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Abstract

At the heart of future communication systems will be integrated, all optical devices. The
role of the second order nonlinear process in the realisation of such devices is well
known and has been documented. Research activity in the field of second order
nonlinear processes has focused primarily on the generation of new frequencies, which
have an important role to play in multimedia systems. The second order process also has
great potential for use in all-optical switches, all-optical transistor and intensity-
dependent phase modulation. For the theoretical study of such devices, efficient
mathematical models are required. The finite element method has established itself as an
accurate, efficient and versatile method in the modal analysis of both linear and
nonlinear systems but its application to the evolutionary analysis has been minimal.

The application of the finite element method to the theoretical study of such devices is
the subject of this thesis. A formulation of the finite element method that takes into
consideration material anisotropy and different diffusion profiles is developed, as is a
finite element based beam propagation model. Such a model combines the strengths of
the finite element method with the well-established beam propagation method for the
evolutionary analysis of the fundamental wave and the generated second harmonic
wave. The model is applied to the study of second harmonic generation in various
material systems and waveguide structures.

The propagation model developed has been applied to the study of second harmonic
generation in both LiNbO; and semiconductor waveguides. Second harmonic generation
in waveguides with one-dimensional confinement is first studied and provides a basis for
comparative analysis with previously published results. The method is then extended to
more realistic guides with two-dimensional confinement. Second harmonic generation
by the Cerenkov radiation scheme is illustrated. Quasi-phase matching schemes for
enhancing the output power are also discussed. Semiconductor material systems provide
the basis for the monolithic integration of optical waveguides and hence are of great
technological importance. The method developed is thus applied to the study of SHG in
GaAs and AlGaAs devices. Methods of QPM and fabrication tolerances on output power
as well as waveguide loss are treated. Finally the phenomenon of cascaded second
harmonic generation is considered.

As a first task, it was necessary to determine the modes or characteristic solutions of the
waveguide structure through the solution of the stationary wave equation. The finite
element vector H formulation was thus extended to the study of 3-D waveguides with
material anisotropy and diffused index profiles, both the transverse directions. Some
new and interesting observations were made. The solution obtained from the above is
then used at the second stage, an input for the BPM. A step by step solution of the
paraxial wave equation in the propagation direction then produces a second harmonic
output. Various types of waveguides are analysed and the results fully discussed.

Xiv
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Chapter 1 Introduction

Chapter One

Introduction to Optical Waveguide Theory

1.1  Overview of research and development in lightwave technology

Optics is concerned with the propagation and interactions of electromagnetic waves with
matter. The study of light has extended the range of human vision. It enabled man to be
made aware of the existence of phenomena far beyond the range of normal human
vision. The nature of the wave phenomenon itself and of the medium that was postulated
to support them remained a mystery until Maxwell considered the properties of
electromagnetic waves. The recognition that light is an electromagnetic wave was one of
the great milestones of scientific thought. It unified the description of a great diversity of
phenomena, and also enabled predictions to be made about previously unknown
phenomena. As a natural occurrence, light has been used by man since time immemorial:
however, as a means of .communication, it was first used when man learnt how to make

fire.

Tremendous advances have since been made, particularly after the establishment of the
electromagnetic theory of light. Maxwell’s electromagnetic theory of light helped to
bring into one body some of the diverse aspects of light, and arguably could be said to be

the greatest scientific achievement of the 19" century as it has formed the basis of
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modern communications technology. Heinrich Hertz demonstrated long radio waves in
1888 and in 1895 Guglielmo Marconi demonstrated wireless communication. Since
these pioneering research works, the move has been towards obtaining more powerful
communication systems using higher carrier frequencies. The range of applications has
also greatly diversified, from early voice communication systems, requiring a bandwidth
of 15kHz to analogue television with a bandwidth of 6MHz, through to microwaves for
radar applications with frequencies measured in Gigahertz. Optical frequencies are
important for of present-day systems, involving optical communications, for example

optical switches, optical storage systems and optical computing.

The invention of the laser has given a major boost to the field of optical systems. The
first laser operating at a wavelength of 694nm represented an optical frequency of 5x10"
Hz. Since the demonstration of this, the ruby laser, the transmission and processing of
optical signals has been of the greatest interest to scientists. The exploitation of the
tremendous potential bandwidth offered by laser light has been potentially limited by a

number of factors:

a) It was discovered quite early that free space propagation of the laser beam was
not a suitable means of establishing effective communications links. Laser light
is strongly scattered by rain, fog, smog and snow. There was also the need for a
line-of-sight link, and hence the work turned to establishing suitable transmission
media. There are, however, a number of applications where it is possible, even
desirable, to use free space transmission e.g. communication between satellites in

orbit.

b) Electronic components place a limitation on the bandwidth of any optical

communication system, in that it is not yet possible to use the full potential of a

10" -10" Hz system.

A solution to the first of these problems was to allow light to propagate through another
medium, which protects it from atmospheric interruptions. The transmission of light by
glass (and other transparent media) by multiple internal reflections had been known and

used since ancient times. In 1880, Alexander Graham Bell developed a device, the
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‘Photophone’, that varied the intensity of light incident upon it as a function of the
amplitude of speech vibrations (Kapany, 1967). The development of this idea was
however hampered by very high propagation losses. Early measurements of loss in glass
of near infra red light was put at 1000dB per km, which was attributed to the impurities
in glass (Kao and Hockham, 1966). This effect was confirmed by Kapron et al., (1970)
who succeeded in making pure glass with a loss of 20dB per km and opened up the way
for effective fibre optics. Today's optical fibers have a loss of less than 0.2dB/km on

certain spectral bands.

1.1.1 Research trends in optoelectronics

The development of low loss optical fibre has helped address the problem of suitable
transmission media for modern optoelectronic systems. Present day optical fibres have
transmission rates of over two billion bits per second over hundreds of kilometres with
an error of about one per billion bits and performance figures are improving year by
year. Along with the development of low loss optical fibre came the development of the
compact single mode semiconductor laser since the early 1960s (Hall et al., 1962;
Nathan et al., 1962; Quist et al., 1962). By the early 1970s semiconductor lasers were
providing continuous wave (cw) coherent sources of laser light (Alferov et al., 1970;
Hayashi et al., 1970). Improvements from the 1980s made them reliable sources for use

in optical communications systems.

Optical signals transmitted using optical fibres will ultimately have to be converted into
electronic form for processing. The speed of operation of electronic components is a
major determining factor in the bandwidth of a communications system. This limitation
has led to major research into a field now known as optoelectronics, replacing electronic
devices with optical devices, switches, modulators, filters, transmitters, connectors and
receivers. The potential of this new field is enormous. Will the development of an optical
switch eventually lead to an optical computer? That is the hope and aspiration of many
workers in this field. Advances in recent times in optoelectronics have led to the
development of a wide range of optical components and devices such as directional

couplers, Y-branches, waveguide crossings, optical filters, modulators, optical amplifiers




Chapter 1 Introduction

and many others (Tamir, 1979). These advances in optical technology have resulted in
the availability of consumer goods based on optical technology, such as laser copiers,

laser printers, barcode readers, CD players and many others.

Research in the now established field of optoelectronics has developed along the

following five main directions:

1. Optical communications systems

2. Optical storage technology

3. Waveguide devices and optoelectronic packaging technology

4. Photonic devices and materials

5. Optical sensor technology, including speciality fibers
1.1.1.1 Optical communications systems

Research in this area has been mainly in the area of telecommunications, local area
networks and optical intercommunications. Many commercial organisations are building
their research, development, and marketing programs around multimedia concepts like
Visual, Intelligent, and Personal communications systems. The potential role of
optoelectronics in the development of such systems cannot be overstated. These
technologies, which enable such multimedia systems to be developed, include high-
speed digital communications, switching, high-capacity information storage, image
processing, high-definition and flat-panel displays, new kinds of consumer electronics

and local networks.

High-speed digital transmission (10 Gbit/s and beyond), and switching for
telecommunications have been major development thrusts for companies like Lucent,
Alcatel, Fujitsu, Hitachi, and NEC for nearly two decades. Transmission equipment
developed by these companies pioneered the use of single-mode fiber, high bit rates, and
long wavelengths. Some of these companies were early to commit to the Asynchronous

Transfer Mode (ATM) standard for multiplexing and switching.
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Two important systems recently developed have been synchronous digital hierarchy
(SDH) ~10 Gbit/s trunking systems using optical amplifiers (erbium-doped fiber
amplifiers or EDFAs) for amplification at 1550nm, and fiber to the home (FTTH)
systems capable of a two-way ISDN (integrated services digital network) at 1310nm,
combined with one-way video at 1550nm. These systems will pave the way for
interactive broadband services for homes and small businesses, generally accepted as a
key requirement for the so-called "Information Age" revolution just now beginning.
Equipment for fiber-optic broadband systems was forecast by the end of the 20" century
to constitute two-thirds of all optical communications equipment sales, with a total value
of $12 billion; and by 2003, fiber-optic broadband equipment is forecast to constitute
three-quarters of $30 billion in total optical communications sales (OIDA 1994). (The
corresponding worldwide markets for all optoelectronics, including displays and storage,

are estimated at $140 billion and $230 billion, respectively, in those years.)

1.1.1.2 Optical storage technology

Optical data storage, which once appeared to be a failing technology in the marketplace,
is quickly finding its way into homes and offices with the multimedia revolution. In the
past, it was believed that optical storage, because of its long access times, would not be a
significant threat to magnetic storage. However it has become one of the important
enabling technologies fusing together the entertainment and computing industries.
Developments in optical storage technology underlie developments in multimedia
systems and it is envisaged that it will form one of the major optoelectronics

technologies for this, the twenty-first century.

As in all data storage systems, optical disk systems are characterised by their storage
capacity, data transfer rate, access time, and cost. The wavelength of the laser used for
“read and write” operations imposes a fundamental limitation on the information storage
density and the speed of data retrieval. The storage capacity of an optical storage system
is a direct function of spot size (minimum dimensions of a stored bit) and the

geometrical dimensions of the media. A good metric to employ to assess the efficiency
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in using the storage area is the areal density (MB/sq. in.). Areal density is governed by
the resolution of the media, the numerical aperture of the optics and the wavelength of
the laser in the optical head used for recording and readout. The data transfer rate in an
optical recording system operating at a fixed rotational speed is inversely proportional to
the laser wavelength. Research and development in the field of optical storage is

typically directed at:

. Reducing the spot size using lower-wavelength light sources

. Reducing the weight of optical pickup heads using holographic
components

. Increasing rotation speeds using larger optical power lasers

. Improving the efficiency of error correction codes; and increasing the

speed of the servo systems.

The introduction of the CD format in the late 1980s, opened up another direction for
optical storage devices. Due to their low-cost replication capability, high capacity,
robustness, and removability, optical CD-ROM systems have become competitive with
magnetic floppy disks for applications such as software distribution and home
multimedia applications. The success of CD-ROM technology in the consumer market
has allowed the cost of optoelectronic components such as CD lasers to drop sharply
over the last few years, paving the way for new applications and new optical storage
systems. It is expected that CD systems will remain essential for the wide commercial

acceptance of optical storage systems in the years to come.

Those features which uniquely make optical storage systems attractive are their higher
capacity per disk, removability, mass replicability, and long memory persistence for
archival applications. They are most commonly used for software distribution, backup
memory for personal computers and workstations, external memory for some
mainframes, and a large-capacity off-line memory. Key applications include text and

graphics filing, statistical data and ledger storage, public and historical database storage,
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and possibly as a replacement for paper. New applications and markets opening to
optical storage systems as their prices are dropping include home multimedia,
multimedia servers, high-definition television and digital videodisks (DVD), and

massive storage systems.

1.1.1.2.1 The Data Storage Market

The growth of any data storage market is determined by various information processing
and storage applications. For the optical storage market, it is a new application,
multimedia entertainment systems, which is fuelling its growth. The volume of the data
storage market approached $100 billion as early as 1994, of which the hard disk segment
was $47 billion, the magnetic tape segment $42 billion, and the optical disk segment $6

billion.

In the past, the majority of desktop computing users did not need such a high capacity of
data storage. However, during the 1993-95 period, the advent of image computing and
processing of multimedia documents with still images has quickly raised the floor of the
minimum useful desktop storage capacity to about 1 GB. This has made optical storage
devices more attractive. As a consequence, demand for optical storage devices exceeded
supply in 1994 for the first time. With increasing demand, most optical storage
manufacturers have continued to drop prices to increase their market share. An
optoelectronics Industry Development Association (OIDA) survey predicts an explosive
growth in the optical storage market of $50 billion by the end of the next decade (2010).
It is believed that video- and computing-related products will strongly support this

growth.

1.1.1.2.2 Emerging optical storage technologies

For any storage technology to remain competitive over time, it is critical that its access
time, system volume, and cost be kept constant (or preferably reduced) while its capacity
and data rate are increased. This requires low-cost pickup sensors that can move quickly

and accurately to access an increasing amount of data. Mechanical constraints dictate
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that fast and accurate movements can only be achieved over short distances; this
consideration leads to the conclusion that data must be kept as local as possible with
respect to the pickup heads. Historically, this consideration has driven the increase in
areal densities, allowing much larger amounts of data to be stored, accessed, and

retrieved without an increase in access time and system cost.

However, as optical areal densities approach optical diffraction limits, researchers have
started seeking new solutions. On the one hand, solutions may entail further increasing
the areal density by combating the diffraction limits of optics using, for example, near-
field optics. On the other hand, solutions may take advantage of additional available
dimensions such as are proposed for various 3-D optical storage concepts. Indeed, data
residing in a volume may be considered as being local to the pickup sensors if both the
performance cost and actual cost of accessing it in 3-D is affordable. In this case,
volumetric density (Mbit/in®) becomes critical. The volumetric density is governed by
the effective volume of the spot, which in turn is limited by the volumetric resolution of
the medium, the numerical aperture of the optics, the wavelength, and the positional
accuracy of the pickup head in the third dimension. The spot size is limited by the
recording wavelengths through diffraction effects, as well as by the sensitivity and
integration time of the readout detector. The approach promises low-cost, high-
volumetric-density ROM disk media with a thousand or more layers for image storage,
and also low-cost compact disk player drive units employing semiconductor blue and/or

green lasers.

The potential impact of layered 3-D optical disks on the capacity of optical storage can
be much greater than the impact of, for example, the use of blue lasers. This is because
the growth factor in capacity is directly proportional to the number of layers. Assuming
that the areal density is not affected, the 3-D layering provides the potential for realising
optical disks with capacities exceeding 100 GB, beyond the turn of the millennium. If
this factor is now coupled with a reduction in spot size, then the potential storage

capacity of optical storage systems will be phenomenal.

A major increase in capacity is expected over the next 3 to 5 years using lasers with

progressively shorter wavelengths. As mentioned earlier, areal density is governed by
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spot size. This can be expressed in terms of the wavelength (A) and the numerical

aperture (NA), of the optical system as:
: 1.8
spot size = —— 1.1
NA

In order to reduce the spot size, the numerical aperture may be increased, or the
wavelength may be reduced. However, since the numerical aperture also affects the
depth of focus (and the depth of focus is directly proportional to NA), increasing the
numerical aperture imposes restrictions on the media thickness and the servo controllers.
Practically, it is expected that the numerical aperture will be increased only up to 0.62

from its present value of 0.55, allowing an increase in the storage capacity of about 12%.

It is anticipated that laser wavelengths used will change over the coming years from the
present standard of 780 nm to 430 nm with the development of the low cost blue laser.
This would lead to an increase in the information storage capacity by a factor of nearly
four and also more than double the data transfer rate. Sony is actively pursuing this
direction by developing zinc-selenide-based lasers. They have currently developed such
a laser operating at room temperature, still with a relatively short lifetime. In contrast,
researchers at Nichia are actively pursuing GaN-based lasers. They have demonstrated
lasing using this material (Nakamura, 1994) and remain active in commercialising such
devices. The major drawback at present of these lasers has been their extremely short
operating lifetimes but work to improve this aspect is underway. Growing GaN on a
lattice mismatch Al,O; substrate is also accompanied by a large number of defects but

work is continuing to overcome these difficulties.

An alternative method of obtaining shorter wavelengths is by use of frequency-doubled
blue lasers, through the non-linear process of second harmonic generation. Several laser-
based blue-green sources are now under development and systems are commercially
available. These frequency conversion technologies rely on the availability of suitable
laser diodes, which must meet stringent requirements of high output power, single spatial
mode, spectral stability and operate within a specific range of wavelength. Efficient

harmonic generation requires that the harmonic and the fundamental waves travel with a

9
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fixed phase relationship. Where this is not feasible, then the direction of the spontaneous
polarisation is reversed in the non-linear waveguide at regular intervals, which
corresponds to the situation when the two waves are out of phase by 180°. Work in both

directly generated and second harmonic devices is continuing at a rapid rate.

1.1.1.3 Guided wave devices

Another area of intensive research has been photonic devices and materials, with the
emphasis on laser and optoelectronic integrated circuit technology, including both
surface-emitting and edge-emitting lasers, as well as devices for use in
telecommunications, sensors, and consumer products. Within the past decade, guided
wave, or integrated optical (I0) components in various materials have become available
from a variety of vendors, world-wide and are now being deployed in commercial
systems. Integrated optical devices include modulators and passive circuits in LiNbO;,
glass, and semiconductors; these devices are applied to telecommunications, cable

television (CATYV), and instrumentation.

These components are key to advanced transmitters in many fiber-optic-based CATV
and long haul telecommunications systems. The devices themselves are based on planar
optical waveguides, in which light is confined to channels at the substrate surface and
routed on the chip. These channels are typically less than a few microns across and are
patterned using microlithography techniques. Using appropriate optical circuits based on
channel guides, both passive functions (i.e., power splitting from one to several
channels) and active functions (i.e., electrical-to-optical signal conversion, known as
modulation) can be performed on the light. The primary materials used in the
commercial market are glass (bulk or SiO,/Si) for passive devices and LiNbO; for active
devices. A closely related technology that is in the research stage is the development of
photonic integrated circuits (PICs), in which a variety of semiconductor optoelectronic
devices are monolithically integrated and interconnected with waveguides such as lasers

and modulators.
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Applications for integrated optics have historically been in niches of the analogue,
digital, and sensor fiber-optic markets; at present, however, major new markets are
emerging. Perhaps the largest new market is telecommunications, where 10 devices will
be used for multigigabit data transmission, signal splitting and loop distribution, and bi-
directional communication modules. A second new market is CATV, where 10 modules
will be used for external modulation in fiber-optic-based signal distribution systems. In
both telecommunications and CATV, 10 devices enable signal transmission at higher
data rates and over longer distances. In a third market, instrumentation, a major
application is fiber-optic gyroscopes. An early market study of IO modulators predicted
a 24% annual growth rate in North America over the 1993 - 2003 period (Tamir 1987).
A significant portion of this growth was for aerospace and military applications (e.g.,
fiber gyros). The forecast annual sale by 2003 is nearly $200 million. The photonics
market enabled by 10 modulators (e.g., transmitters and gyros) is many times larger and

is expected to exceed $1 billion.

Closely coupled to this work are efforts to pigtail multiple fibers, at once, to an IO circuit
(IOC). Research and development (R&D) efforts at major centres in the world are
focused on large planar lightwave circuits (PLCs), including planar erbium-doped
amplifiers, components for wavelength division multiplexing (WDM), and structures for
the silicon microbench. Much of the leading research has been performed at AT&T in
the United States and NTT in Japan. In the semiconductor modulator area, the major
focus is on developing devices suitable for 10 Gbit/s communications. For example,
Hitachi is working on a discrete modulator and an integrated diode laser and an
electroabsorption modulator is under development at AT&T in the United States and at

NTT, NEC, and Fujitsu in Japan.

Commercial IOCs (based on annealed proton-exchange waveguides in LiNbO;) are
available and widely used. IOCs are being used in telecommunications for high-speed
modulation, signal splitting and switching and bi-directional communication.
LiNbOj; modulators are being used in 2.5 Gbit/s (OC-48) systems to enable transmission
over distances of greater than 100 km without repeaters. LiNbO; modulators make it
possible to use CW (continuous-wave) 1.5 micron lasers that have closely spaced

wavelengths for transmission over the standard fiber already installed, which is
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optimised for 1.3 micron operation. Since installing new fiber is a major cost, the
externally modulated multigigabit approach is a significant cost-saver for long-haul
telecommunications operating companies. With such systems, 10 Gbit/s system
operation is achieved, for example, by multiplexing four wavelength channels at 2.5

Gbit/s each.

Interest in LiNbO; modulators for radio frequency (RF) link applications is being
actively pursued at many research centres. The development of hybrid integrated optical
disk pickup heads and quasi-phase-matching structures for diode laser frequency
doubling is a topic of major research interest. Work on guided wave devices in many
places is focused on linearized modulators, high-speed and high-optical-power
modulators, modulators with gain, and frequency-doubled structures all using LiNbOs.
In Japan, interest in quasi-phase-matching in LiNbOj for frequency conversion is being
researched at Oki for 1.5 micron applications and at Sony for frequency doubling (blue

light generation).

1.1.14 Photonic devices

Research in the area of photonic devices can be classified into the following major
categories: semiconductor light-emitting diodes (LEDs), lasers, semiconductor optical

amplifiers, switches, and integrated receivers.

LEDs are the light sources used for many semiconductor-based devices. The AlGalnP
material system is widely used in generating highly efficient red light for the automobile
industry and in traffic light systems and also finds application in optoisolators and low

data rate (<50Mbit/s) optical links.

Lasers have been widely used in a number of areas: transmission lasers, pumping lasers
for erbium (Er)-doped fiber amplifiers and local-loop or access lasers, are used mainly in
the telecommunication industry. Included in the category of transmission lasers are
photonic integrated circuits (PICs), wavelength-division multiplexed (WDM), and time-

division multiplexed (TDM) laser sources, and 1.3 micron and 1.55 micron wavelength
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devices based on InP. Analogue lasers are used mainly in the cable TV or other
subcarrier multiplexing applications, although they are finding increasing application in
satellite communications and phased-array radars. Visible, shorter-wavelength lasers are

used for optical storage, sensing, or display applications.

The use of lasers in compact optical disk players has brought about a revolution in the
diode laser industry. For the first time, there has been created an application that requires
the production of more than a few thousand units per month. Thus the corresponding
advantages of real mass production can be employed. Rohm, a resistor manufacturing
company that expanded into lasers, perhaps best illustrates these advantages. Through
the heavy use of automation (previously foreign to the laser diode business), Rohm was
able to capture half of the CD market, and in 1994 produced about 60 million laser
diodes. This kind of demand has now pushed the price down to less than $1 per laser,

even with the conventional cleaved-facet technology.

Besides optical storage, major applications for lasers in the 600-800 nm range lie in
optical pointers, bar-code scanners, printers, data links, and displays. The production of
laser pointers relies upon visible light emission, and wavelengths in the 630-650 nm
range are much better for visibility than those at approximately 670 nm, even though
higher power tends to be available there. For the print heads and bar-code scanners an
analogous argument holds, but here the shorter-wavelength lasers are preferable because
of the sensitivity of the detecting medium. For display, again, the 670 nm is somewhat

too long.

1.2 Nonlinear effects in optics

Much of the economic potential to be realised through the application of optics in
telecommunications and information processing can be ascribed to the best use of the
nonlinear effects in optics. In recent years, there has been a significant increase in the
number of published papers on nonlinearity in optics, due mainly to their economic

potential. The foundation of the subject was laid in the early 1960s with the pioneering
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work of several groups, e.g. Franken et al. 1961, Franken and Ward, 1963, Boyd et al.,
1965, Armstrong et al., 1962, Miller, 1964.

Most material media exhibit weak nonlinearities if exposed to electromagnetic radiation
of high intensity. The discovery of many of these nonlinear effects and especially their
development however has been made possible by the invention of the laser, when the
practical applications of these effects were quickly realised. At very high intensities, the
light waves may interact with each other or with the material medium. These
nonlinearities arise from an anharmonic motion of electrons in response to the applied
field. This can lead to the observation of several effects, the most important of which can

be divided into two classes depending on their origin, be it quadratic or cubic.

If the material is regarded simplistically as a collection of charged particles, then with
the application of an electric field, an oscillation is induced in the electron cloud. At
relatively low intensities, the induced polarisation, the displacement of the electron cloud

or dipole, P is directly proportional to the magnitude of the electric field of the lightwave

where ) is the linear optical susceptibility, a function of the refractive index of the
material. It is well known in physics, that the linear dependence of one physical quantity
on another is almost always an approximation, and valid only over a limited range. The
most familiar example is Hooke’s law of elasticity. Laser light generates very intense
fields, which give rise to nonlinear optical effects and the expression for the polarisation

can then be written as (a detailed derivation is given in Chapter 3)

P=yYE+y®PE>+ y®FE® +... 1.3

(2)

3 . oy
where ¥~ and )(( ! are constants, the second and third order susceptibilities.
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1.2.1 Quadratic nonlinear effects

The second term of equation 1.3 gives the quadratic polarisation term which gives rise to
effects, which are all of the mixing (interaction of light with nonlinear dielectric) type.
This involves the generation of sum and difference frequencies, which may take a

variety of forms. These are

Second harmonic generation: This is the coalescing of two identical photons. It
represents a special case of a process more commonly known as sum frequency
generation. In this process, light waves at two different frequencies are summed to form
the output. When the applied optical field contains just one frequency, i.e. when the two
waves are equal in frequency, power or amplitude, the quadratic polarisation will contain
a static term and a term oscillating at twice the applied frequency. The polarisation
oscillating at twice the applied frequency radiates into the medium, giving rise to SHG.
The overall effect of this process can be described as follows: part of the energy of an
optical wave of frequency @ propagating through a crystal is partly converted to that of

awave at 2.

Parametric amplification: This is used to build a signal from a zero value. If power is

provided at the frequency @, and the power at the frequency @, is initially assumed to
be zero then the growth in the signal power at @, = ®, —®, . It is assumed here that
@, >> @, . It must also be noted that the power at @, is amplified. Thus this device
generates an ‘idler’ signal at @, and at the same time amplifying the signal at @,. In
effect, power from a ‘pump’ wave at @, is transferred to waves at frequencies @, and
@, , where @, = @, + ®, . Fundamentally it is similar to second harmonic generation but

the difference is in the direction of the flow of power. In this process )(“) is changed by

an amount proportional to the pump intensity.

Frequency Up-Conversion: This is used to convert a signal from a low frequency o, to

a high frequency @, by mixing it with a strong laser beam at ®,, such that
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W, +®, =,. It is also another special case of sum frequency generation. From a
quantum mechanical point of view, this can be thought of as the annihilation of photons
at frequencies @, and ®,, and the generation of a photon at @,. This can be used in the

detection of infrared radiation by converting the frequency into the visible or near visible

part of the spectrum.

The linear electro-optic (Pockels) effect: This is the linear variation in the refractive
index of a dielectric medium caused by the application of a static electric field. This is
the simplest of the mixing processes. In this, one of the frequencies is zero i.e. an optical
wave is sent through the medium in the presence of a dc electric field. The quadratic

polarisation will then contain a term proportional to the product of the optical and dc

fields, in effect being equivalent to changing }((l) by an amount proportional to the dc

field. This causes the medium to become electrically anisotropic, thus making the phase
velocity of the propagating wave dependent on the direction of the electric field vector of
the wave. This phenomenon is useful in the design of phase modulators. If the change in
phase velocity is dependent on an applied field, it then follows that phase or frequency

modulation can be achieved in the medium.

1.2.2 Cubic nonlinear polarisation effects

Cubic nonlinear effects arise from the cubic polarisation term E,,x(")E". This gives rise

to third harmonic generation, quadratic electro-optic effects, two-photon absorption and

other related mixing phenomena, i.e.

The quadratic Electro-optic effect: It is the simplest case of effects arising from cubic
polarisation. This is the variation arising in the refractive index due to a quadratic term.
An optical wave propagating through a medium in the presence of direct current (dc)
field causes a change in the refractive index of the material proportional to the square of
the direct current field. This effect is also known as the Kerr effect and may be used in

fast acting optical shutters.

16
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Third harmonic generation: This can occur when an incident field at frequency @

induces a polarisation at the frequency 3@ . This process is governed by the third order

nonlinear susceptibility tensor }(m. An optical field propagating through a nonlinear

medium induces a cubic polarisation, which is proportional to the third power of the
field. The refractive index is thus modulated by an amount proportional to the optical
intensity. The induced nonlinear polarisation may then generate a travelling wave at the

third harmonic frequency.

Two-photon absorption: If two intense electromagnetic waves at frequencies ®, and o,

propagate through a medium, then there is the probability that some energy will be

absorbed from both of these waves as result of the transition at the sum frequency

®, where @, = @, + ®, . In semiconductor materials the transition is usually between the

valence and conduction bands. This phenomenon can be used for the observation of

extremely short light pulses.

Raman effect: Given light of a particular frequency, travelling in a dielectric medium, it
is then possible to observe weak side bands of radiation close to the frequency of the
incident light. The vibrational resonant frequency of the material determines the
difference from the incident frequency of the side bands. This phenomenon is similar to
a parametric processes: however there are two main differences. The ‘idler’ wave will
now be replaced by an internal oscillation of the molecule, in other words a mechanical
crystal vibration instead of the electromagnetic idler wave. This phenomenon is
therefore possible only in materials whose molecules are capable of vibrational
oscillation. No phase matching is also required. The spontaneous Raman effect is used in
the spectroscopic investigation of the structure of molecules whereas the stimulated

Raman effect is used in the design and fabrication of optical amplifiers and oscillators.

1.3 Fundamental Theory underlying optical waveguide analysis

The field of integrated optics can broadly be classified into areas involving optical fiber

waveguides and the optical integrated circuits (Hunsperger, 1984). The optical integrated
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circuit (OIC) can be regarded as the optical equivalent of the conventional electronic

circuit, where the fundamental material that interconnects the various devices of an OIC

is the optical waveguide. Unlike electrical circuits where the signal is carried by a

current, the signal in an optical waveguide travels in distinct optical modes. A mode can

simply be regarded as the spatial distribution of optical energy in one or more

dimensions. In this section, Maxwell’s equations for the propagation of waves in optical

waveguides are presented, and different types of waveguides are then reviewed.

1.3.1 Maxwell’s Equations

The work presented in this thesis is based on a numerical solution of Maxwell’s

equations, which govern the propagation of light through an optical medium and its

interaction with the medium. These equations are valid for the entire frequency spectrum

and in differential form can be stated as follows:

VxE+aa—lt3=0 (Faraday’s law)

VxH —aa—D =0 (Maxwell-Ampere law)
t

V.-D=p (Gauss’s law)

V-B=0 (Gauss’s law magnetic)

147

For a lossless dielectric isotropic material, the electric E and magnetic H field vectors

are related through the constitutive equations

D=€cE+P

B=uH

1.8
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In the above D is the electric flux density (coulombs/m?), B is the magnetic flux density
(webers/m?), p is the charge density, g, =4xx107 F/m is a constant equal to the

magnetic permeability of a vacuum and ¢, is the vacuum dielectric permitivity.
Assuming complex time dependence through the factor exp(j@r), where j is an

imaginary unit, @ the angular frequency and # is time, and substituting for B and D, the

time derivatives in the above equations may be rewritten as

VXE+ jouH =0 1.10

VxH- jweE=0 1.11

Taking the curl of these equations and making the necessary substitution from equations

(1.4) and (1.5), equations (1.10) and (1.11) could be written as follows

VxXVXE-w®’ueE =0 1.12

VxVxH+w’ueH =0 1.13

Using the following vector identity

VxVxA=V(V-A)-V’A .14

the first terms of equations (1.12) and (1.13) may be written as

V(V-E)-V’E-0’ueE=0 1.15

V(V-H)+V’H+w’ueH =0 1.16

For a perfect insulator with no stored charges, the above two equations simplify to
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V’E+ @’ ueE =0 [.17a

V’H+w’ueH =0 1.17b

These two equations can be written as:

V’E+k’E=0 1.18a

VH+k’H=0 L 1ab

where the wavenumber, k = w,/eu, .

The equations (1.17) or (1.18) provide the general solution to Maxwell’s equations in
terms of material properties and the angular frequency of the electromagnetic signal. It is
these two equations, which need to be solved for a particular waveguide structure, with
appropriate boundary conditions, in order to obtain the optical mode, in other words the

field and its characteristics.

1.3.2 Planar waveguides

Various types of optical waveguides exist, the simplest of which is the 2 dimensional (2-
D) or planar waveguide. The 2 dimensional waveguide enables the confinement of light

in one direction (y) whilst allowing it to spread in the other direction (x).
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~

Fig.1.1 Example of a planar waveguide

For the waveguide that is shown in Fig 1.1, ng is the refractive index of the guide core, n,
is the refractive index of the upper cladding and ny is the refractive index of the substrate
region. For a three layer asymmetric planar waveguide, the refractive indices are related

as follows: n. <n <n, and hence the light can be trapped inside the guide core. When

the substrate index and the index of the upper cladding are equal n,=n_ then a

symmetric guide is obtained. In the above, the refractive index is assumed to be a
constant value within specified sections of the guide. Many waveguides have a graded
index where the refractive index changes gradually as a result of the fabrication
technique employed. Such waveguides will be considered in detail in a later section of

the thesis.

1.3.2.1 Basic Equation

Expanding the curl operator in equation (1.17) in the rectangular co-ordinate system,

where z is the propagation direction, the following is obtained

0’E 0’E 0°E
5 =

w5 t— =-0’ueE 1.19
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The field vector E can be separated into the individual component parts, such that there

is an equivalent differential equation for each of the vector components.

0’E, J°E, 0’E
g LT

o X % =’ ucE, 1.20a
ax” cady” 82"

azE‘.+aZE‘, 0°E G o
e >+ —— =-0’UeE :
x> oy’ dz" &

0°E, 9°E. 9J°E :
z 4 z 4 2 ——w’ueE 1.20c
ox> oy’ 97’ 25,

1.3.2.2 Analytic solution

In a planar waveguide structure, the field quantities are assumed to vary in only one

transverse direction. Considering the three-layer waveguide structure shown in Fig. 1.1,

and assuming the light confinement to be in the y-direction, then the partial derivative

along the x-direction can be written asi =0. If the parameter ¢ is now defined such
X

that

0= E, ForTE mode [t
" |H. ForTM mode

X

then equations (1.18a and b) can be written as

az?_*_(fllz—ﬁz)p:() 1.22
dy”

where n=,/g, and B is the phase constant.
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For 2-D waveguides, the TE mode has no longitudinal component of the electric field,

E, = 0. The non-vanishing field components are thus defined as:

H‘_=£E) 1.23

T

Hz=#aE* 1.24
jop Ay

Bt gl O 1.25
we ' jwe dy

For TM modes, there is no magnetic field component along the direction of propagation,

H, =0. The only non-vanishing field components are thus

E\,=—£ ; 1.26

) ey

E;—#aH* 1.27

: Jwe dy

HX=——ﬁ— ‘,—.LaEz 1.28
ou ° jou dy

The solutions to (1.22) are either exponential or sinusoidal functions of y in each of the

regions of the waveguide. The particular function is dependent on the factor
(kfn2 - [)’2). For the three-layered asymmetric planar waveguide, for a guided wave the
phase constant 8 will satisfy the following condition kn < 8 <kn, . Equation (1.22)

will therefore have the solution (Koshiba, 1992)
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T e )

A, exp(-a,y) 0<y
¢=1A;cosk;y+ B, sink,y -t<y<0 1.29
A, explor, (y+1)] ys-—t

In the above A,,B,,A and A, are arbitrary constants determined by the boundary

conditions, which must be satisfied at the interface of two media [Appendix 1].

The values &, ,and k, are defined as

a, =+B* —k*n’ 1.30

«

a, =,/[32 —k’n’ 1.31
J B

T P 2
k,=\k'n; - 1.32
These are well-confined modes normally referred to as TE/TM, and TE,/TM; modes.

For f3 > kn , , the function ¢ must be exponential in all three regions, which would imply

infinite energy in the upper and lower cladding of the waveguide (Hunsperger, 1984).
Such a mode will, of course, not exist. A substrate radiation mode is obtained for a value

of kn. > 8 >kn_ and this mode is confined at the interface of the upper cladding but

varies sinusoidally in the substrate. Such a mode can only be supported over short
distances as it losses energy from the guiding region to the substrate region and hence is
not very useful in signal transmission. It may, however, prove useful in tapered coupler
applications. The number of modes that can be supported by a waveguide depends on the
thickness of the waveguiding layer and on the material properties of the waveguide, as
well as on the frequency. This implies that for a given waveguide thickness and given
refractive indices, there is a cut-off frequency, @, below which waveguiding cannot
occur. In optical waveguide applications, the wavelength is of fixed value, and the

problem is therefore to determine the refractive index values for which a particular mode

can be supported. It can be shown that for the asymmetric waveguide, the refractive
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2m+1)° A
indices are related through An=n, —n 2 Q:z—)—v—- (Hunsperger, 1984), where m =
n.t

0,1,2... is the mode number, A, is the vacuum wavelength and ¢ is the thickness of the

waveguiding layer.

1.4  Methods of solution of optical waveguide problems

The properties of planar waveguides, useful in many applications can be studied by
means of using analytic methods. Exact analytical solutions can also be obtained for
planar guides with stepped refractive index values but for a continuously graded index
guide, it is rather difficult to obtain exact analytical solutions. Planar waveguides, useful
in many applications have a limited range of use due to their one-dimensional optical
confinement. In many applications, two-dimensional confinement is required, and this
can be provided by channel or three-dimensional waveguides. It is not possible to obtain
exact analytical solutions to such waveguides, except in very special cases, and many

practical waveguides have complex structures with arbitrary index distribution. The

propagation mode is often a hybrid mode, E,, (the main components of the

mn

electromagnetic field being E, and H,) or E,

;. (the main components of the
electromagnetic field being E, and H,) modes, where the subscripts m and n refer to the
mode order such that m, n = 1,2,3..., corresponding to the total number of extrema
appearing in distribution of the electric fields in both the x and y directions. In reality,

one of the modes is dominant, TE® in the case of E! mode and the TM” in the case of

mn

E} where the existence of such modes compounds the complexity of obtaining an

mn
analytical solution. Amongst the many other reasons why it is difficult to obtain an exact

analytical solution to Maxwell’s equations are the following major factors:
a. the electromagnetic field may extend beyond the guide core

b. anisotropic materials and non-linear optical materials may be used to

extend the range of applications of the waveguide and
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C. materials with complex refractive index such as in semiconductors may
be used.
d. Waveguide cross-section may be of irregular geometry

1.4.1 Approximate analytical methods

In view of the difficulties outlined above, various methods have been developed over the
years for the analysis of waveguide problems. These methods can broadly be classified
into two main categories, approximate analytical methods and numerical methods. The
first group includes such approaches as circular harmonic point matching (Goell, 1969),
the effective index method (Hocker and Burns, 1977), the spectral index method (Burke,
1990) and the Marcatili method (Marcatili, 1969). Some of the approximate methods
provide very good results for the analysis of waveguides far from cutoff but many of
these methods are not very suitable for the analysis of a wide range of important

practical waveguides. Some of these methods are considered below.

1.4.1.1 Marcatili method

A channel waveguide is an example of a practical waveguide device. Such a structure
will consist of a guide region surrounded on all sides by a confining medium of a lesser
refractive index. Such a waveguide is difficult to analyse exactly. Marcatili (1969)
derived an approximate solution to the rectangular waveguide problem by considering
the structure shown in Fig. 1.2. A knowledge of fields in the two slab waveguides,
obtained by extending to infinity the width and height of the guide core, is used to
approximate the field in the rectangular core. The key assumption in this analysis is that
the modes are well guided i.e. far from the cut off region. Within the guide core, the field
is assumed to vary sinusoidally and to decay exponentially within the substrate region.
With these assumptions and by matching the boundary conditions along the walls of the
core region only, the transcendental equations are derived for each transverse direction

(Tamir, 1990). The propagation constant is obtained from the simultaneous solution of
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the transcendental equations with the assumption that most of the power is within the

guide region.

¥

L.

N

/ 9

Fig. 1.2. Cross-sectional representation of channel waveguide.

This approach, even though valid for well-confined modes, gives poor results near to
cut-off (Chiang, 1994). An exact scalar formulation has been reported by Kumar et al.
(1983) for a similar rectangular structure used by Marcatili. By using perturbation
techniques, more accurate propagation characteristics of practical integrated optical

waveguides were obtained.

1.4.1.2 The effective index method

Knox and Toulios (1970) first introduced the Effective Index Method. This is an
improvement on the Marcatili method and has been extensively used by many research
workers in view of its simplicity. In this approach two equivalent slabs are used t©
replace the core of the rectangular structure where each of these 2-D structures can then

be considered homogeneous in either the x or the y directions, as shown in Fig. 1.3

(Koshiba, 1992).
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Fig. 1.3 A model for the effective index method

The transcendental equation is obtained by applying the appropriate boundary conditions
for one of the transverse directions. The effective index thus obtained by solving the
transcendental equation is further used as the refractive index in the solution of the
transcendental equation in the other transverse direction. The effective index obtained
from the solution of the second equation can then be regarded as the overall effective
index of the guide. A theoretical study of the method by Peng and Oliner (1981) revealed
that the method was in fact the lowest order version of the mode matching method, in the

case of some composite structures.

This method, in spite of its popularity, is inaccurate in the region near to cut-off. In view
of this, several techniques have been proposed to improve on its accuracy such as a dual
effective index method proposed by Chiang (1986) which required the linear
combination of two effective indices, obtained by applying the effective index method in
two different ways. Chiang (1996) proposed a new effective index method with

perturbation to correct the error in the propagation constant of the rectangular guide.
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1.4.2 Numerical Methods

In the last two decades, numerical methods have been widely used in the study of optical
guided wave devices due to the availability of faster and cheaper computer power. These
methods are concerned with finding numerical solutions to the Helmholtz’s wave
equation derived from Maxwell’s equations. In many instances, a choice has to be made
between a numerical method and an approximate method, where the choice is dependent
on the level of accuracy required. For planar structures, or for structures with one
dimensional (1-D) index variation, the approximate methods do give satisfactory results.
However, for the accurate characterisation of three dimensional 3-D structures, a fully
numerical method such as the finite difference or the finite element method is required.

Pichot (1982) has used a numerical method based on a vector integral equation for the
analysis of diffused channel waveguides. Sharma and Bindal (1992) have employed a
variational approach based on the Hermite-Gaussian trial functions to analyse diffused
planar and channel waveguides. Schweig and Bridges (1984) and Lagu and Ramaswamy
(1986) have advanced the variational approach in the finite difference method (FDM) for

the analysis of diffused channel waveguides.

The proliferation of numerical methods means that thought has to be given to the choice
of the best method for the solution of a waveguide problem. Factors which need to be
taken into consideration when choosing a numerical method, (Davies, 1972, Ng, 1974)

include the following:

a) the shape of the region, Q, under consideration in particular whether it is curved

or polygonal, concave or convex

b) whether the method can be implemented as a computerised program for all types
of geometries or if it has to be implemented specifically for each region of the

guide structure

c) whether the field distribution required is well away from cut-off region or near to

the cut-off region and in particular its accuracy near to the cut-off region
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d) the type of modes required, the dominant mode or higher order mode, as well as
being able to distinguish between optical modes which are quite close together

and

e) the efficiency in terms of computational time and storage requirements.

1.4.2.1 The variational method

The differential equation, which describes the propagation of electromagnetic waves in

an optical medium, can be written as:

Lv(x)= f(x) 1.33
where L is a linear differential operator defined as:

L=Vx(pVx)-w’q 1.34

v(x) is the function sought and f(x) is the source function. For typical eigenvalue
problems, there are no sources of radiation and f(x)=0. The function v(x) and its
derivatives must also satisfy some continuity conditions, that is the function is
continuous and differentiable up to the highest order present in the integral form of the
governing equation. For the function v(x) to have a unique solution, certain boundary
conditions need to be imposed on the function and its derivatives at the guide

boundaries. These boundary conditions comprise of a set of linear operator equations

satisfied on the boundary [Appendix 1].
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14.2.1.1 Weak formulation

Equation (1.33), together with the boundary conditions, form the definition of the
problem discussed, also known as the strong formulation. It is possible to find an
approximate solution to the above problem using equation (1.33) as the starting point. It
is however instructive to attempt to find a weak formulation, that is to reformulate the
problem as a search for a function that satisfies some specified conditions also satisfied
by the solution to the problem of (1.33). This weak formulation is also known as the
variational formulation, the solution of which is also the solution of the original problem,

provided those specified conditions are satisfied.

In order to find the variational form, an inner or scalar product of two functions u(x)

and v(x) is defined as the integral

[u(x)v(x)dx 1.35

r

where T is the domain in which the functions are defined. The inner product of u(x)

and v(x), denoted by <u,v> , 18 thus

(u,v)= ! u(x) v(x)dx 1.36

1.4.2.1.2 Properties of the inner product

Given an inner product as defined by (1.36), then the following properties hold true
(Retorys, 1980)

| <u,v> = (v,u)

2 <au, +bu,, v> = a(u, ,v) + b<142 ,v>
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3. (uu)=0

4. <u,u> =0 if and only if u(x)= 0

1.4.2.1.3 Functional Formulation of the Curl equation

It can be shown [Appendix 2] that the function which minimises the following equation

Vx(pVxv)-o’qv=f, 1.37
is given as
F=<V><(pva),v>—w2<qv,v>—<f,v>—(v,f>. 1.38

In electromagnetic field problems, the fields have time dependence, and the inner

product can therefore be modified slightly as follows
<u,v>=_[(u' VHQ 1.39
Q

The asterisk denotes the complex conjugate. The functional of equation (1.38) can now

be written as

F=J‘v' -Vx(pva)dQ—wZJ'v'quQ—Iv' - f dQ-—J.f* vdQ 1.40
Q Q

Q Q

If the following vector identity is now considered

V-(axb)=(V><a)-b—a~V><b 1.41
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then taking the integral of both sides of the above equation (1.41), the following is

obtained

[V @@xb)Q=[[(Vxa) b-a-Vxb]dQ .42

From the divergence theorem it is known that

[V-(@xb)aQ=§(axb)-nar. 1.43

r

It follows that

§axb)-ndr=[[(Vxa)-b-a-VxbldQ 1.44

r

rearranging the above, the following is now obtained

[a-VxbdQ=[(Vxa) bdQ-§(axb)-ndr .45
Q r

Q

Making the following substitutions @ =v" and b = pV Xv, then the following can be

written

jv' Vx(pVxv)dQ =I(va*)-(pva)iQ—§(v* x(pva))-ndF 1.46

Q Q r

This can now be substituted into the functional of equation (1.38) to obtain

F=[(Vxv')-(pVxv)dQ-0? [v' - qrdQ—[ (" - £ + £ v)-§ (" x(pV xv))- ndl
Q Q Q r

1.47

33



Chapter 1 Introduction

which is the functional that needs to be minimised. Depending on the interpretation of p,
¢, f and v, any equation in the form of the curl equation can be solved using the above

functional.

The variational form can now be used to construct approximate solutions, and by use of
trial functions to represent field solutions, the integral equation is then reduced to a set of
linear equations which can be solved by standard techniques. The accuracy of the
solution depends on an appropriate choice of trial functions satisfying the specified
boundary conditions. A systematic procedure for finding an appropriate function is
provided by the Rayleigh-Ritz method where the function v(x) is expanded as a series of

trial functions (Adams, 1981) of the form

6= iai(pi 1.48

i=0

Several types of trial functions have been used in optical waveguide problems, such as
Gaussian and Hermite Gaussian functions (Austin, 1984; Erteza and Goodman, 1995;
Sharma and Bindal, 1992). Others include cosine-exponential functions, airy functions,

(Goyal et al., 1993) and the modified Hermite-Gauss exponential function.

1.4.2.2 The Equivalent Network Method

This method, also known as the mode matching method is used in the characterisation of
open dielectric waveguides. The guide is assumed to be artificially bounded and hence
the coupling between the TE-TM modes and the continuous spectrum distribution at the
sides of the waveguide can be neglected (Koshiba et al., 1982). The waveguide is
considered in terms of discrete blocks or portions of uniform dielectric layered structures
with a step discontinuity at the interfaces. An expansion of the fields in the various
regions of the guide in terms of the transverse modes results in a microwave equivalent
circuit representation of the guide. The uniform dielectric regions can then be

represented as transmission lines with a characteristic impedance and admittance. The
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step discontinuities are modelled as transformers. This method has been applied to
rectangular waveguides using a vectorial wave analysis (Koshiba and Suzuki, 1985).
Dagli and Fonstand (1987) have extended the method to study of GaAs rib waveguides

and directional and three guide couplers.

1.4.2.3 The Spectral Index Method

This is a relatively fast and accurate semi-numerical method in which the
electromagnetic wave equation is expressed in terms of Fourier transforms and Fourier
series. The method has been applied in the solution of rib waveguide problems (Kendall
et al., 1989), (Stern et al., 1990) and in the study of the strip loaded directional coupler
(Burke, 1990). More recently the method has been extended to the study of multiple rib
waveguides (Pola et al., 1996). The accuracy and speed of the method relies on the use

of Fourier transforms to generate a spectral index for the region below the rib.

In the method, the original structure is replaced by a 1-D structure with the refractive
indices below the rib being represented by their corresponding spectral indices.

Application of the method requires:

1. A Fourier transform in the transverse horizontal direction

2. A Fourier series in terms of trigonometrical functions inside the rib and

3. A transfer relation linking the two equations into a transcendental equation.

The propagation constant is determined through the solution of the transcendental
equation. To solve the problem of strong dielectric discontinuity in the rib region, the
concept of an effective width is used and the evanescent regions are represented through
imaginary spectral indices. Numerical algorithms for this method converge more slowly

in the presence of dielectric corners, (Sudbo, 1992).
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1.4.24 The Beam Propagation Method

The methods considered thus far have been used to obtain the modal properties of an
optical waveguide through the solution of a two-dimensional wave equation. Such modal
properties of a waveguide can also be obtained through the solution of a three-
dimensional wave propagation equation. This method was first proposed for the solution
of non-uniform waveguide problems in anisotropic media by Feit and Fleck (1980) and

independently by Yeh et al. (1979).

The beam propagation method is based on the assumption of plane polarised waves. In
essence, the method consists of calculating the paraxial approximation to the field as it
propagates down the waveguide, and performing the Fourier transform of a correlation
function relating the evolved field and the incident field to yield the mode spectrum
Chiang (1994). For the analysis of non-uniform waveguides, the beam propagation
method is now widely accepted as the most powerful method available. However, for the
analysis of uniform structures, this method is not as efficient as those designed
specifically for two-dimensional wave equations, because it is necessary to discretise the
structure in both the transverse and the longitudinal planes. To overcome these
difficulties, a two-dimensional method such as the finite difference method is best

employed.

1.4.2.5 The Finite difference Method

The finite difference method is the oldest and probably the best known numerical
method for the solution of boundary value problems. The importance of the finite
difference method lies with the ease with which many logically complicated operations
and functions may be discretised. In this method, the optical waveguide is enclosed in a
rectangular box whose cross-section is divided into sub-regions. Operations are then
performed not on continuous functions, but rather on values at discrete point sets on the

grid. The major advantage of this method is that operations such as differentiation and
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integration are reduced to simple arithmetic operations, which lend themselves easily to
algorithmic solutions. The walls of the rectangular box may either be electric or
magnetic. The field at the boundaries of the walls is assumed to be negligible, allowing
infinite elements with an associated decay factor to be introduced. A grid with all the
dielectric boundaries on it is then used to represent the cross-section. The nodal field of
an arbitrary node can be expressed in terms of the neighbouring nodes in the two
transverse directions using a five-point formula, (Davies, 1989) of finite differences. The
differentiation of the wave equation at the nodes is thus replaced with differences of the
fields evaluated at the nodes. This approach leads to a large non-symmetric matrix,
which puts constraints on the storage requirements. An iterative procedure using lower
order modes is employed to avoid the storage of large matrices by solving the matrix

eigenvalue equation (Chiang, 1994) directly.

The finite difference method can also be formulated using the variational principle. The
variational expression obtained is arranged into a set of coupled wave equations for each
of the transverse directions, Hy and Hy. An eigenvalue matrix equation of the form

Ax — Ax =0 can be formed which can be solve using sparse matrix techniques.

The accuracy of this method is determined by the size of the computational window. If
the computational window is too large, convergence will be slow. A small computational
window would, on the other hand, invalidate the assumption of zero field at the
boundaries. As the distance between points is made sufficiently small, the method

becomes increasingly accurate.

1.4.2.6 The Finite Element Method

The finite element method (FEM) is a relatively new and powerful numerical technique
in the analysis of optical waveguide problems. Following this approach, any optical
waveguide cross-section can be divided into triangular elements and the field
components within the elements approximated by polynomial expressions. The
versatility of the method ensures that each element can be of a different dielectric

material, anisotropic, non-linear or lossy. The finite element formulation is usually
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established using a variational technique (Davies, 1989), or through the Galerkin method
(Berk, 1956).

Vector variational formulations of Maxwell’s equations provide a means of solving
wave propagation problems where all six electromagnetic field components are required
and scalar formulations are inadequate (English and Young, 1971). Such a formulation
also provides a better convergence where the natural boundary condition is that of
Dirichlet. Using a standard procedure discussed below, a variational formulation can be

obtained. The steps involved are to

1. Find the variational integral whose first variation is zero for the given

boundary conditions

2. Choose an appropriate trial function and expand the field components as

a sum of the trial functions

3 Substitute the trial fields in the variational integral and find the first

variation and equate it to zero and

4. The resulting simultaneous equations from the weak formulation of the
boundary value problem are equivalent to a standard eigenvalue matrix
equation of the form Ax—Ax =0. This equation can then be solved by

one of several standard matrix algorithms.

Different variational formulations have been proposed for use with the finite element
method. The simplest of these is the scalar approximation, which is useful where the
field can be said to be predominantly TE or TM. It has been applied to the analysis of
different types of waveguide problems; e.g. in the work of Silvester (1969), Hayata et
al., (1986), Chiang (1985) and Mabaya et al., (1981).

For practical waveguides, the scalar formulation is not accurate since the modes are

hybrid. To overcome this shortcoming of the scalar approximation, a vector formulation
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with at least two field components is used. Both the E and H field vector variational

formulations (Berk, 1956) or combinations of the two have been used.

The finite element method in terms of the E,-H, variational formulation has been used in
the analysis of both microwave devices, Csendes and Silvester (1970), Tzuang er al.
(1986)) and optical waveguide devices (Yeh et al., (1975), Ikeuchi et al. (1981)). This
formulation is however not suitable for generally anisotropic waveguides. It is also
difficult to implement the natural boundary condition using this method for guides with
arbitrary index distribution. Most importantly, however, the two axial components on
which the formulation is based are the least essential of the six vector field components.
Coupled with the above, the method suffers from spurious modes which can be reduced

at the expense of increased computational cost (Mabaya et al., 1981).

A vector E has been used in the study of cylindrical waveguides (English and Young
(1971)), magnetically anisotropic waveguides (Koshiba and Suzuki, 1985) and optical
fibers (Katz and Werner 1982). The natural boundary condition for the E field is that of
a magnetic wall. This implies a conducting electric boundary wall, n x E = 0, such a
condition is however difficult to implement on arbitrarily shaped guide walls. The E
field formulation also requires special care in preserving the continuity of the transverse

components of the fields.

The vector H field formulation has been extensively used due to its ability to solve
generally anisotropic waveguide problems (Rahman and Davies, (1984a, 1985), Koshiba
et al. (1986), and Kobelansky and Webb. (1986)). Since the natural boundary condition
is that of an electric wall there is no need to explicitly enforce this condition. This

formulation can be written as (Rahman and Davies, 1984a)

, [(VxH) ™' (VxH)Q
[H" ™" HAQ

where € and p are the permittivity and permeability of a loss free medium, and they

may both be of arbitrary anisotropy. Application of the Raleigh-Ritz procedure to the
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above equation will yield a similar matrix equation as in the vector E formulation. A
serious shortcoming of the above formulation is the appearance of spurious solutions,
which can be attributed to the fact that the divergence condition V-H =0 is not
satisfied. Enforcing this divergence condition through the imposition of ‘penalty’
function (Rahman and Davies, 1984c) could eliminate these spurious modes. Another
method of eliminating the spurious modes has been achieved through the use of edge

elements (Bossavit and Mayergoyz, 1989).

Variational formulations in terms of the transverse electric and magnetic field
components have been used of late; e.g. in the work of Hayata et al. (1986, 1988) and
Fernandez and Lu (1990). In such a formulation, the divergence condition is implicitly
satisfied and minimum number of variables are required hence spurious modes can be
avoided. This formulation can also provide the complex propagation constant for
waveguides with loss and gain, however it can lead to a more complex matrix eigenvalue

problem, (Hayata et al., 1986) with larger memory and cpu time requirement.

1.5 Aims and Objectives of the thesis

Following from the discussion in the introduction, the important role optoelectronics has
to play in present day communications systems is clear. A number of important areas
have been identified in which ongoing research will contribute immensely towards
communications systems of the future. The background information provided thus far
has been important in defining the aims and objectives of this thesis, a small contribution
to the efforts of many people to herald in a new communications age. The primary aim

of this work can be summarised as follows:

1. To investigate the different approaches to the solution of the optical
waveguide problems and to provide a justification for the use of the finite

element method.
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2, To develop a rigorous, accurate, efficient and versatile method for the

analysis of diffused and anisotropic optical waveguide problems based

on the vector H finite element method.

3 To develop an efficient and robust beam propagation method which
combines the finite element discretization in the transverse domain with
the stable z-stepping Crank-Nicholson scheme in the longitudinal

direction for the study of nonlinear propagation.

4. To apply the methods developed in 2 and 3 above to the study of second
harmonic generation in LiNbO; waveguides and to investigate various
methods of obtaining more efficient harmonic power in both planar and

channel waveguides.

O3 To apply the methods thus developed in 2 and 3 to the study of second
harmonic generation in semiconductor waveguides, involving GaAs and
AlGaAs and to show the effects of fabrication error on the technique of

quasi-phase matching.

6. To investigate the cascaded effect in the second order nonlinear process

of second harmonic generation.

The methods thus developed, it is hoped, will aid in the better understanding of device
design and analysis and hence provide a useful tool to the systems developer for the

design of novel optical systems.

1.6  Structure of the thesis

The work presented in this thesis is based on the research carried out by the author in the
use of the finite element based modal analysis method in the study of various types of
waveguides and in the study of the nonlinear phenomenon of second harmonic

generation. In particular, diffused anisotropic waveguides are considered. GaAlAs-based
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semiconductor waveguides are also considered. The discussion, which follows, gives an
outline of the structure of this thesis beginning with an introduction, which is presented
in this first chapter. This first chapter gives a brief review of the historical development
of optical waveguide development and its economic and technological impact on present
day society. A number of linear and nonlinear effects are considered. This is then
followed by a review of the theory underpinning optical waveguide analysis. Several

methods of analysis are considered including semi-analytical and numerical methods.

The formulation of the theory of the finite element method as a powerful method in the
solution of complex problems is presented in Chapter 2. A detailed study of the finite
element method along with the use of both linear and second order elements and shape
functions is undertaken with a view to developing an algorithm for the modal analysis of
anisotropic diffused and nonlinear waveguides. The fundamental mathematical relations
are derived from Maxwell’s equations. Also considered in the chapter are several
variational formulations with a detailed consideration of the vector H-field finite element
variational formulation. The chapter concludes with a look at beam propagation
algorithms based on finite element discretization in the transverse cross-section and
finite difference discretization in the z-domain. The split-step finite element schemes are

considered.

Chapter 3 is devoted to the theory of second harmonic generation. The origin of
nonlinearity in optical materials is examined. Following Zernike and Midwinter (1973),
an attempt is made at a detailed derivation of the nonlinear interaction equation, which is
at the heart of nonlinear phenomena. The classification of SHG is then considered. A
finite element variational formulation of the nonlinear equation is then obtained from
first principles. The chapter concludes with a look at methods used to increase the

second harmonic output.

In Chapter 4 the application of the finite element method to the analysis of optical
waveguides is considered. The chapter begins with a discussion of channel waveguides
and their fabrication techniques. Methods developed in Chapter 2 are applied to obtain
results for planar waveguides in the first instance. A comparison of the results obtained

by methods developed in this thesis show very good agreement with previously
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published results. The method developed in Chapter 2 is then extended to diffused planar
and anisotropic waveguides as well as to channel waveguides. Various diffusion profiles
are considered. The particular profile assumed by a waveguide will depend to a large
extent on the fabrication technique adopted. It is shown that better results are obtained
near to cut off if the waveguide dimensions are assumed to be greater than the diffusion
parameters. Finally the finite element method is then applied to directional couplers
which form an important component in many optical devices. More recently they have
been used in the enhancement of the second harmonic power output (Hempelmann,

1999).

The application of the finite element method to the simulation of the nonlinear optical
phenomenon of second harmonic generation in the ferroelectric crystal material of
LiNbO; is considered in Chapter 5. The chapter begins with a review of the theory of
SHG and then considers various phase matching techniques. Using the method proposed
in Chapter 2, a model is developed for propagation in a linear medium. Nonlinearity is
then introduced into the model and used to obtain results for planar waveguides using the
Cerenkov radiation scheme. The results obtained here show excellent agreement with
those previously published. The method is then extended to channel waveguides again
using the Cerenkov radiation scheme. It is shown that such a scheme does not require
any special techniques in order to increase output power. It is however observed that
since the power is radiated into the substrate, special techniques may have to be applied
in order to obtain useful output. The chapter also presents results for the non-radiated

output and how quasi phase matching may be employed to increase the output power.

Chapter 6 is devoted to second harmonic generation in semiconductor materials. Firstly
the importance of semiconductors in the monolithic integration of optical devices is
considered. A comparative study of second harmonic generation in both GaAs and
GaAlAs is undertaken. An attempt is made at device optimisation using the modal based
finite element method. In the first instance results are obtained for lossless devices when
the quasi phase matching techniques of domain inversion and domain depletion are
employed. The effect of loss is then taken into consideration. It is then concluded that
GaAlAs based devices could provide better output power than GaAs devices even

though they have a lower nonlinear susceptibility tensor. Results are also presented for
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errors due to fabrication that might cause the phase matching distance to differ from the
coherence length of the device. It is shown that such inaccuracies could lead to

substantial departure from the theoretically predicted possible output power.

In most research work on second harmonic generation it is often assumed that there is no
depletion of the fundamental power. This assumption is however not strictly accurate in
the presence of a strong laser beam. In Chapter 7 we investigate second harmonic
generation under the assumption that the fundamental beam is depleted. The wave
equation for the propagation of the fundamental is written with the second harmonic
wave as a source term. It is shown that under certain conditions the generated second
harmonic wave and the fundamental wave can co-propagate in the medium without

affecting each other.

The final chapter provides a summary of the work that has been carried out. A brief
discussion is given on each chapter. This chapter also discusses some ideas and

suggestions as to how the work carried out here may be extended in the future.

Appendices are provided at the end together with a list of publications by the author

relevant to this work as well as a list of references cited throughout the thesis.




Chapter 2 The Finite Element Method

Chapter Two

The Finite Element Method and Propagation

Algorithms

2.1 Introduction

Many natural phenomena can be described using algebraic differential or integral
equations. The derivation of these equations may in themselves not present undue
difficulty: however, their solution by exact analytical methods is a formidable task
(Reddy, 1993). As a result approximate solutions are sought through the use of
numerical methods. A numerical method is, in simple terms, a technique, which
converts the infinite degrees of freedom of an unknown analytical solution to a finite
set of unknowns, which can then be solved computationally. The finite element
method (FEM) is one such numerical technique for solving, to a high degree of

accuracy, complicated boundary value problems.

The basic idea of the finite element method is to divide the region of interest into a
large number of finite elements or sub-regions. These elements may be one, two or
three-dimensional. The idea of representing a given domain as a collection of
discrete elements is not new: it is recorded that ancient mathematicians estimated the

value of 7 by representing the circle as a polygon with a large number of sides.
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In the past, the FEM has been used to solve complex engineering problems including
structural analysis in the aircraft industry, heat transfer, fluid flow, and mass
transport. In recent years it has found application in electromagnetic field problems.
Most waveguide problems can be described through the use of integral or differential
equations. These equations can then be solved using numerical techniques. The finite
element method has established itself as one of the most powerful and accurate
methods for solving problems associated with the sophisticated integrated optical
waveguides and microwave devices been developed today. The versatility of the
method allows elements of various shapes to be used to represent an arbitrary cross-
section. Each element could also be of a different material type, enabling a wide
range of practical waveguides to be analysed. The type of waveguide problems
considered in this thesis belongs to the class of eigenvalue problems and the

emphasis will be on the vector H field formulation and the scalar fomulation.

2.2 Basic Concepts in the finite element method

In the finite element method, the key ideas are the

o discretization of the region of interest into elements
and
o using interpolating polynomials to describe the variation of the field within

each of the elements.

Hence, instead of differential equations for the system under investigation,
variational expressions are derived and the piecewise continuous function is
approximated by a piecewise continuous polynomial within each element. From the
equivalent discretized model and the contribution from each element, an overall
system is assembled. This can be regarded as a sub-class of the Ritz-Galerkin method

in which the trial functions are replaced with polynomial functions. In the classical
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analytical procedure where the region is not subdivided into regions, only the
simplest structures with basic material properties can be considered. The finite
difference method is the simplest of all the discretization procedures and in the
traditional version uses a rectangular grid with nodes at the intersections of the

orthogonal straight lines (Fig 2.1}.

N

node

Fig 2.1 Example of domain division using a regular grid

Such an approach is not particularly suited to irregular geometries with curved
boundaries and interfaces since the intersections with the gridlines could be at points
other than at the nodes. It is also not well suited to the analysis of problems in which
there are steep variations of the field. The finite element method, on the other hand,
allows the domain to be subdivided into elements or sub-regions. These elements can
be of various shapes such as triangles and rectangles thus enabling the use of

irregular grid for a complex waveguide structure (see Fig 2.2).

The method can therefore be easily used to analyse problems with steep variations of
the field and can be adapted quite readily to anisotropic and inhomogeneous
problems. The accuracy of the method could be systematically increased by
increasing the number of elements. The method does not rely on the variational
method for its establishment: it could be established by the used of the Galerkin

method, which is a weighted-residual method. The importance of this last point is
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that the method could be applied in cases where no variational formulation exists or

cannot be found.

Fig 2.2 Example of an arbitrary shape optical guide with several regions of different

material types.

The steps involved in the finite element analysis can be summarised as follows:

. discretize the domain under investigation into sub-domains or elements. The
accuracy of the method depends on the level of discretization. It is
recommended to use more elements in areas where the field is thought to
have steep variations. It is also not advisable to use elements across physical
boundaries or interfaces. For symmetrical domains, the mesh should follow

the same type of symmetry.

o the functionals for which the variational principle should be applied for the
elements are then derived. In deciding on the interpolation function, certain
continuity conditions must be satisfied by the interpolation function across
inter-element boundaries. These requirements are normally obvious from the
physical consideration of the problem. It is however also necessary that the

function be an admissible member of the Ritz and Galerkin methods. It
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follows that the polynomial function has to remain unchanged under a linear

transformation from one co-ordinate system to the other.

. assemble all the element contributions to form a global matrix.
. solve the system of equations that was obtained, in this case a matrix
equation.

Fig 2.3 shows how the discretization procedure can be applied to a waveguide with
different regions, e.g. a cladding, film and substrate. The elements used in this case
are triangular since it is much easier to represent an arbitrary cross-section with
triangles rather than with rectangles. In 2-D waveguide analysis the triangles can be

of any order but the most commonly used triangle orders are the first and second.
3
1 5
n,
‘ s
£

N

7

b
7
o

s

Fig 2.3 Discretization of an optical waveguide
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2.3 Implementation of the Method
2.3.1 Finite Element Implementation of the Electromagnetic Wave

Equation
Given the following Helmholtz equation
Vi+k’p=0 2.1

as the governing equation in a waveguide problem, defined within the domain €,
where ¢ is the electric or magnetic field component and V?is a Laplacian operator

defined as

Ak o

Vies—+—+
ox*> dy* 0z°

2.2

then k’is a constant related to frequency, also that T ;and T, are boundaries within

the said domain, the following boundary conditions may be defined

(0] =q§ on the boundary I", (Dirichlet boundary condition) 2.3

09 =n-V¢ =y onthe boundary T, ( Neumann boundary condition) 2.4

on

where n is the outward normal unit vector. The gradient operator, is defined by the

following matrix differential operator

V= Ay 2.5

53



Chapter 2 The Finite Element Method

———— e 0o 0 00— ————— e —
in the Cartesian system of co-ordinates. Taking into consideration the stated

boundary conditions, the functional for equation (2.1) could be written as (Koshiba,

1990)
F=%j‘J;J'[(V¢)2—k2¢2]dQ—g oy dT 2.6

The stationary requirement of the above functional, 6F =0, coincides with the
governing equation of the problem. The Neumann boundary condition is
automatically satisfied in the variational procedure and as such it is referred to as the
natural boundary condition. The Dirichlet boundary condition however needs to be
imposed and is therefore called the forced boundary condition. The functional for

each of the elements of the region could then be written as
= 1 2 2,2 ~
F, _Em[(w;) —k’¢ ]dg—jrjwdr 2.6

The functional for the whole of the domain can then be regarded as a summation of

the element functions

F=Y'F, 2.7

For the n nodes within each element, the field, ¢, can be approximated as follows
=3 N, ¢ 2.8

where ¢, is the i nodal parameter of the element e and N, is the interpolation or

shape function. The above equation could be written in matrix form, as follows

¢ ={N} {s}, 2.9
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where the component of the vector {¢}L, is ¢, and that of the vector {N}T is the

interpolation function N, . The superscript 7 denotes a transpose, {}and {}' denotes

a column and row vector respectively.

For convergence of the solution, the shape function N, must satisfy certain

conditions when the functional contains first order derivatives

o the variable ¢ and its derivatives must include constant terms and

. the variable ¢ must be continuous at the interface of two adjacent elements.

The first of the two conditions is also known as the completeness condition and is
simple to satisfy, provided complete polynomial expressions are used in each
element. The second of the two conditions is called the compatibility condition. First
order elements are the most fundamental and first order polynomials are used with
them but higher order elements are used with higher order polynomials. Since the
number of nodes within each element coincides with the number of terms in a
complete polynomial expansion, the nodes are simply arranged to satisfy the

compatibility condition.

2.3.2 Derivation of the Element Equations

In order to obtain the element equations, it is necessary to perform a co-ordinate
transformation. This is required because the interpolation function is defined using
the local co-ordinates and hence it is necessary to find a means of linking the global
derivatives in terms of the local derivatives. Secondly the element volume over
which the integration has to be carried out needs to be expressed in terms of local co-

ordinates with change of limits as may be appropriate.
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Assuming the local co-ordinates &,, &, and &, have as a corresponding set the

following global co-ordinates x, y and z as follows:

x=x(.8,.6,) 2.10
)’:)’(gngz’é}) 2.11
Z=Z(§1»52’§3) 2.12

Using the rules of partial differentiation, the transformation relation for

differentiation can be written as

0K & 3 9¥
=)= 2.13
&, [ ] dy
592 9
| &, | L 0z |

where the matrix [J] is a Jacobian matrix defined as

(0r oy %]
9§, 9g, 9¢,
ox dy 0z

3E, 3¢, 3,
ox dy 0z

|3, 3¢, 9,

—
~
e

]

2.14

The global matrix of the derivatives can then be obtained through an inversion of the

Jacobian matrix to give




Chapter 2 The Finite Element Method

[0 ] [0 |
2 [J]" JILEN 2.15
dy a8,
Fl 2
[ 0z | &, |

The following transformation relation for the integration is obtained

j”f(x» y,z)dx‘lydz = j_”f(él ’52v§311(51’52v531d&ldgzdgz 2.16

2.3.2.1 Line Elements

As noted, line elements (one-dimensional) are the most fundamental of all the
elements used. These elements can be of

a) first order

b) second order or

c) higher order

X Y

X

Fig 2.4 Examples of line elements a) Linear element b) Quadratic element.
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Examples of some line elements are shown in Fig 2.4. These are normally used when
solving one-dimensional problems and it is necessary to introduce the line co-

ordinates L1 and L2.

The relation between the line co-ordinates and the Cartesian co-ordinates is given by

Li| 1{x, -1}l 217
By [adll =% 11 -1 '

where x, and x, are the Cartesian co-ordinates of the edge of the line and the length

of the element is /, is given by

l,=x—x. 2.18
If the local co-ordinate is now defined as &, then

L =g 2.19a
L, =1-L =1-¢ 2.19b

The transformation relation for differentiation is then given as

fabs it oo
dx 14’ dél
For integration, the transformation relation is given by the following

1
[f()dx=1] 7(€)de, 2.21
€ 0
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Using equations (2.20) and (2.21), both the differentiation and integration formulae

could be written as

a _1f_o o 222
de 1\ oL 0L, :

J-Lde—l jg, (1-¢&,) dé,

ey k'l 223
(k+1+1)!

The shape function vector for the linear element and its derivative are given as
L

{N}=|" 2.24
LZ

and

dx

v, }= 4 L%[T} 2.25

respectively. The nodal co-ordinates (L,,Lz) of the linear element are given as

follows:
node 1: (1,0) node 2: (0,1).

For the quadratic element, the shape function and its derivatives are defined as
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Ll (2L1 & 1)
{N}=|L,(2L, -1) 2.26
4LL,
and
1-4L,
{Nx}=li 4L, -1 2.27
: 4(L1 & Lz)

respectively. The nodal co-ordinates for nodes 1, 2 and 3 are given as (1,0), (0,1) and

(1/2,1/2) respectively.

2.3.2.2 Triangular Elements

Most practical electromagnetic problems are of the two dimensional type which

makes the use of triangular elements a common practice. These elements can be of

either
a) First order
b) Second order or

c) Higher order

Examples of triangular elements of the first and second order are shown in Fig 2.5

In applying the first order elements, it can be seen that nodes occur at the vertices of
the triangles while nodes are also defined at the middle of the edges for second order
elements. In this work only first order triangular elements are used since the second
order elements are costly in terms of the computational time. Since adjacent elements
will have common nodes, it is important to adopt a numbering system that will assign

to these common nodes the same numbers.
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y y 1

¢ * 3 2 5

v

Fig 2.5 Triangular elements a) First order b) second order.

Triangular elements shown in Fig 2.5 are used in two-dimensional problems. For
such an element, the area co-ordinates L;, L, and L3 are introduced. The equation

relating the Cartesian co-ordinates to the area co-ordinates is defined as

x|=1x x, x||L, 2.28
y i Y2 ¥l
or

L, ) R

L=l % x5 X

L, O b & M £ y

: a b el 1
=2A s By ¢ llx 2.29

where (x,y;), (x2,y2) and (x3,y3) are the Cartesian co-ordinates of the vertex k (k= 1,2

and 3) of the triangle. The coefficients ay, by and ¢, are defined as

61



Chapter 2 The Finite Element Method
e e e e e et e S UM SRS A )

ak = xlym _xmyl 230a
by =3~ 2.30b
Cr =X, — X 2.30c

The subscripts &, I, m are cyclical around the three vertices of the triangle. The area

A, of the element is given as

i Y2 Y3

If the local co-ordinates &,n are defined as

L =£ 2.32a
L, =7 2.32b
Li=1-1 -1, =1-E-n 2.32¢

then the transformation relation for differentiation will be given by the following

J 0
> g5
< =] éix 2.33
on dy
where
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[J]=[x'_x3 y'_y’} 2.34

Xy —=X3 Yo=Yy

or
J 9
x| 1.1l 9€
=l 3 235
dy on
with
s {b' bz} 2.36
2Ae el &

The relation for integration is given as
1 1-¢£

[[ £ G y)dxdy =24, [ [ £(€n)dédn 2.37
0 0

Using equations (2.32) through to (2.37), the formulae for both differentiation and

integration can be written as

al= l b, U +b, o +b, i 2.38
ox 2A,| IJL, oL, oL,

Al LA f; 518fe sierdfi pontdf p 8
dy 24 (C‘ TR T T :

1
[[uiz, Ly dxdy = 2A(,J’Zj"[ fn'@-¢ —n)"’dn}d@
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(k+1+m+2)

2.3.2.3 Other Elements

Other type of elements in use include

a) rectangular elements — two dimensional elements

b) tetrahedral elements — three dimensional elements

c) ring elements — axisymmetric two dimensional elements

d) triangular ring elements — axisymmetric three dimensional elements
e) special elements — edge, isoparametric or boundary elements

All of the above could either be of linear, second or higher order.

24 Finite Element Application
2.4.1 Application of the Finite element Method to Waveguide

problems

For the purpose of numerical analysis and characterisation, optical waveguide
problems can be classified as either one-dimensional (planar) or two-dimensional.
The particular method of analysis used will depend on the waveguide property being
sought. The finite element method is based on either the variational or the Raleigh-
Ritz approach and several variational formulations have been proposed. Most of the
formulations yield a standard eigenvalue problem (Rahman and Davies 1984a). Of

the various methods, the following can be identified:
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Scalar field formulation: This method is suitable for one dimensional problems for
situations where the electric or magnetic field can be expressed approximately in
terms of the predominant field component. It has been applied to the analysis of
wave propagation in homogeneous isotropic media (Daly, 1984), open boundary
problems (Wu and Chen, 1986) and for the analysis of anisotropic waveguides

(Koshiba et al., 1984).

For quasi-TE modes in the domain Q, where the dominant field component is E,,

the formulation can be expressed as (Mabaya et al., 1981):

-

where f3 is the propagation constant and n is the refractive index. For quasi-TM

2 2
o8 + oF, —k,n’El+ BPE] |dQ 2.41
ox dy

modes, with H, being the dominant field component, the formulation may be given

as follows:

1(aH. Y 1(oH. Y 1
L=|||===| +=|—=—= | =k H2 +—= B*HZ HQ 2.42
gl:ﬁ( ox ] nz( dy ] it nzﬁ X:|d

This formulation is not particularly suitable for media and where the guided modes

are inherently hybrid.

Vector field formulation: For the accurate characterisation of general waveguides, a
vector formulation with at least two field components is required. There are two
main types of the full vector formulations namely, the E-field and H-field. The
vector E-field approach was first applied by English and Young (1971). This
formulation is suitable for generally anisotropic and loss-less problems. The natural
boundary condition corresponds to a magnetic wall and as such it is essential to
enforce the electric wall as the boundary condition (nxE=0). Such a condition is

quite difficult to impose for an irregular structure. It also requires an additional
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integral to ensure the continuity of the fields at the dielectric interfaces. The H-field
formulation, on the other hand, has as its natural boundary condition the electric wall
and the magnetic field is continuous everywhere. As such it is suitable for dielectric
waveguide problems, as no boundary conditions need to be imposed. This

formulation is given as

T [(VxH) & (VxH)JQ

2.43
[H"-p -HdQ

The above formulation leads to non-physical or spurious solutions since the
divergence condition V-H =0 is not satisfied. Various methods exist for detecting
these spurious modes. A simple way is to examine the field profiles, since these
modes are characterised by inconsistency and a random variation of the field they are
easy to identify. The mathematical idea underpinning the physical solution is that the
condition V-H =0 is obeyed by the eigenvector. By calculating V-H for each
eigenvector, it is possible to identify the true solutions from the spurious ones. The
objective, however, is not simply to detect these modes, but to eliminate them or at
least suppress them. The penalty-function method (Rahman and Davies, 1984c) is
one of the best established methods for eliminating these spurious solutions. The
method includes an additional term «, and the penalty term, a dimensionless number

in the variational formulation, which now is written as:

[(VxH) & -(VxHMQ+[%)[(V- H) (V- HYQ

[H" 1t HdQ

w? =

2.44
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2.4.2 The Matrix Equation

It has been stated that the vector formulation leads to a standard eigenvalue problem

of the form
Ax—ABx=0 2.45

In the above x represents the eigenvector, which holds the nodal field values. If in

equation (2.43) the following substitution is made for the numerator

x" Ax=[(VxH) g™ (VxH)MQ 2.46
and the denominator is written as

xT-Bx=jH*-u~HdQ 247
then the functional

J=[(VxH) e (VxH)MQ-k2[H"- p-HdQ 2.48
can be written as

J=x Ay —A-x" B-x 2.49

To find a stationary solution, it is required that

aJ
=D 2.50

ox

Applying this minimisation procedure to equation (2.49), the following eigenvalue

equation (2.45) is obtained
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Ax—ABx=0

which can be solved using any standard matrix routine to obtain the field values at

the nodes.

2.4.3 Shape Functions

The shape functions are a set of interpolation functions, defined in terms of complete
polynomials and which are normalised over each element. If a typical element, as
shown in Fig 2.6 is considered, then the shape function is chosen so that it uniquely

defines the field within the element under consideration.

¢ (x,y,)

¢,(x.y,) O,(x,y)

Fig 2.6 Diagram of a typical element

The nodal points, the shape functions takes on values equal to the nodal values ¢,,

¢, and ¢, of the field. It is important therefore that the functions are expressed in
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terms of their nodal values. Within the triangle, the field value can be adequately

modelled by the expression

¢ =a+bx+cy 2.51

where a, b and ¢ are constants. These constants can be represented in terms of the co-

ordinates of the nodes. The nodal values of ¢ can then be expressed as

¢ =a+bx, +cy, 2.52a
¢, =a+bx,+cy, 252b
¢, =a+bx; +cy, 2,32¢

The above system of equations can be solved to determine a, b and ¢ as

9, (xz)’3 —x3y2)+¢2(x3y, _X1Y3)+¢3(x1)’2 _xz)’|)

a= 2.53a
2A,
b=¢|()’2—)’3)+¢2()’3“)’1)+¢3(.V|_)’2) 2.53b
2A,
e ¢, (x3 ‘x2)+¢2 (xl "x3)+¢3 (xz —xl) 2.53¢

where, in the above, A, is the area of the triangle. A substitution of these values into

equation (2.51) will yield
0(x, )= N9, + N,¢, + N, ¢, 294

or
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¢(x, y)=[N}{o} 2.55
where

N, = i[(xz)’z — 2y, )+ (v, = 3 e+ (6, = x, )] 2.56a
N, = ﬁ[(xay, —5y3)+ (05 =y x+ (5 = x,)y] 2.56b
N, = ﬁ[(wz =2y, )+ (3 = vy o+ (v, = x )yl 2.56¢

The above can be rewritten as

N, =a, +a,x+a,y 2.57a
N, =a,+a;x+a.y 2.57b
N;=a, +agx+a,y 2.57¢

An important property of shape function is that
N|+N2+N3=1 A 2.58
The H-field components Hy, Hy and H, can be written as

H,(x,y)=NH_, +N,H, +N;H, 2.59

H,(xy)=NH, +N,H, +N,H, 2.59b

|

70



Chapter 2

The Finite Element Method

D e e e T e R e —————————easree=—mml =)

Hz(x’ )’)z N,H, +N,H,, + N,H,,

In matrix form, the above equations can be expressed as

1

=

~

2 o o
o o
o 2 o
< o o
=
o =2 o
=
T T T T XTI XX T X

(%)

r

2.59¢

J

2.60

b
w

-
w

~
w

In a simplified form, this is equivalent to H = [N]{H}, where [N] is the 3x9 matrix

shown above and {H} is the 9x1 column vector, which represents the components of

the field.

Similarly, the expression for VxH could be written as

VxH=[Q]-H 2.61
where
(o W, AN, N, N, N
0z dy 0z dy 0z dy
[o]= N, 0 _ON, N, 0 _9N, N, 0 _ 9N,
9z ox 0z ox 0z ox
Ol S A A R
|2 9y ox dy ox dy ox :
2.62
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The Q matrix, after evaluation i.e. finding the derivative of the shape, with jfz

being the z-variation, becomes

0 JBN, a, 0 J0N- "l 0L SERN - gt
[ol=|-jiBN, O =-a, —jBN, O —a, jBN, O —a,| 2.63

—-a, a, 0 —ag as 0 -—a, ag 0

The B matrix can also be calculated in a similar fashion from equation (2.46). Since

M is a scalar quantity, it can be taken outside the integral to give
A -B-x=u[H" HdQ 2.64

since H=[N] {H}

B, =[[N] - [N]ac 2.65

The solution of the above expressions yields a 9x9 matrix. The integration is carried

out using equation (2.40) and the resulting B, matrix is as follows:

R N S M
6 12 12
o200 A 0 0 A o
6 12 12
QRates T g A g
6 12 12
L ik o il et
12 6 12
i G S S A 2.67
12 6 12
0O O i 0 ﬁ 0 i
12 6 12
A A
i) L P L
2 2 6
0Fdl g g & Qe
12 12 6
T e et G S e
i 12 12 6
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In the above, A, is the area of each element or triangle. The coefficients of the A,
matrix could also be calculated using equation (2.39). Making the following

substitutions H=[N]{H} and V xH = [Q]-{H}, the equation below is obtained
x" A x= j{H}' (o] e [ofH}a 2.68
A simplification of the above will yield an A, matrix of the form

4, =[lol¢" [olac 2.69

For isotropic media, & is a scalar quantity and hence can be factored out of the

integral sign. For anisotopic media, £ is a tensor defined by a 3x3 matrix

€1 €&, &
E=|Ey Ey En _ 2.70
€y & &y

Finding the inverse of ¢, [P] (Appendix 3), equation (2.69) can be written as
A, = [lol -[P]-[o]ae 271

Carrying out the necessary algebraic manipulations a 9x9 matrix is obtained. Using

the integration formula of equation (2.40), the integrals can be evaluated as

[NPaQ= fis 2.72a
6
[N =§ 2.72b
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de =A 2.72¢

As an example, the A,;; matrix will be given as follows

A A A
A, = pzzﬁz E"' Pz}aalﬁ?*' Pzza,ﬂB _,3"" 1’33(’32’4 2.73

The other 80 elements of the A, matrix can be found in a similar fashion.

2.4.4 Element assembly

The next stage in the finite element method is the assembly of the element matrices
[A.] and [B,] into global matrices [A] and [B] respectively. An appropriate matrix
solver is then used to obtain the eigenvalues and eigenvectors of the equation. The
assembly of the global matrix is done with respect to the nodes of the domain. Where
two or more nodes are common to more than one element, then it is advisable to add

the contribution of each adjacent element to the global matrix when the calculation

for the common node is carried.

Fig 2.7 Example of domain discretisation using triangular elements
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Fig 2.7 shows a simple diagram of a domain, which has been discretised using 6 first
order triangular elements. The node numbers 1-8 are the global node numbers for the
domain and are used in the global matrices. The nodal points inside each triangular
element are numbered 1-3. For the above structure, the global matrix, G, is formed

by the addition of the element matrices A, B, C, D, E and F.

As previously noted, for every element in the discretised variational formulation,

there is an expression of the form

{HINKHY ={H, - H}: : 2.74

Each term in the matrix N relates to two nodal field values where the indices, i and j,
correspond to the nodal field values of the vectors {H} and {H}" according to the
local numbering of an element. If a scalar formulation is considered, then only one

field component need be taken into account, H, for example, and the expression can

be written as

Ng Ny NyllH
{Hxl Hx2 Hx3 N2| N22 N23 Hz 2.75
Ny, Ny||H

31

For the structure shown in Fig 2.7, the global matrix G, may be defined as
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If P is the total number of nodal points of the structure, the order of the global matrix
is PxP, which defines the size of the matrix when only one unknown field component
is considered for each node. The terms of the global matrix, G,,, are the field
contributions of two nodes, p and q according to the global numbering system, where
p and q correspond to the row and column of the matrix. Each term of the global
matrix G, consists of a local contribution from only one element, unless the nodes
lie on a shared boundary. The terms of the global matrix, Gy, for the first node with

respect to itself will be defined as

G, =N} 2.76

where N} is the term for the element matrix for the element A. The terms of the
global matrix for other nodes, which do not lie on a shared boundary, can be found in
a similar manner: G, = N}, G,, =N, etc. When the nodes are on a shared

boundary, then the contributions of each element are added to the node e.g.

G, =N +NE 2.77

2.4.5 Infinite Elements

In electromagnetic terms, the dielectric waveguide is an unbound structure. The
clectromagnetic field can therefore, in principle, extend over the whole of open
space, the area of which is infinite. This may cause problems for waveguides in

which the solution exits near the cut-off region. In the finite element method, the

76



Chapter 2 The Finite Element Method
e
discretization of the waveguide cross-section cannot extend to infinity. Several
techniques have therefore been developed for modelling the infinite open space with

a finite number of elements.

The most commonly adopted approach is to enclose the core of the waveguide in an
artificial conducting boundary, chosen to be sufficiently distant from the core of the
waveguide. The finite element method can then be applied to the core region.
Although this approach is simple, it is an inefficient method of dealing with the
problem as a large number of elements are required in order to give good results. It is

still difficult to model accurately cut-off situations accurately with this method.

The use of boundary elements was proposed by Yeh et al. (1979) to model a wide
range of optical waveguide structures. In the method, the field in the exterior region
was assumed to decay with an exponential factor, an effect incorporated into the
finite element matrix. The major disadvantage of the approach is that the decay
factor has to be determined heuristically and hence iteratively. The two co-ordinate

systems did not conform and hence the fields used were not continuous.

A method of ‘infinite elements’ has been proposed and was used by Rahman and
Davies (1984a) to include explicit field representation in all of the necessary
transverse directions by incorporating rectangular strips as shown in Fig 2.8. An
infinite element is a finite element that does indeed extend to infinity, extending the

domain of the explicit field representation to infinity without increasing the matrix

order.

The shape function for such an element should be chosen realistically and must be
square integrable over an infinite element area. For such an infinite element
extending to infinity in the x-direction, an exponential decay x may be assumed and

the shape function can be written as

N(x,y)= f(y)exp(- x/L) 2.78
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where L is the decay length and f(y) is the conventional shape function in the y-
direction. Exponential decay functions can be assumed in a similar manner for decay

in both the x and y directions.

y

Traditional
finite element

< Infinite
& element

e

Fig 2.8 Showing the use of infinite elements at the guide boundary.

2.5 Beam Propagation Algorithms

The finite element method outlined in the previous section is suitable for the
stationary analysis of waveguides or where it is assumed that the guide under
consideration is invariant in the axial direction. In integrated optics, however, there
are  numerous occasions when it is required to study the propagation of
electromagnetic waves in z-variant structures. Such will be the case for example in
bends, tapers, junctions and many other devices. In second harmonic generation in
particular, the output power is dependent on the crystal length and hence there is a

need to propagate the electromagnetic field obtained through the use of the modal
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analysis method. As the case might also be under quasi phase matching, where the
sign of the non-linear tensor is altered after every coherence length, a modal analysis
of structures, which are z-variant and materials with non-linear properties, is clearly
less than satisfactory. The problem can thus be re-defined as follows: To find the
electromagnetic field inside a device given that the input field is known and the
boundary conditions defined. This problem statement can be described using the

wave equation

2
VxVx¢+uoeg¢ 0 25719

t2

For simplicity, only a scalar approximation will be considered where all the fields are
totally determined by knowing one component. The formalism could be easily
extended to the vectorial case where, in the above equation, an additional term
involving the derivative with respect to z is included. This scalar approximation is
quite often used since the field distributions are usually very similar to those of the

TE or TM polarisation.

2.5.1 Paraxial Approximation

The problem described by equation (2.79) is quite general and difficult to solve
directly. In cases where the direction of propagation is well defined, then a simple
approximation is appropriate and equation (2.79) could be written as follows for a

steady state or time harmonic case

d’¢ 9’9 3%

t—F—+ 0’ U ep =0 2.80
ax2 ay2 az2 ‘ll“ ¢
where ¢ is for the electromagnetic field, in the case of TE polarisation this will be Ey

mode. In the above
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(02/1”8¢ = k(}znz(x, Y, z» 2.81

where n’(x,y,z) is the refractive index profile in the guide. The electromagnetic

field can be written as follows

O(x,y,2)=(x, y, z)e & 2.82

where f is the phase constant or the reference value of the wavenumber. If the

following two assumptions are now made

1. That the field inside the guide structure can be represented by a field with
narrow angular spectrum
2. That the waveguide structure has a definitely marked longitudinal direction

(z) and the propagation occurs mainly in that direction,

then the paraxial or slowly varying amplitude approximation can be made. If the

value of B is now chosen such that it forms a central estimate of the value in the
spectrum, then the variation of the fields with z will be dictated primarily by the
exponential factor in equation (2.82). The term (p(x, y,z), will only vary slowly with
the axial co-ordinate z. Substituting for the field in the governing differential

equation (2.80) and omitting the exponent (as it is a common factor), the following is

obtained

' 3% 9%

5 i :
ax2 ay2 i 822 _Jzﬁ_ag-_ﬁ2¢+k0n2¢=0 2.83

since ¢(x, y,z) varies slowly in the axial direction, the second order z derivative can

be ignored to give the following paraxial equation with B2 = k’n’

’l
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9’ . 2
ax_?-'-?)y—?_ J2k,n, ?)—f+k"2 (n2 ——n;}b =0 2.84

2.5.2 Methods of Solution

The equation obtained above can be solved numerically using one of a variety of
methods. Most of the solution methods rely on z-stepping algorithms where the z-
axis is divided into a succession of discrete steps beginning with z=0 and so on.
Instead of seeking a solution over the entire domain of z, approximate solutions are
sought at the defined steps starting with an initially known solution at z=0. The
solution at the i step is computed from a recurrence relation, that is an algebraic
equation that relates the solutions at two or more successive steps. Some of the
methods allow the use of different step lengths while others require uniform steps.
All the algorithms, however, rely on the more traditional numerical methods
described already as for example, all the derivatives can be approximated using the
finite difference scheme. In this the finite difference method is used in both the
transverse and longitudinal directions and could also be used in conjunction with the
finite element method. In such a scheme, the finite element method is used in the
transverse direction while the finite difference method is used in the axial direction.
In this thesis, the combined finite difference and finite element method will be used

in the solution of a range of problems.

2.5:2:1 Finite Difference/Finite Element Algorithm

In this section, methods are described that consist of establishing a finite difference
approximation for the longitudinal direction. The first order derivatives are
approximated using the finite differences and with the fields known at an initial

level, a stepping algorithm is initiated to calculate the field at the next step.
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2.5.2.1.1 Forward Difference Scheme

As an example, consider equation (2.84), where a z-stepping algorithm can be

established if the equation is written in the form

Jj2k n

0 0

2 2
g—f=it—(f+g—f+kf(n2—nf 2.85
- y

The first order z-derivative can now be approximated using the finite differences: for

example using the forward difference the following is obtained

k+1 k
g_‘f’ S ¢T“¢ 2.86
Z 4

Making this substitution in equation (2.85) the following will now be obtained

2k 2 4k 2 1k
e 287

In the above ¢* is the value of the field as a function of x and y but evaluated at a k-

step in the z-direction. The right hand side of the above equation can now be

implemented using the finite element method. The resulting matrix will be of the

form

¢k+l = A(pk 2.88

The solution to the forward difference scheme is usually unstable. A restrictive
relation also exists between the discretisation in the transverse direction and that of

the longitudinal direction, which needs to be satisfied for a convergence of the

algorithm.
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25.2.1.2 Backward Difference Scheme

In this method, the field is evaluated at the forward end of the z-step. If step k +1 is

considered as the current step in the algorithm, a backward difference approximation

will be given by
; 2 4 k+1 2 4 k+l1
-]2kunn (¢k+l _¢l\)= a ¢2 +a ¢2 +k3(n2 _nibkﬂ 2.89
Az ox dy

The right hand side is evaluated at the k +1 step and the resultant matrix will be of

the form
Aot =o't 2.90
This equation will result in a stable numerical solution. There are no limitations on

the size of the steps in the z direction for convergence however the approximation in

the z direction is only accurate to the first order.

2.5.2.1.3 The Crank-Nicolson Method

Better results than above could be obtained with a second order approximation for

the z-derivative if instead of equation (2.86) the following substitution is rather made

A9 P* — gt
D5 oA

This substitution would however necessitate calculating the field at two z steps

simultaneously (k and k +1). The resulting algorithm from this approximation would

be numerically unstable.
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A better implementation of the same method can be achieved if the fields are
evaluated at some intermediate point, that is say at (k+0.5), where making the

necessary substitutions will result in an equation of the form

J2k,n, K+l _ k) _ az¢k a9’
e )= S8 2

GRSV ] 2.92

z=(k+0.5)Az

Without actually calculating the fields at the intermediate points, they could still be

evaluated by considering them to be the average of the fields at the k and k +1 steps

such that

0 (k+05) _ 9" +¢ 2.93
2

2.5.2.14 The 6-Method

Equation (2.84) can be written in the form

=Ap+B 2.94
i

2

where A = — , (nz—nz) and B =

0

J2k,n, _/2k n

0 o

(n -, )V ()

The 6 method will then give the following approximation

i(rp“‘ —¢* )=—Algp* +(1-0)*|+6B* +(1-6)B* 2.95

where 0 <6 <1. A rearrangement of the terms in the above equation will result in
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(1+A6 Az)p*"' +[A Az(1-6)-1]* — Az6 B — Az(1-6)B* =0 2.96

The three cases previously considered can be regarded as the specialised forms of the
above generalisation. It can be verified that for @ = 0 the forward difference scheme
is obtained. For 6 =1 the equation will correspond to the backward difference

scheme and for 6 = 0.5 the Crank-Nicolson algorithm is obtained.

Summary

This chapter has considered the general formulation of the finite element method for
optical waveguide problems. Various aspects of the implementation of the method
have been considered, including domain discretisation, shape functions and field
representation. The properties of the various formulations have been presented. The
development of the vector H-field formulation has been considered in detail. The
chapter also has reviewed means of eliminating spurious solutions, which affect the

vector H-field formulation. The infinite element for open boundary type problems

has also been considered.

In addition to the finite element method, this chapter also considered the various
algorithms of the beam propagation method. The beam propagation method will be
adopted in conjunction with the finite element method in the study of second
harmonic generation. This chapter forms the basics of the work described in

subsequent chapters of this thesis.
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Chapter Three

Theory of Second harmonic Generation »

3.1 Introduction

Since the first demonstration of the efficient conversion of the fundamental to the
second harmonic wavelength, in quartz crystal, (Franken et al. 1961, 1963), there has
been a growing interest in the practical uses of this phenomenon. Such a possibility
could make available powerful sources of coherent radiation, which had hitherto
been unattainable and would lead, to major improvements in fluorescence based
bioanalytical instrumentation and high-end reprographic systems. As an alternative
to air-cooled argon ion and He-Cd lasers, non-linear frequency upconversion of infra
red laser diodes or diode pumped solid state lasers has emerged as a basic means of
generating blue or green laser light. Although compact blue-green lasers were
predicted nearly three decades ago, significant progress in their realisation was only

made with the advent of high powered GaAlAs diode laser.

Traditionally, blue-green laser generation has been accomplished by either second
harmonic generation or by sum frequency mixing. In both processes, the output is

proportional to the length of the mixing crystal, the square of its non-linear optical
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coefficient and a phase matching term. In the case of second harmonic generation,
the power also varies as the square of the intensity of the input field. In the case of
sum frequency generation, the output is proportional to the product of the intensities
of the two input fields. Due to their relatively low output powers, continuous wave
diodes and diode pumped solid state lasers cannot be used in single pass systems to

produce efficient frequency conversion.

Two main techniques have been developed for increasing the conversion efficiency
of diode based harmonic generators in order to increase output power (Dixon, 1993).
In the first approach, the non-linear crystal is placed inside an optical resonator. This
would result in an increase of the incident power at the fundamental wavelength.
There are two main ways in which this could be realised. In the first the non-linear
crystal is placed inside the resonator of the fundamental wavelength laser. Chinn,
(Chinn, 1976), first proposed the intracavity method, of efficiently generating the
second harmonic wavelength. Since the cavities of the diode pumped solid state
lasers have low losses the intracavity power can be more that 100 times the
maximum output power, (Dixon, 1993). Such high intensity would significantly
increase the conversion efficiency. In a practical device, a high reflectivity mirror is
used in place of a conventional output coupler and the non-linear process is used to
couple power from the cavity. Such devices will operate at efficiencies exceeding
10%; their output power however fluctuates chaotically. These fluctuations were
caused by the intracavity nonlinear process and by variations in power distribution
between the different polarisation states and laser transition (Dixon, 1993). Attempts

at controlling the fluctuations using electronic feedback techniques were

unsuccessful.

In the second method, a single frequency input beam is spatially and spectrally mode
matched to an external optical resonator containing the non-linear crystal (Ashkin et
al., 1966). Spatial mode matching is achieved by matching the phase-front curvature
and diameter of the input beam to the fundamental mode of the cavity. Spectral mode
matching occurs when the round trip phase shift experienced by the light injected

into the resonator is equal to an integral multiple of 27. With these conditions
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satisfied, the intracavity power can exceed the input by the magnitude of the order of

two.

The other technique for increasing efficiency involves the confinement of the input
beam in a single mode waveguide, which prevents diffraction. This results in an
increase in the input intensity and hence more efficiency. Several efficient second
harmonic generation has been demonstrated using this technique in different
materials such as lithium niobate, lithium tantalate and potassium titanyl phosphate
(Fejer et al., 1992). In the typical waveguide for frequency doubling, the output from
a single-stripe, index guided GaAlAs diode laser at 830 nm is focussed onto a lithium
niobate channel waveguide to produce a harmonic at 415 nm. For efficient second
harmonic generation, the harmonic and fundamental must travel through the

waveguide with a fixed phase relationship.

3.2 On the Physical origin of the Non-linear Tensor

3.2.1 Linear Model

The physics underlying the theory of second harmonic generation is that of the non-
linearity of the refractive index. The physical origin of the refractive index is thus

considered in this section.

The Lorentz model of an atom consists of a single electron and a nucleus. If an
alternating electric field is applied to this atom then a polarisation of the same
frequency as the applied electric field is induced. The electron will now oscillate
about its equilibrium position, thus forming a dipole, which in turn radiates an
electromagnetic wave of the same frequency as the applied electric field but of a
different phase. This electron can be described mathematically as a harmonic

oscillator and its equation of motion given by
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2
d—:+2yﬂ+wfr=—£E 3.1
dt dr m

In the above, r is the displacement of the electron from its equilibrium position, m is

the mass of the electron of charge e, @, is the natural frequency and yis the

restoring force. The applied electric field E is given as
E =E() ™ +E" ()" 3.2

where E'(w)= E(-w) is the complex conjugate of the applied electric field. A
substitution of the above in equation (3.1) will result in a linear equation (Zernike

and Midwinter, 1973) the solution of which is given by

—jor
r=——e—E(w) > 2
m 0, =2jyw-w

-+ complex conjugate 3.3

For a medium with an electron density N, radiating in the same direction, the

polarisation is defined as

2 ~ jax
Bi= = 3 Ew)e -+ complex conjugate 3.4
m 0, =2jy0-o

Making the following substitution

)= 3.5
1) m @ -2jyw-w?

in equation (3.4), the following is obtained

P= x(w)E(a))e‘j“" + complex conjugate 3.6
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This indeed does show that the induced polarisation is proportional to the applied
electric field and of the same frequency. This value is used as source term in

Maxwell’s equation.

In some crystalline materials, the interactions between the atoms are not in the same
direction i.e. all the atoms do not radiate in the same direction. Such materials are
said to display anisotropy. In such crystals, the dielectric constant is not a scalar
quantity but a second rank tensor, since it relates the displacement in one direction

with the fields in the three directions. Equation (1.5) can therefore be written as

D, =Y ¢, (@), i=1,2:3 3.7
J

In matrix form this can be written as

L] (LR Ao, O y E,
yo | x)'x 1+x.vy Z.vz 3 E.v 3.8
=D, X ORI o e W

|
>
[

Such materials are only able to transmit plane-polarised waves in one of two
mutually orthogonal directions. These polarisations will ‘see’ different refractive
indices. Incident light that is not plane-polarised is decomposed into two linearly
polarised beams in the allowed directions. To find the two allowed directions of
polarisation and the refractive indices in these directions, the index ellipsoid is used

(Zernike and Midwinter, 1973)

2 2 2

Z
+y—2+—2=1 3.9
L T

:NI =

Here, x, y and z are optical axes along which polarisation occurs. In some optically
anisotropic materials, the three axes of the index ellipsoid are unequal, such crystals

are called biaxial. In such crystals two optic axes can be defined. In uniaxial crystals,

90



Chapter 3 Theory of Second Harmonic Generation
_

two of the three axes are equal. In such a case the optic axis is perpendicular to the

plane of the two equal axes. In such a case equation 3.8 reduces to

D\ (1+x, 0 0 \(E,
Dy 1= EQ #714%,. 0} E, 3.10
D, 0 0 L+g, || E,

3.2.2 Optical Non-linear Susceptibility

It has been seen in the previous section that the polarisation in a material is
proportional to the inducing field. This polarisation was completely linear: an
increase in the field, by a factor of m, will result in an increase of the polarisation, by
the same factor. Some materials however do have non-linear properties, as such in
addition to the linear response the field produces a polarisation proportional to the
square of the field. Similar examples of non-linear dependence are known in other
areas of physics. Perhaps the best known example is the break down of Hooke’s law
at large enough stresses. Polarisation is thus linear for certain limited values of the
field strength. With the advent of the laser, much higher field strengths have become

attainable and hence non-linear polarisation takes on new importance.

The non-linear response of the medium can lead to an exchange of energy between
electromagnetic fields of different frequencies. The two most important applications
of such a phenomenon are parametric frequency conversion and second harmonic
generation. If the refractive index of such a crystal is modulated by a field of
frequency w,, then a wave of frequency @, passing through the crystal will be phase
modulated giving rise to side bands at combination frequencies. Modulating the
parameters of the crystal can thus create different frequencies. The modulating field
@, is itself affected by the modulated refractive index and can thus give rise to a

harmonic overtone at 20, .

91



|

Chapter 3 Theory of Second Harmonic Generation
“

The interactions between the different fields can be attributed to the non-linearity of
polarisation. Non-linear terms can therefore be included in the polarisation such that

equation (3.6) can be written as

P=%(”E+ Z(?-)E2 +Z(3)E3 £ 3.11

(2)

where ¥ and )((3) are constants, the second and third order susceptibilities. Since in

crystals with a centre of symmetry, the even numbered non-linearities are identically
equal to zero, the polarisation P, due to the first non-linear term only can be written

as follows
P =2dE? 3:12

The non-linear polarisation can be described in terms of the anharmonic oscillator. It
is known that optical polarisation is due to the outer bound electrons that are
displaced by the optical field. The displaced electrons will be subject to a restoring
force, if this is included in the equation of motion of the electron then the following

is obtained (Yariv, 1971)

.'r—§r2=—£E 3.13
m

If the following solution is assumed

r=rn+n+r+.. 3.14

where 1, =aE' and this is substituted into equation (3.13) and collecting terms of

the same order, the following is obtained (Zernike and Midwinter, 1973)
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d2

iy oy 2 =2 3.15
dt dt m
dz"z r 2 2 316
dtZ +2y—+w(tr2 =€rl

If the interacting electric field is defined as

E = ZE(a)n )e"jw,,t =E(a)l )e'ja).! + E*(Cl)| )ejwﬂ + E(wz)e—jw:r 4

3.17
E'(@,)e’ +..+E, ) +E" (0, )’
A substitution of equation (3.17) in equation (3.15) will yield
—= Y E@, )7 =-a, Y, 02E(@, ) ~2a,jyY,0,E@, ) +
. 3.18

a,0; 3 E(, )"
Equating the sums of the individual terms at each frequency the following is obtained

—jw,t
n =ale(wn)e—j(o“r =_£2 zE(w")e 3.19

m<w’-2jo,y-o’

This result is similar to that found in the linear case only that it has been extended to
more than one frequency. This result is the basis for finding non-linear terms of

higher order. Substituting the above into equation (3.16) and using the relation

[2 E(w, )™ Jz = 2 ; E(@, )E(w, )e™/@romr 3.20

where m and n has the same range of values. It follows that
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n m w (1) wm’Y)

0’

where

F(CO",(U a)m,Y):(wf'—z‘].wn'y—ij(D —2]0)," m) 39

x[wf—2j(w,, +a, ) - (0, +o) ]

m

A power series can then be used to represent the polarisation density. For the linear

polarisation this is

[lmur ~ 27((]) )6' o 3.23

where

) = e AR 3.24
m a) =2~

For the second order polarisation, the following is obtained

P =YY 290, 0,)E@®,)E@®, e o 3.25

In the above

" )l 0, o, +,) 3.26

o 2. %
The second order polarisation is thus due to the non-linear term & r° in the equation

for the anharmonic oscillator. It will be observed from equation (3.25) that it contains
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terms for all possible values of n and m, +1and £ 2. Equation (3.26) also shows that

the second order susceptibility x(z) depends on the product of the first order

susceptibilities of the frequencies involved in the interaction.

Henceforth P will be used for the second order polarisation and y> will be used for
the second order non-linear susceptibility. Thus far, values have been represented as
scalar quantities, which is accurate in the one-dimensional case. In reality however,
they are vector quantities, as such x is a tensor of the third rank and equation (3.25)

can be rewritten taken this into account to give

Pj(“’mm) = Z Zluk (wn+m ’wn ’wm )Ej (wn )EL (a)m )e-j(m”“”"l ), 3'27

jk  nm

In the above i, j, k correspond to the three principal axes in the crystal and
O =0, +0, .

Equation (3.26) was generalised into three dimensions (Miller, (1964), Garrett and

Robinson (1966)) to obtain the following rule, also known as Miller’s rule
l;k (wl » (0, 0, ) = IX:, ((0, )“Xi, (wz )“X/I.k (CD_, )JAuk 3.28

The factor A, was found to be remarkably constant over a wide range of materials.

This has proved to be useful in the search for new materials. The observed constancy

of the factor A, might suggest that the large variations in the non-linear

susceptibility might reflect their dependence on the linear susceptibility.
Equation (3.25) can be written in the form
PQw,)= x(20,,0,,0,)E?e /@) 3.29

which from equation (3.12) gives
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dy, =§x(2w,,w.,col) 3.30

The tensor d,, can be contracted to d; which forms a 3x6 matrix that operates on

the field which is written in column vector form to yield

As an example in films of suitably oriented GaAs or in hexagonal crystals such as
CdS or ZnO with the ¢ axis along the z direction, the nonlinear polarization term will

only have a z component, such that,

PY =y, B2 3.32

For a x-cut proton exchange LiNbO; waveguide, the optical axis c is parallel to the y-
axis. In these guides only TE modes having components E,, H, and H, can propagate.

Assuming constant amplitude of the fundamental field, the non-linear polarisation

can be written as
P,(x,2) =€,d,, E2 (x)e /2P 3.33

In a Z-cut waveguide, the optical axis c is parallel to the x-axis. In these guides only
TM modes having components H,, Ex and E, can propagate. The nonlinear

polarization is given by
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Px i gud31E;z +£ud33Ej25\‘ ey
F; =£ud22E/2z +2£ud31EjlrEfz B

In both cases, the light propagates in the z-direction.

3.3 Formulation of the Non-linear Interaction Equation

In this section, consideration is given to how the wave equations describing the non-
linear interactions in crystals are derived. Following the derivation by Zernike and

Midwinter (1973) the non-linear polarisation is inserted as a source term in

Maxwell's equations

TR L 336
cdt

vxE=-12_(m) 3.37
cot

D = ¢ + 47P 3.38

The linear polarisation is included in &€ and P is the non-linear polarisation.

Assuming that the material is non-conducting and taking the curl of both sides of the

curl of E, we obtain

VxVxE=-£ 9 (vxn) 3.39
cdi
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VV.E-VE=-H£9 1i(eE+47zP) 3.40
cdt\cdt

For a nonconducting medium, V-E=0

_VE= _Ei(E@Jr 47@’]

3.41
cot\c ot cot
d°E  4mu 9°P
VE=LZ 2 - 3.42
c2drr ¢* ar
daifee 4 9°P
VE=—|SE |- 3.43
ot (62 j et 91>

If the discussion is then limited to one dimension, by assuming that %x = %y =0

and to the interaction of three travelling waves defined as;

E,(z,t) = E,(z)e” @4

E,(z,t) = E,(z)e /@0 )
E3(Z,t) = E;(Z)e_j("’l""ll)

where the subscripts 1,2,3 stand for the different frequencies present with the
polarisation defined as

P] (zit) = 4dE; (Z)E3 (z)e'jl(“’-‘“"z)"("s-kz)zl
Pz (Z,t) = 4dE3 (z)E]' (Z)e-jl(w;-wl)l—(k,—k,)u 345
Py(z,t) =4dE, (2)E, (z)e @ro)i-(hitk)z)

then,

82Pl __(w -0 )24dE‘( )E ( ) = jl(@y-wy )t —(ky—k;)z] 346a
a t2 S 3 2 2(Z)LE5(2)e ‘
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d°P,

E e —(0; —©,)*4dE, (2)E; (z)e @@=tk 3.46b
2
aa t’;’ =—(0, + ®,)*4dE, (2)E, (z)e N @+e-thitk)zl 3.46¢

’E

Assuming the variation of the field amplitude is small such that kd_z >> 177 and

making the following substitution
E/(z:)=E,(z)e /@2 3.47

we obtain the following

azE(Z 1) o ) —j(ay-kz) AE,
V2E= RSl el Jayt k.z)+ Jayt-kiz) =1
oz’ oz Jies : dz
—j(wyt~kz . Zilant-kz dE g —jw=kz) dEI 1, i@ —kz) dzEl
= -k} E, (z)e /@ 4 jg g i@k >d—z'+ Jhie™" e LY dz’
2 (2jk, 4 g (Z)}_,W.,_k,ﬂ 3.48
dz
9°E, (z,1) : SVAE(2))] Snaran 3.49
T=_klEl(z)_2-’kl e @t .
E (92 € 0 o=k z
CTWEI(Z)=C—23*I(‘J“” o=k )EI(Z))

£ —jloy-kz)
Fate g @) 3.50

Making this substituting for the differentials the following is obtained

%
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(k E (Z) 2]]( di}_f(‘ul"klz)
dz

w’e

—Jjloj-kz 47[ = ] il m (e ih: )2
== (e L (0, ) PATE QOB (g)e Hlermerk-buck]

3.51
0, =o, +® and w‘;e =k
C
then
d -J(a)lkz) 16 = jl(@y-w, (ks =k, )z]
_2_]]{ N [wl dE (Z)E (z)e’ 3=, )i=(k3 =k, ]
dz 3.52
dE 8wld : Ut
- e BB @ el M githha):
. L 3.53
dE 8wid . :
d—zl 3 —Jk—lez (D) ES(Z)e/Betamni
i 3.54
Similarly,
dE,(z)  .8nw}- ., e L OE
‘; =—] P 22 dEl (Z)E3(z)ej(k3“~z—l~|)z
; 1 3.55
and
dE(z) Smw? - Mg
0l o, e
2 3.56

These are the basic equations, which describe non-linear parametric interactions. The

three most common forms of which are
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1. Second harmonic generation in which part of the energy of an optical wave at

frequency @ is converted to that of a wave at frequency 2@ .

2 Parametric oscillation in which a strong pump at @, causes the simultaneous

generation in a nonlinear crystal of radiation at @, and @, such that

0=, +, .

3: Frequency up-conversion in which a weak signal of low frequency @, is
converted coherently to a signal of higher frequency @, by mixing with a

strong laser field at @, such that 0, =w,-,

It can be noted that they are coupled through the non-linear coefficient d. Each of
the equations relates the rate of change of the amplitude at a particular frequency
with distance with the rate of change of amplitude at the other two frequencies. They
also show the phase difference between the polarisation wave and the

electromagnetic wave, which can be written as

AL = ky =k, =k 3.57.

3.4  Optical Second Harmonic Generation

From the above amplitude equations, one can then obtain the equations governing
sum frequency generation, difference frequency generation and second harmonic

generation. Second harmonic generation is a special case of frequency mixing when

mo : ; . =2wm
it is considered that the two input frequencies are equal, thus ©2 I. As before,

the following equations can be derived:

101



Chapter 3 Theory of Second Harmonic Generation
e e e e e

dE 8w — . )
(D __ 3000 3k (), (2)e 3.58
dz k 2

1€

dE 16mw? - e
‘;Z(Z)=—j kn::l dElz(z)e/Al\z 359

2

Ak = 2k, -k, 3.60

3.4.1 Classification of SHG

Principally, SHG can be broadly classified into two types (Hashizume, 1992); Type I
in which there is a conversion from a fundamental guided mode into a second
harmonic guided mode, known as the guided-guided SHG or second harmonic

radiation mode. The guided-guided mode has four possible modes:

Guided TE(w) to Guided TEQCw)

Guided TE(w) to Guided TM(2®)
Guided TM(w) to Guided TM(2w)
Guided TM(w ) to Guided TEQw).

In this type of conversion, both the fundamental and the second harmonic waves are
tightly confined in the guiding regions of the waveguide, hence making it ideal for
use in integrated optics. It however requires critical control of the waveguide

parameters for phase matching.

The conversion from a fundamental guided mode into a second harmonic radiation

mode is also known as the Cerenkov type SHG. The possible modes of conversion

are.

Guided TE(w) to Radiation TEQ®)

_—% —
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Guided TM(w) to Radiation TEQ®)
Guided TE(w) to Radiation TM(2®)
Guided TM(®@w) to Radiation TMQ2®)

Type 1I conversion:

Guided (TE(w) + TM(w)) to Radiation TEQ @)
Guided (TE(@) + TM(w)) to Radiation TM(2 w ).

Unlike guided modes, which are discrete, radiation modes have a continuous
spectrum. Phase matching is automatically satisfied as long as the phase velocity of
the guided fundamental mode is faster than the SH wave in the substrate. A
necessary condition for this being the effective index of the fundamental mode is

smaller than the substrate refractive index of the SH, n® < n’®. This allows the SH

to be radiated at a finite angle into the substrate.
In this work, we will consider the guided-guided type of conversion and mode I

configuration of the Cerenkov type conversion.

3.4.2 Derivation of Second Harmonic Equation

In this section the second Harmonic wave equation is derived in a form suitable for
solving using a numerical method, namely the finite element method.
Using the concept of the nonlinear polarization and assuming that this is related to

the electric field of the electromagnetic wave by the scalar equation as shown

previously,

P =2¢ dE* 3.61

where d is a coefficient whose dimension is the inverse of the electric field.
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It has also been shown previously that the physical origins of the non-linear
polarisation can be attributed to the non-uniform deformation of the outer electrons
of an atom or atomic system. If a monochromatic plane wave propagating through a

non-linear crystal in the z direction is considered, then the electric field can be

written as
1
E,(z,t)= E{E(z,w)exp[ j(wt—k,z2)]+cc}, 3.62

¢ ; O n
where c.c is the complex conjugate and k, = —=—2
C(l)

c

(0]

0

In an anisotropic material, the above scalar relation between the non-linear
polarisation and the electric field is not strictly valid. A tensor relation of the form

P¥ = ¢ [d]E? : . : .
o can be established. It can be shown for an anisotropic material that, for

a given direction of propagation, two different linearly polarised plane waves can
propagate. Corresponding to these two different polarisation are two refractive
indices, the ordinary and the extraordinary. Due to this phenomenon, the electric

field, E“(r,t), of the electromagnetic wave at frequency @ and at a given point r and

the non-linear polarisation at 2@, P2°(r,t) can be written in the form

i L%

E (r,t)=5[E (r, @) exp(jr) +c.c.) 3.63
o

P,iL(r,t):E[P2 (r.20)exp(2 jor) +c.c, 3.64

a tensor relation can be established between the non-linear polarisation at 2 and the

electric field at @ .

The second harmonic polarisation component in the j direction of the crystal is

therefore
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Piti= N e dE7E? 3
jk=1,23

Having derived an expression for the non-linear polarisation, it is now possible to
derive equations describing the propagation the second harmonic wave through a
crystal. Using Maxwell's equations as the starting point and by inserting the non-

linear polarisation as a source term the following can be written

g g0 B 3.66
dt
vxH=2D 3.67
En
B =uH 3.68
D=¢,E+P“+P¥ =¢ [e[E+¢ PV 3.69

Substituting equation (3.68) into (3.66) and taking the curl of both sides of equation
(3.66), the following is obtained

Vxera:-uU%(vXH) 3.70

VxVXE=-V’E 3.71a

VxH=£”[e]iE+£”[d]—a—E2 3.71b
at at

J 9 P
—V?E="- el—E+e,[d E>
hot ( ”[] Hé’t ) 3.72a

VE=pe el e o) E

3.72b

l
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2 d? d" i
VE-pu,e, [8]8 v E=jie’ [d](9 e E 3.72¢
VzE—[i]a—zE—[—d-] J° E’ 3.72d

c2dtr c¢*arf

2 2
V2E+[e]% E=-[d]% 2 372
c c
V2E+[ek?E = —[dk2E2 3.73

The above equation describes the propagation of waves in a crystal in the presence of
a forcing function. It must be satisfied independently by each of the waves present in

the crystal. For the second harmonic wave, therefore, we obtain the following,

V2E,, +[ekLE,, = -[dk2E2 3.74a

2 2
VE,, +(eki,- B2, E,, =—ldk2,E?. 3.74b
In a more general form, the above equation can be written as

V2E2w + ([g]kzzm" ﬂ;'w )EZw = _uuwZZmP;(]j : 313

For different crystal cuts and orientations we will obtain different nonlinear
polarization terms for which we solve for the second harmonic field. To solve this
equation, we first set the right hand side to zero and find the field distribution at the
fundamental frequency. Knowing the field we can find the nonlinear polarization at
the harmonic frequency using the tensor relation. This is then inserted into the above

equation to obtain the field at the harmonic frequency.

—

'1
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V2E2w +([£]k22w_ﬂ22w )EZ(U =P 3.76

where P is the calculated non-linear polarisation.

3.4.3 Variational expression for the S.H field equation

It can be shown that the functional which minimises the above equation is of the

form

p=|[- {(&xj [ y)d dy+MHE dxdy + [[P-E dxdy

1y

An equation of the form Lu = f is a deterministic problem, the solution of which is
uniquely determined by the source term f. L is an operator and u is the function
sought. One way of solving such a problem is to find a weak formulation of it, which
satisfies certain specified conditions. This weak formulation is also known as the
variational formulation the solution of which is also the solution of the original

problem, provided that the specified conditions are satisfied.

If it is assumed that u, is a solution of our deterministic problem, then the functional

sought is of the form
Fu = (Lu,u)=2(f,u) 3.78

Since u, is a solution we can say that L u, = f. Substituting for f in the above we

obtain
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Fu =(Lu,u)-2(Lu,,u) 3.79

It is obvious however that

Fu =(Lu,u)~(Lu,,u)—(u,Lu,) 3.80a
= (Lu,u)~(Lu,,u)~(Lu,u,) 3.80b
= (Lu,u)—(Luu,u>—<Lu,uo>+<Lu0,u0>—<Lu0,u0) 3.80c
=(L(u-u,),(u-u,))~(Lu,,u,) 3.80d

Assuming that the operator L = -V?, then

(Lu,v) =-[vW?udQ 3.81
Q

From Green's identity theorem the following is obtained

Iv@ds = JVuVu dQ+ij2u dQ 3.82
Q an Q Q
so that
)Lu,v<=jVuVu dQ—jvgﬂds 3.82
o ' dn

If the operator is given explicitly by
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L=(VxVx+o’je) 3.83

then

F =<(V><V><—a)2/,ts)E, E>—2<P"’",E> 3.84

F =<V><V><E,E)—<a)2/,ts E,E)-2(P",E) 3.85

F=[[(VXE")-([u]' VX E)Q - [[E'0’eEdQ+2jo [ PNE'dQ 3.86
Q Q Q

8F = [[(Vx3E") - ([u] 'V x E)d2 - [[SE"0’eBdQ + 2jo [[ PN'6E"dQ  3.87
Q Q

Q

using the vector formula

(Vx3E)' (VXE)=8E'[VxVxE]+V-[8E" xV xE] 3.88
8F=QSE*[VXV><E+sz—2PNLpQ—gV-[8ExVxE]dQ 3.89

A minimisation of the above functional for first order triangular elements will yield

[STE]+[CIE]=[T] 3.90

[S] is a real symmetric matrix, [C] is a complex symmetric matrix and [T] is the

forcing function.
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3.5 Phase Matching

The results from the previous section can be used to find the second harmonic

conversion efficiency. The power per unit area can be defined with the relation

2w _ power
Area

P

which is the second harmonic output power density. From which the conversion

efficiency for a crystal of length L, can be written as (Yariv, 1989)

3
n

: sin’ ﬂ
wzdsz P(U \ 2
Area} (%Jz
2

Il
-u'"?q
el g
Il
e}
B e T\
™ I::
\_m/l..)

This last result indicates that for efficient SHG

Ak =0

or

kigel =0k (®)

It follows that the output field is the coherent sum of the contributions generated
along the length of the crystal. For equal phase velocities, the fundamental and the
second harmonic radiation are equal and all the contributions add constructively and

the output will be proportional to the crystal length. If this is the case, then it is said
\—'_\——_‘——7
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to be phase matched. If, however, Ak #0 as is generally the case, then the second
harmonic wave generated at some point (say z;) having propagated to another point
(say z5) will be out of phase with the second harmonic wave generated at the point

(22). This will result in a destructive interference described by the factor

2 AKL

sin‘| ——
ALY
2

The two adjacent peaks of the spatial interference are separated by the coherence

length defined as

] =27 _ 2r
i Ak s k(2w) __2k(a))

This length /, is a measure of the maximum crystal length that is useful in producing
second harmonic power. This useful length, /., can be attributed to the dispersion in
the refractive indices of the non-linear crystal and only several microns for SHG of
visible radiation. The efficiency of the non-phase-matched interactions is thus much

smaller than of phase matched interactions and in practical applications is thus of no

use.

Since the refractive index increases with frequency, equation 3.93 (above) could be

w

wn
C

rewritten in the following form for k@ =

’

o ) _ 2
Ak =k0) @) _ 20 (20 _p0) 3.94
c

It follows that
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[ e b A
¢ w(nZw _n(q 7 2(n2a) _nw)

3.95

where A is the free space wavelength of the fundamental beam.

The phase matching requirement is that Ak =0. By far the commonest technique for
meeting this requirement makes use of the natural birefringence of anisotropic
crystals, i.e. the difference between the refractive indices of orthogonally polarised
waves. For some crystals there is a balance between the wavelength dependence of
the refractive indices (dispersion) and the polarisation dependence of the refractive
indices (birefringence). In such cases it is then possible for the phase velocity of the
second harmonic wave polarised in one direction to equal that of the fundamental
polarised wave in the orthogonal direction. Only a small number of crystals meet this
criterion: however, until recently, birefringent phase matching has been the basis of

almost all practical frequency conversion devices.

In phase matched devices, the efficiency will be proportional to the square of the
non-linear susceptibility tensor and the length of the crystal but it varies linearly with
input intensity. In typical non-linear materials, an efficiency of about 50% can be
achieved with input intensities of 1 — 100 MW/cm? (Fejer, 1994). Such intensities
can be easily achieved in loosely focused pulsed laser beams with high peak powers.
In continuous wave lasers, however, to achieve such intensities extremely tight focal
spots will be required which in turn leads to diffraction. One way to overcome such

shortcomings is to confine the crystal inside a resonator.
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3.5.1 Angle phase matching
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Fig 3.1 Angle Phase matching in KDP (Zernike and Midwinter, 1973)

True phase matching can be obtained by using the natural birefringence of uniaxial
crystals. This method was first described by Maker et al., (1962) and independently
by Giordmaine, (1962). Given a negative uniaxial crystal in which the ordinary index
is larger than the extraordinary index, equal refractive indices are required for the
second harmonic and the fundamental. If it is required to convert a fundamental
wave at 632.8 nm to a second harmonic at 316.4nm then, from Fig. 3.1 (Zernike and
Midwinter, 1973), it can be seen that the ordinary index at 632.8nm is larger than the
extraordinary index at the same wavelength. Changing the angle between the wave
normal and the optic axis can be used to vary the index for the extraordinary wave.
Using the ordinary ray as the fundamental and the extraordinary ray as the second
harmonic, it is possible to transmit the wave at an angle 6 to the optic axis, such that

the refractive index for the input wave is exactly equal to that of the output second

harmonic wave.

The main disadvantage of angle phase matching is that the extraordinary beam at an
intermediate angle does not overlap the ordinary wave. It would follow that the
output power would not be proportional to the square of the interaction length. This

effect is more serious in type Il interactions where the two fundamental beams do not

\-——_\—_——*—'——_‘—
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overlap completely. The polarisation wave thus simply disappears after a certain

crystal length.

3.5.2 Quasi-Phase matching

To develop crystals that meet the phase matching requirements for efficient
frequency conversion is a time consuming process, often requiring more than ten
years between discovery and commercialisation (Fejer, 1994). Many attractive
materials are excluded because of the very limited wavelength range over which
birefringence phase matching can be achieved. In general therefore, the suitability of
a material for frequency conversion applications is a complex function of its various
optical parameters. A method to extend the range of usable materials and to obtain a
significant increase in power would therefore be most welcome. If the phase

difference between the polarisation wave and input electromagnetic wave could be
changed, every coherence length by % through the introduction of a structural

periodicity, then it would be possible to correct the phase mismatch. This method of
obtaining phase matching is known as quasi-phase matching (QPM) and was first

proposed by Amstrong et al. (1962).

An efficient method of realising quasi-phase matching involves a sign change of the
non-linear optical susceptibility tensor. This sign change resets the relative phase of
the non-linear polarisation and the generated wave every time the phase slips by 7.
This will result in power flowing monotonically from the fundamental to the second
harmonic field. Quasi-phase matching has major practical advantages in that it
eliminates any dependence of device performance on the birefringence properties of
the material. It is possible to use a non-linear material over its entire transparency

range. The method also allows the use of the largest component of the non-linear

susceptibility tensor.
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The simplest way of achieving quasi-phase matching is to make thin plates of the
crystal one coherence length thick and stacking them alternately such that the
polarisation wave will undergo a 180° phase change from one plate to the other. The
experimental difficulties of such an approach are obvious. The micro spatial scale
required for plates makes this concept rather difficult to implement. The plates would

also be required to be in optical contact.

3.6 Summary

This chapter has discussed the theory of second harmonic generation. The origin of
nonlinearity in optical materials is examined. Following Zernike and Midwinter
(1973), an attempt is made at a detailed derivation of the nonlinear interaction
equation, which is at the heart of nonlinear phenomena. The classification of SHG is
then considered. A finite element variational formulation of the nonlinear equation is
then obtained from first principles. The chapter concludes with a look at methods

used to increase the second harmonic output.
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Chapter Four

Finite Element Analysis of Optical Waveguides

e e —— e

4.1. Introduction

In this chapter the finite element method is applied to the analysis of optical
waveguides. Results are presented for anisotropic waveguides, with an arbitrary
permittivity tensor, being diffused in both the transverse directions and by using the
finite element method with the vector H-field formulation for the analysis. The
importance of considering the waveguide core dimensions to be greater than the
diffusion depth in both the transverse directions, the use of extrapolation techniques
and of a symmetry plane for anisotropic waveguides are also discussed. The

modelling of asymmetric directional couplers is also considered.

Dielectric integrated optical channel waveguides are employed in a large number of
optical devices, such as lasers (Webjorn et al., 1997), switches (Wongcharoen et al.,
1997), modulators (Anwar et al., 1999), phase-shifters (Bersiner et al., 1991),
amplifiers (Helmfrid et al., 1993), parametric oscillators (Bava et al., 1987) and
cascaded non-linear devices (Ironside et al., 1993). There is a growing interest in the

accurate characterisation of advanced optical guided-wave devices for optimisation
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of their design. Besides semiconductor waveguides, there has been considerable
interest in guides formed by silver-sodium exchange, thermal back-diffusion of K*
ions in soda lime glass, proton exchange in LiNbO, or in LiTaO,, annealed proton
exchange in LiNbO, and Ti indiffusion of LiNbO,, which has received considerable
attention. Ti:LiNbO, devices are particularly important because of their properties

of low loss, their large electro-optic, piezo-electric, and elasto-optic coefficients and
their high second-order nonlinearity (Strake e al. 1988). However due to the nature
of the fabrication process, all of the above devices will result in a waveguide with a

diffused refractive index profile and in any case, one which is anisotropic in nature.

Over the years, several methods have been developed for the analysis of waveguide
devices. These can be classified broadly into two groups: approximate analytical
methods and numerical methods. The first group includes such approaches as
circular harmonic point-matching (Goell, 1969), the effective index method (Hocker
and Burns, 1977), the spectral index method (Burke, 1990), the matrix method
(Harrington, 1967) and the method of lines (Worm and Pregla, 1984). Some of the
approximate methods provide very good results for the analysis of waveguides when
operating far away from cut-off. Goell (1969) employed the method of circular
harmonic point matching in the analysis of step index rectangular optical
waveguides. The approximate method of Marcatili (1969), in which the field in the
corner regions of the guide is ignored, has also been used for the analysis of step
index guides. Many research workers, in view of its simplicity, have extensively
used the effective index method, first introduced by Knox and Toulois (1970).
However, many of these methods are not very suitable for the analysis of a wide
range of important practical, arbitrarily shaped, graded index and anisotropic
waveguides and often not so accurate particularly when operating as a single mode

waveguide and when operating close to cutoff,

In the last two decades, numerical methods have been widely used in the study of
optical guided-wave devices due to the availability of faster and cheaper computer

power. A numerical method based on a vector integral equation has been used by

_— — e
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Pichot (1982) for the analysis of diffused channel waveguides. Sharma and Bindal
(1992) have used a variational approach based on the Hermite-Gaussian trial
functions to analyze diffused planar and channel waveguides. Schweig and Bridges
(1984) and Lagu and Ramaswamy (1986) have employed the variational approach in
the finite difference method (FDM) for the analysis of diffused channel waveguides.
A method based on the direct solution of the vector wave equation, in terms of the
transverse magnetic field, using a five-point finite difference scheme and which
avoids spurious modes, has been used by Schulz ez al. (1990). The beam propagation
method (BPM) employed by Feit and Fleck (1978) is useful in the analysis of z-
dependent guided wave devices for finding modal solutions, but with constraints on

sampling points and refractive index changes.

However, for the modal solutions of z-independent waveguides, the finite element
method (FEM) has established itself as a powerful, versatile and accurate method.
Rahman and Davies (1984a,b) had developed and refined (Rahman and Davies,
1984c) the use of the vector H-field formulation for a wide range of optical
waveguides based on the finite element method and this approach will be adopted

and extended in this thesis.

In this section of the thesis, results are presented for waveguides diffused in both the
transverse directions with isotropic, uniaxial and generally anisotropic refractive
indices (Katsriku et al., 1996). The importance of considering the case where the
variable index waveguide core dimensions are greater than the diffusion depth in the
transverse directions, which other workers neglect, is demonstrated and the validity

of the application of the symmetry plane for anisotropic waveguides is also

discussed.

The method developed in this section is in anticipation of work to be done in second
harmonic generation in lithium niobate (LiNbO3) guides. Since LiNbO3 has a high
nonlinear susceptibility tensor, it provides a useful material base for the design of

guided wave devices. In such waveguides, it is possible to satisfy the phase matching

e ———————————————
—————————
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condition using the general anisotropy of the material and when this is not possible
then the quasi-phase matching principle can be adopted. The ability to accurately

model such waveguides is therefore of importance.

4.2. Waveguides

Two main categories of optical waveguides can be identified
a) waveguides for optical integrated circuits and

b) optical fibers.

Such waveguides are primarily for the guiding and processing of light. The
technology relies on dielectric materials, a thin film of high refractive index
sandwiched between a substrate of lower refractive index and an upper cladding
(usually air) also of lower refractive index. This is achieved by using small amounts
of titanium (Ti) to dope LiNbO; crystal and hence increase the index of refraction
locally. Such an arrangement enables light to be trapped locally inside the film and
hence achieving waveguiding. The higher the refractive index of the film, the more
tightly confined is the light inside the guide. The refractive index in turn depends on
the film thickness. The change in refractive index of the various sections of the
waveguide can be classified as either step index or graded. In the step index guide,
the refractive index changes in discrete steps at the boundaries of the sections. In

graded index guides, the refractive index changes slowly throughout the guide.

Essentially these types of waveguides are the basis of electro-optic and acousto-optic
technology; the optical signal is modulated by means of an electrically or
acoustically induced change in the optical characteristics of the crystal, including
phase, amplitude, polarisation, frequency and direction of propagation. This

technology can be applied in the implementation of major devices including second

harmonic devices.
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4.2.1 Fabrication Techniques

Titanium diffused lithium niobate (Ti- LiNbO3) waveguides were first fabricated by
Schmidt and Kaminow, (1974). These early guides were multimode and planar but
soon after single mode channel guides were also demonstrated (Schmidt and
Kaminow, 1975). Using ultra violet exposure through a mask, the desired waveguide
pattern is formed on LiNbOj5 substrate. Titanium, of carefully controlled thickness, is
then deposited over the entire crystal by means of either electron beam or radio
frequency sputtering. The undesired metal is then got rid off either by dissolving the
photoresist or ecthing. To obtain diffusion, the guide is placed in a furnace with

temperature ranging from 980°C to 1050°C for up to 12 hours.

The general schematic of the waveguide to be considered is shown in Fig 4.1. The
guide refractive index given by n(x,y) is slowly decreasing in both the x- and y-

transverse directions. For a 2-D diffused guide, the diffusion profile can be expressed

approximately as:
n(xy)=n, +(n, —n,)f(x) g(y) 41

where f(x) and g(y) are spatial functions of D, and D, the diffusion length in
the x- and y-direction and n . and n_ are the refractive indices of the guide core and
substrate respectively. In a step index guide n(x,y) = n,, a constant and the guide

dimensions are defined by the width @ and depth b. The width and height of the core

for a diffused guide are often given by the diffusion width, D and the diffusion
depth, D, respectively. It is often assumed by other workers (Pichot, 1982, Sharma

and Bindal, 1993, Lagu and Ramaswamy, 1986, Schulz ef al., 1990 and Fleck and

Feit, 1978), that outside the guide cross-section, defined by a and b, the refractive
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index is constant and equal to n_, which is not strictly correct. In this thesis initially

a waveguide with uniform cross-section will be assumed. The guide is z-invariant
and the refractive index does not change with the propagation direction. In the
analysis of the propagation characteristics of practical waveguides, such an
assumption is indispensable. Initially though, for the purpose of benchmarking,

results will be obtained for planar waveguides with

i) step isotropic
i) diffused isotropic
iii)  step anisotropic and

iv)  diffused anisotropic refractive indices.

Subsequently more realistic optical waveguides with optical energy confined in both

transversve directions are considered.

Cladding n,

Guide core

n(xy)

Substrate, n,

Fig 4.1 Schematic showing the general structure of the waveguide under
consideration.
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The following two dimensional Helmholtz equation describes the propagation of the

electromagnetic field in terms of the vector magnetic field H, in the guide:
V*H+(k’n’ -B*)*H=0 4.2

where B is the propagation constant, n, the refractive index and k the free-space

wavenumber.

In the FEM, the guide cross section is divided into a finite number of triangular
elements to represent the problem. The FEM also allows each element to have a
different but piecewise-constant refractive index constant refractive index. This
property enables the FEM to be applied to the analysis of arbitrarily shaped diffused

anisotropic waveguides.

In general, the permittivity tensor, é, which defines the anisotropy of the material

may be written as

Two classes of anisotropic materials can be defined: those in which the natural
modes of propagation are linearly polarised and those in which they are circularly
polarised. For the first class of materials, the permittivity and permeability

components respectively are symmetric, i.e. €, =€, and u; =u; (Ramo et al.,

1994). The second group, known as gyrotropic materials, is those in which the
natural modes of propagation are circularly polarised waves. In a loss-free gyrotropic
material, the permittivity and permeability components are anti-symmetric, having

€; =—€; and u; =—p . An anisotropic material is said to be uniaxial when the
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elements above and below the principal diagonal are zero and two of the elements in
the principal diagonal are equal. A biaxial material on the other hand has all off-

diagonal elements equal to zero and all the three elements in the principal diagonal

are unequal.

This chapter will be concerned with loss-less anisotropic media in which € is a

tensor with real components €; = €. In particular, results for uniaxial anisotropic

materials and anisotropic materials with off-diagonal terms in the x - y plane will be

presented.

The full vector H-field formulation with the penalty term is given as

; J'(VxH)"é"(x,y)(VxH)dQ+aj(V-H)'(V~H)dQ
S [H" - p-HiQ

4.4

where ¢ is the dimensionless penalty parameter, @ is the angular frequency and H
is the vector magnetic field at the nodal points (Rahman and Davies, 1984c). It will

be assumed that the material is loss-less and the usual time (f) and axial (2)

dependence of the field in the form exp[j(et—fz)| is considered throughout.

However, waveguides with loss or gain can be characterised using the perturbation
technique (Themistos et al., 1995) or by using magnetic field formulation involving

only the transverse components (Abid et al., 1993).

Minimisation of the variational functional (4.4), with respect to each of the unknown

nodal field components, H , H and H, will yield a stationary solution in the form

of a set of linear algebraic eigenvalue equations, i.e.

[A}{x} - 0?[B}{x} =0 4.5

|
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where [A] is a complex Hermitian matrix, [B] is a real symmetric and positive
definite matrix, @” is the eigenvalue, and {x} is the eigenvector. For the loss-less
case, a general phase difference of 90° between the axial and transverse components
of H allows the transformation of A into a real symmetric matrix (Rahman and

Davies, 1984b). A solution of the above eigenvalue equation for a given value of f§

will yield a set of eigenvalues (wz) with a corresponding eigenvector {x} set
representing the three components of the H-field at each of the nodes. To obtain the

complete @/ B dispersion curves, a set of values of @ and f are obtained for each
mode. If it is necessary to obtain the propagation constant, §, for a given

wavelength, then this can be achieved by using 2 to 3 iterations.

4.3. Results

In this section, results for various types of waveguides are presented. Using the FEM,
results are given and compared for planar diffused waveguides with isotropic and
anisotropic refractive indices. Results are also presented for the channel waveguide
diffused in both transverse directions. The diffusion profiles in the x and y directions
could be defined by any arbitrary function, and both isotropic and anisotropic

channel waveguides are considered.

4.3.1. Planar waveguides

Initially, the accuracy of the finite element method is demonstrated by comparing
with the exact analytical solution for a simple slab waveguide. This is the simplest of
all optical waveguides. It confines the light only in the direction of the guide
thickness. In a three layer asymmetric step index slab waveguide the following

condition is true: n, <n, <n,. A symmetric waveguide is considered here, the

parameters of which are defined as follows, where the wavelength, A = 1.3um and
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the refractive indices of the cover, film guide and substrate are n,.= | 4, ng = 1.5, ng
= 1.4 respectively. The finite element solutions using different mesh divisions are

shown in Table 4.1. The exact effective index (”e =B/ kn)fOf the waveguide is
1.457728, which has been obtained by solving the transcendental equation. It can be
seen, from Table 4.1, that the accuracy of the finite element solution depends on the
mesh refinement, in a similar way to most of the other numerical methods. In many
practical waveguides an analytical solution is not available and a numerical
technique has to be considered. The computational resources available could
therefore limit the accuracy of finite element solutions, like many other numerical
methods. For such problems, it is often necessary to extrapolate the results as the
limits of computational facilities available are reached. Here two different
extrapolation techniques, Aitken's extrapolation method (Rahman and Davies, 1985)

and an extrapolation method given by Koshiba (Koshiba, 1992) are compared.

In Aitkens' method, the extrapolated result is obtained from three successive mesh

divisions with a fixed geometric ratio, using the following equation

(xr+l —xr )2 46
X =2 X X

X, =X ,,—

oo r+l

where x_ is the extrapolated result and x,_,, x, and x,,,, are results obtained from

r+l?

three successive mesh divisions. In using the above formula, it is important to

maintain a constant ratio of proportionality.
The extrapolation procedure suggested by Koshiba (1992) is as follows

e 4.7

where kg, is the extrapolated solution and k% and k2, are solutions obtained using

N, and N, elements respectively with N, < Ng,,and ¢ EJN% . In this
E2

approach, results for only two mesh divisions are required with any arbitrary ratio.
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Mesh FEM Aitken’s Koshiba’s
Extrapolation Extrapolation
50 1.457614 - =
100 1.457707 - -
200 1.457723 1.457726 1.457759
400 1.457727 1.457728 1.457734
800 1.457728 1.457728 1.457730
1600 1.457728 1.457728 1.457728

Table 4.1. Comparison of the effective index values obtained using the FEM with

different extrapolation techniques. The exact analytical solution is n, =1.457728

The raw finite element results are shown in column 2 of Table 4.1, and in columns 3
and 4 the extrapolated results are shown using Aitkens' (Rahman and Davies, 1985)
and Koshiba's, (Koshiba, 1992) approaches respectively. The extrapolated results
using Aitkens' approach is shown in column 3, where any of its values in any row is
obtained by using the three successive raw FEM results of column 2, including the
two previous rows and the present row. The extrapolated results using Koshiba's
approach is shown in column 4 and its value in any row is obtained by using the raw
FEM of the present row and the previous row. Although, Aiken’s extrapolation
required three sets of results with constant geometric ratio, it can be seen from the
table that this approach converges faster than the approach given by Koshiba, as

such, in this work Aitkens' method of extrapolation has been used.

4.3.2. Diffused Planar Isotropic Waveguide

Next the accuracy of the finite element method is tested for diffused planar
waveguides. Many fabrication processes lead to a graded index of the film. The

refractive index profile for such waveguides can be described using the following
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n(y)=n}+2n,-An-g(y) y>0 4.8a
n’(y)=n’ y<0 4.8b

In the above, g(y) is the distribution function which describes the diffusion profile of
the refractive index in the guide. The particular profile assumed will depend on the
fabrication process used. Various distribution functions are used to approximate the
refractive index in the core of the waveguide. Results for a waveguide having the
following diffusion profiles: exponential, Gaussian and complimentary error function
(CEF), in the y direction, are shown in Table 4.2 for various approaches taken. In this

example, the wavelength A = 1.3um , the refractive indices of the cover and substrate
are n. = 1.0, and ng = 2.177 respectively and An = 0.043 is the maximum change in
the refractive index between the core and the substrate. The normalized frequency, V,
is defined as V = k,,bm , where b is waveguide depth and k, the wavenumber.
For a diffused waveguide, the diffusion depth D,, can be considered as the

waveguide depth b for defining the normalized frequency. The propagation constants
may be computed for various values of V . From the results presented in Table 4.2, it
can be observed that the finite element (FE) solutions compare very well with those
obtained by Sharma and Bindal (1993) and are better than those obtained by the
Hermite-Gaussian (HG), Evanescent Hermite-Gaussian (EHG) and the cosine-
exponential methods (CE) (Sharma and Bindal, 1993). It is believed that the finite
element approach using 800 mesh points is more accurate than the results of Sharma
and Bindal, using a numerical approach, which they have referred to as 'exact'. It
should be noted that most practical waveguides have 2-D confinement, for which

analytical solutions are not possible. In such cases numerical methods of evaluation

have to be employed.
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g(y) \Y Sharma FEM CE EHG HG

[ b ]7- 2.0 0.082 0.081 0.078 0.044 0.005
exp| -| —

y

3.0 0.275 0.272 0.270 0.263 0.216
4.0 0413 0.409 0.408 0.408 0.370

[ b ] 2.0 0.105 0.104 0.100 0.087 0.066
exp| — —

y

3.0 0.229 0.227 0.223 0.218 0.193

4.0 0.321 0.318 0.316 0.313 0.289

2 [ b ] 3.0 0.068 0.067 0.064 0.041 0.015
erncf —

y

4.0 0.169 0.168 0.164 0.154 0.121

V=k,a\/2n,An; n, =10, n, =2.177, An =0.043, A = 1.3um

Table 4.2. Normalized propagation constant, B= [(8/k,)* - n’]/2n,An, for

diffused planar waveguides obtained by different methods.

4.3.3. Diffused Planar Anisotropic Waveguide

The Y-cut, X-propagation LiNbO, planar anisotropic optical waveguide with the

optical axis in the x-y plane at an optical angle @ to the x-axis has also been studied.
The refractive index profiles for both the ordinary and extraordinary rays in the guide

core may be defined respectively as:

n,(y)=n, +An, - g(y) y>0 4.9a
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n,(y)=n, +An, - g(y) y>0 4.9b

where n,; and n,; are the substrate refractive indices, An, and An, are the
maximum changes in refractive indices between the core and the substrate for the
ordinary and extraordinary rays respectively and g(y) has a Gaussian profile. It is
assumed that the top cladding layer is air with an isotropic refractive index n_ = 1.0.

The non-zero elements of the relative permittivity tensor in the guide region are

given by

€, =n’(y)cos’ 6+n’(y)sin’ 6 4.10a
£, =1,(y) 4.10b
g, =n;(y)cos’ 0+n2(y)sin’ 6 4.10c
£, =€, =[n2(y)=n(y)]sin6coso 4.10d

The effective indices for the first four modes when D,=5 pm and the first two
modes when D = 3 pm, are calculated using the FEM and compared in Table 4.3

with results available in the literature (Koshiba, 1992). In this example, the guide

parameters are defined as follows: =07, A =0.6328um, n,; = 2.286, n,= 2.2
and An, = An, =0.01. In Table 4.3, results obtained in this work are compared with

those obtained by Koshiba (1992) using the FEM, the differential numbered solution
(DNS), the multilayer approximation method (MAM), and the WKB method
(Yamanouchi et al., 1978). The results obtained show very good agreement with
those obtained previously (Koshiba, 1992). The results presented by the authors
would be expected to be more accurate than those of Koshiba (1992) since in this

calculation 800 first order elements are used, which represents a much finer mesh
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compared to the 20 second order elements used by Koshiba. The computational time
required for our mesh is approximately 8s on a SUN Sparc2 workstation. These FEM

results have been tested using Aitken's extrapolation and have shown excellent

convergence.

D, Mode FEM Koshiba DNS MAM WKB

30 (0 2.20582 2.20581 2.20581 | 2.20583 2.20577
1 2.20159 2.20158 2.20159 | 2.20160 2.20155
0 2.20736 2.20734 2.20734 | 2.20738 2.20735

5.0 1 2.20427 2.20426 2.20430 | 2.20430 2.20426
2 2.20184 2.20184 2.20184 | 2.20187 2.20184
3 2.20028 2.20027 2.20028 | 2.20027 2.20027

Table 4.3 Effective index results for a diffused anisotropic planar waveguide

4.34. Diffused Channel Isotropic Waveguides

It is possible to represent accurately any waveguide with an arbitrary cross-section
and refractive index profile, which may arise as a result of the complex diffusion
chemistry using the finite element method. However, to test the utility of the FEM
and to compare our results with other reported results, the index profile is considered
to be the simple product of two functions, f(x) and g(y), where f(x) and g(y) can
be defined by any two given functions. The form of these functions is determined by
the fabrication method of the device. In Ti:LiNbO,, the refractive index profile has
been empirically approximated by Gaussian, exponential or complimentary error
functions by various authors. However, it should be noted that in practical

waveguides, the index profiles might not be a simple product of the two transverse
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direction profiles. The FEM can model any such arbitrary variations, which other

methods will not be able to tackle.

In this section, the FEM method is applied to the analysis of 2-D diffused channel
waveguides with various refractive index distributions. The index distribution in the

x and y direction, f{x) and g(y), is defined by any one of the following functions:

exp(-x*/D?)
fix)=1 exp(-x/D,) 4.11a
erfc(x/D,)

exp(—y* / D})
g(y)=1 exp(-y/D,) 4.11b
erfc(y/D,)

In the next example, it is assumed that €, = 1,¢, =2.1, €., =1.05° €, and a/b=1.
The normalized frequency is defined as V= k,,am ,  wavenumber,
k, =271/ A,, where a is the guide width, b is the guide depth and a/b is the aspect
ratio. In this example, the available one-fold symmetry has been exploited and an
irregular mesh (a greater number of divisions in the guide core and lesser number in

the cladding) has been used to represent one half of the guide cross-section. In the

first example a = 2D, since one fold symmetry has been used and b = D,. In Fig.

4.2, results for a Gaussian-Gaussian diffused index profile are compared with those
obtained by Lagu et al. (1986), Schulz ef al. (1990) and Sharma and Bindal (1992).
These results show very good agreement with those obtained by Schulz et al. (1990)
who have used a vector finite difference formulation. The present results differ
slightly from those obtained by Lagu et al. (1986) who used a scalar formulation,
which did not take into consideration the hybrid nature of the modes. These results
differ significantly from those obtained by Sharma and Bindal (1992). However, it
should be noted that the normalized frequency as defined by them, V = k, WW ,
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differs from that used by Schulz et al. (1990), Lagu et al. (1986) and as was defined
in the present work, being V = k(,a\/emﬂx——:;‘2 , where 2W is the initial metal strip
width. The results of Sharma and Bindal therefore cannot be directly compared with
those of Schulz ef al. (1990) and Lagu et al. (1986). Their claim (Sharma and Bindal,
1992), therefore, of presenting a better method can be attributed to the discrepancy in

defining V and therefore, in our opinion, may not be valid.
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Normalized Frequency, V
Fig. 4.2 The variation of the normalised propagation constant with the

normalised waveguide dimension for a gaussian-gaussian diffused waveguide.

The effect of considering waveguide dimensions, which are greater than the diffusion
depth, has also been studied in this work. In most of the literature, the region of the
guide core generally considered to have a diffused profile is defined by a and b
which are equal to 2D, and D, respectively (see Fig. 4.1). Outside this region, the
refractive index is assumed to be constant, equal to the substrate index. In Fig. 4.3,
the dispersion characteristics of the H}, and H}, modes are shown for a guide with

Gaussian index profiles in both the transverse directions. In this case the refractive

indices of the substrate and the core region are given as &5 = 2.1, £, = 1.05% &5,
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respectively. In the example, the diffusion depth and the diffusion width are taken as

Dy =2D, =6um. In the first approach, the guide core is defined by the diffusion
depth and width, i.e. D, = b, and similarly, 2D, = a. This is the approach adopted

by most of the other research workers, whereas in reality, the refractive index
profiles do not suddenly become uniform beyond the distances D, and D, . Thus the
inaccuracy due to the first approach is tested by considering the effect of the guide
dimensions being greater than the diffusion depth in both transverse directions i.e.

D < b and 2D, < a. For a well confined mode, the results are similar in both

approaches. However, as can be seen from Fig. 4.3, the approximate results start
diverging near the cutoff from the more accurate solution. Most of the practical
waveguides are designed as single mode waveguide and in this operating region it is
shown that the simple approximate approach differs considerably from the more
exact representation. From these results, we believe, it would be appropriate to use

guide dimensions larger than the diffusion distances, particularly near the cutoff.

0.7 —
0.6
0.5

0.4

a>D,, b>D,
------ D,=a, D,=b
a>D,, b>D,
------ D,=a, D,=b

0.3

0.2

Normalized Propagation Constant, B

0.1

0.0 | T ! ! I T I [ | 1
OEaieinn 4 S50 5 8 L ei10 o 8s 145167 £ 18 120

Normalized Frequency,V

Fig. 4.3. The effect of guide structure on dispersion characteristics of a

Gaussian-Gaussian diffused channel waveguide for the first two quasi-TE modes.
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4.3.5. Anisotropic diffused channel waveguides

Next, anisotropic waveguides with diffused refractive index profiles in both
transverse directions are considered. In this example, it is assumed that the optical
axis is in the direction of the x-axis and hence the relative permittivity tensor will
have only diagonal elements. In the general expression relating to the permittivity
tensor equation (4.10), this is equivalent to 0= 0°. In the example, various

parameters involved may be defined as n, =2.20, n, =2.286, n, =2.21,
My =2.296, D, =30um and D, = 60um. In Fig. 4.4, the dispersion characteristics

of a waveguide with a Gaussian diffusion profile in the x-direction and different
diffusion profile namely, Gaussian, exponential and complimentary error functions
(CEF) in the y-direction are shown. It should be noted that any other function of x
and y could have been used to represent the diffusion in the guide. It can be seen that
the effective index of the fundamental H}, mode depends strongly on the diffusion

profile assumed in the simulation.

Again, in this example, the symmetry of the waveguide has been exploited. The
importance of using such symmetry lies in being able either to employ higher mesh
refinement to obtain more accurate results or simply to reduce computational time. In
a channel waveguide, the y-axis is chosen as the line of symmetry. The required
boundary condition nxH =0 or n-H =0 can be easily realised in an isotropic or
anisotropic waveguide, with only diagonal elements, where n is the unit vector
normal to the symmetry plane. In this example, if the boundary condition, nx H =0,

is used along the symmetry plane to obtain the dominant quasi TM mode, then this

will also yield all the H, modes with m being odd. This boundary condition will
also yield the H?  mode with m being even. Similarly if the boundary condition

n-H =0 is implemented then this will yield all the H}, modes with m being even.
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Fig.4.4. Dispersion characteristics of a rotated y-cut LiNbO3; waveguide with

Gaussian index in the x-direction and various index profiles in the y-direction.

Again, a waveguide with only diagonal elements in its relative permitivity tensor but
with ©=90° has been studied. The other waveguide parameters are n,, = 2.20,
n, =2.286, n, =2.21, n, =2.296, D, =30umand D = 60um. The diffusion
profile in the y-direction is an exponential function and in the x-direction, a Gaussian
function. The dispersion curves for the first four HY, modes of the waveguide are
shown in Fig. 4.5. With 6 =90°, the optical axis is in the direction of the y-axis. It
can be seen that, for this crystal orientation, the H) (quasi-TE) modes see the
ordinary refractive index of the guide. The boundary condition n-H =0 has been

used along the symmetry plane, giving the H?. mode with m as odd.

mn
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Fig. 4.5. Dispersion characteristics of a diffused anisotropic waveguide with

optical axis at 90°,

4.3.6 Anisotropic diffused waveguides with arbitrary

permittivity tensor

From the permittivity relations given in equation (4.10), it is clear that at 6= 0° or
90°, the permittivity tensor will reduce to one with only diagonal elements and
modes will be dominantly either vertically or horizontally polarised. A waveguide

having such a permittivity tensor could therefore be used as a mode discriminator, to
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separate the TE and TM modes. When 0 # n_27_t (n =0,1,2,3), the off-diagonal terms

do not vanish and the mode polarization is more complex. This type of waveguide,
either passive or exploiting electro-optic effects, could be used as polarisation
converters (Tzolov and Fontaine, 1996). In this section, results are presented for our
study of anisotropic channel waveguides with the optical axis lying in the x-y plane
and hence the permittivity tensor will have off-diagonal elements. It can be shown
that, as the optical angle is varied from 0° to 90°, the dominant mode changes from
horizontal polarization to vertical polarization. When the optical axis is at 45°, the

amplitude of the Hy field is approximately equal to that of the Hy field. Although a
physical symmetry of the guide exists, since both the Hy and Hy components are

equal, neither the nxH =0 nor n-H =0 boundary conditions can be imposed to

exploit this symmetry. It is therefore appropriate to use the full waveguide to

compute the waveguide modes when 6 # %t (n=0,1,2,3).

20l e
e LAY e Tt o et ¢
/// ///
AW T 2 b
s 227
r2 P72

Fig. 4.6. The relative strength and orientation of the H field for anisotropic

waveguide with optical axis at 45°.

The orientation and relative strength of the vector H-field in a full waveguide at

6=45° is shown in Fig. 4.6 when A =0.6328um . The field amplitude is a
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maximum at the centre of the guide and reduces along the transverse directions. The
other waveguide parameters are the same as are given in the example for Figs. 4.4

and 4.5. It has been checked that the Hy and Hy field components are individually

symmetrical about the y-axis and the total vector magnetic is directed along the
optical axis (see Fig 4.8). For the dominant modes, both the Hy and Hy components

are maximum along the y-axis, and Hy=Hy, that is both are even functions and in

this case neither the nx H =0 nor the n- H = 0 boundary condition is applicable.

It would appear from the above results that for 6=0° or 90°, it is best to impose
symmetry to take full advantage of the reduced computational time and higher
accuracy. The full waveguide should be used for cases when 6 #0”,90°, to obtain
both accurate and physically meaningful results. For other angles, say
6 =30° or 60° both Hy and H, components are maxima along the y-axis but their
maximum values are different. The boundary condition of nxH=0 or n-H=0
can therefore be easily realized in an isotropic or anisotropic waveguide, with only
diagonal elements, because of the dominance of one of the modes and the absence of

the other. The dispersion characteristics of the first two modes of the waveguide

considered are shown in Fig 4.7 for 6 = 45°.
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Fig. 4.7. Dispersion characteristics of the first two modes of a diffused

anisotropic waveguide with optical axis at 45°.

In Fig 4.8, the results from the numerical simulation, which checks the symmetry
condition, are presented for two different modes. In the simulation, steps were taken
to ensure that, in the waveguide region, a proportionately equal number of elements
were used. The results show very good agreement, an indication that for the same
number of elements, it did not matter whether symmetry was imposed. It must be
noted however that the use of symmetry will allow the use of a greater number of

mesh divisions, hence leading to an improvement in accuracy.
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Fig 4.8. Showing the effect of the imposition of symmetry condition on the

effective index of the first two modes of the guide.
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Very often it is useful to find the effective index at a particular angle. This might be
the case, for example, in second harmonic generation, when at a particular angle, the
ordinary and extraordinary refractive indices might be equal. Such information will
be useful in designing phase matched guides. Fig 4.9 shows the dependence of the

refractive index of the fundamental mode on the angle. It can be seen that as the

angle is varied from 6 =0° to 6 =90°, the field changes from a purely H!' to a

purely HY! for the ordinary wave. The direction of the magnetic field will vary from

nearly parallel to nearly normal to the optic axis. Fig 4.10 shows similar results for
the extraordinary wave. Such knowledge could prove useful in the design of a mode

separator or discriminator to separate the TE and TM modes.
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Fig. 4.10 Variation of the effective index with the optical axis angle, for the

extraordinary mode.
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4.4. Asymmetric Directional Couplers

This section briefly explores the application of the finite element method to coupled
mode devices. These devices are important in the design of compact photonic
systems. These devices (directional couplers) belong to a class of passive devices in
which power exchange takes place between two modes, which are in close proximity
to each other. A directional coupler is made up of two waveguides parallel to each
other such that the evanescent field of one guide penetrates the other and optical
power is coupled into the propagating mode of the latter guide. The coupling length,
Lc, is defined as the distance over which maximum power transfer occurs. This
depends on the structure and refractive indices of the waveguides making up the
directional coupler and the distance of separation between the guides. Fig 4.11
illustrates the coupling between two guides. Beyond the coupling length, the power

is coupled back into the original guide, and power transfer is thus periodic along the

axial direction.

P
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it iiﬁuﬁ nzziﬁ. it SR

| T
ool

e .
/ « Ouide 1
Input e e TR
T——— TR m R
Z=0 Z=14 Z=2L,

Fig 4.11 Diagrammatic representation of a directional coupler

Directional couplers are used in a variety of integrated optical devices including

power dividers (Hotta et al., 1994), input-output couplers (Rajarajan et al., 1999),
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modulators (Anwar et al., 1999), filters, switches (Jenkins et al., 1994), polarisers
(Tzolov and Fontaine, 1996) and spot size expanders, (Rajarajan et al., 1998). More
recently they have been used in the enhancement of the second harmonic power
output (Hempelmann, 1999). An accurate knowledge of the propagation
characteristics is thus essential. For illustrative purposes, the FEM developed here is
applied to the characterisation of such a device. Guide one is formed by field assisted
K*- Na" exchange. It is assumed that the refractive index profile is step index in both
the lateral and transversal dimensions. It is assumed that there is as much side-

diffusion as depth diffusion such that d, = d, and w is the guide width. Due to stress,

the guide will be anisotropic with the following parameters:

TE-polarisation: An=1.0x1072

TM-polarisation: An=1.2x107"

L 1 0<sx<d,
i ((T]z otherwise 4.12a
: 0
1 -(d, +wi2)<y<(d, +w/2)
g(y)= otherwise 4.12b
0

The following relation defines the refractive index profile
n(x,y)=n,+(n, —n)f(x/d,) g(y) 4.13

The second guide is formed by thermal Ag" - Na' exchange. The refractive index

change at the surface is given by An=1.0x10". No anisotropy is assumed for this

waveguide. The refractive index is approximated by the complementary error

function in the x-direction. Such an approximation is valid and has been verified
e ————— G O DUCHL AN approximation 1S vaic anc uas been verilied
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experimentally for planar waveguides. The refractive index in the y-direction is

represented by sum of error functions.

o)
R E ) e B

nz(x’y)=n3+(n;_nf)f(x/d)-i)(?o)}—/wv? 4.15

The denominator g(0/w) has been included for the purpose of normalising the

refractive index change. The diffusion depthis d =d,,, =0.636"' Xd,, .

The dispersion characteristics of the individual waveguides are calculated at first.
The modal fields of both individual guides may then be used to design the
asymmetrical coupler approximately using simple coupled mode theory or improved

coupled mode theory. The following parameters are common to both waveguides:

for both guides the substrate index is n, =1.512,
for both guides the upper cladding index is n,=1.0,

the wavelength region of interest is between A = (0.55 to 0.70)um , and

the mask has widths between w= (1.8 to 4.0)um.

A comparison of the results obtained using the finite element method with the
effective index method (Gwneuch, 1995), are shown in Table 4.4 for both Gaussian
and complimentary error function index profiles. In this case the refractive index

profile is unnormalised. The refractive index at the core of the film is 1.522 and the

aspect ratio is given as §= 1. Table 4.5 shows the relative error between the FEM

_—_—
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and the EIM near to cutoff. It can be seen from the table that as the mode approaches

cutoff, the relative error also increases. This can also be deduced from table 4.4

FE A of Diffused Anisotropic Optical Waveguides
e e e e et e

Propagation constant
FEM EIM
3 21d [ Erfc Gaussian | Erfc Gaussian
TR
8 0.09828 |0.21795 | 0.0963 0.2117
10 0.14695 |0.26944 | 0.1443 0.2630
12 0.18478 |0.30612 |0.1820 0.2996

Table 4.4 A comparison of the FEM with the EIM for complimentary error function

and Gaussian function in a directional coupler.

Propagation constant

(with normalised refractive index profile )

FEM EIM
_2md Erfc Erfc Rel. error %
il
4.5 0.08649 0.0919 +5.9
5 0.12967 0.1318 +1.6
5.97 0.20545 0.2040 0.7
Table 4.5

the FEM and the EIM for the complimentary error function.

Showing the relative error in the normalised refractive index between
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4.5. Summary

Using the vector H-field finite element formulation, waveguides with an arbitrary
index distribution in both the transverse directions have been investigated, as were
waveguides with an arbitrary permittivity tensor. The effect of anisotropy on the
symmetry of the guide has been reported. To test the accuracy of the FEM initially
some planar examples were considered where a FEM solution was obtained for a
simple planar waveguide and compared with the exact solution obtained by solving
the transcedental equation. Since computational resources can limit the accuracy of
the FEM, two extrapolation techniques used in improving the accuracy of the finite
element solution were tested. It was shown that Aitkens' extrapolation technique
converges faster than the approach adopted by Koshiba. So far, many workers have
assumed that in diffused waveguides, the diffusion parameters are equal to the guide
dimensions. In this chapter, it has also been shown that for waveguides with diffused
index profiles, better results are obtained near cut off if the waveguide dimensions
are assumed to be greater than the diffusion parameters. Anisotropy of the waveguide
was investigated and results were presented for a two dimensional diffused
waveguide with an arbitrary permittivity tensor. It has been shown that in analyzing
anisotropic waveguides with an off-diagonal refractive index tensor, it is not possible
to exploit the physical symmetry of the guide to achieve computational efficiency. In
the simulation and optimization of second harmonic generators where phase
matching is achieved due to the birefringence of the material or in an electrooptic
modulator where the applied modulating potential introduces off-diagonal tensor
refractive indices, cascaded nonlinear devices or erbium doped amplifiers, the

adoption of the above analysis technique would be of particular value.
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Chapter Five

Numerical Modelling of Seconq Harm.ol?ic
Generation in Optical Waveguides Using the Finite
Element Method

I. Introduction

A numerical study of Second Harmonic Generation in optical waveguides is
presented using the finite element method and the Crank-Nicholson split-step
procedure. Results are given for a Cerenkov radiation scheme in both planar and
channel waveguides. Also presented are results obtained on frequency doubling for

guided modes in both planar and channel waveguides, using the quasi-phase

matching scheme.

The demand for compact and robust solid-state sources, emitting coherent blue
radiation for data storage and laser printing as well as all-optical switching
applications has intensified the search for appropriate materials from which they may
be fabricated. This is evident from the number of recent publications in the field,
(Hashizume er al., 1992, Li et al., 1990, Hayata and Koshiba, 1991, Suhara and
Nishiahara, 1990, Mizuuchi et al., 1994, Delacourt et al., 1994). Reliable coherent
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radiation on this wavelength band is still difficult to obtain directly, and second
harmonic generation (SHG) is one convenient alternative method of obtaining a
compact, coherent source of blue radiation. This has the potentially of offering high
conversion efficiencies (Suhara and Nishiahara, 1990, Mizuuchi et al, 1994,
Reneger and Sohler, 1988, Kinkata et al., 1996, Leo et al., 1992, Fluck et al., 1996).
As a phenomenon, SHG was first observed in the early 1960s, yet its exploitation has
been rendered difficult by technological problems as well as finding materials that
meet the phase matching requirements. The need to model such devices accurately
and efficiently becomes even more urgent as a means of cutting down on
developmental costs, thus enhancing the productivity of the search. It is quite
difficult to model non-linear devices accurately using analytical methods, and so
several numerical methods have been proposed and developed (Masoudi and Arnold,
1995, Yevick, 1994, Krijnen et al., 1996, Hayata and Koshiba, 1991, Mahalakshmi et
al., 1996). The difficulties encountered in modelling such devices accurately has
meant that approximations, such as a reduced geometry, or a planar representation of
a two dimensional structure are often employed (Hayata and Koshiba, 1991,
Mahalakshmi et al., 1996). The FEM has previously been shown to be a very
powerful, accurate and versatile method (Rahman and Davies, 1984a), useful in
obtaining the modal solution of any waveguide medium with an arbitrary diffusion
profile and anisotropic properties. Waveguides structures having such characteristics
are particularly suitable for SHG. In this section of the thesis, results are presented on
the SHG process in optical waveguides using the finite element-based beam
propagation method (FE-BPM) and the split-step Crank-Nicholson procedure, where
both planar and channel waveguides are considered. Two major schemes for
obtaining second harmonic radiation are studied, these being the birefringent phase

matching and the quasi-phase matching techniques.
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5.2 Theoretical Background

When electromagnetic radiation propagates through certain a class of crystals, the
non-linear dielectric properties of the material induce in it a polarisation. It is well
known that the mathematical representation of this induced polarisation in the crystal
contains a higher order term, proportional to the quadratic of the non-linear
susceptibility and to the square of the applied electric field. The non-linear response
of the material may lead to an exchange of energy between the electromagnetic fields
propagating at different frequencies Yariv (1989). One important application of such
a phenomenon is in second harmonic generation in which part of the energy of the
input field, at a frequency, ®, is transferred to a field at double that frequency, 2w .
The non-linear susceptibility term is the index of proportionality between the induced

polarisation and the propagating fields and is defined as

P =2dE-E 5.1

where P is the non-linear polarisation, E is the field and d is the non-linear

susceptibility tensor.

However, due to symmetry requirements, only materials from the non-
centrosymmetric point group have a quadratic non-linear susceptibility term Fejer
(1994) ie. they posses a non-vanishing tensor term. In general, the induced

polarisation can be written as follows (Yariv, 1989):

E;

2
Pl |du dyp dy5 dy, dis djg Eg
Pyl=ldy dy dy dyy dys dy 2E:E S
Pl |d3 d3; dyy dsy dys  dyg 2Ein

2E,E,
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where P, P, and P, are the components of the non-linear polarisation expressed in
terms of the non-linear coefficient tensor, d, (m=1..3, n=1..6) and

E,,E; and E, are the amplitudes of the fundamental electric fields. The specific

form of the tensor depends on the point-group symmetry to which the crystal
belongs. The small magnitude of the non-linear susceptibility tensor and phase
velocity dispersion does not enable high output powers of the generated second

harmonic radiation to be obtained.

5.2.1 Coupled Wave Equations

From Maxwell's equation, the propagation of an optical field in a given material can

be written as
VO—p B+ gk’ =P,, 5.3

and considering two fields propagating at two different frequencies in the material,

the total optical field, @, can be written as (Weitzman and Osterberg, 1993)
1 A
D(x,y,z,1) = E{d)' (x,y)exp[j(wt - Bo)|+ @, (x.y, z)exp[j(2wt - 2ﬁz)]+ c. c} 5.4

where @, is the slowly varying amplitude of the generated second harmonic field,
®, is the input field of the fundamental wave, P,, is the non-linear polarisation, g
and p, relate to the refractive index of the guide, k, is the wave number, @ is the

angular frequency and B is the propagation constant of the fundamental wave and

c.c. is the complex conjugate. From the above equations, making the assumptions

that the fundamental field is independent of the direction of propagation z, and that

—— —_—
_ ——— ——
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Py, =0 for the fundamental field, the following coupled non-linear parabolic

equations can be derived:

2°D 2°D
pxl ale +pyl?2]_pzlﬁ2q)l+qlqu)l =O 55
4 2°D
_j4ﬂpzz%+sz 88(12)2 a2 8y22 “4Pz2ﬂ2¢’2 “"‘lzqu)z =Py, 5.6
/4 X

The subscripts 1 and 2 denote the fundamental and second harmonic respectively.

2 :
For the TE modes, ®=E_, p, =n,/n,, p,=p,=1g=n; and for TM modes
®=E,, p, =1/nf s 1y =1/n§,pz =l/n§ ,q=1. For c/fy, n,=n,=n,, the
ordinary refractive index and n, = n,, the extraordinary refractive index, for a planar

waveguide i =0.
ox

5.2.2 Phase Matching Techniques

The magnitude of the second harmonic power generated depends critically on the
waveguide parameters and on the non-linear tensor. As mentioned earlier, the small
magnitude of the non-linear tensor and the phase velocity dispersion affect the level
of output power generated. Research in the area of second harmonic generation is
therefore mainly directed at finding new materials with a high non-linear
susceptibility tensor and at ways of reducing phase velocity dispersion and hence

obtaining phase matching. This study uses the latter methods.

To obtain acceptable conversion efficiency, a high input intensity and large
nonlinearity are required. High pump power density may be obtained through the use

of appropriate optical resonator geometry. This however requires the accurate
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matching of pump laser and resonator wavelength. This can be done by employing,
for example, mode-locking techniques. High pump power density can also be
obtained by confining the pump light within the nonlinear part of the optical
waveguide, rather than focus it into the bulk material. This can, however, lead to a
narrow tolerance in pump wavelength and it might be difficult to achieve in

semiconductor lasers with an extended temperature range.

The efficiency of the second harmonic generation depends critically on the
waveguide parameters, thus requiring tight control of the guide thickness. A number
of techniques exist for obtaining phase matching and these include birefringent phase
matching and quasi-phase matching (QPM). Birefringent phase matching is a
frequently used technique. It is based on the anisotropic properties of crystals, in
which it is possible to make, as a fundamental input, an ordinary wave and for the
output, an extraordinary wave or vice versa, depending on whether the crystal has
negative or positive birefringence (Harvey, 1970). The phase velocities can be
matched by choosing the particular angle between the direction of propagation and
the optical axis. This results in the two waves ‘seeing’ different refractive indices.
Birefringent phase matching is thus based on the difference between the refractive
indices of the orthogonally polarised waves in the medium. Due to this difference, it
is possible to have a situation where the phase velocity of the second harmonic wave
equals that of the orthogonally polarised fundamental wave, because the refractive
index, as ‘seen’ by the fundamental wave, is different from that of the generated
second harmonic wave. The second harmonic field is thus radiated into the substrate
at a known angle with respect to the propagation direction. This angle at which the
nq,]-((o)

second harmonic field is radiated is defined by cos =
n.\'ub (2(‘0)

where n,, (0)is the

effective fundamental refractive index and n

sub

(2w) is substrate index of second

harmonic. The bandwidth over which this occurs is very narrow, thereby limiting the
transparency range of the material. Until recently, all frequency conversion devices

were based on this method, despite the fact that only a few materials meet this

ﬂ
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requirement. Since the generated second harmonic wave is radiated, special steps

must be taken to ensure its efficient collection.

In isotropic media with normal dispersion, the phase matching conditions cannot be
satisfied as in anisotropic materials since the refractive index is frequency dependent
(Harvey, 1970). Other methods are therefore used to obtain phase matching. In quasi-
phase matching (QPM), the non-linear coefficient is modulated by the periodic
reversal of the ferroelectric domains after each coherence length. The effect of this is
to negate any build-up of the phase mismatch. The device performance is therefore
not dependent on the anisotropic properties of the material, hence making it possible
to use the material over its entire transparency range. Another technique is domain
disordering in which the non-linear susceptibility tensor is periodically destroyed in
alternate half periods of the waveguide structure (Masoudi et al., 1995). Generation
of the second harmonic wave by this method is ideal for use in integrated optics due
to its narrow confinement. It also requires, however, that the waveguide parameters

are tightly controlled.

5.2.3 Propagation in Linear medium

For the purpose of comparison, equations describing the propagation of the TE wave
profile in planar waveguides are derived. The waveguide was assumed to be linear
and isotropic and capable of single mode operation. The initial wave profile was
obtained by solving the eigenvalue problem using the well-developed FEM. The

equation describing the propagation of a wave profile in an isotropic is given as

o 09 J’0 3%
2P+ 2= B rkn*e'=0 5.7
A ey ok’ 1 oy’ o o
Application of the finite element method (Appendix 4) to the above yields the

following matrix equation

M
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- 2B(122L . (a]-p2(B e}-o 58
where

[AL= S [l VU F {0, o, Jasdy ana 5.9a
Bl=2{flein WYY Jaxay 5.9

where {N } and {NX} have been defined earlier as the element shape function and its

derivative. The element shape function and its derivative for second order linear

elements are given as follows

dur i

J{N}{N}dedy=% £ PR L) 5.10
% LT N6
and

PRy T
J{Nx}{Nx}dedy=1 by 5.11
2 el ga—giiTs
respectively.

For propagation analysis, the finite difference method is applied to equation (5.1)
over the small interval iAz < z < (i + Az) along the direction of propagation. This will

yield a matrix equation for the evolution of the wavefront in the form

- o) D) (0} proop), co-ofpll-0} sz
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This equation can be transformed into an equivalent matrix equation of the form

Ax =b by carrying out the following algebraic manipulations

- i2B[Bl (0}, —{o})+ Az(A]- B2[BI6s},, + (1-0)}]= {0} 5.13

multiplying out the above and rearranging the terms the following is obtained

- )2BIBl4s},, + az(A] - B2[B] plo}., + j2B[B] 6}

5.14
+az(A] - B*[BL)1-0)fp} = {0}
The above can be rearranged to give
- 2Bla) +az(al - p(B] )i}, =
.45

C j2B[B] - Az(A] - B2[B] J1-0))e}

Making the following substitutions

L(6)=~j2B[B] +az6(A] - p*[B]) 5.162
and
L(1-6)=-;2p[B] +Az(1-6)(A] - B*[B]) 5.16b

equation (5.15) can be written as
[L®)) {0}, =[L(-6)] {0} 5.17

The wavefront at each (i+1)" step is given by
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fok. =[LO)'[L0-06)] {o}, 5.18

The artificial parameter 8 determines which propagation scheme is being used. If
equal to zero, the forward difference scheme is obtained and equation (5.16) will be

reduced to the following

L(©)=-;28{B} 5.19a
L(1-6)=-j2p[B] +A:((A] - p*[B]) 5.19b
The backward difference scheme can be obtained by equating 6 =1, in which case

equation (5.16) becomes

L()=-2BB] +Az(A] - B*[B]) 5.20a
and
L(1-6)=-;2p{B} 5.20b

In the Crank-Nicolson scheme, theta is assigned the value of 0.5. It has been shown
that with 6 = 0.5, the numerical stability of the solution is guaranteed. Equation

(5.16) can then be written as

L(6)=-j2B[B] +0.54:(A], - B*[B]) 521a
and
L6 -1)=~j2B[B] -0.582((A], - p*[B] ) 5.21b

156



Chapter 5 Numerical Modelling of SHG in Optical waveguides using the FEM
Eaaaaa——————————————— L sess— ———————————————

5.2.4 Power Calculation

In second harmonic generation, a wave at a fundamental frequency, @, is converted
into a second harmonic wave at a frequency, ®, . In this process, the main interest is

in finding the amount of power at the fundamental wavelength that has been
transferred to the second harmonic wavelength. In second harmonic analysis,
therefore, an input field profile at the fundamental frequency is obtained and the

energy or power contained in that field profile is calculated using the relation
E, XH,. The fundamental field is then used as a source term to find the second
harmonic field. The power contained in the second harmonic field is calculated using
the relation E;2 X H,, . In the following, an outline is given of how the power within

the guide cross-section can be calculated using the element shape functions of the

finite element formulation.

The power in an electromagnetic field can be defined using the Pyonting vector

a, @, a, ; ;
E'xH=|E; E, E|=q,(E}H,-EH,)-a,(EH,-EH,)+a,(EH, -EH,)
H, H, H,
5.22
S = [E" x HdA 2:23

In the above the integration is carried out over each element cross section; the

interest is in the propagation direction and hence the following is obtained
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JE"xHdA = [(EH, - E}H, )dA 5.24
A

To simplify the above, a relation is established between the E and the H components

so that the final expression is in one variable only. From Maxwell’s equations it is
found that:

&
VxH" = jweE =|9,
H

Yy
*

L. N

y Z

from which the following is obtained

e R RN ) - e - oH® oH' L [oH, oH
EVE-+E-+E.)= RS T g 5k + Y & 5.26
jeo(E; +E; u)(ay az};(ax az]y[ax ay)2

Equating terms with equal coefficients;

JEWE ; = [%— a:y ]i 5.27a
y Z

Ll oH' oH"
EWE - = —=2z _""x 5.27b

The 3z component can be replaced with — jf8

JemEgs Oilely s il 10 OHZY B s 5.28a
dy i JEW dy e -
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. » aH* * * | aH* ﬁ *

€wE, =—Z2+ jBH, = E, =— = - H' 5.28b
R B PH, Y jew ox  we
Substituting the above in the Pyonting vector, the following is obtained

1 + OH, aH

pELE H. + JdA 3.29
{we [ﬁH ay [ P 4T
A T 3)’ o)

From the representation of the field in triangular elements using shape functions, the

following can be written

H,
H=[NKH} and H* ={H} [N] where [N]=(N, N, N,)and {H}=|H, |.
H,

Making use of the above and their corresponding transpositions, equation (5.30)
becomes

J el FINT I, b o, FINF IR, )
! LN p T, )

X

5.31
(A A A]
Nf NN, NN, [6 12 12
INFIN]=|N,N, N2 N2N3=% % % 532
NaN; N3N, N3 | A A A
5121206
_—_ —m s m m m m —— —————————
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ox 0x ox
JINF[N]_|dN,N, 9N,N, 0N,N,

ox ox ox 0x

ox ox ox

From equation (2.57) the following can be obtained

oN oN oN
_ax_|=a2., axz = gs; -a_;. =ag such that

a,N, a,N, a,N,

a[N]f N 24V 202

%: ale a5N2 05N3 5‘34
agNl a8N2 08N3

Similarly,

ON|N, ON,N, oN,N,
dy dy dy
JINI'[N]_|ON,N, 3N,N, aN,N,
dy dy dy dy
IN,N, ON,N, ON,N,
dy dy dy

3.33

and making the following substitutions — = a,; —2 =

a;N;  a;N, a;N,
JdIN
[]T[N]=a6NI N 5.36

dy
agN;  agN, agN,4
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A substitution of the above in equation (5.31), and noting that

[N,dA =[N,dA =[N.dA =% results in the power equation becoming

okl {ickivl,
8 22 2 %
All | r Al
—H, /== 1 g E V2L 1 S,
LA LTS & T N
el s e
229 22
a, a, a, a, a, a,
: oy
L {Hz}rj%‘ls das ‘ls{Hx}+{Hz}rJ'3‘“s ds “S{Hy}
o ag ag ag ax (18 (lx

3.37

5.3  Results of the Simulation

In this section, the numerical method developed in this research project will be
applied to the simulation of various types of nonlinear waveguides. Initially the one-
dimensional planar structure will be considered. The method will then be extended to

two-dimensional structures. A number of schemes for improving the output power

will also be examined.

5.3.1 Planar Waveguides

The finite element method (FEM) has previously been shown to be useful in the
analysis of optical waveguides, particularly in obtaining a modal solution (Rahman
and Davies, 1984a). In this section, the finite element method is applied to the
analysis of the second order non-linear process of second harmonic generation in
planar waveguides. To test the accuracy of the present method, results obtained are

first compared with those previously published. Applying the FEM to equation (5.5)
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and assuming a stationary analysis, the following matrix equation is obtained for the
modal analysis model (Rahman and Davies, 1984b)

[A®} + w? [Bl®} =0 5.38

where [A] is a complex Hermitian matrix, [B] is a real symmetric and positive

definite matrix, ®? is the eigenvalue, and {®} is the eigenvector.

Applying the FEM to equation (5.6) will yield the following matrix equation for the

propagation model:

W
O

14/3[13]"{“’} ([A]_w?[s])(q)}: ) 5.

Equation (5.39) may be solved using a split-step procedure; the propagation step in
which the finite difference method is applied within a short interval and the non-
linear step where the effect of the non-linear term is considered. Such a procedure

will yield a matrix equation of the form (Hayata et al., 1991)

(P, =[LON'[L6 - Do, + /755 2 L) 5.40

where

L(0)=-j4B[B]+0Az(A]- 482[B]) 5.41

and 0, as stated previously, is an artificial parameter which controls stability of
solution. For the Crank-Nicholson scheme, 6 = 0.5, which provides a stable solution

unconditionally.
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5.3.1.1 The non-linear Tensor for TE mode

In equation (5.40), the profile of the non-linear polarisation can be written as
Koshiba (1992)

2k?
Yy = —8—"(1; ‘Py,) 5.42

0

for the TE mode, where i, is the unit vector in the x-direction. For the direction under

consideration, the electric fields of the TE mode can be approximated as follows

Making this substitution in equation (5.2), the following is obtained

£ dllefl
Py, =|0|=¢,|dye;, 5.43
0 d3lefl

The non-linear tensor d is different for different crystal orientations. In LiNbO3 when

c//x, d\; =dy, d,, =0, and d,, =0 and the non-linear polarisation becomes

PNL = x =£“d338f1 544

The refractive indices for this orientation are also given by the following

For c¢//y, the following tensor values are obtained

e —— st————————————————————————————————————
e e — — e e ———
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d, =0, dy =dy, and dy, =—d,,

Making this substitution in equation (5.2) the following is obtained

P 0
pNL = O = eu d]lexz‘l 545
0 = d2Zefl

This shows that no polarisation term is obtained for the TE mode in a crystal cut with
c/y.

Similarly when c//z the following is obtained

d, =0, dy =-d,,, and dy =d,

P 0
Py. =(0 =E, _dZZefl 546
0 d31e31

Again no polarisation is generated in a crystal cut with ¢//z.

Sael2 The non-linear Tensor for TM mode

For the TM mode, the source field is given by the following

Wy = k, 2B(i.vZ'PNL)_jLa(iz'PNL) 547

E:T; n nf dy

y
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where i, and i, are unit vectors in the y and z directions respectively. The

approximate values of the fundamental electric fields can be expressed as

Zuﬂ ) gl
e, =0, €y =_I12_k o, €, =1J

y 0 2 0

Using these values in the second order non-linear polarisation term, the following

equation is obtained

0
e2
ke d dy e"z
Pl=¢g,|d, .. d3 § 5.48
= 2eze>,
Pz d3l d36 O
0
It follows that
P, d,zef, +d,3ez2 +2cl|4¢vez
P)|=¢,|dye; +dyel +2dye e, 5.49
P, dyel +dyel + 2dye e,

Different crystal orientations will give different values of the non-linear polarisation

since a different tensor is operative.

For ¢//x, the non-linear polarisation is as follows

P, d3,e§ +d3,e3
P|=¢,|dye’ —d e’ 5.50
PZ _2(1228),87

For ¢//y, the non-linear polarisation is as follows

_—\\———_—

I
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Pi 0
Pl=¢g,| dye;+dyel 5.51
P dzzez2 +2dse e,

For ¢//z, the non-linear polarisation is as follows

P. 0
P|=¢,|dye’ + 2d e e, 3,52
B d3le_f‘, +d33(zz2

For a TM mode with c//y, equation (5.51) is substituted in (5.47) to give

k, [2Be,[dne? +dyel) e, Adye? +2dgee,) i
Yy, = ) o ey 3 !
€,2, n; n; y
5.3.2 Cerenkov radiation scheme

The first extensive theoretical treatment of Cerenkov radiation scheme was provided
by Sanford and Connors (1989). As in such other work, the model makes the

following assumptions

o a quasi slab approximation

o no depletion of the pump beam by losses

° no depletion of the pump beam by second harmonic conversion
o a simple TE or TM polarisation

The Cerenkov radiation scheme makes use of the phase matching existing between
the fundamental guided mode and the second harmonic radiation mode. In this type
of scheme, the generated second harmonic wave in the non-linear medium travels

with a phase velocity faster than that in the substrate. As a result of this, the
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generated second harmonic wave is radiated into the substrate at an angle satisfying

the phase matching condition (see Fig 5.1).

Input field \ Film

Substrate N Radiated SH

Fig 5.1 Schematic representation of the Cherenkov scheme in planar waveguide.

The wavelength (A) dependencies of the ordinary and extraordinary refractive indices
n, and n,, respectively of the material substrate (LiNbO;3) are given as follows

(Smith et al., 1976)

n2 = 49048 - 1768 0716022 5542

0.04750- A

n? = 4.5820 0099169
0.044432 — 2

-0.02195047 5.54b
In this study the orientation of the crystalline axis is assumed to be ¢//y for the TM
mode, which is considered here. The explicit form of the second order nonlinear

optical tensor for such a crystalline orientation is given as

0 0 0 0 "dzz dIS
[d]5 |adanidu i day 00 .0, 50 5.55
—dy 0 dy, d; 0 0
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The values of the non-linear tensor terms used in this simulation are given as
dis=dy; =-59%x10""m/V, dy, =—40%x10""m/V, dy=-34x10"m/V
(Hayata and Koshiba, 1991). The guide dimensions considered in this work are

Ypum = 0525um, where y, is the height of the guide and y,,, is the height of the

substrate. Three cases labelled A, B and C, with respect to the non-linear term are
considered, where in case A, the guide is assumed to be linear, and the non-linear
susceptibility tensor [d];, = O; however, the substrate is non-linear. In case B, the
non-linear susceptibility tensor in both the guide and the substrate are equal i.e.,
[dlepet = [d]G, and in case C both the substrate and guide are non-linear with the
same magnitude of the non-linear tensor but with different signs i.e.
[dlpse ==[d), - The above three cases may occur depending on the actual

manufacturing process.

Field intensity in arbitrary units

Fig 5.2. Profile of the input field.

The field profile of the fundamental TM mode at A =1.06 um is obtained by way of a

modal analysis using the FEM procedure. The profile of this field, which is launched

at the input to the guide, is shown in Fig. 5.2. The guide core is within the following
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limits 0.8 <y <1.325um. It can be observed that the field profile penetrates only

slightly into the top air-cladding region but, however, decays much more slowly into
the lower substrate region. This fundamental field generates the second harmonic
field and its evolution along the optical structure is followed by the step-by-step

solution of equation (5.9).

2.5

—h
o
|

Field intensity in arbitrary units

(=]
)]
|

0.0

8 10 12 14 16 18 20
y um —_——
Fig 5.3a Radiated second harmonic field at Z=10.6um

The evolution of the second harmonic field profile as it propagates in the z-direction
is shown in Figure 5.3 for five different propagation distances (Z=10.6um, 15.9um,

26.5um, 30.6um and 47.7um), for case A, when the substrate is nonlinear.

169



Chapter 5 Numerical Modelling of SHG in Optical waveguides using the FEM
e e e e e e e e et e e i)
|

3.0*10°—

2.5*10°—

2.0*10°

1.5*10" ]

1.0*10°

5.0"107
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Fig 5.3b. Radiated second harmonic field at Z=15.9um

VUM e

Fig 5.3c. Radiated second harmonic field at Z=26.5um
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Fig 5.3d. Radiated second harmonic field at Z=30.6um
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Fig 5.3e. Radiated second harmonic field at Z=47.7um

The continuous spectrum of the radiated mode as it radiates into the substrate can be
observed. From Fig. 5.3a, it can be observed that the second harmonic field has
penetrated a distance of up to 4um into the substrate. It can also be seen from Fig.
5.3b, at Z=15.9um that the second harmonic field has penetrated further into the
substrate region. Fig. 5.3c shows the second harmonic field at Z=26.5um and

although it has penetrated well into the substrate region, it can be noticed that the
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maximum field amplitude remains unchanged in all three cases. In Figs 5.3d and e,
the second harmonic fields are also shown at Z=30.6um and Z=47.7um, respectively.

The results obtained in this work show very close agreement with those obtained by

Mahalakshmi et al. (1996).

6*10°—
5*10°—
4*10°—
3*10°

2*10°

P,/P,, in arbitrary units

1*10°

0*10°— | | I ] |
0 200 400 600 800 1000
Propagation distance = 0.1A*Zum

z

Fig 5.4. Second harmonic power as a linear function of propagation distance for all

three cases.

The total power carried by the second harmonic wave is calculated by integrating the
Poynting vector over the waveguide cross-section for each longitudinal position. Fig.
5.4 shows the generated second harmonic power as a linear function of the
propagation distance, for all three cases. In case C, when the magnitude of the tensor
terms in the guide and in the substrate are equal but of opposite sign, the intensity of
the generated second harmonic radiation is higher than that of cases A and B at any
given longitudinal distance. The significant increase in the radiated power in case C
might be attributed to phase matching due to domain inversion (similar to quasi-
phase matching in guided structures), as the radiated wave propagates in the yz plane.
This will suggest that a substantial increase in second harmonic output could be

obtained by carefully considering the phase matching requirements along the y-axis
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in a Cerenkov radiation scheme. The results obtained in this work show very close
agreement with those obtained by Hayata and Koshiba (1991). It should be noted,

however, that second order line elements were used in the work of Hayata and

Koshiba (1991), whilst first order linear elements have been employed in these

simulations.

5.3.3 Quasi-phase matching

The Cerenkov radiation scheme has proved to be a useful source of generating
second harmonic radiation. However, because the generated wave is radiated over a
wide area, it has not found wide application in integrated optics, which requires a
narrow confinement of the generated beam. In many instances, special steps have to
be taken to ensure that generated output is usefully directed. In the next case, an
isotropic step index planar waveguide is considered. The parameters of such a

waveguide are defined as follows: the pump wavelength A, =084um, the waveguide
thickness d =3um, the refractive index of the substrate at A, is n” =2.172, the

refractive index of substrate at the second harmonic wavelength, n’* =2.309, and

the index step between guide and substrate is An=0.01. In this simulation, it is
assumed that the index change, An , is the same at both wavelengths and the value of
the nonlinear susceptibility is as previously defined. The effective indexes of the
fundamental wave and the second harmonic have been found to be 2.1790 and
2.3181 respectively. Fig.5.5 shows the evolution of the second harmonic power
without any phase matching. The fundamental and the second harmonic wave will
travel at different velocities due to normal dispersion in the material. The direction of
flow of power between the two waves is dependent on their relative phases. A
continuous change in the direction of flow of power is therefore obtained as a result
of the continuous change in phase velocity between the two waves. Since the
fundamental and the second harmonic waves are not phase matched, an efficient and

complete exchange of power between them is not possible and, as expected, the

w——\_———
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power builds up to a maximum (over the coherence length) and then dissipates due to

the phase mismatch.

1.2*10° /\
1.0*10°—
8.0*10"

6.0°10°

Power

4.0*10"

2.0"10"

0.0*10° T T T |
0 50 100 150 200

Propagation distance = 0.1\*Zum

Fig 5.5. Second harmonic generation in planar waveguide without quasi phase

matching.

Modulating the non-linear term can, substantially increase the second harmonic
power generated. Depending on the periodicity of modulation, different orders can be
identified. Fig 5.6 shows QPM second harmonic generation using first order
modulation, i.e. periodically modulating the nonlinear term in alternate half-periods.
As expected, the second harmonic power is seen to build up. During the simulations,
it was tested and found that the integrity of the second harmonic field profile is

preserved during the period of propagation.
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Fig. 5.6. QPM second harmonic generation in LiNbOs,

This form of modulation of the nonlinear term may however, not always be possible
or difficult to fabricate, in which case a higher order modulation might be employed.
The first and third order modulations are shown in Fig. 5.7. For the higher order
modulation, the period of modulation is longer and hence easier to fabricate. It must
be noted however that the first order modulation achieves the most rapid growth in

output power.

QPM (First Order)

2.5
QPM (Third Order)

SH power in arbitrary units
o
]

1.0
Non QPM
0.5
tlo e oL+ |+ [Firstorder
00 I I T [ : | S 0 I N Il T
0 2 4 6 8 10 12 14

Propagation distance, pm

Fig. 5.7. Generated second harmonic with and without modulation.
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5.3.4 Channel Waveguides

Cerenkov Scheme: Whilst planar waveguides allow for a comparatively easy
analysis and modeling, practical waveguides are two dimensional devices. In this
section, second harmonic generation is considered in channel waveguides with two
transverse dimensional confinement (see Fig 4.1). The input field obtained from the
vector H-field finite element based modal analysis is shown in Fig. 5.8. In the first
instance, the Cerenkov radiation scheme is considered with waveguide parameters
similar to those used for the planar guide already considered. The waveguide
dimensions are, however, given as w=2um and d = 0525um. Here, w is the guide
width and d is the guide depth. The evolution of the second harmonic field profile as
it propagates in the z-direction is shown in Figures 5.9, 5.10, 5.11 and 5.12 for four
different propagation distances (z=1.5um, 2.65um, 3.82um and 4.77um), for case A,

when the substrate is nonlinear.

S
4-

e

1_

£ 37

R |

()]

L

B 2]

: —

(D =
1
O‘W]Illl]llTl[llll]llIl[llll
-3 2 -1 0 1 2 3

Guide width, «m
Fig.5.8 Field profile of the fundamental input mode.
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From Fig. 5.9a, it can be observed that the second harmonic (SH) field has penetrated
slightly into the substrate but its peak however is still in the guiding layer. Fig 9b
shows a three dimensional view of the same field plot. It can be observed from Fig
5.10a that a substantial amount of the second harmonic field has now penetrated
further into the substrate region, this is after a propagation distance of 2.65um. Fig.
5.11 shows the second harmonic field at z=3.82um, the peak having moved almost
totally into the substrate. Fig. 5.12 shows the second harmonic field at z=4.77um, in

this case the field now being wholly in the substrate.

Generated Second Harmonic Wave at Z=1.5um

7.5 -
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Fig. 5.9a A two dimensional plot of the radiated SH after a propagation distance of

1.5um.
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Generated Second Harmonic Wave at Z=1.5um

S
S
S
SIS
5 es s tenistetyess
9% 508,908 05595090 % 016

ol
SRS
(O S S
oot e e o o
! ———o————’—vo% P

Fig. 5.9b A three dimensional plot of the field profile after a propagation distance of
L.5Spm.
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Fig. 5.10a A two dimensional plot of the field penetration after a propagation of

2.65um
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Fig.5.12. A two-dimensional plot of the field profile after a propagation distance of
4.77um.

An observation of the 3-d plots would indicate that the magnitude of the generated
power remains the same in all cases; however, with increasing propagation distance
the field penetrates deeper into the substrate. The total power is of course higher even
though the magnitude remains almost constant. This can be explained by the fact that
with increasing distance, the field is more spread. It should also be noted that the
amplitude is equal to that of the planar structure seen earlier. Fig. 5.13 shows the
generated second harmonic power as a linear function of the propagation distance,
for all three cases. The three cases labelled A, B and C, with respect to the non-linear
term are as follows: case A, the guide is assumed to be linear, and the non-linear

susceptibility tensor [d];., =0; however, the substrate is non-linear. In case B, the

non-linear susceptibility tensor in both the guide and the substrate are equal i.e.,

[d]sust =[d]g,, and in case C both the substrate and guide are non-linear with the

same magnitude of the non-linear tensor but with different signs i.e.

(

180



Chapter 5 Numerical Modelling of SHG in Optical waveguides using the FEM
w

[dlss =—[d];,,. In case C, when the magnitude of the tensor terms in the guide

and in the substrate are equal but of opposite sign, the intensity of the generated
second harmonic radiation is higher than that of cases A and B at any given
longitudinal distance. Again this significant increase in the radiated power in case C
might be attributed to phase matching due to domain inversion (similar to quasi-
phase matching in guided structures), as the radiated wave propagates in the yz plane.
The evolution of the field profile and SH power generation along the longitudinal
direction, as shown in Figs 9, 10, 11 and 12, indicates that although the total power
increases, however, it also radiates deeper into the substrate region which makes it

unsuitable for use in guided wave applications.
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Fig. 5.13. The second harmonic power as a linear function of propagation distance.

3.3.5 Quasi-phase matching scheme

For quasi-phase matching scheme, an isotropic waveguide is now considered, of the
type given in earlier work (Delacourt ef al., 1994). The waveguide parameters are as

follows; A, =0.84pum, waveguide thickness d =3um, guide width w=3um,
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refractive index of substrate at fundamental wavelength, 4 ;s g =2172, refractive

index of substrate at second harmonic wavelength, n’* =2.309 and the index step

between guide and substrate is An = 0.01. For simplicity, it is assumed that this

index change, An, is the same at both wavelengths and the value of the nonlinear
susceptibility as previously defined are given by d,s=d,, =-59%x10""m/V,
dy =-40x10""m/V, d,, =-34x10""m/V (Hayata and Koshiba, 1991). The

numerical method adopted in this work can be used to consider any realistic index
profile, for the fundamental and second harmonic waves. In this case, the guide is
first considered without quasi-phase matching. The effective indices of the

fundamental and the second harmonic waves have been found from a modal solution

to be 2.1769 and 2.3178 respectively. From the relation Lc=—n—, with

AB
AB =Py, =Py a coherence length L, ~1.5umis obtained, where B,, and B, are

the propagation constants of the harmonic and fundamental waves respectively.
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Fig. 5.14. Non QPM second harmonic generation in channel waveguide.
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This result agrees very closely with what was obtained by Delacourt et al. (1994).
This is also confirmed in our numerical analysis using the BPM. It can be observed
in Fig. 5.14 that the maximum harmonic power is attained after propagating 1.5um ,
which is equal to the coherence length, and which also agrees with the modal
solution. Since the fundamental and the second harmonic waves are not phase
matched, an efficient exchange of power between them is not possible and as
expected, the power builds up to its maximum over the coherence length and then

dissipates due to the phase mismatch.
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