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Abstract

There has recently been a huge increase in the use of models
which examine the structure of mortality rates across the dimensions
of age, period and cohort. This paper reviews the major develop-
ments in the field and provides a holistic analysis of these models
and examines their similarities and differences. Specifically, it reviews
the models that have been proposed to date, investigates the struc-
ture of age/period/cohort mortality models, introduces a classification
scheme for existing models and lists the key principles a model user
should consider when constructing a new model in this class.
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1 Introduction

Recent years have witnessed a dramatic increase in the attention paid to the
study of the evolution and projection of mortality rates. Demographers,
statisticians and actuaries across the world have woken up to the issues
caused by rising longevity and aging populations.

Much of the analysis of the historical evolution of mortality rates is made
using models which decompose mortality rates across the dimensions of age,
period and cohort (or year of birth). These three variables form a natural
way of analysing how mortality rates change for individuals as they age, the
impact of medical and social progress with time, and the lifelong mortality
effects which follow individuals from birth. By projecting the effects of pe-
riod and cohort, we can also gain insights into the likely path mortality rates
might take in future.

Since the number of age/period/cohort (APC) models has increased rapidly
in recent years, we believe that the time has come to first review these devel-
opments and then undertake a more holistic analysis of APC models. This
paper reviews the major contributions to the development of new APC mor-
tality models, before analysing the common structure of these models and
proposing a way of classifying the models proposed to date. It also seeks
to assess the key principles a model user should consider before selecting or
constructing a model appropriate to their aims. While most of the issues
raised in this paper will be familiar to many model users, we believe that
a proper understanding of the structure of APC models is needed in order
to avoid using a poorly specified model. For instance, many of the issues
raised and pitfalls identified in these papers were vital to the development of
the “general procedure” for constructing APC mortality models, described
in Hunt and Blake (2014).

The format of this paper is to discuss the basic structure of the majority
of APC models which have been proposed to date in Section 2. We then
review the mortality models that adopt this structure in Section 3. The
components of this structure are further discussed in terms of

• the connections between the data, the variables of interest and our
predictor structure in Section 4;
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• the inclusion of a static function of age in Section 5;

• the potential forms for the dynamic structure across ages in the model
in Section 6; and

• the issues raised by the inclusion of parameters to capture the effects
of year of birth in the data and how these can be resolved in Section 7.

Section 8 provides a simple classification of APC models that highlights the
key decisions which have to be made in order to select the most suitable
model for the task at hand. Finally, we draw conclusions in Section 9.

2 Age/period/cohort structure

An APC mortality model is one which links a response variable with a lin-
ear or bilinear predictor structure consisting of a series of factors dependent
on age, x, period, t, and year of birth (or cohort), y = t − x, for a popula-
tion. APC models therefore fit into the general class of generalised non-linear
models (GNMs), with a structure that can be written as follows:

ηx,t = αx +
N∑
i=1

β(i)
x κ

(i)
t + β(0)

x γt−x (1)

Most models of this form can be fitted to data using the StMoMo package
in R (Villegas et al. (2015)), which takes advantage of the common GNM
structure to efficient estimate a wide range of different models.

This structure has the following components:

• A link function, ηx,t, to transform the response variable (which will be
some measure of mortality rates) at age x and for year t into a form
suitable for modelling and link it to the proposed predictor structure.

• A static age function, αx, to capture the general shape of mortality
across all ages and features of the mortality curve which do not change
with time.

• A set of N age/period terms, β
(i)
x κ

(i)
t , consisting of period functions,

κ
(i)
t , determining the evolution of mortality rates through time, and
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age functions, β
(i)
x , determining the pattern of mortality change across

ages. The choice of suitable forms for the age functions is discussed in
Section 6.

• An age/cohort term, β
(0)
x γt−x, consisting of a cohort term, γt−x, which

determines the lifelong effects specific to each generation, denoted by
their year of birth, and an age function, β

(0)
x , which modifies the cohort

term.1

Each of these component terms is discussed in greater detail in the sec-
tions below. One advantage of most APC mortality models is that the com-
ponents in them can be interpreted in terms of the underlying biological,
medical or socio-economic causes of changes in mortality rates which gen-
erate them. We call such an interpretation the “demographic significance”
of each term. Demographic significance is, by definition, subjective, since it
relates to the interpretation of the parameters. However, it is still a useful
concept as it motivates many of the decisions around the construction of
mortality models and their projection into the future.

While this structure is not exhaustive, it does encompass the vast ma-
jority of the discrete-time mortality models which have been proposed to
date. In particular, it is worth noting that we have assumed that the period
functions can vary freely for each year and are not constrained to be smooth
functions. This is the key feature which enables these models to be projected
stochastically and therefore generate probabilistic forecasts of future mortal-
ity rates.

In contrast, some models require that the period functions be modelled
through a series of deterministic functions and so are projected by extrap-
olating these functions into the future. For example, the P-splines model
proposed in Currie et al. (2004) and the model of Sithole et al. (2000), which
might otherwise be felt to fit into the APC framework, require that the pe-
riod functions are cubic b-splines and Legendre polynomials, respectively.
This typically restricts the application of these models to smoothing histori-
cal data or short-term projections of mortality. We therefore do not consider

1Most APC mortality models have only one age/cohort term for the reasons discussed
in Section 7. However, some models do incorporate multiple terms, for instance, that
proposed in Hatzopoulos and Haberman (2011).
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these models further in this paper.

Recently, a number of papers such as Mitchell et al. (2013) and Haber-
man and Renshaw (2012, 2013) have modified the structure in Equation 1
to model mortality improvement rates rather than the mortality rates them-
selves. The different interpretations placed on the response variables of in-
terest and terms within the predictor structure make mortality improvement
models qualitatively different from the class of models considered within this
paper, and so we do not discuss these models further.

Finally, it is worth noting that the predictor structure in Equation 1
could also be extended to include a range of explanatory variables which
might influence mortality rates. These regressors might include variables
relating to the health of the population (for instance, smoking prevalence
was considered in Wang and Preston (2009) and Kleinow and Cairns (2013))
or macroeconomic variables such as GDP growth or unemployment (e.g.,
Reichmuth and Sarferaz (2008) and Hanewald (2011)). Such an approach is
a natural way of modelling the underlying drivers of changing mortality and
highlights the flexibility of the APC approach, but, again, is not considered
further in this paper.

3 A brief history of APC mortality models

APC mortality models have sometimes been classified into three broad fam-
ilies, for instance in Cairns (2014). These can be thought of as:

1. the Lee-Carter (LC) model, proposed in Lee and Carter (1992), and its
direct extensions, discussed in Section 3.1;

2. the Cairns-Blake-Dowd (CBD) model, proposed in Cairns et al. (2006a),
and its direct extensions, which we discuss in Section 3.2; and

3. the classic APC model of Hobcraft et al. (1982) and others, and the
hybridisation of this model with those from the other two families, as
discussed in Section 3.3.

Although we do not consider this to be a particularly useful classification for
the purposes of understanding the properties of the specific mortality models,
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it is helpful in understanding the evolution of the field of APC mortality
modelling as it has developed over recent decades.

3.1 Lee-Carter models

The first and still the most widely used mortality model is that proposed in
Lee and Carter (1992). The LC model has a single age/period term of the
form

ln(µx,t) = αx + βxκt (2)

and models the logarithm of the force of mortality, µx,t.
2 In Lee and Carter

(1992), this model was fitted using a two-stage process: the first stage esti-
mated the parameters using singular value decomposition (SVD), which is an
application of least squares fitting methods for a bilinear predictor structure,
and the second stage adjusted κt in order to better fit the observed number
of deaths in each year. Other studies, for example, Wilmoth (1993) and Lee
(2000), adapted the two-stage approach but retained the use of least squares
estimation. However, superior fitting methods based on maximum likelihood
estimation have been proposed in Brouhns et al. (2002), although these have
not been universally adopted.

A great deal of the early work focused on developing the fitting methods
used for the model, such as Wilmoth (1993), Lee and Miller (2001) and Ren-
shaw and Haberman (2003a,c), and investigating the stability of the parame-
ter estimates for different ranges of data (for instance, Carter and Prskawetz
(2001) and Booth et al. (2002)). However, it was Booth et al. (2002) which
first highlighted that the use of SVD to fit the LC model selects only the first
of a potentially large number of age/period terms. Therefore, the LC model
can easily be directly extended to more complicated models of the form

ln(µx,t) = αx +
N∑
i=1

β(i)
x κ

(i)
t (3)

2Lee and Carter (1992) originally applied the LC model to central mortality rates,
mx,t. However, as discussed in Section 4, these are equivalent to the force of mortality,
µx,t, under the assumption in Equation 23.

6



These models were not directly investigated in Booth et al. (2002), but the
two-term model (commonly referred to as the LC2 model)

ln(µx,t) = αx + β(1)
x κ

(1)
t + β(2)

x κ
(2)
t (4)

was studied in detail in Renshaw and Haberman (2003b). A variation of this

model, where κ
(1)
t is replace by a linear function in time, i.e.,

ln(µx,t) = αx + β(1)
x (t− t̄) + β(2)

x κt (5)

where t̄ = 1
T

∑
t t, was studied in detail in Callot et al. (2014). Furthermore,

a three-term extension of the LC model was investigated for Hungarian mor-
tality data in Baran et al. (2007).

Subsequently, models with multiple age/period terms were studied in
Hyndman and Ullah (2007), which used functional data analysis to fit the
models to data, Hatzopoulos and Haberman (2009), which used generalised
linear models, and Wang et al. (2009), which used principal components anal-
ysis. However, these extensions to the LC model have proved less popular
in practice than might have been expected, possibly because the higher or-
der period functions show complicated behaviour, with apparent changes in
trend, which make forecasting difficult.

3.2 Cairns-Blake-Dowd models

One of the most popular competitor models to the LC model was introduced
in Cairns et al. (2006a) in order to overcome the problem that projected
mortality rates are perfectly correlated in single age/period term models.
The CBD model is usually written in the form

logit(qx,t) = κ
(1)
t + (x− x̄)κ

(2)
t (6)

where logit(z) ≡ ln(z)− ln(1− z) and x̄ denotes the average age in the data
range being used. In addition to the multiple age/period terms, Cairns et al.
(2006a) highlighted the absence of the static age function, αx, (which reduces
the number of free parameters and so obtains a more parsimonious model)
and the use of the logit-link function as key differentiators of the CBD ap-
proach from the preceding LC-style models. In Cairns et al. (2006a), the
model was fitted to data by using ordinary least squares on the transformed
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probabilities of death, qx,t.

Since the age functions in the CBD model take the form of a constant
and a linear function of age, respectively, it is natural to extend the model
by adding age/period terms with higher-order polynomial age functions, for
instance

logit(qx,t) = κ
(1)
t + (x− x̄)κ

(2)
t + ((x− x̄)2 − σx)κ(3)t (7)

where σx = 1
X

∑
x(x− x̄)2. However, such a “quadratic CBD” model has not

been used directly until Yang et al. (2015). Instead, in Cairns et al. (2009),
a general form of CBD-style models is proposed

logit(qx,t) =
N∑
i=1

β(i)
x κ

(i)
t γ

(i)
t−x (8)

This form of APC mortality models is more general than that described in
Section 2, since it allows for “trilinear” terms containing interactions between
age, period and cohort. However, in Cairns et al. (2009), the authors only
investigate the models

logit(qx,t) = κ
(1)
t + (x− x̄)κ

(2)
t + γt−x (9)

logit(qx,t) = κ
(1)
t + (x− x̄)κ

(2)
t + ((x− x̄)2 − σx)κ(3)t + γt−x (10)

logit(qx,t) = κ
(1)
t + (x− x̄)κ

(2)
t + (x− xc)γt−x (11)

which are referred to as models M6, M7 and M8, respectively. All of these ex-
plicitly extend either the original or the quadratic CBD model with a cohort
term. M8 goes further and introduces a linear age function, x − xc, to the
cohort effect, where xc gives the age where cohort effects are weakest. How-
ever, in practice, M7 has proved the most popular extension of the original
CBD model, since it gives a better fit to data than M6 (which it nests) and
the age function for the cohort parameters in M8 may be more complicated
to fit to data due to the need to select appropriate xc.

A similar, but not explicitly related model, was proposed in Aro and
Pennanen (2011). This took the form

logit(px,t) =
N∑
i=1

f (i)(x)κ
(i)
t (12)
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where the age functions, f (i)(x), were piecewise linear splines chosen to be
orthogonal to each other (i.e.,

∑
x f

(i)(x)f (j)(x) = 0, for i 6= j) and px,t is the
one-year probability of survival for age x and year t. This model was fitted
to data using binomial maximum likelihood estimation. Aro and Pennanen
(2011) investigated this model with either two or three age/period terms.
However, since px,t = 1 − qx,t, we see that logit(px,t) = −logit(qx,t) and,
therefore, the two-factor model proposed in Aro and Pennanen (2011) can
be rearranged to be mathematically equivalent to the original CBD model in
Equation 6.

3.3 The classic APC model and hybrid models

The final broad family of mortality model are those based on the classic APC
model of Hobcraft et al. (1982), Osmond (1985), O’Brien (2000), Carstensen
(2007) and Kuang et al. (2008b) (amongst others). In its original form, this
model is written

ln(µx,t) = αx + κt + γt−x + δ

which is symmetric in each of the three dimensions of age, period and cohort.
However, when used for modelling mortality rates, this is usually simplified
to

ln(µx,t) = αx + κt + γt−x (13)

by combining αx and δ in order to be more comparable with LC-style mod-
els. This model was often compared to the even simpler age/period and
age/cohort models

ln(µx,t) = αx + κt

ln(µx,t) = αx + γt−x

in order to determine whether the effects of period or cohort were more sig-
nificant in the data being analysed. The age/period model can be naturally
compared to the LC model with βx = 1, while the age/cohort model has
been suggested in the context of modelling longevity risk in Alai and Sherris
(2012).

Traditionally, the classic APC model was fitted using ordinary least squares,
since it is linear in the parameters. However, this involves the construction

9



of a “design matrix”, which is singular and therefore cannot be inverted as
required by the least squares approach. This singularity of the design ma-
trix, caused by the lack of identifiability of the parameters in the classic APC
model, has generated a substantial literature on different methods for fitting
the model, as discussed in Glenn (1976), Fienberg and Mason (1979), Rodgers
(1982), Holford (1983), Clayton and Schifflers (1987), Wilmoth (1990), Yang
et al. (2004), Kuang et al. (2008a) and O’Brien (2011). See also Hunt and
Blake (2015), which looks at the identifiability issues in this model and more
complicated APC mortality models.

The classic APC model was directly extended in Wilmoth (1990) to give

ln

(
qx,t

1− 0.5qx,t

)
= αx + κ

(1)
t +

N∑
i=2

β(i)
x κ

(i)
t + γt−x (14)

where the higher order age/period terms were found using a weighted least
squares approach. Although this model gave a relatively good fit to data, it
has not been widely used for projecting mortality rates.

Despite the classic APC model having a very long history in the fields
of medicine, epidemiology and sociology, it was little used for the purposes
of measuring longevity risk until the work of Willets (1999, 2004) brought
a greater focus onto potential cohort effects in population data. The clas-
sic APC model was subsequently introduced into actuarial science in Currie
(2006), which also proposed smoothing the terms in it using P-splines to re-
duce the number of free parameters.

The introduction of the classic APC model for use in projecting mortality
rates has generated a significant number of models which seek to combine
its features with those of models from the LC and CBD families, in order to
create hybrid models. Most obviously, the cohort term was added directly to
the CBD family in models M6, M7 and M8 discussed in Section 3.2. Cohort
terms were also added to the LC family of models in Renshaw and Haberman
(2006) and Haberman and Renshaw (2009) to give

ln(µx,t) = αx + β(1)
x κt + β(0)

x γt−x (15)

(referred to as model M in Haberman and Renshaw (2011) and M2 in Cairns
et al. (2009), or more generally as the RH model). This model has also been
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simplified to give

ln(µx,t) = αx + β(1)
x κt + γt−x (16)

In this form, it is sometimes referred to as model H1 (in Haberman and Ren-
shaw (2009, 2011) and Hunt and Villegas (2015) for instance). An extension
of this and the LC2 model

ln(µx,t) = αx + β(1)
x κ

(1)
t + β(2)

x κ
(2)
t + γt−x (17)

was proposed in van Berkum et al. (2014) as part of a wider discussion of
mortality models. More general extensions of the model of Wilmoth (1990)
were also proposed in Hatzopoulos and Haberman (2011), which took the
form

ln(µx,t) = αx + κ
(1)
t +

N∑
i=2

β(i)
x κ

(i)
t + γ

(1)
t−x +

M∑
j=2

β̃(j)
x γ

(j)
t−x (18)

However, in practice, the use of multiple cohort terms was found to be un-
necessary and made the models difficult to fit to data.

A more ambitious attempt to hybridise features from the classic APC, LC
and CBD models was performed in Plat (2009). This took the advantages of
using a static age function from the LC and classic APC models, the use of
multiple parametric age functions in the CBD models and the cohort term
from the classic APC model to give

ln(µx,t) = αx + κ
(1)
t + (x− x̄)κ

(2)
t + (x− x̄)+κ

(3)
t + γt−x (19)

where z+ ≡ max(z, 0). This “Plat model” was also simplified in Plat (2009)
by removing the third age/period term to give the “reduced Plat model”

ln(µx,t) = αx + κ
(1)
t + (x− x̄)κ

(2)
t + γt−x (20)

It was proposed that this simpler form of the model was more suitable for
modelling mortality at high ages. Other variations of this were proposed in
O’Hare and Li (2012), with the emphasis on finding a model suitable for
modelling mortality at low ages

ln(µx,t) = αx + κ
(1)
t + (x− x̄)κ

(2)
t +

(
(x̄− x)+

)2
κ
(3)
t + γt−x (21)
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and in Börger et al. (2013)

ln(µx,t) = αx + κ
(1)
t + (x− x̄)κ

(2)
t + (x− xh)+κ(3)t + (xl − x)+κ

(4)
t + γt−x

(22)

where the third and fourth terms are designed to capture changes in mor-
tality at high ages (above fixed age xh) and low ages (below fixed age xl),
respectively.

In response to this proliferation of models, Hunt and Blake (2014) in-
troduced a “general procedure” for constructing bespoke mortality models
within the class of APC models which are tailored to the specific features of
the data in question. This procedure uses a “toolkit” of potential parametric
forms for the age functions, the parameters of which are estimated from the
data rather than fixed in advance. Models constructed by the general proce-
dure tend to have many different forms of the age/period terms, much like
the models of Plat (2009), O’Hare and Li (2012) and Börger et al. (2013), but
the procedure gives a method for determining whether an additional term is
justified by the data and what form that term should take.

As can be seen from this discussion, a wide variety of APC mortality
models have been proposed in recent years. These differ substantially in
their choice of the link function, ηx,t, nature of the age functions, either β

(i)
x

or f (i)(x), and whether or not to include a cohort term. We therefore seek
to investigate the advantages and disadvantages of each of these choices in
the following sections in order to better understand how to select a model
appropriate to the needs of the model user.

4 Response variable and link function

When studying mortality, we typically assume that members of the popula-
tion of interest experience the same instantaneous hazard rate of mortality
µx,t at age x and time t (also called the “force of mortality”). In practice,
however, observed data is usually grouped into discrete age and period bands
and therefore modelling mortality is usually conducted using discrete time
models.
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In order to use the continuous force of mortality in a discrete age/period
setting, it is commonly assumed that mortality rates do not change within
each age and period band. Mathematically, this means that µx,t is assumed
to be constant within ages and within years:

µx,t = µbxc,btc (23)

where bxc is the integer part of x. This assumption is generally reasonable
for most ages of interest (typically under age 100). Above this age, the pop-
ulations under observation and, correspondingly, the number of deaths tend
to be quite low, which means that the practical impact of this assumption
breaking down is quite small over most ages. With the assumption that the
force of mortality is constant over each age/period band, we can calculate the
probability of survival for an individual of age x over the year t, px,t = 1−qx,t,
as

px,t = exp

(
−
∫ 1

0

µx+s,t+sds

)
= exp (−µx,t) (24)

and the central mortality rate, mx,t, as

mx,t =

∫ 1

0
µx+s,t+s exp

(
−
∫ s
0
µx+u,t+udu

)
ds∫ 1

0
exp

(
−
∫ s
0
µx+u,t+udu

)
ds

= µx,t (25)

Almost all APC mortality models either use µx,t (or equivalently mx,t) or qx,t
as the response variable for mortality.

These two choices for the response variable reflect the two models for the
random number of deaths, Dx,t, widely used in demography and actuarial
science. Under the binomial assumption, the expected number of deaths is
given by E(Dx,t) = E0

x,tqx,t, the initial number of people alive (or initial ex-
posure to risk) multiplied by the probability of death over the year. The
probability of death can therefore be estimated as the observed number of
deaths divided by the initial exposure to risk, q̂x,t = dx,t

E0
x,t

.3 Under the Poisson

assumption, the expected number of deaths is given by E(Dx,t) = Ec
x,tmx,t,

3Where dx,t is the observation of the random death count, Dx,t.
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i.e., the central exposure to risk (the average number of people alive which
is used as a proxy for the total number of person-years lived) multiplied by
the central mortality rate, m̂x,t = dx,t

Ec
x,t

.

This leads to the conclusion that the model for the response variable
should be motivated by the format of the available data. The use of the
Poisson model requires central exposures to risk which are widely available,
for instance from the Human Mortality Database.4 The use of the binomial
model requires initial exposures to risk which are less commonly available for
large populations (though may be more available for smaller populations) but
can be approximated from the central exposures.

Asymptotically, for large populations and low death rates, the two ap-
proaches give similar results. It has been argued5 that the binomial approach
gives transformed mortality rates which are closer to being linear at the high-
est ages. However, it is at these ages that our assumption of a constant force
of mortality within ages and years in Equation 23 starts to break down.
This violates the core assumption underpinning the discrete time approach,
making comparisons between models at high ages somewhat spurious.6 Ar-
guments on these lines should therefore be treated with caution.

In the Poisson and binomial models, the variance of the observations is
also specified along with the mean. In practice, however, observations typ-
ically exhibit a greater variation than is predicted under either distribution
- a phenomenon known as over-dispersion. One way of dealing with this is
by fitting the model using the quasi-Poisson or quasi-binomial distributions,
which add additional parameters to account for the over-dispersion. An alter-
native is to use the negative binomial model for death counts, as in Delwarde
et al. (2007b), Renshaw and Haberman (2008) and Li et al. (2009). These
approaches do not change the model structure in Equation 1, merely how
it is fit to data. However, over-dispersion (along with significant correlation
patterns within the fitted residuals) may also be a sign that the predictor
structure is poorly chosen and so could be dealt with by selecting a more

4Human Mortality Database (2014).
5For instance, in Cairns et al. (2006a).
6One solution to this might be to assume a constant force of mortality over shorter

age and period bands, for instance across months as in Gavrilov and Gavrilova (2011).
However, data limitations at high ages tend to make this infeasible.

14



suitable alternative.

The link function, ηx,t, provides the connection between the observed
data and the assume predictor structure. In the generalised linear model
framework, there are several requirements which should be met for a good
choice of link function. One of these is that the data should be transformed
to obtain an approximately linear predictor structure (as opposed to, say, a
multiplicative structure). Early static and dynamic mortality models used
this as the sole requirement for the choice of ηx,t, which resulted in a range
of choices being made, such as ηx = qx

1−qx in Heligman and Pollard (1980),

ηx,t = ln
(

qx,t
1−0.5qx,t

)
in Wilmoth (1990) and ηx,t = ln(µx,t) in Lee and Carter

(1992). These models were then fitted using least squares estimation meth-
ods.

Least squares methods, however, do not account for the underlying distri-
bution for Dx,t and assume that the variance of observations is independent
of the underlying exposures. However, this is not usually valid - observations
are typically more variable at ages with low populations, such as those at
high ages. More sophisticated methods of estimation, based on maximis-
ing the likelihood (Brouhns et al. (2002)) or, equivalently, minimising the
scaled deviance (Renshaw and Haberman (2003a)), allow for this directly by
making explicit reference to the underlying probability distribution of Dx,t.
Although a number of potential link functions might be considered for ei-
ther distribution of death counts (for instance, see Currie (2014)), practical
considerations motivate using the canonical link function of the distribution
Dx,t. The choice of this function also ensures that the fitted values of the
response variable lie within the required range.7 For a Poisson model of the
death count, the canonical choice for the link function, ηx,t, is

ηx,t = ln(µx,t) (26)

E[Dx,t] = Ec
x,te

ηx,t

Var(Dx,t) = Ec
x,te

ηx,t

7i.e., µx,t ≥ 0 or qx,t ∈ (0, 1).
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whilst for the binomial model it is

ηx,t = logit(qx,t) (27)

E[Dx,t] = E0
x,t

eηx,t

1 + eηx,t

Var(Dx,t) = E0
x,t

eηx,t

(1 + eηx,t)2

Using the canonical link function also has the desirable property that
it simplifies estimation by maximum likelihood or minimal deviance con-
siderably easier. For Poisson death counts using the log link function, the
likelihood function is

L =
∑
x,t

Wx,t

(
dx,t ln(Ec

x,tµx,t)− Ec
x,tµx,t − ln(dx,t!)

)
(28)

whilst for binomial death counts and the logit link function, the likelihood
function is

L =
∑
x,t

Wx,t

(
dx,t ln(qx,t) + (E0

x,t − dx,t) ln(1− qx,t)

+ ln(E0
x,t!)− ln((E0

x,t − dx,t)!)− ln(dx,t!)
)

(29)

where Wx,t are {0, 1} weights. When using Newton-Raphson techniques to
maximise the likelihood, we need to calculate the first and second deriva-
tives of the log-likelihood function with respect to the parameters (e.g., see
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Brouhns et al. (2002)), the forms of which are

dL
dαx

=
∑
t

(dx,t − E[Dx,t])

d2L
d (αx)

2 = −
∑
t

Var(Dx,t)

dL
dβ

(i)
x

=
∑
t

(dx,t − E[Dx,t])κ
(i)
t

d2L

d
(
β
(i)
x

)2 = −
∑
t

Var(Dx,t)
(
κ
(i)
t

)2
dL
dκ

(i)
t

=
∑
x

(dx,t − E[Dx,t]) β
(i)
x

d2L

d
(
κ
(i)
t

)2 = −
∑
x

Var(Dx,t)
(
β(i)
x

)2
dL
dγy

=
∑
x

(dx,x+y − E[Dx,x+y]) β
(0)
x

d2L
d(γy)2

= −
∑
x

Var(Dx,x+y)
(
β(0)
x

)2

These are simple to compute quickly if the canonical link is used. Alterna-
tive link structures require more complicated algorithms8 which it may be
desirable to avoid.

Any decisions regarding the choice of response variable and link function
should take the following into account:

• The choice of probability distribution should reflect the available data
- the binomial distribution is the natural choice with initial exposures
to risk, whilst the Poisson distribution is more natural for model users
with central exposures.

8See, for instance, the estimation of models in the CBD family using the LifeMetrics
code in Coughlan et al. (2007) where a Poisson distribution of deaths is assumed with a
logit link function.
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• The choice of response variable follows naturally from the probability
distribution - µx,t is the variable of interest in the Poisson distribution
and qx,t in the binomial distribution.

• The appropriate canonical link function, ηx,t, follows naturally from
the probability distribution selected. While other link functions can be
chosen, such a choice would probably require further justification.

In practice, most modellers use the ln(µx,t) approach, i.e., a log link func-
tion, and assume the death count is a Poisson random variable. These mod-
els include those proposed in Brouhns et al. (2002), Renshaw and Haberman
(2003b, 2006), Plat (2009), Haberman and Renshaw (2009) and O’Hare and
Li (2012). However, the reasons for this are mainly historical, since they are
based on the LC model where the log link function was chosen simply to
obtain a linear predictor structure rather than with reference to the under-
lying distribution of the death counts or the available data. The alternative
logit(qx,t) approach has mainly been adopted by the CBD family of mortality
models (Cairns et al. (2006a) and the extensions of this model in Cairns et al.
(2009)),9 and also in Aro and Pennanen (2011).

5 Static age function

A static age function, αx, has been used in many mortality models from
Hobcraft et al. (1982) and Lee and Carter (1992) onwards. By construction,
this captures the features of the mortality curve across the age range of the
data which do not change with time. A typical example of such a function,
from the LC model fitted to male data from the USA (downloaded from the
Human Mortality Database (2014)) for the period 1933 to 2007, is shown in
Figure 1. Across the full age range, this shows features such as the excess
number of deaths due to infant mortality at very low ages and accidents at
young adult ages, which are common across both time periods and countries.

Some models, most notably those in the CBD family of mortality models
and that in Aro and Pennanen (2011), dispense with the need for an explicit
static age function by implicitly assuming that it can be approximated by a

9These models do not draw a direct link between the use of the logit function and bino-
mial death counts. However, this connection is made explicit in Haberman and Renshaw
(2011) and Currie (2014).
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Figure 1: αx static age function for the LC model fitted to US male data
1933-2007

simpler function of age and combining it into the age/period terms. To do
this, the static age function needs to be a linear combination of the other age
functions in the model, i.e.,

αx =
N∑
i=1

α(i)β(i)
x

This is easiest to do when the age functions β
(i)
x are known in advance of

fitting the model to data. For example, the model of Cairns et al. (2006a)
implicitly assumes that mortality rates are approximately linear at the ages
of interest and therefore can be combined with the other terms in the model.

Doing this improves the parsimony of the model by reducing the number
of free parameters considerably. However, it does so at the expense of limit-
ing the model to only those parts of the age range where this assumption is
approximately valid, typically at higher ages.

It also means that the age/period terms in the model do two tasks simul-
taneously: capturing the time-independent shape of mortality and describing
the structure of the deviations from this shape. Including a static age func-
tion in the model therefore allows each term in the model to focus on doing
one job optimally. The extent to which this is desirable will depend upon
the modeller’s preference for a parsimonious fit to historical data against the
more detailed identification and projection of evolving trends.
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6 Age/period terms

The age/period terms in an APC model typically capture the majority of
the dynamic structure present in the underlying data. They consist of age
functions, β

(i)
x , describing how the particular mortality effects are distributed

across ages, which are multiplied by period functions, κ
(i)
t , which explain how

they evolve with time.

One of the key distinctions between APC models is whether the age ef-
fects are modelled using “non-parametric” or “parametric” age functions.
Some mortality models have age functions which are “non-parametric” in
the sense that values of β

(i)
x at different ages, x, are fitted without imposing

any a priori structure. Age is treated as an unknown factor in the model
rather than a regressor with a known structure.10 Other mortality models
have age functions which are “parametric”, since they take a specific func-
tional form that is defined by an algebraic formula.11

We should note that our definitions of the terms “non-parametric” and
“parametric” differs from other definitions of these terms used in statistics
and actuarial science. For the avoidance of doubt, we use the terms to
specifically refer to the structure of the age/period terms, and they have no
implication for the methods used to fit the model to data. For example,
Haberman and Renshaw (2009, 2011) used the term “parametric” to refer to
the predictor structure for general APC mortality models, and describe any
models within this class as “parametric mortality models”. Alternatively,
“parametric” can refer to the underlying distributional assumptions for the
model and the methods used to fit it to data as such, the assumption of
a Poisson distribution of deaths and maximum likelihood estimation would
lead to a “parametric mortality model” under this definition. Our usage of
these terms is restricted solely to the form of the age effects.

10For this reason, we could alternatively refer to non-parametric age functions as “fac-
torial” age functions.

11For this reason, these age functions could also be called “formulaic”.
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6.1 Non-parametric age functions

The models in the LC family, discussed in Section 3.1, all used non-parametric
age functions. Such models are necessarily bilinear, as both age and pe-
riod are unknown factors. Non-parametric approaches emerge naturally from
model fitting techniques based principal component analysis (PCA), although
they can easily be deployed in a generalised non-linear modelling or maximum
likelihood framework.12 The non-parametric approach also easily extends to
an arbitrary number of age/period terms as discussed in Section 3.1. The
number of age/period terms in the model is then selected with reference to
the data, rather than having been prescribed in advance.

The main advantage of this approach is that the shapes of the age func-
tions are chosen to maximise the fit to the data. This means that each term
extracts the maximum amount of information from the data possible. For
example, the terms produced by PCA are ranked in order of information
extraction - as measured by the percentage of the total variability in the
data explained - which makes it possible to select algorithmically an optimal
number of terms in the model.

The non-parametric approach is also very flexible. It can be applied easily
across a variety of datasets, as described, for example, in Tuljapurkar et al.
(2000), which used the LC model to fit data from a number of developed
nations. Similarly, the non-parametric approach can be used across the full
age range, whilst parametric age functions are often only suitable for limited
age ranges. It also avoids subjective judgements in constructing the model,
as terms are fitted automatically to maximise the fit to data. This ability
to objectively pick out the most important structure within the data is used
as the starting point for the “general procedure” for constructing mortality
models outlined in Hunt and Blake (2014).

However, non-parametric approaches have a number of downsides. Most
importantly, the form of the non-parametric age functions generated usually

12PCA assumes homogenous, normally distributed residuals and, therefore, is incon-
sistent with the underlying binomial or Poisson distribution for the death count process.
However, the estimates obtained for the parameters using PCA can be used as the starting
point for methods such as maximum likelihood which use the death count process to allow
for heterogeneity caused by differences in the underlying exposures.
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lack demographic significance. To illustrate, Figure 2 shows the βx age func-
tion produced by fitting the LC model to the same data for men in the US
used in Section 5. It shows that, over the period, improvements in mortality
rates have been far faster at young ages (below 20, but especially at age one)
than at higher ages, where improvements have been more evenly distributed
across ages. It is very difficult to conceive of an explanation for this shape
which does not involve multiple drivers of changing mortality rates over the
period - such as improved hygiene reducing mortality across all ages, child-
hood vaccination programmes reducing the number of deaths amongst the
very young, and improved treatment of cardio-vascular disease in later life.
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Figure 2: βx age function for the LC model fitted to US male data 1933-2007

This has consequences when we fit and project the model. Drivers of mor-
tality are combined into a single term if they are correlated over the historical
period of the data (e.g., they go from a high level of mortality to a lower level
over the period). However, these combinations may not be appropriate over
subsets of the period range. For example, Carter and Prskawetz (2001) found
that the form of βx changes substantially if the LC model is fitted to different
subintervals of the data, as different medical and socio-economic causes of
mortality become more or less important.

Such combinations of drivers may also be inappropriate when we come
to making forecasts using the model. For instance, we may believe that the
shape of βx in Figure 2 is due to a combination of childhood immunisation
programmes and improved cardio-vascular care for the elderly. When pro-
jecting mortality, we may wish to allow the latter to continue to improve in
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future. but believe that we are unlikely to see further reductions in mortality
due to increased vaccination of children. Using a term which combines both
these causes can lead to projections of mortality rates which do not appear to
be plausible, e.g., when high rates of improvement in mortality are projected
at ages where mortality rates are already very low.

Furthermore, the model does not require that the non-parametric forms
are continuous.13 This can lead to projections which have discontinuous
mortality rates and so are not biologically reasonable14 if projected far into
the future. It is possible to smooth the non-parametric age functions to
avoid this, as discussed in Delwarde et al. (2007a) or Hyndman and Ullah
(2007). However, this complicates the structure of the model and introduces
subjective decisions regarding the degree of smoothing which would need
careful justification.

6.2 Parametric age functions

As discussed earlier, a parametric age function takes a specific functional
form, i.e. βx = f(x). The classic APC model, the CBD family of models
and many of the hybrid models discussed in Section 3.3 use parametric age
functions in order to capture specific features of the evolution of mortality
rates across the age range.

We can see that most of these models have a linear predictor structure,
rather than possessing any bilinear terms where the age function also needs
to be fitted to the data. This means that they are conventional generalised
linear models and can be fitted using standard techniques. However, the use
of parametric age functions does not necessarily imply linearity. For instance,
consider the model

ηx,t = αx + κ
(1)
t + exp(−λx)κ

(2)
t

13This can be seen with the sharp peak at β1 in Figure 2.
14Introduced in Cairns et al. (2006b) and defined as “a method of reasoning used to

establish a causal association (or relationship) between two factors that is consistent with
existing medical knowledge”. Note that biological reasonableness is a property of observ-
able quantities such as life expectancies or mortality rates, in contrast to demographic
significance which relates to our interpretation of the terms in a model.
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Here, f (2)(x) = exp(−λx) is parametric in our sense of having a prescribed
functional form, but λ can be a free parameter set with reference to the data
and so the age/period term is bilinear and the model cannot be estimated via
a generalised linear model. Age functions including free parameters are not
widely used, as the higher-order age functions in the models of Plat (2009),
Aro and Pennanen (2011), O’Hare and Li (2012) and Börger et al. (2013)
have parameters which are set a priori. In principle, however, these models
could be extended to allow these parameters to vary to find the value which
fits the data best. In addition, many of the age functions used in the “general
procedure” of Hunt and Blake (2014) possess free parameters and therefore
are bilinear, parametric age/period terms.

One of the major advantages of using parametric age functions is that
they reduce considerably the number of free parameters needing to be fit-
ted for each age/period term, leading to more parsimonious models. This, in
turn, means that more parameters can be devoted to detecting other features
of interest within the data, such as additional structure across time and year
of birth.

Furthermore, because the shapes of the age functions are known, each
term can be assigned a specific demographic significance by the user. To
illustrate, the first age/period term in the models of Equations 13 and 6 are
constant across all ages. This can be explained in terms of specific phenom-
ena which are universal across the age range (such as improved hygiene), in
contrast with the shape seen in Figure 2. It will also allow trends which
are correlated (such as improving levels of medical care for the elderly and
the specific efforts to tackle childhood infectious diseases) to be given their
own age/period terms with appropriate parametric age functions, which is
impossible with a non-parametric approach.

However, this flexibility comes at a cost. Parametric age functions are
often only suitable over limited age ranges. While this is an advantage in
that it allows for greater interpretability of their demographic significance,
it means that models with parametric age functions are often not suitable
over the full age range. For instance, even if the CBD model were extended
with a static age function, it is unlikely that the two age/period terms are
sufficient to capture the variability of mortality rates at younger ages. In
order to construct a model appropriate across the full age range, we would
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have to add additional age/period terms to the model.

In addition, models with parametric age functions often give a poorer fit
to the data compared to a model with the same number of non-parametric
age/period terms, especially using measures of goodness of fit that do not
(or only weakly) penalise the number of free parameters in the model. This
is because the additional freedom in the non-parametric age function can be
used to capture more of the structure in the data than if the form of the age
function is prescribed at the outset.

These problems can be rectified, in part, through adding new terms to
the model. However, we will need to decide on the appropriate form for these
new terms, which can very often be difficult. One approach adopted for some
of the extensions to the CBD model in Cairns et al. (2009) is to select age
functions from the same family - in this case polynomials of increasing order.
Alternatively, more exotic functions can be used, as in the models of Plat
(2009) and O’Hare and Li (2012), but often there does not appear to be any
underlying rationale for the selection made. In the end, expert judgement
is needed to assess whether a new term added to the model genuinely rep-
resents the remaining unexplained trend in the data or merely reflects the
expectation of the modeller as to what should be present.

7 Cohort effects

It is a widely held belief that the different life histories of individuals should
lead to systematic difference between different cohorts of people (as sum-
marised by their year of birth). These are often known as “cohort effects”.
As Hobcraft et al. (1982), Willets (1999) and Murphy (2009) discussed, the
term “cohort effect” is largely descriptive, and some care needs to be taken
in ascribing the causal factors specific to certain years of birth which might
plausibly influence the mortality rate of a cohort across their entire life. We
might, for instance, consider an epidemic which, in addition to raising mor-
tality rates at the time it is raging, had a selective effect on the survival of
infants. This might lead to systematic differences in mortality between those
born during the epidemic and those born shortly before or afterwards. How-
ever, the evidence from natural experiments (summarised in Murphy (2009))
is equivocal, which means that the existence of true cohort effects is still
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controversial to some extent, as discussed in Murphy (2010).

In practice, however, observed data from a number of countries appears to
exhibit cohort features and so it is prudent to allow for these when modelling
mortality. In the UK, apparent cohort effects have been identified in the gen-
eral population (specifically in the work of Willets (1999, 2004), Continuous
Mortality Investigation (2002) and Richards (2008)) and models allowing for
cohort parameters outperformed those which did not in Cairns et al. (2009).

Our subjective demographic significance of a cohort effect is one which
increases or reduces mortality at all ages for individuals born in a specific
generation (typically lasting 10-15 years or less). To construct a mortality
model, we need to translate this demographic significance into a set of prop-
erties we desire the parameters in our model to possess. More specifically,
we can say that our intuition regarding the cohort effects implies that they
should:

• be small relative to the effects of age and period;

• not have any systematic trends in their expected value or variability;

• have a mean across cohorts of zero (i.e., cohort effects should represent
deviations from a typical hypothetical reference level);

• have some autocorrelation: it is reasonable to believe that cohorts born
in successive years should experience similar life histories and so exhibit
similar cohort effects, unless there happen to be exceptional circum-
stances facing a particular birth year;

• not exhibit indefinite persistence: the factors influencing the specific
mortality of the generation born today should be essentially indepen-
dent of the specific mortality of their grandparents, for example;

• ideally be mean reverting (as a consequence of the previous two points),
as the specific events impacting one cohort wear off in subsequent years
of birth; and

• be demographically significant, so we can relate features of a plot of
cohort effects to specific socio-economic and medical influences on the
population.
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In a well-specified mortality model, many of these properties emerge nat-
urally from the fitted parameters. Some, such as the level of the mean of
the cohort parameters, can be imposed via identifiability constraints, which
change the values of the cohort parameters but not the fit of the model to
data. However, this is not always the case, and we may sometimes have to
discard some of our intuitive properties based on the evidence of the model.
For instance, we can see that in Plat (2009), the historical cohort parameters
have a clear trend and may be non-stationary.

We would also like estimates of our cohort parameters to be robust, both
across different models and when comparing them with the residuals from
the corresponding age/period mortality model, as in Wilmoth (1990). For
instance, the plots of cohort parameters for the same datasets in Cairns
et al. (2009) show that the features identified are not robust between differ-
ent models, which weakens any demographic significance we place on them.
However, there are a number of practical problems that makes finding cohort
parameter estimates that are robust and well specified a harder task than
the estimation of age and period parameters.

First, because age, period and cohort are linearly dependent (y + x = t),
we cannot treat them in isolation of each other.15 Wilmoth (1990) argued
that it is impossible to apportion objectively low frequency (slowly varying)
temporal dependence in mortality data between age/period and cohort ef-
fects. We therefore are forced to make a subjective choice to give primacy to
two of the relevant dimensions. Because we naturally observe cross sections
of mortality rates across ages in different calendar years, the data will natu-
rally form a rectangular age/period grid. This means that the natural choice
is to give primacy to age and period effects and to try to explain as much
of the structure in the data with reference to these dimensions as possible
before consideration of effects across cohorts.16

This then leads to the conclusion that if the cohort effects are to be taken
as of secondary importance, the structure in the model included to cap-

15We also suffer from the problem that the parameters in the model may not be uniquely
identified. This topic and its implications for forecasting are discussed further in Hunt
and Blake (2015).

16See Alai and Sherris (2012) for an example of a model which gives primacy to cohort
parameters.
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ture them should be as simple as possible. Indeed, some have argued that
cohort effects might not exist at all and are merely the result of poorly spec-
ified age/period effects.17 A model user operating under such a belief would
therefore omit any age/cohort terms from the model entirely. A high stan-
dard of evidence for the inclusion of an age/cohort term is therefore desirable.

If an age/cohort term is to be included and if age/cohort interactions are
taken to be of secondary importance, the desire for parsimony in the cohort
terms leads to two further conclusions which have been adopted by the ma-
jority of model users. First, most models only include one cohort term on
the grounds that it is hard to believe and to demonstrate that one generation
could experience two different independent lifelong effects. Nevertheless, the
model proposed in Hatzopoulos and Haberman (2011) allows for multiple
cohort effects.

Second, many models set β
(0)
x = 1, leading to a more parsimonious model.

This restriction allows the cohort parameters to represent consistently higher
or lower mortality rates across all ages, which accords with our demographic
interpretation of cohort effects. In particular, while a cohort effect which
is stronger at some ages than others does not seem unreasonable in prin-
ciple, the notion of a cohort effect that increases mortality rates at some
ages but decreases them at others conflicts with our interpretation of the
demographic significance of a cohort effect. This situation is possible with a
non-parametric form for β

(0)
x unless it is artificially constrained to be greater

than zero. In addition, issues have also been reported concerning the robust-
ness of fitting models such as that of Renshaw and Haberman (2006) with a

non-parametric β
(0)
x term, for instance by Continuous Mortality Investigation

(2006) and Cairns et al. (2009).18 However, this problem is not universal and

a linear parametric form for β
(0)
x was proposed in model M8 in Equation 11

by Cairns et al. (2009) and has been found to be robust and to fit the data
well in van Berkum et al. (2014).

Cohort parameters also present specific problems in estimation which

17For instance, Cairns et al. (2011) raised “the possibility that cohort effects might be
partially or completely replaced by well-chosen age and period effects” and also see Murphy
(2010).

18See Hunt and Villegas (2015) for a discussion and potential solution for this issue.
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again suggests that a parsimonious model structure be used when including
them. Because we naturally observe cross sections of mortality rates across
ages in different calendar years, we will have a limited numbers of observa-
tions for the earliest and latest birth cohorts. This makes estimates of these
cohort parameters more uncertain. For instance, the last observed year of
birth will only have one observation for it, which can therefore be fit perfectly
by the cohort term. This is undesirable and so, in practice, many modellers
do not estimate cohort parameters for a number of the earliest and latest
years of birth in the data (for instance in Renshaw and Haberman (2006)
and Cairns et al. (2009)).

Related to this is the fact that the observations for early and late years
of birth will only cover a subset of the age range. For instance, the most
recent cohorts will only have observations for the youngest ages. Any mis-
specification of age/period terms affecting these ages will therefore bias the
estimation of these cohort parameters. This is especially important for the
most recent cohorts, for which we will only have a small number of obser-
vations on their early-age mortality where most mortality models have the
greatest difficulty modelling the age/period patterns of mortality and where
there will be relatively few deaths. Any poorly specified age/period terms
at these ages will therefore lead to structure in the data being wrongly at-
tributed to the cohort effect for the most recent years of birth.

As an example of this, there are specific biological factors which lead to
mortality in the first year of life evolving differently from mortality rates
at subsequent ages. This effect is best captured through an age/period in-
teraction. In a poorly specified age/period mortality model, this cannot be
captured adequately, leading to large residuals when fitting mortality rates
at this age. Adding a cohort term to such a model will mean that the fit-
ting procedure will try to use the extra parameters to “solve” this problem
and so will bias the cohort parameters in order to “fix” what is genuinely
an age/period issue. This bias will get more pronounced for more recent
years of birth, where observations of the first year of life form an increasing
proportion of the total observations for each new cohort.

In models which give primacy to age/period effects, it is therefore im-
portant to ensure that the age/period structure is fully specified before an
age/cohort term is added. When forecasting mortality rates, it is of great
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practical importance that the cohort parameters in an APC model are well
specified and estimated robustly. As cohort effects represent lifelong mortal-
ity effects, mis-specifications of the cohort parameters at low ages will bias
forecasts for these cohorts as they age.

In summary, the inclusion of a cohort term in a mortality model presents
the user with a number of important issues which need to be addressed. In
some cases, the model user may consider that cohort effects are not signif-
icant and prefer a model which does not include them. However, in other
populations, there is evidence to support their inclusion. In such cases, it is
necessary to ensure that the age/period structure in the model is well speci-
fied and able to capture the majority of structure in the data. A simple and
parsimonious cohort term can then be included to capture the effects of year
of birth in a way that avoids the cohort term attempting to capture residual
age/period structure.

8 Classification of APC mortality models

Despite the recent rapid proliferation in the number of mortality models
proposed, the majority of mortality models in discrete time are part of the
same underlying APC family. This then leads to the natural question of how
mortality models can be classified. One such classification of APC mortality
models, based on the models’ “ancestry”, was given in Cairns (2014) and
described in Section 3. However, as can be seen in Section 3.3, this is less
helpful when considering the new range of hybrid models. Unlike species of
animal, however, the ancestry of mortality models is not unique, since they
can adopt features from different pre-existing mortality models to achieve
different aims.

Hence, we believe that a sensible classification should pay more attention
to the terms within the model and how they achieve the aims of the model
user. To address these, we must ask a number of questions when constructing
an APC mortality model, but especially the following:

• What response variable and link function should we use?

• Should we include an explicit static age function?
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• Should we use parametric or non-parametric age functions? If so, how
many age/period terms should we use?

• Should we include a cohort term? If so, should it be modified across
the age range by a β

(0)
x age function?

What we offer below is a simple classification of mortality models, based on
what we consider to be the most important differences in structure between
them, as determined by the answers to these questions.

We believe that the first two questions above are straightforward. The
modeller’s choice for the response variable should depend on the data avail-
able to them rather than on any more fundamental consideration. This, in
turn, leads to a natural choice for the link function, namely, the canonical
link function for the chosen distribution of deaths. Whilst it is possible to
use combinations of response variable and link function other than the nat-
ural choices, there is often no good reason to do this and practical reasons
discussed in Section 4 why it should be avoided.

Second, it can be argued that all mortality models use a static age func-
tion; it is just that models such as the CBD model of Cairns et al. (2006a)
use it implicitly with a distinct parametric structure that enables it to be
combined with other terms on the model. Such a choice may be desirable
for models limited to specific sections of the age range where the parametric
structure is appropriate in order to obtain greater parsimony. However, it
does not change anything fundamental about the model.

We are then left with the two more substantive questions - the choice
between parametric and non-parametric age functions and the inclusion of
a cohort term. Both of these reflect fundamental differences in approach
which lead to important mathematical and qualitative differences between
the models. Historically, however, cohort parameters have often been seen as
an optional addition to a pre-existing mortality model, especially because the
age/period terms are usually given primacy due to the reasons discussed in
Section 7. We, therefore, believe that the most important division amongst
APC models to be between the use of parametric and non-parametric age
functions.
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The optimum number of age/period terms will then depend on the na-
ture of the age functions chosen to define these terms. In models with non-
parametric age functions, it is relatively simple to add additional age/period
terms and optimise their number based on a goodness of fit criteria. In
models with parametric age functions, however, the number of age functions
needs to be defined a priori along with their functional form. If new terms
are to be added to an existing model, it is a non-trivial task to select an
appropriate form for them. To solve this problem, Hunt and Blake (2014)
introduced a “general procedure” to both select the form of the parametric
age functions and determine an optimum number of age/period terms in a
new mortality model.

Based on this analysis, we propose a simple classification of mortality
models in Figure 3. Obviously this classification is not exhaustive, as new
models and variations of existing models are continuously being proposed.
It is also not unique, since a different ordering of the questions asked when
constructing a mortality model would yield a different family tree. However,
we have found it to be a useful framework when considering the selection of
an existing mortality model or when constructing a new one (such as in Hunt
and Blake (2014)).
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9 Conclusions

The increasing number of age/period/cohort models being used to study
and project mortality rates has made a general consideration of the APC
structure necessary. We have reviewed the evolution of this class of models
in terms of the “ancestry” of the mortality models which have been proposed
to date. However, we need to go beyond a classification based on ancestry
in order to understand the properties of specific mortality models and their
advantages and disadvantages. A systematic and complete understanding of
this structure allows us to either select or construct the most appropriate
model for the dataset and the purpose. We have set out five principles
which need to be considered before an APC mortality model can be used or
constructed:

1. The response variable being modelled should match the data available.
The link functions should follow naturally from the nature of the re-
sponse variable, e.g., a Poisson distribution for the number of deaths
should lead naturally to a log-link function.

2. A static age function should generally be included and made explicit
in the model. If a parametric structure is assumed for the static age
function, this should be made explicit and the limitations this places
on the age range over which the model is suitable should be made clear.

3. The user should justify the choice of a non-parametric or parametric
structure for the age functions. Both are appropriate in different cir-
cumstances. However, the user of a model should be explicit in the
trade-offs they are making between goodness of fit and demographic
significance.

4. The use of a cohort term is usually desirable to capture structure across
year of birth in the data. However, such a term can be omitted if the
evidence does not support its inclusion.

5. When cohort terms are included in a mortality model, they should be
made as simple as possible in order to give robust parameter estimates.
This will often lead to using a single cohort term and setting β

(0)
x = 1.

We therefore believe that the examination of the structure of APC mor-
tality models in this paper has direct practical application when using and
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developing these models and enables a natural classification to be developed.
A proper understanding of the models can therefore help practitioners anal-
yse how mortality has evolved in the past and how it may evolve in future,
which is of great importance for the financial and social management of
longevity risk.
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