation in optical waveguides. The tasks outlined in the first chapter 

have been completed successfully with detailed analysis of the results obtained. The 

criteria for the validation of our results had been a comparison with experimentally 

available results and other published data. The validity of the method developed here 

was thus demonstrated. 

Even though there are available a number of techniques for the study of optical 

waveguide problems, the finite element method has emerged as one of the most 

powerful offering a high degree of versatility and accuracy. In this work, the finite 
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element formulation with the use of vector H field and the penalty function to eliminate 

spurious solutions has been employed in the modal analysis section. In integrated optics 

there is the need to consider special boundary conditions at the dielectric interfaces. 

Since the H field is naturally continuous across dielectric interfaces and the associated 

natural boundary condition is that of an electric wall, then the most advantageous 

formulation in most practical cases is the magnetic vector H field formulation. To 

eliminate spurious modes a penalty function term is included which imposes the 

constraint V· H = O. Using this approach, problems involving arbitrary cross section, 

index profile, anisotropy and nonlinearity can easily be solved and this has been 

demonstrated through this work. Whilst most numerical approximate methods are 

applicable to guides with relatively regular geometries and material composition, the 

finite element method has been shown to be suitable for the treatment of arbitrary 

waveguide structures thus, enabling the development of efficient and flexible computer 

programs. 

Chapter 2 was devoted to elucidating the mathematical background for the finite element 

method, which lies at the core of this work. The beam propagation method is also 

discussed in this chapter. These two then form the main algorithms used in this work. 

The distinguishing feature of this method being that the waveguide cross section is 

discretized in the transverse direction using the finite element method instead of the 

more familiar finite difference method. This enables the advantages of the finite element 

method to be incorporated into the beam propagation method. 

In Chapter 3, we look at the theory underlying the phenomenon of second harmonic 

generation. Following established authors, the fundamental equations are derived from 

first principles. The physical origins are examined. This chapter also discusses phase 

matching a technique employed to increase the harmonic output. Also derived in this 

section is the finite element formulation to be used in later sections. 
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In Chapter 4, the finite element method is applied to the analysis of anisotropic 

waveguides. These guides are of practical importance, being used in the implementation 

of several devices including second harmonic generators, in particular for birefringence 

phase matching. Guides of arbitrary index distribution in both the transverse directions 

were investigated as well as waveguides with an arbitrary permittivity tensor. Various 

waveguide geometries were considered. Many research workers assume that in diffused 

waveguides, the guide dimensions are the same as the diffusion parameters. It was 

shown that near to cut off better results are obtained if the waveguide dimensions with 

graded index are assumed to be greater than the diffusion parameters themselves. Since 

computational resources can limit the accuracy of any numerical solution hence in the 

finite element method symmetry conditions are imposed in order to increase 

computational resources and hence accuracy. It was shown that in the analysis of 

anisotropic waveguides with off-diagonal refractive index tensor, it is not possible to 

exploit the physical symmetry of the guide. 

Chapter 5 is devoted to the study of Cerenkov second harmonic generation in LiNb03 

waveguides. Results were presented for optical waveguides with both I-D and 2-D 

confinement. The evolution of the second harmonic for various cases and the generation 

of second harmonic power are also illustrated. In the simulation, the vector finite 

element method is used to find the modal solutions following which the FEM-based 

BPM program has been used to study the evolution of the second harmonic waves along 

the waveguide structure. The numerical approach developed here is accurate, 

computationally efficient and also very versatile. It allows practical and realistic 

waveguide structures with anisotropic material properties, diffused in both the transverse 

directions and with 2-D confinement to be considered. This approach can be used to 

optimise device designs for any particular operation. 

The tendency in integrated optics has been towards the monolithic integration of 

devices. In semiconductor waveguides such a monolithic integration of fundamental 
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source with the second harmonic is possible. Chapter 6 describes the application of the 

accurate and efficient finite element method for the study of second harmonic generation 

in semiconductor waveguides. The effect of fabrication tolerance on the output power 

was demonstrated. It was shown that fabrication tolerances could lead to errors in 

domain length, which would result in substantial reduction in the generated power. The 

effect of loss in the waveguide was also considered. GaAs has a high nonlinear 

susceptibility compared to AIGaAs, however it also has a much higher loss factor. 

Chapter 6 also discusses the results obtained for second harmonic generation after taking 

into consideration the loss factor. These results demonstrate that for the reported values 

of non-linear susceptibility tensor and loss factor, Gao.2Alo.sAs appears to be a better 

material for second harmonic generation. However it is also shown that if material loss 

can be reduced in GaAs then a better efficiency can be obtained. 

In traditional second harmonic generation, the wave of interest has been the second 

harmonic wavelength and the maximisation of the efficiency of the process. The input 

beam has been assumed to be undepleted and not affected by the generated second 

harmonic. Whilst such an assumption may be valid at low intensities, it is not strictly 

valid in the presence of high intensity beams such as is provided by tightly focused laser 

source. The effect of the second harmonic on the fundamental can result in the 

mimicking of third order processes. In Chapter 7 this effect is modelled. It was shown 

that at sufficiently high input intensities, the two beams travel almost independently of 

each other. 

8.2 Considerations for future Work 

It has been shown through this work that the numerical method developed is 

computation ally efficient and accurate. An important consideration for future work 

would be the implementation of a fully vectorial finite element-beam propagation 

238 



Chapter 8 Conclusion and Suggestions For Future Work 

method. The development of such a numerical model will provide researchers with a 

powerful tool for the study and analysis of various waveguides. 

Although there has been a substantial level of research work carried out to achieve 

optical switching using the third order nonlinearity, the unavailability of suitable 

materials with high non-linear coefficients has made it difficult to achieve low power 

optical switching. This has led to a shift of interest to the use of cascaded second order 

non-linear effects for all optical switching. In earlier work, the assumption had been that 

of an undepleted source field. This assumption is strictly not valid in the presence of 

intense laser beams. Chapter 6 of the present work does look at this effect in an idealised 

guide structure. The numerical approach presented here will help in the study and 

optimisation of such devices. It would be of practical interest to extend this work to 

realistic waveguides. 

Although it has been reported that MQW region can have greater non-linear coefficient, 

thus far this parameter has not been adequately characterised. The method developed 

here can also be extended to model second harmonic generation in multiple quantum 

wells. As fabrication technology improves and material data become available, device 

parameters can be optimised and the model is, seen to be capable of incorporating 

important features such as material anisotropy, loss factor and diffused index profiles. 
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Appendix 1 

Boundary Conditions 

Given that n is the normal unit vector then the boundary conditions can be stated 

as follows: 

1) The tangential component of the electric field must be continuous 

AI-I 

2) The tangential component of the magnetic field must be continuous 

n x (H, - H 2) = O. The surface current density Js[A/m] may be 

discontinuous provided that surface current is flowing on the boundary 

surface 

AI-2 

3) The normal component of the electric flux density must be continuous 

n . (D, - D2 ) = O. The surface charge density p" [C/m2] may however be 

discontinuous, provided a surface charge exists on the boundary surface, 

AI-3 

4) The normal component of the electric flux density must be continuous 

AI-4 
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Appendix 2 

Theory of the Minimum of a functional 

Given the general differential equation 

A2-1 

it can be shown that the vector function which satisfies the above curl curl 

equation also minimises the following functional 

F = (Vx (pV x v), v) -m 2(qv, v) -(f, v) -(v,f) A2-2 

The curl curl equation can be rewritten in the form 

A2-3 

Using equation (1.31) the above could be written as 

Lv=f A2-4 

The original curl-curl equation has now been cast in a more general form. An 

equation such as (A2-4) is a deterministic problem, the solution of which is 

uniquely determined by the source term! The functional of the curl-curl equation, 

(A2-2) can now be written as 

F =(Lv,v)-2(f,v) A2-5 

If it is assumed that v() is a solution, then it follows that f = Lv(). Making this 

substitution in the functional of equation (A2-5) the following is obtained 
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F =(Lv,v)-(Lv",v)-(Lvo'v) A2-6 

It is obvious however that 

F =(Lv,v)-(Lvo,v)-(v,Lvo) A2-7 

From the symmetry properties of the inner product and of the linear operator the 

above can be written as 

A2-8 

If the term (Lvo' v 0) is now added and subtracted from the right hand side of 

equation (A2-8) the following is obtained 

A2-9 

This is actually equal to 

F =(L(v-v,, ),v-vo)-(Lvo,v,,) A2-10 

The last term of equation (A2-1O) (Lvo' vo) , does not depend on the variable and 

hence is a constant. By definition 

A2-11 

with (L( v - v,, ), v - v,, ) = 0 if and only if v - v" = 0 . It follows from the above 

considerations that the function assumes its minimal value precisely for v = vo' 
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Appendix 3 

Calculation of the Inverse of e 

It has been stated that £ is a 3x3 matrix. It should however be noted that some 

elements of this matrix are imaginary. Taking the above into consideration, the 

matrix can now be written as 

The inverse of this matrix is obtained by first finding the transpose of the co­

factor matrix CT
. The co-factor matrix is given by: 

where Mu is a matrix the elements of which are as follows: 

rnll = £22£33 + £23£32 
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[ m" 
-m12 

m" J e = -m21 m 22 -m23 

m31 -m32 m33 

[ m" 
-m21 

m31 J eT = -m12 m 22 -m32 

m l 3 -m23 m33 

The determinant of the matrix [; is given by 

The inverse of the matrix [; is given as 

where 
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P32 = 

j e lle23 - j e 13e 21 

dete 

j e lle32 - j e 12e 31 

dete 
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Appendix 4 

The Element Matrices 

From Maxwell's equation the following can be derived 

It can be shown that the functional which minimises the above equation is of the 
form 

Evaluating the terms individually the following is obtained 

where 

where 

where 
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N2 
) 

[N][N]= N)N2 
N)N3 

qk,;l/> ·l/> = qk,; {l/> Y [N] [N]{l/>} 

A simple rearrangement of the above will yield 

Making the following substitutions 

and 

[B]= f pz/F[N][N]{l/>}in=O 
t. 

equation (a4.5) can be written as 

Using first order triangular elements, the matrix [A] and [B) are given as follows 
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B = f3 2 area 
11 Pz 6 

B - f3 2 area 
12 - Pz 12"" 

B = f3 2 area 
13 Pz 12 

B = f3 2 area 
22 Pz 6 

B - f3 2 area 
23 - Pz 12"" 

f3
2 area 

B33 = Pz -6-
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APPENDIX 5 

Publications by the Author Relevant to the Thesis 
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Loss and Fabrication Error for Second Harmonic Generation in Semiconductor 
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