City Research Online

City, University of London Institutional Repository

Citation: Laksar, Saroj Kumar (1971). Solutions of certain boundary integral equations in potential theory. (Unpublished Doctoral thesis, City, University of London)

This is the submitted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/20629/

Link to published version:

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

THE CITY UNIVERSITY

SOLUTIONS OF CERTAIN BOUNDARY INTEGRAL EQUATIONS IN POTENTIAL THEORY

BY

SAROJ KUMAR LASKAR, M.Sc.

A Thesis Presented for the Degree of Doctor of Philosophy

Department of Mathematics The City University
London E.C. 1 .
December 1971

ABSTRACT

Certain Fredholm integral equations are studied which arise from boundary value problems of potential theory. It is shown how these may be solved numerically to a good approximation. The results are applied to the calculation of electrostatic capacities and to the computation of velocity potentials.
Page
INTRODUCTION8
PART I THE FORMULATION OF BOUNDARY INTEGRAL EQUATIONS
IN POLRNTIAL TILEORY
Chapter 1. Properties of Potentials Generated by Simple and Double layers
(i) Simple layer potential 11
(ii) Double layer potential 12
(iii) Green's formula 13
Chapter 2. Formulation of Dirichlet and Neumann Problems by Fredholm Integral Equations
(i) Dirichlet problem 15
(ii) Interior Neumann problem 15
(iii) Exterior Neumann problem 17
(iv) Green's boundary formula 17
Chapter 3. Existence and Uniqueness of the Solution of Fredholm Integral Equation of the lst Kind
(i) The electrostatic equation 20
(ii) Generalisation of electrostatic equation 21
(iii) Relation between formulations 22
Chapter 4. Some Problems of Potential Theory
(i) Electrostatic capacity 24
(ii) Potential fluid motion 24
PART II NUMERICAL PROCEDURES
Chapter 5. Numerical Solution of Fredholm Integral Equation
(i) First kind 27
(ii) Second kind 28
(iii) Singular matrix 30
Chapter 6. Principle of Division of Surface into Sub-areas
(i) Introduction 33
(ii) Variation of density 33
(iii) Some special intervals 35
(iv) Optimum choice of interval 37
(v) General rules for sub-division 38

Page

Chapter 7. Approximate Integration
(i) Introduction 39
(ii) Approximate methods 39
(iii) A Comparative study of two methods $\quad 40$
(iv) Error in Centroid Method 42
(v) Application of the approximation to
some test case

PART III CAPACITY OF CONDUCTORS

Chapter 8. Electrostatic Capacity
(i) Recapitulation of equations 47
(ii) Solution of equations 48
(iii) Determination of Optimum value of $\mathrm{N} \quad 48$
(iv) Intrinsic test of accuracy 49

Chapter 9. Capacity of Thin Conductors
(i) Square plate 50
(ii) Rectangular plate 51
(iii) Isosceles triangular plate 52
(iv) Equilateral plate of unit area 53
(v) Right angled isoscles triangular plate of unit area

54
(vi) General conclusion 55

Chapter 10. Capacity of a Thin Circular Disc
(i) Analytical solution 56
(ii) Numerical Approach 58
(iii) Division of a Circular Domain into
sub-areas
(iv) Formulation and Solution of the
equations

Chapter 11. Capacity of Thick Circular Discs
(i) Introduction 63
(ii) Division of the Surface into Sub-areas 63
(iii) Formulation and Solution of the
equations
(iv) Fitting of a polynomial through the
capacity values

Chapter 12. Electrostatic Capacity of a Cube
(i) Division of surface into sub-areas 67
(ii) Dirichlet formulation 67
(iii) Neumann formulation 68

Page

Chapter 13. Summary of formulation
(i) Introduction 72
(ii) Axial flow past a symmetric body 74
(iii) Simple source formulation 74
(iv) Green's boundary formula 76
(v) Test function 77
Chapter 14. Flow Past a Sphere
(i) Introduction 79
(ii) Division of the Surface into sub-areas 81
(iii) Computation of Disturbance potential 82
(iv) Equipotentials 83
(v) Fluid velocity on the surface 84
(vi) General discussion 84
Chapter 15. Flow Past a Cylinder with Hemispherical Caps
(i) Introduction 86
(ii) Discretisation procedures 86
(iii) Test function 87
(iv) Computation of disturbance potential 88
(v) Tangential velocity on the surface 89
Chapter 16. Flow Past a Cylinder with Conical Caps
(i) Introduction 90
(ii) Subdivision of boundary 90
(iii) Smoothing procedures on boundary 91
(iv) Test function
(v) Computation of Disturbance potential 93
(vi) Tangential velocity on the surface 94
Chapter 17. Flow Past a Thick Delta Wing
(i) Introduction 95
(ii) Subdivision of boundary 95
(iii) Test function 97
(iv) Computation of disturbance potential 97
(v) Tangential velocity on the surface 98
(vi) Effect of thickness variation 98
(vii) Discussion 98
Chapter 18. Flow Past a Thin Delta Wing
(i) Introduction 100
(ii) Polynomial interpolation 101
(iii) Computed results 102
(iv) Fluid velocity near the apex of the delta wing 103
Chapter 19. Behaviour of ϕ Near the tip of the Delta (i) Introduction 104
(ii) Computed values of ϕ 104
(iii) Numerical determination of ν 105
Chapter 20. Solution by Successive Approximation
(i) Introduction 106
(ii) Flow past a sphere 107
(iii) Flow past a delta wing 107
APPENDIX I 108
APPENDIX II 112
APPENDIX III 114
REFERENCES 116

TABLES

		Page			Page
Table	1	37 (a)	Table	23	83 (a)
"	2	37 (a)	"	24	83 (c)
"	3	41(a)	"	25	84 (a)
"	4	43(a)	"	26	88 (a)
"	5	44 (b)	"	27	88(b)
"	6	$45(\mathrm{a})$	"	28	89 (a)
"	7	51(a)	"	29	92 (a)
"	7 (a)	51 (d)	"	30	93 (a)
"	8	$52(a)$	11	31	93 (b)
"	9	54 (a)	"	32	94 (a)
"	9 (a)	54 (c)	"	33	96 (b)
11	10	54 (d)	"	34	97 (a)
"	11	54 (e)	"	35	97 (b)
"	12	55 (a)	"	36	98 (a)
"	12(a)	55 (a)	"	37	98 (c)
"	13	62 (b)	"	38	101 (a)
"	14	62 (b)	"	39	102 (a)
"	15	65(a)	"	40	103 (a)
"	16	66 (a)	"	41	104 (a)
"	17	66 (a)	"	42	105 (b)
"	18	66 (b)	"	43	105 (c)
11	19	63 (a)		44	105 (d)
"	20	69 (a)	1	45	107 (a)
"	21	70 (a)	11	46	107 (e)
"	22	82(a)			

FIGURES

		Page			Page
Fig.	1	12 (a)	Fig.		83 (e)
"	2	12 (a)	"	21	84 (b)
"	3	33 (a)		22	86 (a)
"	4	36(a)		23	88 (c)
"	5...	42 (a)		24	89 (b)
"	6	43 (b)	"	25	90 (a)
"	6(a)	43 (b)	"	25(a)	91 (a)
"	6 (b)	43 (b)	"	26	91 (b)
"	7	44 (a)	"	27	92 (b)
"	8	50(a)	"	28	93 (c)
"	8(a)	51 (b)	"	29	94 (b)
"	8(b)	51 (c)	"	30	94 (c)
"	8(c)	51 (e)	"	31 (a)	95 (a)
"	9	51(f)	"	31 (b)	95 (a)
"	10	53(a)	"	31 (c)	95 (b)
"	10(a)	53(a)	"	32	96 (a)
"	10 (b)	53 (a)	"	32(a)	96 (a)
"	10 (c)	54 (b)	"	32 (b)	96 (a)
"	11	62 (a)	"	33	98 (b)
"	11(a)	62 (a)	"	34	98 (d)
"	12	62 (c)	"	35	98 (e)
"	13	63(a)	"	36	103(b)
"	13(a)	63 (a)	"	36 (a)	103(b)
"	14	66(c)	"	37	105 (a)
"	15	72 (a)	"	38	107 (b)
"	16	74 (a)	"	39	107 (c)
"	16(a)	74 (a)	"	40	107 (d)
"	16(b)	74 (a)	"	41 (a)	113(a)
"	17	79 (a)	"	41(b)	113(a)
"	18	83 (b)	"	41 (c)	113(a)
	19	83 (d)			

ACKNOWLEDGEMENTS

It gives me great pleasure to express my sincere thanks to my supervisor Professor M. A. Jaswon, for introducing me to this field, and for his helpful advice and guidance at all times.

I also wish to thank Professor V. E. Price, The City University, for helpful advice on the numerical analysis, and to Mr. M. M. Freestone, Department of Aeronautical Engineering, The City University, for several useful discussions.

I wish to thank Mr. L. T. G.. Clarke, Manager of the Computer Unit, The City University, for helpful guidance on the writing of computer programs, and for placing his computing facilities at my disposal.

I am grateful to The British Council for paying my postgraduate tution fees at The City University. Finally, I am grateful to the Government of Assam, India, for the award of an Overseas Scholarship.

INTRODUCTION

This thesis deals with certain three-dimensional boundary value problems of potential theory. Such problems may be formulated in many different ways, both numerically and analytically. Here we use exclusively the method of boundary integral equations. The idea goes back nearly 100 years but was not systematically exploited until after 1955. One reason is that, generally speaking, the equations can only be solved numerically utilising fast digital computers which were not available before about 1955. In some cases the existence of the solution did not seem to be clearly established. Difficulties also arise from the presence of weakly singular kernels.

Part I of the thesis deals with the formulation of certain boundary integral equations arising in electrostatics and in potential fluid motion. As regards the determination of electrostatic capacity of conductors, we introduce simple sources on the boundary which generate a unit potential everywhere in the interior and on the boundary. This leads to a Fredholm integral equation of the first kind for the source density distribution on the boundary. We establish the existence and uniqueness of the solution of this equation, which does not seem to be readily available elsewhere. The electrostatic problem can alternatively be formulated by a normal derivative condition, leading to a Fredholm integral equation of the sccond kind for the source density distribution on the boundary. We have made a comparison between the two approaches, which seem to be interesting both on analytical and numerical grounds.

In Part I we also treat the velocity potential of potential fluid flows past various rigid obstacles, of shapes which can not be handled analytically. Two distinct formulations are studied. The first, due to A.M.O. Smith in U.S.A., represents the velocity potential as generated by a simple source distribution on the boundary. This source distribution satisfies a Fredholm integral equation of the second kind expressing a normal derivative condition on the boundary. The second formulation, due to M. A. Jaswon, utilises Green's formula on the boundary to determine the velocity potential directly. Here again we have made a comparison between the two approaches, which seems to be interesting both on numerical and analytical grounds.

Part II shows how to discretise the preceding equations. Our main problem here concerns the subdivision of a given surface into small intervals, i.e. sub-areas. Special complicationsarise when the boundary has sharp edges and corners. Wc also show how the presence of homogeneous equations affects the discretisation procedures.

In Part III we compute the electrostatic capacity of a cube. Our results lie within all known bounds. We also compute the capacity of circular discs of varying thicknesses. Our results converge to the exact known result for a thin circular disc.

In Part IV we compute the velocity potential for shapes of cylindrical symmetry, as well as for a thick delta wing. In all these cases we first work with a suitable test velocity potential. This is a necessary precaution against any errors which may arise in the discretisation procedures and in our computer programs. In this section we also deal with the thin delta wing problem discussed by Brown and Stewartson. The thin delta may be considered as a limiting case of a thick delta, but such an approach is not practicable numerically for reasons given in Chapter 18. Accordingly we attack the problem by analysing the velocity potential of a thick delta wing into symmetric and antisymmetric components. The symmetric part arise from the thickness effect, and the antisymmetric part accordingly solves the problem of a thin delta wing.

In the final Chapter we experiment with a method of successive approximations. In effect this amounts to obtaining an approximate analytical solution of a Fredholm integral equation of the second kind using a perturbation technique. Although it works very well for smooth boundaries, e.g. a sphere, it appears not to work well with boundaries having sharp edges and corners.

PART I

THE FORIULATION OF BOUNDARY INTEGRAL
EQUATIONS IN POTENTIAL THEORY

CHAPTER I

PROPERTIES OF POTENTLALS GENERATED BY SIAPLE

AND DOUBLE LAYERS

Simple Layer Potential

Let B_{i} denote a finite domain bounded by a smooth regular surface δB. The infinite region exterior to B_{i} is denoted by B_{e}. Let there be a surface distribution of simple sources on δB of density σ, which is a continuous function on δB and satisfies a Hölder condition ${ }^{1}$ at every point on δB. This distribution generates a Newtonian potential at any point p which is given by

$$
\begin{equation*}
V(\underset{\sim}{p})=\int_{\delta B} \frac{\sigma(q) d q}{T \underline{p}-\underline{q} \mid} ; \underset{\sim}{q} \in \delta B \text {, either } \underset{\sim}{p} \in B_{i} \text { or } \underset{\sim}{p} \in B_{e}, \tag{1}
\end{equation*}
$$

where $\underset{\sim}{p}$ and $\underset{\sim}{q}$ are vector variables such that $\underset{\sim}{p}$ specifies a field point in B_{i} or in B_{e} and q specifies a source point on $\delta B ; d q$ and $\sigma(q)$ denote the area differential and source density, respectively, at the point q on δB;
$|\underset{\sim}{p}-\underset{\sim}{q}|$ denotes the distance from $\underset{\sim}{p}$ to $\underset{\sim}{q}$ (Fig. 1). The simple layer integral (1) remains continuous as p crosses δB, and therefore on δB

$$
\begin{equation*}
V(\underline{p})=\int_{\delta B} \frac{\sigma(q) d q}{|\underline{p}-\underline{q}|} ; \underset{\sim}{p}, \underset{\sim}{q} \in \delta B . \tag{2}
\end{equation*}
$$

Although V remains continuous at $\delta \mathrm{B}$, its normal derivative is discontinuous. The interior normal derivative of V at a point \underline{p} of $\delta B(F i g .2)$ is given by (Ke $1 \log g)^{1}$

$$
\begin{equation*}
V_{i}^{1}(\underset{\sim}{p})=-2 \pi \sigma(\underset{\sim}{p})+\int \frac{\sigma(q) d q}{\underset{i}{\mid} \underset{\sim}{p}-\underset{\sim}{q} \mid} ; \underset{\sim}{p}, \underset{\sim}{q} \in \delta B \tag{3}
\end{equation*}
$$

where ${ }_{i}^{i} \mid \underset{\sim}{p}-q^{-1}$ stands for the interior normal derivative of $|\underset{\sim}{p}-q|^{-1}$ at $\underset{\sim}{p}$ keeping $\underset{\sim}{q}$ fixed. The exterior normal derivative of V at $\underset{\sim}{p}$ on δB (Fig. 2) is given by

$$
\begin{equation*}
V_{e}^{l}(\underset{\sim}{p})=-2 \pi \sigma(\underset{\sim}{p})+\int \frac{\sigma(q) d q}{|\underset{e}{p}-q|} ; \underline{p}, q \in \delta B \tag{4}
\end{equation*}
$$

where ${ }_{e}|\underline{p}-\underline{q}|^{-1}$ stands for the exterior normal derivative of $|\underline{p}-q|^{-1}$ at $\underset{\sim}{p}$ keeping $\underset{\sim}{q}$ fixed. Bearing in mind (Fig. 2) that

$$
\begin{equation*}
i^{1}|\underset{\sim}{p}-\underset{\sim}{q}|^{-1}+e^{1}|\underset{\sim}{p}-\underset{\sim}{q}|^{-1}=0 ; \underset{\sim}{p} \in \delta B, \tag{5}
\end{equation*}
$$

we find

$$
\begin{equation*}
V_{i}^{1}(\underset{\sim}{p})+V_{e}^{1}(\underset{\sim}{p})=-4 \pi \sigma(\underline{p}) \tag{6}
\end{equation*}
$$

Further, $V(\underline{p}) \rightarrow|\underset{\sim}{p}|^{-1} \int_{\delta B} \sigma(\underline{q}) d q$ as $|\underset{\sim}{p}| \rightarrow \infty \quad$.
More precisely

$$
\begin{aligned}
\dot{V}(\underset{\sim}{p}) & =|\underset{\sim}{p}|^{-1} \int_{\delta B} \sigma(\underset{\sim}{q}) d q+0|\underset{\sim}{p}|^{-2} \\
& =0|\underset{\sim}{p}|^{-1} \text { as }|\underset{\sim}{p}| \rightarrow \infty .
\end{aligned}
$$

Double Layer Potential

Let there be a surface distribution of double layer sources on $\delta \mathrm{B}$ of density μ which is a piecewise continuous function at every point of δB. The potential W generated by this distribution is given by

$$
\begin{equation*}
W_{i}(p)=\int_{\delta B} \frac{\mu(q) d q}{|p-q|_{i}^{1}} ; \quad \underset{\sim}{q} \in \delta B, \underset{\sim}{p} \in B_{i} \tag{7}
\end{equation*}
$$

where $i^{1}|\underset{\sim}{q}-\underset{\sim}{p}|^{-1}$ stands for the interior normal derivative of $\left.\right|_{\underset{\sim}{p}}-\left.\underset{\sim}{q}\right|^{-1}$ at \underline{q} keeping p fixed. Unlike the simple layer integral, the double layer integral is discontinuous at δB whereas its normal derivative is continuous. If we approach a surface point $\underset{\sim}{p}$ from the interior, W_{i} jumps by an amount $-2 \pi \mu(\underset{\sim}{p})$. Let W represent a continuous function ϕ, in which case

$$
\begin{equation*}
\phi(\underset{\sim}{p})=W(\underset{\sim}{p}) ; \text { either } \underset{\sim}{p} \in B_{i} \text { or } \underset{\sim}{p} \in B_{e} \tag{8}
\end{equation*}
$$

when $\underset{\sim}{p}$ approaches δ_{B} along the normal at p to δB, either from the interior or from the exterior, if follows that

$$
\begin{equation*}
\phi(\underset{\sim}{p})=W(\underset{\sim}{p})+2 \pi \mu(\underset{\sim}{p}) ; \quad \underset{\sim}{p} \in S B . \tag{9}
\end{equation*}
$$

The above sign conventions are those adopted by Jaswon (1963). ${ }^{2}$ This convention has the advantage of ensuring that the interior and the exterior formulae carry the same signs i.e. (3) and (4) for the normal derivative expression and (8) and (9) for the double layer surface relations.

Fig. 1

Fiy. 2

Green's Formula
Since every Newtonian potential is a harmonic function, it follows that the potentials V and W are harmonic. Now the question arises whether an arbitrary harmonic function ϕ in B_{i} can be represented by potentials such as (1) or (7). According to Kellogg, if ϕ is given on δB (Dirichlet problem), it may be represented by (7). If ϕ_{i}^{\prime}, the interior normal derivative of ϕ, is given on $\quad \delta B$ (Neman problem), it may be represented by (1). However a more general representation is provided by Green's formula. Given a harmonic function ϕ defined throughout B_{i}, which assumes values ϕ on δB and normal derivatives ϕ_{i}^{\prime} on δB, Green's formula states that

$$
\begin{equation*}
\int_{\delta B} G(\underset{\sim}{p}, q){\underset{i}{1}}_{1} \phi(\underline{q}) d q-\int_{\delta B} G(\underset{\sim}{p}, \underline{q}) \phi_{i}^{1}(\underset{\sim}{q}) d q=\phi(\underset{\sim}{p}) ; \underset{\sim}{q} \in \delta B, \underset{\sim}{p} \in B_{i} \tag{10}
\end{equation*}
$$

where $G^{-1}=4 \pi|\underset{\sim}{p}-\underset{\sim}{q}|$ and $G(\underset{\sim}{p}, \underset{\sim}{q})_{i}^{1}$ represents the interior normal derivative of C at $\underset{\sim}{q}$ keeping $\underset{\sim}{p}$ fixed. When $\underset{\sim}{p}$ lies on δB, (10) becomes

$$
\begin{equation*}
\int_{\delta B} G(\underset{\sim}{p}, \underline{q})_{i}^{1} \phi(\underset{\sim}{q}) d q-\int_{\delta B} G(\underset{\sim}{p}, \underset{\sim}{q}) \phi_{i}^{1}(\underset{\sim}{q}) d q=\frac{1}{2} \phi(\underset{\sim}{p}) ; \underset{\sim}{q}, \underline{p} \in \delta B \tag{11}
\end{equation*}
$$

by virtue of the jump $-\frac{1}{2} \phi$ in the double layer integral

$$
\int_{\delta B} G(\underset{\sim}{p}, \underset{\sim}{q})_{i}^{i} \phi(q) d q
$$

This is Green's boundary formula for the interior harmonic ϕ. When $\underset{\sim}{p}$ lies in B_{e}, (10) becomes

$$
\begin{equation*}
\int_{\partial B} G(\underset{\sim}{p}, \underset{\sim}{q})_{i}^{1} \phi(\underset{\sim}{q}) d q-\int_{\partial B} G(\underset{\sim}{p}, \underset{\sim}{q}) \phi_{i}^{1}(\underset{\sim}{q}) d q=0 ; \underset{\sim}{p} \in B_{e}, \underset{\sim}{q} \in \delta B \tag{12}
\end{equation*}
$$

by virtue of the further jump in the integral

$$
\int_{\delta B} G(\underset{\sim}{p}, \underset{\sim}{q}) \underset{i}{1} \phi(\underset{\sim}{q}) d q
$$

Our sign conventionsensure that all exterior equations carry the same signs as their interior counterparts. Hence for the exterior harmonic ϕ defined in B_{e}, such that $\left.\left.\phi \rightarrow 0\right|_{\underset{\sim}{p}}\right|^{-1} \quad$ as $|\underset{\sim}{p}| \rightarrow \infty$, which assumes. values ϕ
on $\quad \delta_{B}$ and normal derivatives ϕ_{e}^{\prime} on δ_{B}, Green's formula take the form.

$$
\int_{\delta B} G(\underset{\sim}{p}, q)_{e}^{1} \phi(\underline{q}) d q-\int_{\delta B} G(\underset{\sim}{p}, q) \phi_{e}^{1}(\underline{q}) d q=\phi(\underline{p}) ; q \in \delta B, \underline{p} \in B_{e}
$$

where $G(\underline{p}, \underline{q})_{e}^{\prime}$ represents the exterior normal derivative of G at \underline{q} keeping $\underset{\sim}{p}$ fixed. When $\underset{\sim}{p}$ is a point on δB, as before,

$$
\int_{\delta B} G(\underset{\sim}{p}, q) e^{1} \phi(\underset{\sim}{q}) d q-\int_{\delta B} G(\underset{\sim}{p}, \underline{q}) \phi_{e}^{1}(\underline{q}) d q=\frac{1}{2} \phi(\underline{p}) ; \underset{\sim}{p}, \underline{q} \in \delta B
$$

and for a point $\underset{\sim}{p}$ in B_{i}, by virtue of a further jump in the double layer integral,

$$
\begin{equation*}
\int_{\delta B} G(\underline{p}, \underline{q})^{1} \phi(\underline{q}) d q-\int_{O B} G(\underline{p}, \underline{q}) \phi_{e}^{2}(\underline{q}) d q=0 ; \quad \underline{p} \in B_{i}, q \in \delta B \tag{15}
\end{equation*}
$$

It is interesting to examine the behavior of ϕ defined by (13), at infinity. Given ϕ and $\phi_{\mathrm{e}}^{\prime}$ on $\delta \mathrm{B}$, from (13) we have

$$
\begin{equation*}
\phi(\underset{\sim}{p})=0|\underset{\sim}{p}|^{-2} \int_{\delta B} \phi(\underset{\sim}{q}) d q-0{\underset{\sim}{p}}_{p}^{-1} \int_{\delta B} \phi_{e}^{1}(\underline{q}) d q, \tag{16}
\end{equation*}
$$

since $G=0|\underset{\sim}{p}|^{-1}$ and $G^{1}=0|\underset{\sim}{p}|^{-2}$ when $|\underset{\sim}{p}| \rightarrow \infty$.
In contrast with the interior problem, where

$$
\int_{\delta B} \phi_{i}^{2}(\underset{\sim}{q}) d q=0
$$

for the interior harmonic ϕ (Gauss condition)

$$
\begin{equation*}
\int_{\delta B} \phi_{e}^{1}(\underset{\sim}{q}) d q \neq 0 \tag{17}
\end{equation*}
$$

necessarily. This does not contradict the Gauss condition if we bear in mind the compensating contribution from a large sphere at infinity.

```
BY FREDHOLM INTEGRAL EQUATIONS
```


Dirich1et Problem

If the simple source potential y represents a harmonic function characterised by the boundary values ϕ, it must, from (2), satisfy the boundary equation

$$
\begin{equation*}
\phi(\underline{p})=\int_{\delta B} G(\underset{\sim}{p} \underline{q}) \sigma(\underline{q}) d q ; \underline{p}, \underline{q} \in \delta B \tag{18}
\end{equation*}
$$

which is a Fredholm integral equation of the lst kind for σ in terms of ϕ on δ B. If a solution of (18) exists, it generates an interior harmonic function

$$
\phi(\underline{p})=\int_{\delta B} G(\underline{p}, \underline{q}) \sigma(\underset{\sim}{q}) d q ; \quad \underline{q} \in \delta B, \underline{p} \in B_{i}
$$

and an exterior harmonic function

$$
\phi(p)=\int_{\partial B} G(\underset{\sim}{p}, \underline{q}) \sigma(\underset{\sim}{q}) d q ; \cdot \underset{\sim}{q} \in \delta B, \underline{p} \in B_{e}
$$

such that $\phi(\underset{\sim}{p})=0|\underset{\sim}{p}|^{-1}$ as $|\underline{p}| \rightarrow \infty$. Similarly if the double source potential W represents a harmonic function ϕ in B_{i}, it must, from (9) satisfy the boundary equation

$$
\phi(\underset{\sim}{p})=\frac{1}{2} \mu(\underset{\sim}{p})+\int_{\delta B} G(\underset{\sim}{p}, \underset{\sim}{q})_{i}^{i} \mu(\underset{\sim}{q}) d q ; \underset{\sim}{p}, \underline{q} \in \delta B
$$

which is a Fredholm integral equation of the 2 nd kind for μ in terms of ϕ on δ_{13}.

Interior Neumann Problem

In the case of the interior Neumann problem, where ϕ_{i}^{\prime} is given on δB, it follows from (3) that

$$
\begin{equation*}
\phi_{i}^{1}(\underline{p})=-\frac{1}{2} \sigma(\underline{p})+\int_{\delta B} G_{i}^{1}(\underline{p}, q) \sigma(\underline{q}) d q ; \underline{p}, \underline{q} \in \delta B . \tag{20}
\end{equation*}
$$

This is a Fredholm integral equation of the 2 nd kind for the unknown boundary function σ.

Equation (19) is fully discussed by Kellogg but is not utilised in this thesis. Leaving aside (18) to be discussed later, the necessary and sufficient condition for the existance of a solution of (20), by Kellogg, is

$$
\begin{equation*}
\int \mu(p) \phi_{i}^{1}(\underset{\sim}{p}) d p=0 \tag{21}
\end{equation*}
$$

δB
where μ is a solution of the transpose (or adjoint) hamogeneous equation

$$
\begin{equation*}
-\frac{1}{2} \mu(\underset{\sim}{p})+\int_{\delta B} G(\underset{\sim}{p}, \underline{q}) \underset{i}{1} \mu(\underset{\sim}{q}) d q=0 ; \underset{\sim}{p}, \underline{\sim} \in \delta B \tag{22}
\end{equation*}
$$

This admits the non-trivial solution $\mu=1$ by virtue of the Gouss flux theorem for the field point on $\delta \mathrm{B}$ viz.
$\int_{\delta B} G(\underset{\sim}{p}, q){\underset{i}{1}}_{1}^{d q}=-\int_{\text {Setting }} G(\underset{\sim}{p}, q) \frac{1}{e} d q=\frac{1}{2} ; \underset{\sim}{p}, \underline{q} \in \delta B$. harmonic $\phi v i z$.

$$
\begin{equation*}
\int_{\delta B} \phi_{i}^{1}(\underline{p}) d p=0 \tag{24}
\end{equation*}
$$

The general solution of (20) is then given by

$$
\sigma=\sigma_{0}+k \lambda
$$

where σ_{o} is a particular solution of (20); k is an arbitrary constant and λ is a solution of the corresponding homogenous equation

$$
\begin{equation*}
-\frac{1}{2} \lambda(\underset{\sim}{p})+\int_{\delta B} G_{i}^{1}(\underset{\sim}{p}, \underset{\sim}{q}) \lambda(\underset{\sim}{q}) d q=0 ; \underset{\sim}{p}, \underset{\sim}{q} \in \delta B \tag{25}
\end{equation*}
$$

An alternative proof of (24) is as follows. Integrating both sides of (20) with respect to p and bearing in mind the Theorem (23):

$$
\begin{gather*}
\int_{\delta B} \phi_{i}^{1}(\underset{\sim}{p}) d p=-\int_{\delta B} \frac{1}{2} \sigma(\underset{\sim}{p}) d p+\int_{\delta B} \int_{\delta B} G_{i}^{1}(\underset{\sim}{p}, \underline{q}) \sigma(\underline{q}) d q d p \\
= \tag{26}\\
\\
\delta B \quad \int \frac{1}{2} \sigma(\underset{\sim}{p}) d p+\int \frac{1}{2} \sigma(\underset{\sim}{q}) d q=0
\end{gather*}
$$

In the case of the exterior Neunann problem, where ϕ_{e}^{\prime} is given on δB, it follows from (4) that

$$
\begin{equation*}
\phi_{\mathrm{e}}^{1}(\underset{\sim}{p})=-\frac{1}{2} \sigma(\underset{\sim}{p})+\int_{\delta B}{\underset{e}{e}}_{\underset{\sim}{1}(\underset{\sim}{p}, \underline{q}) \sigma(\underset{\sim}{q}) d q ; \underset{\sim}{p}, \underset{\sim}{q} \in \delta B ~}^{\text {B } .} \tag{27}
\end{equation*}
$$

This has a solution, by Kellogg, if

$$
\begin{equation*}
\ldots \int_{\delta B} \phi_{e}^{1}(\underset{\sim}{p}) \mu(\underset{\sim}{p}) d p=0 \tag{28}
\end{equation*}
$$

where μ is a solution of the corresponding transpose homogeneous equation

$$
\begin{equation*}
-\frac{1}{2} \mu(\underline{p})+\int_{\partial B} G(\underset{\sim}{p}, \underline{q})^{\frac{1}{e}} \mu(\underline{q}) d q=0 ; \underset{\sim}{p}, \underset{\sim}{q} \in \delta B . \tag{29}
\end{equation*}
$$

The equation (29) in three dimensions has no non-trivial solution, since its transpose

$$
\begin{equation*}
-\frac{1}{2} \lambda(\underset{\sim}{p})+\int_{\partial B} G_{e}^{1}(\underset{\sim}{p}, \underset{\sim}{q}) \lambda(\underset{\sim}{q}) d q=0 ; \underset{\sim}{p}, \underset{\sim}{q} \in \delta B \tag{30}
\end{equation*}
$$

as shown in the next chapter, has no non-trival solution. As a result, by Kellogg , (27) has always a unique solution.

Integrating both the sides of (27) with respect to p, we find

$$
\begin{align*}
\int_{\delta B} \phi_{e}^{1}(\underline{p}) d p & =-\frac{1}{2} \int_{\delta B} \sigma(\underset{\sim}{p}) d p+\int_{\delta B} \int_{\delta B} G_{e}^{1}(\underset{\sim}{p}, \underline{q}) \sigma(\underline{q}) d q d p \\
& =-\frac{1}{2} \int_{\delta B} \sigma(\underline{p}) d p-\frac{1}{2} \int_{\delta B} \sigma(\underline{q}) d q=-\int_{\delta B} \sigma(\underline{q}) d q \tag{31}
\end{align*}
$$

which, in contrast with (26), does not equal zero necessarily. This is completely in accordance with (17) in Chapter 1.

Creen's Boundary Formula
In Green's formula (10), the interior harmonic function ϕ is expressed in terms of the values of ϕ and ϕ_{i}^{\prime} on δB. These over-prescribe ${ }^{3}$ the boundary data and, therefore, the formula cannot be used directly to solve the boundary value problems. This is because ϕ alone on δB, or ϕ_{i}^{\prime} alone on δB, or any admissible local relation between ϕ and ϕ_{i}^{\prime} on δ, suffices to determine ϕ throughout B_{i}. One way out of this difficulty is to take the field point $\underset{\sim}{p}$ on δB itself, which is Green's boundary formula (11). This may be viewed as a constraint between ϕ and
$\phi \frac{1}{i}$ on δB that defines one in terms of the other. Given ϕ on δB (Dirichlet problem), (11) becomes a Fredholm integral equation on the list kind for $\phi \quad \begin{aligned} & \text { i }\end{aligned}$ viz.
$\int_{\delta B} G(\underset{\sim}{p}, \underset{\sim}{q}) \phi_{i}^{1}(\underset{\sim}{q}) d q=-\frac{1}{2} \phi(\underset{\sim}{p})+\int_{\delta B} G(\underset{\sim}{p}, \underset{\sim}{q})_{i}^{1} \phi(\underset{\sim}{q}) d q ; \underset{\sim}{p}, \underset{\sim}{q} \in \delta B$.
Conversely, given ϕ_{i}^{\prime} on $\quad \delta_{B}$ (Newman problem), (11) becomes a Fredholm integral equation of the 2 nd kind for ϕ viz.
$-\frac{1}{2} \phi(\underset{\sim}{p})+\int_{\delta B} G(\underset{\sim}{p}, q)_{i}^{1} \phi(\underset{\sim}{q}) d q=\int_{\delta B} G(\underset{\sim}{p}, \underset{\sim}{q}) \phi_{i}^{1}(\underset{\sim}{q}) d q ; \underset{\sim}{p}, \underset{\sim}{q} \in \delta B$.

Leaving equation (32) to be discussed in the next chapter, we come to equation (33) which, by Kellogg, has a solution if

$$
\begin{equation*}
\int_{\delta B} \lambda(\underline{p}) d p \int_{\delta B} G(\underline{\sim}, q \underline{q}) \phi_{i}^{1}(\underset{\sim}{q}) d q=0 ; \underset{\sim}{p}, \underline{q} \in \delta B \tag{34}
\end{equation*}
$$

Here λ is a solution of (25), which is the transpose of homogeneous part of (33) viz.

$$
\begin{equation*}
-\frac{1}{2} \phi(\underset{\sim}{p})+\int_{\partial B} G(\underset{\sim}{p}, \underline{q})_{i}^{1} \phi(\underline{q}) d q=0 ; \underset{\sim}{p}, \underset{\sim}{q} \in \delta B . \tag{35}
\end{equation*}
$$

This equation (35), by virtue of (23), exhibits a nontrivial solution $\phi=1$. Hence (25), which is the transpose of (35), has a nontrivial solution λ. Interchanging the order of integration in the left hand side of (34), we have

$$
\int_{\delta B} \lambda(\underline{p}) d p \int_{\delta B} G(\underset{\sim}{p}, \underline{q}) \phi_{i}^{1}(\underline{q}) d q=\int_{\delta B} \phi_{i}^{1}(\underset{\sim}{q}) d q \int_{\delta B} G(\underline{q}, p) \lambda(\underset{\sim}{p}) d p=0
$$

$$
\text { since } G(\underline{p}, \underline{q})=G(\underset{\sim}{q}, \underset{\sim}{p}) \text { and } \int_{\delta B} G(\underset{\sim}{q}, \underline{p}) \lambda(\underline{p}) d p=\phi=1 .
$$

The above condition is in agreement with the condition derived in (24).

The general solution of (33) is given by

$$
\phi=\phi_{0}+k \eta
$$

where ϕ_{0} is a particular solution of (33); k is an arbitrary constant and $\eta=1$ is a solution of the corresponding homogeneous equation (35). Given ' $\phi_{\mathrm{e}}^{\prime}$ on δB (the exterior Neumann problem), (14) becomes a Fredholm integral equation of the 2 nd kind for ϕ viz.
$-\frac{1}{2} \phi(\underline{p})+\int G(\underline{p}, q)^{1} e^{2} \phi(\underline{q}) d q=\int G(\underline{p}, \underline{q}) \phi_{e}^{1}(\underline{q}) d q ; \underset{\sim}{p}, \underline{q} \in \delta B$.
$\delta B \quad \delta B$
This has a solution, by Kellogg, if

$$
\int_{\partial B} \lambda(\underset{\sim}{p}) d p \int_{\partial B} G(\underset{\sim}{p}, \underline{q}) \varphi_{e}^{1}(\underline{q}) d q=0 ; \underset{\sim}{p}, \underset{\sim}{q} \in B
$$

where λ is a solution of (30) which is a transpose of the homeneous part of (36). It is discussed earlier that in three dimensions, equation (30) has no non-trivial solution. Hence in three dimensions, by Kellogg, (36) has a unique solution.

Confining our discussion to three dimensions, we find the exterior Neumann problem, in contrast with the interior Neumann problem, has always a solution and that it is unique.

CHAPTER 3

EXISTENCE AND UNIQUENESS OF TIE SOLUTION OF FREDHOLM

INTEGRAL EQUATION OF THE 1 ST KIND

The Electrostatic Equation

If we put $\phi=1$ in (18), we obtain the electrostatic equation

$$
\begin{equation*}
\int_{\delta B} G(\underset{\sim}{p}, q) \lambda(\underline{\sim}) d q=1 ; p, q \in \delta B \tag{37}
\end{equation*}
$$

Since $\phi=1$ on δB, it follows that $\phi=1$ everywhere in B_{i}. Hence taking the interior normal derivative of (37), we have
$-\frac{1}{2} \lambda(\underline{p})+\int_{\delta B} G_{i}^{2}(\underset{\sim}{p}, \underline{\sim}) \lambda(\underset{\sim}{q}) d q=0 ; \underset{\sim}{p}, \underline{q} \in \delta B$.
This equation exhibits a non-trivial solution λ, since its transpose

has, by virtue of (23), a non-trivial solution $\mu=1$. The solution of (38) generates an interior simple source potential
$\chi(p)=\int G(p, q) \lambda(q) d q ; q \in \delta b, \underset{\sim}{p} \in B_{i}$
δB
characterised by
$\chi_{i}^{1}(\underline{p})=0 ; \underset{\sim}{p} \in \delta B$.

It follows that $\chi=$ Constant on δB. Hence the solution λ either satisfies (37) or possibly satisfies

$$
\begin{equation*}
\int G(\underset{\sim}{p}, \underset{\sim}{q}) \lambda(\underset{\sim}{q}) d q=0 ; \underset{\sim}{p}, \underset{\sim}{q} \in \delta B . \tag{41}
\end{equation*}
$$

δB
Let us assume the non-trivial solution λ of (38) satisfies (41). Hence it generates an exterior simple source potintial

$$
\begin{equation*}
\chi(\underline{p})=\int_{\delta B} G(\underline{p}, \underline{q}) \lambda(\underline{q}) d q ; \underline{q} \in \partial B, \underline{p} \in B_{e} \tag{42}
\end{equation*}
$$

characterised by

$$
\begin{equation*}
X(\underset{\sim}{p})+0|\underset{\sim}{p}|^{-1} \int_{\partial B} \lambda(q) d q \text { as }|\underset{\sim}{p}| \rightarrow \infty \tag{43}
\end{equation*}
$$

The combination of (43) with (41), ie. $X=0$ on $\delta \mathrm{B}$, implies by a classical existence theorem that $X=0$ everywhere in B_{e}. Hence

$$
\begin{equation*}
X_{e}^{1}(\underset{\sim}{p})=0 ; \underset{\sim}{p} \in \delta B \tag{44}
\end{equation*}
$$

Bearing in mind $\chi_{i}^{1}(\underset{\sim}{p})=0 ; \underset{\sim}{p} \in \delta B$, by (6), it follows that

$$
-\lambda(\underline{p})=\chi_{i}^{1}(\underline{p})+\chi_{e}^{1}(\underset{\sim}{p})=0
$$

This shows that the equation (41) has no nontrivial solution. Hence λ satisfies (37), and the solution of (37) is unique. In two dimensional potential theory

$$
X(\underset{\sim}{p})=O(\log |\underline{p}|) \int_{\delta B} \lambda(\underline{\sim}) d q \text { as }|\underline{p}|+\infty
$$

and hence we can not conclude that $X=0$ everywhere in B_{e} even though $X=0$ on δB. In two-dimensions, therefore, equation (41) may exhibit a nontrivial solution (Γ contour case, Jaswon 1963).

Generalisation of Electrostatic Equation

To show that the more general equation (18) has a unique solution, let us consider its equivalent normal derivative equation (20). It has already been shown that the general solution of (20) is

$$
\begin{equation*}
\sigma=\sigma_{0}+k \lambda \tag{45}
\end{equation*}
$$

where σ_{0} is a particular soluton of (20); k is an arbitrary constant and λ is a solution of the corresponding homogeneous equation (25). This solution generates a simple source potential that differs from ϕ (p) of (18) only by a constant, which may be eliminated by choosing a suitable value of k. Hence $\sigma_{0}+k \lambda$ provides a unique solution of (18). This discussion covers the equation (32) though it remains to be proved that
$\phi_{i}^{\prime}(\underline{p})$ of (32) satisfies (24). Operating on both sides of (32) by $\int \cdots \cdots \cdot \cdot \lambda(\underline{p}) d p$ and interchanging the order of integration (Fubini's theorem), we have
$\int_{\delta B} \lambda(\underline{p}) d p \int_{\delta B} G(\underline{p}, \underline{q}) \phi_{i}^{1}(\underset{\sim}{q}) d q=\int_{\delta B} \lambda(\underset{\sim}{p}) d p \int_{\delta B} G(\underset{\sim}{p}, \underline{q})_{i}^{1} \phi(\underset{\sim}{q}) d q-\frac{1}{2} \int_{\delta B} \lambda(\underline{p}) \phi(\underline{p}) d p$
i.e. $\int_{\delta B} \phi_{i}^{1}(\underline{q}) d q \int_{\delta B} G(\underset{\sim}{q}, \underset{\sim}{p}) \lambda(\underset{\sim}{p}) d p=\int_{\delta B} \phi(\underset{\sim}{q}) d q \int_{\delta B} G(\underset{\sim}{p}, \underline{\sim})_{i}^{1} \lambda(\underset{\sim}{p}) d p-\frac{1}{2} \int_{\delta B} \lambda(\underline{p}) \phi(\underset{\sim}{p}) d p$
i.e. $\int_{\delta B} \phi_{i}^{1}(\underset{\sim}{q}) d q=\frac{1}{2} \int_{\delta B} \phi(\underset{\sim}{q}) \lambda(\underset{\sim}{q}) d q-\frac{1}{2} \int_{\delta B} \lambda(\underset{\sim}{p}) \phi(\underset{\sim}{p}) d p$
i.e. $\int_{\delta B} \phi_{i}^{2}(\underset{\sim}{q}) \mathrm{dq}=0$.

Relation between formulations
We have two formulations (18) and (32) of the Dirichlet problem, both of which are Fredholm integral equations of the 1st kind. Neither of these coincide with the classical formulation (19), which is a Fredholm integral equation of the 2nd kind. To establish a connection between (18), (19) and (32) let us introduce Green's identity (15) for an exterior function Ψ in B_{e}, characterised by the behaviour $0|\underset{\sim}{p}|^{-1}$ as $|\underset{\sim}{p}| \rightarrow \infty$,
$\int_{\delta B} G(\underset{\sim}{p}, \underline{q})^{1} e^{\Psi(q) d q}-\int_{\delta B} G(\underset{\sim}{p}, q) \Psi^{\prime} e^{(q)} d q=0 ;{\underset{\sim}{q}}^{p} B_{i}, q \in \delta B \quad$.
Superimposing (10) and (46), and bearing in mind the relation (5), we find
$\int_{\delta B} G(\underset{\sim}{p}, \underset{\sim}{q})_{i}^{\prime}[\phi(\underset{\sim}{q})-\Psi(\underset{\sim}{q})] d q-\int_{\delta B} G(\underset{\sim}{p}, \underset{\sim}{q})\left[\phi_{i}^{1}(\underset{\sim}{q})+\Psi^{1}(\underset{\sim}{q})\right] d q=\phi(\underset{\sim}{p})$.
There are two distinct possibilities for ψ
(i) $\Psi=\phi \quad$ on $\quad \delta \mathrm{B}$, whence

$$
\begin{equation*}
\phi(\underset{\sim}{p})=-\int_{\delta B} G(\underset{\sim}{p}, \underset{\sim}{q})\left[\Psi^{1}(\underset{\sim}{q})+\phi_{i}^{1}(q)\right] d q ;{\underset{\sim}{q}}^{1} \in B, \underset{\sim}{p} \in B_{i} \tag{48}
\end{equation*}
$$

Putting $\Psi_{e}^{\prime}(\underset{\sim}{q})+\phi_{i}^{\prime}(\underset{\sim}{q})=-\sigma(\underset{\sim}{q})$, (48) identifies with (18).
(ii)

$$
\psi_{e}^{1}(\underset{\sim}{q})=-\phi_{i}^{1}(\underset{\sim}{q}) \quad \text { on } \quad \delta B, \text { whence }
$$

$\phi(\underset{\sim}{p})=\int_{\delta B}[\phi(\underline{q})-\Psi(q)] G(\underset{\sim}{p}, \underset{\sim}{q})^{2} d q ; \underset{\sim}{p} \in B{ }_{i}, q \in \delta B$.

Putting $\phi(\underset{\sim}{q})-\Psi(\underset{\sim}{q})=\mu(\underset{\sim}{q}), \quad(49)$ identifies with (19) when $\underset{\sim}{p}$ is taken on δB.

Cinpter 4

SOME APPLICATIONS OF POTENTIAL TIEORY

Electrostatic Capacity

It has been shown that the 'electrostatic' equation

$$
\begin{equation*}
\int G(\underset{\sim}{p}, \underset{\sim}{q}) \lambda(\underset{\sim}{q}) d q=1 ; \underset{\sim}{p}, \underset{\sim}{q} \in \delta B \tag{50}
\end{equation*}
$$

δB

exhibits a unique solution λ. To prove that $\lambda \quad$ has the same sign everywhere on δ_{B}, we note $\delta \mathrm{B}$ is an equipotential of the exterior harmonic functionn X of (42). Hence X_{e}^{\prime} has the same sign everywhere on δ B. Now

$$
\begin{equation*}
x=0|\underline{h}|^{-1} \text { as }|h| \rightarrow \infty \tag{51}
\end{equation*}
$$

Therefore, $X_{e}^{1}(p)<0$
everywhere on δB. Bearing in mind $X_{i}^{\prime}(\underline{p})=0$, we see that, by (6),

$$
\lambda(\underset{\sim}{p})=-\left(X_{i}^{1}(\underset{\sim}{p})+X_{e}^{1}(\underset{\sim}{p})\right)>0
$$

on $\delta \mathrm{B}$. The quantity

$$
k=\int_{\delta B} \lambda(\underline{p}) d p>0
$$

is defined to be the electrostatic capactity of δ в. The electrostatic density λ which generates the potential $\phi=1$ on $\delta \mathrm{B}$ can be obtained by solving the equation (50). The capacity μ then may be computed using this λ in (52).

Potential Fluid Motion

An inviscid inconpressible fluid is flowing from infinity with uniform velocity $\underset{\sim}{\mathbb{U}}$. In the finite region it passes round a fixed obstacle B which distrubs the flow. If Ψ is the velocity potential of the free flow, and if ϕ is the perturbation of this potential by the presence of B, then the total velocity potential is

$$
\begin{equation*}
\Phi=\phi+\psi \tag{53}
\end{equation*}
$$

where $-\nabla \Psi=\underset{\sim}{U}=a$ constant,
and $\quad \phi=0|\underset{\sim}{p}|^{-1}$, by (16), as $|\underline{q}| \rightarrow \infty$.
The normal velocity component is zero at the boundary $\delta \mathrm{B}$, and so

$$
\begin{equation*}
\Phi_{e}^{1}(\underset{\sim}{p})=\phi_{e}^{1}(\underset{\sim}{p})+\psi_{e}^{1}(\underset{\sim}{p})=0 ; \underset{\sim}{p} \in \delta B . \tag{55}
\end{equation*}
$$

From (55), $\quad \phi_{\mathrm{e}}^{\prime}(\underset{\sim}{p})=-\quad \Psi_{\mathrm{e}}^{\prime}(\underset{\sim}{p}) ; \quad \underset{\sim}{p} \in \delta B$. Since $\Psi{ }_{\mathrm{e}}^{\prime}$ is known $\quad \phi_{e}^{\prime}$ is therefore known on δ^{B}. Hence the determination of ϕ becomes an exterior Neumann problem which, as shown earlier, has always a unique solution.

$$
\text { Since } \phi_{e}^{1}=-\Psi_{e}^{1} \text { on } \delta B \text {, }
$$

we have

$$
\begin{equation*}
\int_{\delta B} \phi_{e}^{1}(p) d p=-\int_{\delta B} \psi_{e}^{1}(p) d p=0 \quad, \quad \text { by }(54) \tag{56}
\end{equation*}
$$

Putting (56) in (16), we find in the case of potential flow, that the perturbation $\phi \quad$ is of order $|\underset{\sim}{p}|^{-2}$ as $|\underset{\sim}{p}| \rightarrow \infty \quad$. Given $\quad \phi_{\mathrm{e}}^{\prime}$ on δB, the perturbation ϕ can be obtained in two ways:-
(i) It can begenerated by a simple source distribution of density σ on $\delta \mathrm{B}$ such as (18) ie.

$$
\begin{equation*}
\phi(\underline{p})=\int_{\delta B} G(\underline{p}, q) \sigma(\underline{q}) d q ; \underset{\sim}{q} \in \delta B \tag{57}
\end{equation*}
$$

where σ is obtained by solving the integral equation (27) viz.
$-\frac{1}{2} \sigma(\underset{\sim}{p})+\int_{\delta B} G_{e}^{1}(\underset{\sim}{p}, \underline{q}) \sigma(\underset{\sim}{q}) d q=\phi_{e}^{1}(\underset{\sim}{p}) ; \underset{\sim}{p}, \underset{\sim}{q} \in \delta B$
in which $\phi_{\mathrm{e}}^{\mathrm{l}}\left(\underset{\sim}{p}\right.$) is given by (55). The $\sigma^{\prime} \mathrm{s}$ in (58) have the property, by (31),
$\int_{\delta B} \sigma(\underset{\sim}{q}) d q=-\int_{\delta B} \phi_{e}^{1}(\underset{\sim}{p}) d p=0 \quad$, by (56).
(ii) ϕ can directly be obtained by solving the integral equation (36) viz.
$-\frac{1}{2} \phi(\underline{p})+\int_{\delta B} G(\underset{\sim}{p}, q)_{e}^{1} \phi(\underline{q}) d q=\int_{\varepsilon 3} G(\underset{\sim}{p}, \underline{q}) \phi_{e}^{1}(\underline{q}) d q ; \underset{\sim}{p}, \underset{\sim}{q} \in \delta B$
where $\phi_{\mathrm{e}}^{\prime}$ on $\quad \delta B$ is given by (55).

PART II
NUMERICAL PROCEDURES

First Kind

To solve a boundary integral equation analytically is, generally speaking, out of /question. A straightforward numerical approach replaces the equation by a system of simultaneous linear algebraic equations, referring to a set of nodal points spaced over the boundary. The equations are then assembled and solved by writing a digital computer program.

For a numerical solution we divide the surface ∂B into N intervals i.e. sub-areas, and then we make the fundamental assumption that
(1) TIIE SOURCE DENSITY REMAINS CONSTANT OVER A SUB-AREA .

On the basis of this assumption, for a particular field point \underline{p}, equation (18) becomes

$$
\begin{equation*}
\sum_{j=1}^{N} \sigma_{j} \int_{j} G(\underline{n}, q) d q=\phi(\underline{q}) \tag{61}
\end{equation*}
$$

where $6 j$ stands for the constant value of 6 over the j th subarea. To make further progress, we introduce a pivotal point ${\underset{\sim}{~}}_{k}$ within the k th subarea, which is normally the centroid of the subarea, and we put

$$
p=q_{\sim}, q_{2}, q_{3} \cdot \cdot \underline{q}_{N}
$$

successively. As a result (61) becomes

$$
\begin{equation*}
\sum_{j=1}^{N} \sigma_{j} \int_{j} G\left(\underline{q}_{k}, q^{q}\right) d q=\phi\left(q_{k}\right) ; k=1,2, \cdots N \tag{62}
\end{equation*}
$$

This is a discrete system of N linear algebraic equations for the N unknowns .

Equations (62) can be put in the matrix form

$$
\begin{equation*}
[A][\sigma]=[\phi] \tag{63}
\end{equation*}
$$

where $[\sigma]$ is a column vector with the elements σ_{j} and $[\phi]$ is a column vector with N elements $\quad \phi\left({\underset{\sim}{j}}_{j}\right) ; \quad[A]$ is a $N x N$ matrix with elements

$$
\begin{equation*}
a_{k j}=\int_{j} G\left(\underline{q}_{k}, \underline{q}\right) d q \tag{64}
\end{equation*}
$$

i.e. the integral of $G({\underset{q}{k}}, \underline{q})$ over the j th sub-area keeping q_{k} fixed. In principle this can be computed as it stands, but simple approximations to it suffice for our purposes. Two distinct cases arise:
(a) when $\mathrm{j} \neq \mathrm{k}$, the integrand is finite. To approximate it we make the assumption that
(2) THE KERNEL REMAINS CONStant throughout the SUB-AREA, ITS VALUE being associated with the pivotal point q_{k}.

On this basis, we find

$$
\begin{equation*}
a_{k j}=G\left(q_{k}, q\right) \int_{j} d q \quad ; \quad j \neq k \tag{65}
\end{equation*}
$$

(b) when $\mathrm{j}=\mathrm{k}$, the integrand is singular, but integrable, and it may be evaluated analytically (Appendix I).

Given ϕ on ∂_{B}, (63) represents a system of N linear algebraic equations for σ_{k}. These can be solved either by the matrix inversion method or, since $a_{k k} \neq 0$, by the Gauss - Seide1 iterative method.

Second Kind

Following the basic assumptions and procedures adopted with equation (18), we write equations (20) and (27) as

$$
\begin{equation*}
-\frac{\sigma_{k}}{2}+\sum_{j=1}^{N} \sigma_{j} \int_{j} G^{\prime}\left(q_{k}, \underline{q}\right) d q=\phi^{\prime}\left(q_{k}\right) ; k=1,2, \cdots N . \tag{66}
\end{equation*}
$$

Given $\phi^{\prime}\left(q_{k}\right)$ on ∂B, this represents a system of N linear algebraic equations for the unknowns $\sigma_{1}, \sigma_{2}, \ldots . \sigma_{N}$ of the form

$$
\begin{equation*}
[B][\sigma]=\left[\phi^{\prime}\right] \tag{67}
\end{equation*}
$$

The element $\quad b_{k j}$ of the $N \times N$ matrix $[B]$ is given by

$$
\begin{equation*}
b_{k j}=\int_{j} G^{\prime}\left(q_{k}, q\right) d q ; \quad j \neq k \tag{68}
\end{equation*}
$$

$$
\begin{equation*}
=-\frac{1}{2}+\int_{j} G^{\prime}\left(q_{2}, \underline{q}\right) d q \quad ; \quad j=k \tag{69}
\end{equation*}
$$

The integrand in (68) is finite and on the basis of the assumption 2 it becomes

$$
\begin{equation*}
\lg _{k j}=G^{\prime}\left(\underline{q}_{k}, q_{1}\right) \int_{j} d q \quad ; \quad j \neq k \tag{70}
\end{equation*}
$$

The integrand in (69) is apparently indeterminate but integrable, and may be evaluated analytically (Appendix Il)

Similarly following the same assumptions and procedures, we write equations (33) and (36) as

$$
\begin{equation*}
-\frac{\phi}{2}\left(q_{k}\right)+\sum_{j=1}^{N} \phi\left(\underline{q}_{j}\right) \int_{j} G\left(\underline{q}_{k}, \underline{q}\right)^{\prime} d q_{j}=\sum_{j=1}^{N} \phi^{\prime}\left(\underline{q}_{j}\right) \int_{j} G\left(\underline{q}_{k}, \underline{q}\right) d q_{i} ; k=1,2, \cdots N \tag{71}
\end{equation*}
$$

Given $\phi^{\prime}({\underset{\sim}{q}})$ on $\quad \partial B$, this equation represents a system of N linear algebraic equations for the unknowns $\quad \phi\left({\underset{\sim}{1}}_{1}\right), \quad \phi\left({\underset{\sim}{q}}_{2}\right), \ldots . \quad \phi({\underset{\sim}{N}})$, of the form

$$
\begin{equation*}
[C][\phi]=[D] \tag{72}
\end{equation*}
$$

The element $C_{k j}$ of the $N \times N$ matrix $\quad[C]$ is given by

$$
\begin{equation*}
C_{k j}=\int_{j} G\left(q_{k}, q\right)^{\prime} d q \quad ; \quad j \neq k \tag{73}
\end{equation*}
$$

$$
\begin{equation*}
=-\frac{1}{2}+\int_{j} G\left(q_{k}, q\right)^{\prime} d q_{j} ; j=k \tag{74}
\end{equation*}
$$

The integrand in (73) is finite and, as before, on the basis of assumption 2, it becomes

$$
\begin{equation*}
C_{R j}=G\left(q_{k}, q\right)^{\prime} \int_{j} d q \quad ; \quad j \neq k \tag{75}
\end{equation*}
$$

When $\mathrm{j}=\mathrm{k}$, the integrand is apparently indeterminate but integrable, and may be evaluated analytically (Appendix II). The column vector $[D]$ has N elements

$$
d_{k}=\sum_{j=1}^{N} \phi^{\prime}\left(\underline{q}_{j}\right) \int_{j} G\left(\underline{q}_{k}, \underline{q}\right) d q_{j} ; k=1,2, \cdots N .
$$

The above integral for $j=1,2, \ldots . . N$ is evaluated in the same way as (64).
From (69) and (74) we find that the diagonal element in any of the matrices $[B]$ and $[C]$ is a fairly large element in a row. This makes the equations amenable to solution by the Gauss-Seidel : iterative method.

Singular Matrix

In the electrostatic problem $\phi_{i}^{\prime}=0$ on ∂B, so that (20) becomes the homogeneous equation

$$
\begin{equation*}
-\frac{1}{2} \lambda(\underline{q})+\int G_{\text {int. }}^{\prime}(\underline{q}, \underline{q}) \lambda(\underline{q}) d q=0 \tag{76}
\end{equation*}
$$

where int. stands for interior normal (replacing i of Part I). On discretisation (76) gives (67) with $\phi^{\prime}=0$, and $[\sigma]$ is replaced by $[\lambda]$ i.e.

$$
[B][\lambda]=0
$$

It has already been shown in Chapter 2, that the equation (76) has a non-trival solution. Hence the matrix $[B]$ must be singular. This property must be ensured by our numerical procedure. How can this be done? Since (76) has a non-trivial solution, it follows that

$$
\int_{\partial B} d p\left[-\frac{1}{2} \lambda(\underline{h})+\int_{\partial B} G_{i}^{\prime}(h, q) \lambda(q) d q\right]=0
$$

i.e. $\quad \int_{\partial B}-\frac{1}{2} \lambda(p) d p+\int_{\partial B} \int_{\partial B} G_{i}(p, q) \lambda(q) d q d p=0$,
i.e. $\int_{\partial B}-\frac{1}{2} \lambda(\underset{\sim}{p}) d p+\int_{\partial B} \lambda(\underline{q}) d q \int_{\partial B} G_{i}^{\prime}(p, q) d p=0$.

Our numerical approach should theoretically ensure that

$$
\begin{equation*}
\int_{O_{B}} G_{i}^{\prime}(p, q) d p=\frac{1}{2} \tag{77}
\end{equation*}
$$

This result suggests that we should define $b_{k k}$, given by (69), so that

$$
\begin{align*}
& b_{k k}+\sum_{j=1}^{N} \int_{k}^{N} G_{i}^{\prime}\left(q_{j}, q\right) d q=0 ; k=1,2, \cdots N, \\
& \text { i.e. by (68), } b_{k k}+\sum_{j=1}^{*} b_{j k}=0 ; k=1,2, \cdots N, \tag{78}
\end{align*}
$$

where L^{*} indicates omission of $j=k$ in the sequence $j=1,2, \ldots N$. This means that the sum of each column of $[B]$ is zero, and hence evaluation of $b_{k k}$ by (78) ensures that the matrix $[B]$ is singular. The homogeneous part of (33), i.e.

$$
\begin{equation*}
-\frac{1}{2} \phi(\underline{h})+\int_{\partial B} \phi(\underline{q}) G(\underline{h}, \underline{q})_{i}^{\prime} d q=0 \tag{79}
\end{equation*}
$$

on discretisation gives (72) with $[D]=0$, i.e.

$$
[c][\phi]=0
$$

Since (79) has a non-trivial solution, shown in Chapter 2, the matrix must be singular. This property must be ensured. by our numerical procedure. Adding all the elements in a k th row of $[C]$, we obtain, by 23 ,

$$
\begin{aligned}
\sum_{j=1}^{N} C_{k j} & =-\frac{1}{2}+\sum_{j=1}^{N} \int_{j} G\left(q_{k}, q\right)_{i}^{\prime} d q \\
& =-\frac{1}{2}+\int_{\partial B} G\left(q_{k}, \underline{)^{\prime}}\right)_{i}^{\prime} d q=0 ; \quad k=1,2, \cdots N .
\end{aligned}
$$

Hence our numerical approach should ensure that

$$
\begin{equation*}
\int_{\partial B} G\left(q_{k}, \underline{q}\right)_{i}^{\prime} d q=\frac{1}{2} \quad ; \quad k=1,2, \cdots N \tag{80}
\end{equation*}
$$

This result suggests that we should define $C_{k k}$, given by (74), so that

$$
\begin{equation*}
C_{k k}+\int^{*} G\left(\underline{q}_{k}, \underline{q}^{\prime}\right)_{i}^{\prime} d q=0 \tag{81}
\end{equation*}
$$

where \int^{*} indicates omission of the k th interval. Evaluation of $c_{k k}$ by (81) ensures that the matrix $[c]$ is singular.

In the case of the exterior Neumann problem, the homogeneous equations (29) and (30), shown in Chapter 2 , have no non-trivial solutions. Hence the matrix $[C]$ and $[B]$, obtained on discretisation of (29) and (30) respectively, are not generally singular. In such cases we assume
(3) THE SUB-AREAS aRE PIECEWISE FLAT .

On this basis, by Appendix II., we find

$$
\begin{equation*}
\int_{k} G^{\prime}\left(q_{k}, q\right) d q_{k}=\int_{k} G\left(q_{k}, q\right)^{\prime} d q=0 \tag{82}
\end{equation*}
$$

CHAPTER 6

PRINCIPLES OF DIVISION OF A SURFACE INTO SUB-AREAS

Introduction

We now consider in detail the problem of dividing a surface into subareas. In the case of a flat surface, say the surface of a cube no difficulty arises. We simply divide each side into equal squares. On the other hand, in the case of a sphere, it is not immediately obvious how to proceed. The possible sub-division of a spherical surface is given in Figure 3. This suggests that the optimum sub-division will be a mixture of squares and triangles.

It is also necessary to consider that, generally, the charge density is not constant. It varies over an interval and therefore our fundamental assumption i.e. the charge density is constant over a sub-area, brings in some error. The question now arises how we can minimise this error by a suitable choice of sub-area.

Variation of density
To carry out our numerical analysis, we divide a curve, a surface or a volume into smaller intervals and we assume that the density G over each interval is a continuous function which spreads uniformly in all directions from the centroid. Following Weirstrass's theorem, we know, any continuous function can be represented as accurately as we please, over a finite range of its arguments, by a polynomial of sufficiently high degree. Hence σ at a point (x, y, z) can be approximated by

$$
\begin{equation*}
\sigma=\sum_{n} F_{n}(x, y, z), \tag{83}
\end{equation*}
$$

where F_{n} is a piecewise continuous symmetric polynomial function of degreen.
On rearrangement, F can be written as

$$
\begin{equation*}
F=\sum_{j} \sum_{k} A_{k j} P_{k j}, \tag{84}
\end{equation*}
$$

where $P_{k j}$ is a homogeneous polynomial of degree j which remains invariant under any permutation of x, y and z.

Fig. 3
SUB-AREAS ON THE SURFACE OH A SPhere

To simplify our numerical calculations, we approximate the value of σ over an interval by taking only the first term in its Taylor expansion about the centroid of the interval. As a result, the approximate value of σ becomes a constant over an interval, which agrees with our fundamental assumption.

$$
\begin{align*}
& \text { At any point } \underline{q}\left(x_{0}+\delta x, y_{0}+\delta y, z_{0}+\delta z\right) \text {, we may write } \\
& . \quad \sigma(\underline{q})=\sum_{n}\left[F_{n}\left(x_{0}, y_{0}, z_{0}\right)+\delta x \frac{\partial F_{n}}{\partial x}+\delta y \frac{\partial F_{n}}{\partial y}+\delta z \frac{\partial F_{n}}{\partial z}+\cdots\right], \tag{85}
\end{align*}
$$

where (x_{0}, y_{0}, z_{0}) are the co-ordinates of the centroid g_{0} of the q th interval. According to our approximation,

$$
\begin{equation*}
\sigma(\underline{q})=\sum_{n} F_{n}\left(x_{0}, y_{0}, z_{0}\right) \tag{86}
\end{equation*}
$$

Neglecting higher-order quantities, the significant part of the error in (86), as compared with (85), is given by

$$
\begin{equation*}
\epsilon=\int_{n^{2}}\left(\frac{\partial F_{n}}{\partial x} \delta x+\frac{\partial F_{n}}{\partial y} \delta y+\frac{\partial F_{n}}{\partial z} \delta z\right) d q, \tag{87}
\end{equation*}
$$

Where the integral is taken over the q th interval and $d q$ stands for the volume element dxdydz at (x, y, z). Transferring the origin of the reference frame to (x_{0}, y_{0}, z_{0}), we find, by Euler's theorem on homogeneous functions,

$$
\begin{align*}
\epsilon & =\sum_{n} \int_{q}\left(x \frac{\partial F_{n}}{\partial x}+y \frac{\partial F_{n}}{\partial y}+z \frac{\partial F_{n}}{\partial z}\right) d x d y d z \\
& =\sum_{n} n \int_{q} F_{n}(x, y, z) d x d y d z \tag{88}
\end{align*}
$$

Some special Intervals

Taking $z=0$, a typical term of ϵ is given by

$$
\begin{equation*}
I=\int_{q}\left(x^{m} y^{n}+x^{n} y^{m}\right) d x d y \tag{89}
\end{equation*}
$$

(i) For a circular area with radius 'a',

$$
\begin{align*}
I_{c} & =4 \int\left(\left(x^{m} y^{n}+x^{n} y^{m}\right) d x d y\right. \\
& =4 \int_{\theta=0}^{\frac{\pi}{2}} \int_{r=0}^{a} r^{m+n+1}\left(\cos ^{m} \theta \sin ^{n} \theta+\cos ^{n} \theta \sin ^{m} \theta\right) d \theta d r \\
& =8 \frac{a^{m+n+2}}{m+n+2} \int_{\theta=0}^{\frac{\pi}{2}} \cos ^{m} \theta \sin ^{n} \theta d \theta \tag{90}
\end{align*}
$$

This can be computed for any choice of m and n :
(a) $n=1, m \geqslant 0$ or $m=1, n \geqslant 0$ gives

$$
I_{c}=\frac{8 a^{m+n+2}}{m+n+2} \cdot \frac{1}{(m+n)} ;
$$

(b) $\mathrm{n}>1, \mathrm{~m}=0$ gives

$$
\begin{aligned}
I_{c} & =\frac{8 a^{m+n+2}}{m+n+2}\left[\frac{(n-1)(n-3) \cdots 3 \cdot 1}{n(n-2) \cdots \cdot 4 \cdot 2} \frac{\pi}{2}\right] \quad ; \text { when } n \text { is an even integer, } \\
& =\frac{8 a^{m+n+2}}{m+n+2}\left[\frac{(n-1)(n-3) \cdots 4 \cdot 2}{n(n-2) \cdots 5 \cdot 3.1} 1\right] \quad ; \text { when } n \text { is an odd integer. }
\end{aligned}
$$

(c) $\mathrm{n}>1$, $\mathrm{m}>1$ gives
$I_{c}=\frac{8 a^{m+n+2}}{m+n+2}\left[\left.\frac{1 \cdot 3 \cdot 5 \cdots(n-1) \cdot 1 \cdot 3 \cdot 5 \cdots(m-1)}{2 \cdot 4 \cdot 6 \cdots(m+n)} \cdot \frac{\pi}{2} \right\rvert\, ;\right.$ when both m and n are even,

$$
=\frac{8 a^{m+n+2}}{m+n+2}\left[\frac{2 \cdot 4 \cdot 6 \cdots(m-1)}{(n+1)(n+2) \cdots(m+n)}\right]
$$

When any one of them, say m, is an odd integer:
(ii) For a rectangular area with sides 2 a and 2 b ,

$$
\begin{align*}
I_{R} & =4 \int_{x=0}^{a} \int_{y=0}^{b}\left(x^{m} y^{n}+x^{n} y^{m}\right) d x d y, \\
& =4 \frac{1}{(m+1)(n+1)}\left[a^{m+1} b^{n+1}+a^{n+1} b^{m+1}\right] . \tag{91}
\end{align*}
$$

(iii) For an isoceles triangular area (Fig. 4)

$$
\begin{aligned}
I_{T} & =\int_{q}\left(x^{m} y^{n}+x^{n} y^{m}\right) d q, \quad \begin{array}{l}
\text { Putting } x=r \cos \theta \\
y=r \sin \theta \\
\text { and } H=r \sec \theta
\end{array} \\
& =2 \sum_{j=1}^{3} \int_{\theta=0}^{\Theta_{j}}\left[\left(\cos ^{m} \theta \sin ^{n} \theta+\sin ^{m} \theta \cos ^{n} \theta\right) \int_{r=0}^{H_{j} \sec \theta} r^{m+n+1} d r\right] d \theta, \\
& =2 \sum_{j=1}^{3} \frac{H_{j}^{m+n+2}}{m+n+2} \int_{0=0}^{0}\left(\operatorname{Tan}^{n} \theta+\operatorname{Tan}^{m} \theta\right) \sec ^{2} \theta d \theta
\end{aligned}
$$

$$
\begin{equation*}
=2 \sum_{j=1}^{3} \frac{H_{j}^{m+n+2}}{m+n+2}\left(\frac{\operatorname{Tan}^{n+1} \odot_{j}}{n+1}+\frac{\operatorname{Tan}^{m+1} \odot_{j}}{m+1}\right) \tag{92}
\end{equation*}
$$

Optimum Choice of Interval

The integral I_{R} in (91) varies with a and b. For a given rectangular area, I_{R} has a minimum when $a=b$. Hence by (91)

$$
\begin{equation*}
I_{R}=I_{s q}=\frac{8}{(m+1)(n+1)} a^{m+n+2} \quad, \quad \text { when } a=b \tag{93}
\end{equation*}
$$

Similarly, I_{T} in (92) attains a minimum when the triangular interval of a given area is an equilateral triangle. This is evident from Table 1 in which $I_{T}(\theta)$ refers to the value of I_{T} for the isosceles triangle with base angles θ. The triangular areas considcred therein are each of unit area. From Table 1 it is clear that for all values of m and n, for a given area

$$
\begin{equation*}
I_{T}\left(15^{\circ}\right)>I_{T}\left(30^{\circ}\right)>I_{T}\left(45^{\circ}\right)>I_{T}\left(60^{\circ}\right)<I_{T}\left(75^{\circ}\right) . \tag{94}
\end{equation*}
$$

Further for a given area

$$
\begin{equation*}
I_{c}<I_{s q}<T_{T}\left(60^{\circ}\right) . \tag{95}
\end{equation*}
$$

This is evident from Table 2 in which the areas considered are each of unit area.

All the relations mentioned above are true for every term of (88) and therefore these are true for (83) itself.

m	n	$\mathrm{m}+\mathrm{n}$	$\mathrm{I}_{\mathrm{T}}\left(15^{\circ}\right)$	$\mathrm{I}_{\mathrm{T}}\left(30^{\circ}\right)$	$\mathrm{I}_{\mathrm{T}}\left(45^{\circ}\right)$	$\mathrm{I}_{\mathrm{T}}\left(60^{\circ}\right)$	$\mathrm{I}_{\mathrm{T}}\left(75^{\circ}\right)$
0	1	1	0.80765	0.64138	0.56929	0.54574	0.58422
1	1	2	0.25881	0.21605	0.17901	0.16667	0.17328
2	1	3	0.16290	0.10582	0.07344	0.06302	0.07260
3	1	4	0.16603	0.06883	0.03601	0.02673	0.03972
3	2	5	0.04918	0.02713	0.01453	0.01067	0.01361
4	2	6	0.05655	0.01993	0.00805	0.00499	0.00856

Table 1

ESTIMATION OF ERROR ON DIFFERENT FIGURES OF UNIT AREA

m	n	$m+n$	I_{C}	$I_{s q}$	$I_{T}\left(60^{\circ}\right)$
0	1	1	0.47890	0.50000	0.54574
1	1	2	0.10132	0.12500	0.16667
2	1	3	0.03049	0.04167	0.06302
3	1	4	0.01075	0.01563	0.02673
3	2	5	0.00408	0.00521	0.01067
4	2	6	0.00101	0.00208	0.00499

Table 2

In numerical analysis, the entire curve or surface or volume under consideration should be covered by intervals keeping no gap between them. The spherical intervals can not be fitted together to cover a volume in the above fashion. The next most suitable intervals are the regular polygons, of which the simplest interval is a cube. Similarly, in the case of a surface, the most suitable interval i.e. sub-area is a square or an equilateral triangle.

Bearing these considerations in mind, we lay down the following general procedures:

1. It is recommended to cover a curve, a surface or a volume by the same type of intervals as far as possible.
2. In case of a surface it needs, in general, a mixture of triangular and rectangular sub-areas to fit together. The triangular sub-areas should be as far as near to equilateral form. The rectangular sub-areas should be kept near to the square form.
3. It is found, in general, that σ changes rapidly as we approach a sharp edge or a corner on a surface. In fact it can not properly be represented by (83) near a sharp edge or a corner. Hence in general, one should not expect to obtain an accurate measure of σ at these points by our numerical methods. To achieve a tolerable approximation to σ near such a point:
(a) The sub-areas should become smaller in size as we approach such a point.
(b) The reduction in size of the submarea should be gradual.

CHAPTER 7

APPROXIMATE INTEGRATION

Introduction

To evaluate analytically an integral of the form

$$
\begin{equation*}
I=\int_{\partial B} F(\underline{q}, \underline{q}) d q_{r} \tag{96}
\end{equation*}
$$

the first requirement, in general, is that the integrand should have an analytic expression in terms of the co-ordinates of q. Further, the boundary surface ∂B should also have an analytic expression. For bodies with definite regular geometrical shapes, there are analytic expressions for ∂B, but sometimes it happens that even for these the evaluation of (96) becomes very complicated. For a body with an irregular boundary different parts of it may require different analytic expressions, in which case the evaluation of (96) becomes extremely complicated. Often in practice, only the numerical values of the integrand are available at the pivotal points of ∂B. Accordingly this is not generally possible to evaluate (96) analytically.

In view of the above difficulties, we must think of an operation to approximate (96) over any surface ∂B over which $F(\underset{\sim}{p}, \underline{q}$) is defined. It is desirable that the operation should be simple on the one hand and, on the other hand, it should be capable of approximating (96) within a tolerable error.

When $F(\underset{\sim}{p}, q)$ is a function of a single variable, as happens with the plane curves, the Simpson and the Trapezoidal rules of approximate integration produce results to a sufficient degree of accuracy. Unfortunately, there are, ino such analogous rules to effect an approximate integration when the integrand is a function of two or more independent variables. Approximation Methods

When $F(\underset{\sim}{p}, \underline{q})$ is a function of two or more variables, we propose two methods to approximate the integral over $\partial B:$
(i) The AVERAGING method of approximation.
(ii) The CENTROID method of approximation.

In both these methods, we divide ∂B into N intervals i.e. sub-areas, operate on each of the sub-areas separately, and then add them up to approximate the integral over ∂_{B}.

(i) AVERAGING METHOD

If the k th interval, i.e. sub-area, is an m sided polygon, the averaging approximation to (96) over this area is defined by

$$
\begin{equation*}
\left.I_{A}=\sum_{R=1}^{N} \frac{\sum_{j=1}^{m+1} F\left(\underset{\sim}{n}, q_{j-1}\right)}{m+1}\right)_{R} d q \quad ; \quad \underset{\sim}{q} \neq \partial B \tag{97}
\end{equation*}
$$

where ${\underset{\sim}{1}}_{1}, q_{2}, \ldots .{\underset{\sim}{n}}$ define the m corner points of the polygon and q_{0} defines the pivotal point (centroid) of the polygon.
(ii) CENTROID METHOD

If I_{c} represents the approximation to (96) by the centroid method of approximation, then I_{c} is defined by

$$
\begin{equation*}
I_{c}=\sum_{k=1}^{N} F\left(h, q_{0}\right) \int_{k} d q \quad ; \quad \underset{\sim}{p} \notin \partial B \tag{98}
\end{equation*}
$$

where, as before, ${\underset{\sim}{\sim}}_{0}$ defines the centroid of the k th sub-area,
The centroid method of approximation is nothing but the application of assumption 2 in the evaluation of (96). The averaging method may well be looked upon as an extension of the above principle.

If the integrand has a factor $|\underline{p}-q|$ then, depending upon the position of \underline{p} two distinct cases arise:
(i) If $\underset{\sim}{p} \neq \underset{\sim}{q}$, the integrand is finite and evaluation of (97) as
well as of (98) is straight-forward.
(ii) If $\underset{\sim}{p}=\underset{\sim}{q}$, the integrand is singular and, the integral must be evaluated analytically.
A Comparative Study of the TWO Methods
To make a comparative study of the merits of the two approximations, we consider the analytic value of the integral (96) for a particular F. In this thesis, we deal mainly with integrals of the type

$$
I=\int_{\partial B} \frac{d v}{|\underline{w}-\underline{q}|} \quad, \quad J=\int_{O B} \frac{d q}{|\underset{\sim}{w}-\underline{q}|} .
$$

Let us therefore take

$$
\begin{equation*}
I=\int_{\partial B} \frac{d q}{|\underline{n}-q|} \tag{99}
\end{equation*}
$$

as a test case for a comparative study of the two approximations. Using a cartesian frame of reference, let ∂_{B} be a rectangular area defined by $z=0, x= \pm a, y= \pm b$. Since $\underset{\sim}{q} \in \partial B$, we may write $\underset{\sim}{q}=(x, y, 0)$ and a field point may be represented by $\underset{\sim}{p}=(X, Y, z)$. By appendix I,

$$
\begin{align*}
& I=\int_{\partial B} \frac{d q}{|\underset{\sim}{n}-q|} \\
& =\int_{y=-b}^{b} \int_{x=-a}^{a} \frac{d x d y}{\sqrt{(x-x)^{2}+(y-y)^{2}+z^{2}}} \tag{100}\\
& \left.=\left[\log \left\{\left(\frac{C+\sqrt{R^{2}+D^{2}}}{E+\sqrt{R^{2}+F^{2}}}\right)^{k} \frac{\left(k+\sqrt{R^{2}+D^{2}}\right)^{C}}{\left(R+\sqrt{R^{2}+F^{2}}\right)^{E}}\right\}+z\left\{\sin ^{-1}\left(\frac{F^{2}+E \sqrt{R^{2}+F^{2}}}{F\left(E+\sqrt{R^{2}+F^{2}}\right)}\right)-\sin ^{-1}\left(\frac{D^{2}+C \sqrt{R^{2}+D^{2}}}{D\left(C+\sqrt{R^{2}+D^{2}}\right)}\right)\right\}\right]^{k=Y+b}\right]_{k=b}^{k+},
\end{align*}
$$

where $C=X+a, D^{2}=C^{2}+Z^{2}, E=x-a, F^{2}=E^{2}+Z^{2}$ and $k=Y-y$.
Choosing $a=b=1$ to ease the numerical work and treating ∂B as a single sub-area and not sub-dividing it any further, we compute I_{A}, I_{c} for (100) for various locations of $\underset{\sim}{p}$ as indicated in Table 3.

From Table 3 we find that, for all locations of the field point,

$$
\begin{equation*}
\left|I-I_{C}\right|<\left|I-I_{A}\right| . \tag{101}
\end{equation*}
$$

APPROXIMATIONS TO AN INTEGRAL

$\begin{gathered} \text { CO-ORDINATES } \\ \text { OE } \mathrm{p} \\ \times \quad \mathrm{y} \\ \hline \end{gathered}$	DISTANCE FROM CENTRE	I	I_{c}	I_{A}	$\begin{aligned} & \text { \% ERROR } \\ & \text { IN } \quad I_{C} \end{aligned}$
$0 \cdot 750,0,0$	$0 \cdot 750$	$1 \cdot 41929$	$1 \cdot 33333$	$1 \cdot 76736$	6.06
1.750, 0, 0	$1 \cdot 750$	$0 \cdot 57898$	0.57143	$0 \cdot 41027$	$1 \cdot 30$
$2 \cdot 750,0,0$	$2 \cdot 750$	$0 \cdot 36562$	$0 \cdot 36364$	$0 \cdot 18502$	$0 \cdot 54$
$3 \cdot 750,0,0$	3-750	0.26745	0.26667	$0 \cdot 11217$	$0 \cdot 29$
0.750, 0.750, 0	1.061	$0 \cdot 99118$	$0 \cdot 94281$	2.09872	4.88
$1 \cdot 750,1 \cdot 750,0$	$2 \cdot 475$	$0 \cdot 40697$	0.40406	0.22494	0.72
$2 \cdot 750,2 \cdot 750,0$	3.889	0.25786	$0 \cdot 25713$	$0 \cdot 10625$	$0 \cdot 28$
$3 \cdot 750,3 \cdot 750,0$	$5 \cdot 303$	$0 \cdot 18885$	$0 \cdot 18856$	0.06669	$0 \cdot 15$
$0,0,0 \cdot 500$	$0 \cdot 500$	$1 \cdot 58672$	$2 \cdot 00000$	1.46667	$26 \cdot 00$
$0,0,1.750$	$1 \cdot 750$	0.55671	0.57143	$0 \cdot 33885$	$2 \cdot 64$
$0,0,2 \cdot 750$	$2 \cdot 750$. $0 \cdot 35972$	$0 \cdot 36364$	$0 \cdot 17195$	1.09
$0,0,4 \cdot 500$	$4 \cdot 500$	$0 \cdot 22132$	$0 \cdot 22222$	0.08300	0.41

Table 3

This means that the centroid method produces a better approximation than that of the averaging method. When we divide ∂_{B} into N sub-areas to evaluate I_{A} and I_{c} by a more general application of (97) and (98), relation (101) remains valid for each of the N sub-areas. Hence (101) remains valid when these are added over the whole of ∂_{B}, It may be mentioned that the centroid method not only yields a better approximation than the averaging method but is also simpler to compute.

Error in the Centroid Method
If ∂_{B} forms a single sub-area, and $\quad p \nmid \partial B$, we see from Table 3 and Fig. 5 that:
(i) The error in I_{c} diminishes asymptotically to zero as $\underset{\sim}{p}$ tends to infinity.
(ii) For a given distance from the centroid of ∂B, the error is a maximum when $\underset{\sim}{p}$ lies on the normal to ∂B through its centroid. Further, it is evident that, for all locations of $\underset{\sim}{p}$,

$$
\begin{equation*}
f_{\max } \leqslant 1 \% \quad \text { when } \quad|\underset{\sim}{p}-{\underset{\sim}{q}}| \geqslant 2 D_{\max } \text {, } \tag{102}
\end{equation*}
$$

where $\epsilon_{\text {max }}$ represents the maximum of the errors in I_{c} for various positions of $\underset{\sim}{p}$ and $D_{\max }$ represents the greatest diagonal of the largest interval i.e. sub-area.

Now let us divide ∂B into N sub-areas and examine the behaviour of the error in I_{c} as N gradually increases. We define I_{c} at a point
p $\underset{\sim}{p} \neq \partial B) b y$

$$
\begin{equation*}
I_{c p}=\sum_{j=1}^{N} I_{c j} \tag{103}
\end{equation*}
$$

where $I_{c j}$ represents the value of I_{c} over the j th sub-area. The field point p lies outside ∂B at a perpendicular distance d from the boundary point ${\underset{\sim}{\mathrm{P}}}_{\mathrm{B}}[$ Fig. 6(a) $]$, such that

$$
\begin{equation*}
d=\left|\mu_{B}-\mu_{\sim}\right|=\frac{L_{\text {min }}}{2}, \tag{104}
\end{equation*}
$$

where $L_{\min }$ is the minimum distance between the two nodal points of the N sub-areas. Hence, as N increases, $\underset{\sim}{p} \rightarrow{\underset{\sim}{B}}_{B}$. Taking ∂B to be a unit area

and dividing it into N sub-areas, $I_{c p}$ and I are evaluated for different values of N. For each choice of N, the field point $\underset{\sim}{p}$ always satisfied the relation (104). The values of $I_{c p}$ and I for different values of N and for different positions of $\underset{\sim}{p}$ are given in Table 4.

This Table shows clearly that, as \mathbb{N} increases, though the field point $\underset{\sim}{p}$ approaches the boundary of ∂B, the percentage error in $I_{c p}$ gradually decreases. The same conclusion holds good when ∂_{B} is a triangular surface [Fig. 6 (b)] of unit area with N triangular sub-areas.

If ∂B is divided into N sub-areas, and $\quad \underset{\sim}{f} \in \partial_{B}, \underline{p}$ will either be an interior point of a sub-area or it will be a boundary point of two or more sub-areas. In such a case, as stated carlier, we must evaluate the integral analytically over the sub-area for which $\underset{\sim}{p}$ is an interior or a boundary point. Evaluating the integral over the rest of the sub-areas by (103), we find

$$
\begin{equation*}
I_{c p}=\sum_{j} I_{c j}+\sum_{k} I_{k} \tag{105}
\end{equation*}
$$

where $I_{c j}$ refers to the sub-area not containing $\underset{\sim}{p}$ and I_{k} refers to the subarea for which $\underset{\sim}{p}$ is an interior or a boundary point.

If $\underset{\sim}{p}$ satisfies (104), from Fig. 6(1) and Fig. 6(5) it follows that

$$
\begin{equation*}
\epsilon_{I N} \leqslant \epsilon_{\text {OUT }} \tag{106}
\end{equation*}
$$

for the same sub-division of ∂_{B} and for all values of N, where $\epsilon_{I N}$, $\epsilon_{\text {our }}$ respectively stand for the \% errors in $I_{c p}$ when $\underset{\sim}{p} \in \partial B$ and $p \notin \partial B$. Accordingly, when dealing with boundary value problems, the above approximations produce a better result when the field point $\underset{\sim}{p}$ is on the boundary itself than when it is outside the boundary and obeys relation (104). Application of the Approximation to Some Test Cases

We know, by the Gauss flux theorem (23) of Chapter 2, that

$$
\begin{equation*}
J=\int_{\delta B} \frac{d q}{|h-q|_{\text {int }}^{\prime} .}=2 \pi \quad ; \quad \underset{\sim}{p} \in \partial B \text {, } \tag{107}
\end{equation*}
$$

$\begin{aligned} & \text { CO-ORDINATES } \\ & \text { OF } \mathrm{p} \\ & \mathrm{x} \quad \mathrm{y} \quad \mathrm{z} \end{aligned}$	$\begin{gathered} \text { TOTAL } \\ \text { SUB-AREAS } \\ \mathrm{N} \end{gathered}$	$\mathrm{d}=\left\|\underset{\sim}{p}{\underset{\sim}{2}}{ }_{B}\right\|$	I	I_{C}	\% ERROR. IN $\quad I_{C}$
$0 \cdot 6250,0.1250,0$	16	$0 \cdot 1250$	$1 \cdot 23059$	$1 \cdot 22175$	$0 \cdot 718$
0.5625, 0.0625, 0	64	0.0625	$1 \cdot 41726$	$1 \cdot 41122$	$0 \cdot 359$
$0.5417,0.0417,0$	144	0.0417	$1 \cdot 50030$	1.49673	$0 \cdot 238$
$0.5250,0.0250,0$	400	$0 \cdot 0250$	$1 \cdot 58055$	1.57832	$0 \cdot 141$
$0.5179,0.0179,0$	784	$0 \cdot 0179$	$1 \cdot 62084$	1.61922	0.099

Table 4
NUMBER OF SUB-AREAS \longrightarrow

ERROR IN THE APPROXIMATION AS THE NUMBER OF SUB-AREAS
INCREASES
where $|\underset{\sim}{p}-\underset{\sim}{q}|_{\text {int. }}^{i}$ represents the interior derivative of $|\underset{\sim}{p}-\underset{\sim}{q}|$ at the point $\underset{\sim}{q}$ keeping $\underset{\sim}{p}$ fixed. On discretisation, (107) can be represented as

$$
\begin{equation*}
J_{k}=\sum_{j=1}^{N} \int_{j}^{N} \frac{d q_{r}}{\mid q_{k}-\|_{\text {int }}^{1}} \tag{108}
\end{equation*}
$$

where $\underset{\sim}{q}{ }_{k}=\underset{\sim}{p}$. When j successively assume values $1,2, \ldots k, \ldots N$ there arise two distinct cases:
(i) when $j \neq k$, by assumption 2
where $\hat{\mathrm{n}}_{\text {ext. }}\left({\underset{\sim}{q}}_{j}\right)$ represents the exterior unit normal at the pivotal point \underline{q}_{j}.
(ii) when $j=k$, the integrand is singular. But by assumption 3 and Appendix II, we may approximate this to zero i.e.

$$
\int_{k} \frac{d q}{\left|q_{-k}-q\right|_{\text {int. }}^{1}}=0 .
$$

By (109) ,

$$
\begin{equation*}
J_{k}=\sum_{j}^{*} \frac{\left(q_{k}-q_{j}\right) \cdot \hat{n}_{\text {ext }}\left(\underline{q}_{j}\right)}{\left|q_{-k}-q_{j}\right|^{3}} \int_{j} d q_{j}+\int_{k} \frac{d q_{j}}{\mid q_{k}-q_{-}^{1}} \tag{110}
\end{equation*}
$$

where J_{k} represents the approximated value of J at the point ${\underset{\sim}{q}}_{k} \in \quad \partial B$ and \sum^{*} represents the summation over all the sub-areas except the k th sub-area.

Let ∂B be a surface of a unit cube whose 6 sides are given by

$$
x= \pm \frac{1}{2} \quad, y= \pm \frac{1}{2} \quad \text { and } \quad z= \pm \frac{1}{2}
$$

Dividing ∂B into N square sub-areas (Fig, 7), the value of J_{k} is computed by (110). This value, as expected, is most inaccurate when k defines a sub-area nearest to a corner. The value of J_{k} at the points q_{k} are computed and exhibited in Table 5 for comparison with the analytic value $2 \pi=6 \cdot 28318$.

Fig. 7
sub-areas on the surface of a cube

TESTING OF THE APPROXIMATION ON THE SURFACE OF A UNIT CUBE

$\begin{gathered} \text { CO-ORDINATES } \\ 0 \mathrm{~F} \mathrm{q}_{\mathrm{k}} \\ \mathrm{x} \quad \mathrm{y}_{\mathrm{k}} \quad \mathrm{z} \\ \hline \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { SUB-AREAS } \\ \mathrm{N} \end{gathered}$	I_{k}	\% ERROR
0.000, $0.000,0.500$	216	$6 \cdot 30768$	0.389
$0 \cdot 000,0.000,0.500$	1944	$6 \cdot 28591$	$0 \cdot 043$
0.000, 0.000, 0.500:	5400	$6 \cdot 28417$	0.017.
$0 \cdot 417,0.417,0 \cdot 500$	216	$6 \cdot 19087$	1.469
$0.472,0.472,0.500$	1944	$6 \cdot 18639$	$1 \cdot 540$
$0.483,0.483,0.500$	5400	6•18614	$1 \cdot 544$

Table 5

Let ∂_{B} be the spherical surface

$$
x^{2}+y^{2}+z^{2}=1
$$

It is divided into N sub-areas as in Fig. 3. The sub-areas adjacent to the poles are approximately triangular in form and the rest all are approximately trapezoidal in form. The value of J_{k} at the point $\underset{\sim}{q}{ }_{k}$ is then computed by application of (110) for different values of N and for different positions of the field point, as exhibited in Table 6.

For a given value of N the error is a maximum when the field point is nearest to the pole, which is expected because of the size and the form of the sub-areas at that region.

$\begin{aligned} & \text { CO-ORDINATES } \\ & \text { OF } \mathrm{q}_{\mathrm{k}} \\ & \times \cdots \mathrm{y} \quad \mathrm{z} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TOTAL } \\ & \text { SUB-AREAS } \\ & \mathrm{N} \end{aligned}$	J_{k}	\% ERROR
0.9997, 0, 0.0228	2544	$6 \cdot 16661$	$1 \cdot 855$
0.9998, 0, 0.0175	9264	$6 \cdot 20372$	$1 \cdot 265$
0.9999, 0, 0.0135	20184	6*22496	0.927
$0.9999,0,0.0110$	35304	6*23724	0.731
0.0906, 0, 0.9959	2544	$6 \cdot 08119$	$3 \cdot 215$
$0.0453,0,0.9989$	9264	6.18188	$1 \cdot 612$
$0.0302,0,0.9995$	20184	6.21561	1.075
$0.0227,0,0.9997$	35304	$6 \cdot 23325$	0.807

Table 6

PART III
CAPACITY OF CONDUCTORS

CHAPTER 8

ELECTROSTATIC CAPACITY

Recapitulation of Equations
We now regard ∂B as a closed perfectly conducting surface brought to a unit potential by the introduction of charges. If $\lambda(q)$ is the equilibrium charge density at $\underset{\sim}{q}$, this distribution generates the potential

$$
V(\underline{h})=\int_{\partial B} \frac{\lambda(q) d q}{|r-q|}
$$

at $\underset{\sim}{\gamma}$, which exists and is continuous everywhere including ∂ B. Hence λ must satisfy the integral equation

$$
\begin{equation*}
\int_{\partial B} \frac{\lambda(\underline{q}) d q}{|\underline{\sim}-q|}=1 ; p \in O B, \tag{111}
\end{equation*}
$$

of which a unique solution has been proved to exist. It has also been proved, in Chapter 4 , that λ has the same $\operatorname{sign}(>0)$ everywhere on ∂B. This enables us to define the essentially positive quantity

$$
k=\int_{\partial B} \lambda(q) d q,
$$

which is known as the capacity of ∂_{B}.
On discretisation, (111) gives N linear algebraic equationsfor λ viz.

$$
\begin{equation*}
\sum_{j=1}^{N} a_{k j} \lambda_{j}=1 \quad ; \quad k=1,2 \cdots N \tag{112}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{k j}=\int_{j} \frac{d q}{\left|q_{k}-q_{\sim}\right|} \tag{113}
\end{equation*}
$$

and

$$
\begin{equation*}
k=\sum_{j=1}^{N} \lambda_{j} d s_{j} \tag{114}
\end{equation*}
$$

where $d s_{j}$ represents the area of the j th sub-area.

Solution of Equations

After evaluation of the $a_{k j}$ by the procedures discussed in Chapter 5, equations (112) are solved by the Gauss-Seidel interative method. In this method, after each iteration, we obtain a set of values of $\lambda_{1}, \lambda_{2} \cdot \lambda_{N}$ at the N pivotal points ${\underset{\sim}{q}}_{1},{\underset{\sim}{2}}_{2}, \cdots{ }_{r}^{q}{ }_{N}$ on ∂B. After the $\underset{r}{r}$ th iteration these values are denoted $\lambda_{1}^{r}, \quad \lambda_{2}^{r} \cdots \lambda_{N}^{\gamma}$, and so at the pivotal point ${\underset{\sim}{k}}$ we have, after n iterations, a sequence of n values

$$
\begin{equation*}
\left\{\lambda_{k}^{r}\right\} ; \quad r=1,2 \cdots n \tag{115}
\end{equation*}
$$

which are successive approximations to the exact value $\lambda\left(q_{k}\right)$.
If for a pre-assigned small positive quantity $\epsilon \quad(\epsilon=00.0001$ say), there exists a number M such that

$$
\begin{equation*}
\left|\lambda_{k}^{r}-\lambda_{k}^{r-1}\right| \leqslant \epsilon, \text { for } r=M \tag{116}
\end{equation*}
$$

at every pivotal point ${\underset{\sim}{q}}_{1},{\underset{\sim}{2}}_{2} \cdot{\underset{\sim}{N}}^{q_{N}}$, then at this the approximate solutions are given by

$$
\begin{equation*}
\lambda_{k}^{M} ; k=1,2, \cdots N . \tag{117}
\end{equation*}
$$

Determination of The Optimum Value of N

Our preceding analysis has dealt with a fixed number N of nodal points. From the fundamental assumption that the source density is constant over a sub-area, it appears that the computed source density at a nodal point approaches its analytic value at that point as $N \rightarrow \infty$. But because of the rounding-off errors involved in the computations, after a certain stage, the result becomes distorted as N increases. Hence the problem arises of finding the optimum value of N. To find this we start with a small value of N and gradually increase it until a stage comes when either
(i) γ ceases to behave monotonically,
or (ii) the density distribution along a line on ∂B changes sign. At this stage, the optimum value of N is given by the value of N considered in the previous stage.

Intrinsic Test of Accuracy

The solution of (112) yields the numerically generated potential

$$
\begin{equation*}
V(\underline{n})=\sum_{j=1}^{N} \lambda_{j} \int_{j} \frac{d q}{|n-q|} \tag{118}
\end{equation*}
$$

at any point $\underset{\sim}{p} \in B+\partial_{B}$. This automatically has the value $V=1$ at the nodal points on ∂B, but will generally deviate from 1 at any other point. For a particular sub-area,

$$
|1-V(\underline{p})|=0 \quad \text { when } \underset{\sim}{p} \text { is a nodal point on } \partial B,
$$

Since $1-V(\underset{\sim}{p})$ is a harmonic function in B, its modulus $|1-V(h)|$ attains a maximum ${ }^{1}$ for some point $\underset{\sim}{p}$ on ∂B. We may therefore approximately determine $\quad|1-V(\underline{p})|_{\max }$ by generating $V(\underset{\sim}{p})$ at a number of representative non-pivotal points on ∂_{B}.

CHAPTER 9

CAPACITY OF THIN CONDUCTORS

Square Plate
Let the periphery of a thin square conductor $A B C D$ (Fig. 8) of unit area in the p lane $z=0$ be given by

$$
x= \pm \frac{1}{2} \quad \text { and } y= \pm \frac{1}{2}
$$

It is divided into N equal square sub-areas of area ds each, where

$$
\begin{array}{ll}
& N=k^{2} ; k=2 m+1 ; \quad m=1,2, \cdots n, \\
& d s=N^{-1} .
\end{array}
$$

Of these N sub-areas, there is a sub-area with its nodal point at the centroid of the plate, which concides with the origin of the reference frame OXYZ. Further, there are 4 rows of sub-areas with nodal points on the lines $x=0, y=0, x=y$ and $x=-y$ respectively. This pattern of sub-division helps us to obtain the density and the potential distribution along these 1 ines directly from (112) and (118) respectively.

According to (112), there are N linear algebraic equations for λ. By symmetry, the number of equations reduces to

$$
\begin{align*}
N^{*} & =1+2+\cdots+(k+1) / 2 \\
& =\frac{k+1}{2}\left(\frac{k+1}{2}+1\right) / 2 \\
& =(k+1)(k+3) / 8 \tag{120}
\end{align*}
$$

In this particular case, the sub-areas are all squares. The elements $a_{k j}$ of (112) are evaluated as in Chapter 5. The diagonal element $a_{k k}$, by Appendix I, is

$$
a_{n}=4 \mathrm{~h} \log (1+\sqrt{2})
$$

where h denotes the edge length of the square sub-area.
Starting with a small value of in , equations (112) are constructed and solved for λ by the Gauss-Seidel iterative method with $\epsilon=0.0001$, with the help of the I.C.L. 1905 computer at the City University.

FIG. 8
sub-areas on a square plate.

From the λ so computed, we calculate the capacity K from (114) using (119).

The values of the electrostatic capacity of a thin square conductor of unit area for increasing values of N are given in Table 7. It is evident from this $T a b l e$ that, when $N=361$, the density distribution at some points becomes negative. This marks the optimum stage in the numerical procedures. At this stage $K=0.36188$ and it is attained for $N=289$ as discussed in Chapter 8.

If 'a' represents the edge length of the thin square plate, then according to Polya and Szego, the capacity lies between the bounds

$$
\begin{equation*}
0.35917 a<k<0.37570 a \tag{121}
\end{equation*}
$$

It will be seen that our computed value lies well within the bounds given in (121).

The figures $8(a)$ and $8(b)$ show the density distribution along the lines $x=0$ and $x=y$ respectively. This is a minimum at the centre and it increases gradually as we go towards the rim in any direction. This behaviour compares with the known density behaviour for the circular plate as : we move from the centre towards its rim (Chapter 10).

To examine the accuracy attained in generating V on $\partial B, V$ has been calculated by (118) for $N=289$, taking $\underset{\sim}{p}$ as the corner points of the sub-areas. The λ used in (118) were obtained from (112) for the same value of N i.e. $N=289$. Table 7 (a) shows the generated values of V at the corner points of the sub-areas along the diagonal of the: square.

It is evident from Table $7(a)$ and from figure $8(c)$ that $|V-1|$ is minimum near the centre of the plate and gradually increases as we move towards the rim. It is maximum, as expected; at a corner of the plate.

Rectangular Plate

Let the unit rectangular plate $A B C D$ (Fig. 9) he in the plane $z=0$. The boundaries of $A B C D$ are given by $x= \pm 2 a, y= \pm a$. The breadth $A B$ is divided into k parts by $(k-1)$ lines drawn parallel to $B C$ and the length $B C$ is divided into $2 k$ parts by drawing ($2 k-1$) 1ines parallel to $A B$. Hence the rectangular area $A B C D$ is divided into

$$
\begin{equation*}
N=2 k^{2} \tag{122}
\end{equation*}
$$

equal square sub-areas.

ELECTROSTATIC CAPACITY OF A THIN SQUARE CONDUCTOR

Table 7
(This should be read in conjuction with Fig. 8)

density distribution along a central line oe

FIG. $8(6)$
DENSITY DISTRIBUTION ALONG A DIAGONAL OA

A DIAGONAI OF THIE TIIIN SQUARE PLATE

CO-ORD. OF THE CORNER		
POINTS	Y	
0.02941	0.02941	1.00170
0.08823	0.08823	1.00180
0.14706	0.14706	1.00180
0.20588	0.20588	1.00200
0.26471	0.26471	1.00240
0.32353	0.32353	1.00310
0.38235	0.38235	1.00420
0.50000	0.500000	1.03450

Table 7(a)

FIG. 8 (C)
variation of computed potential along
a diagonal od.

FIG. 9
subs-areas on a rectangular plate

Proceeding the same way as in the case of a square plate, we form the N equations

$$
\begin{equation*}
\sum_{j=1}^{N} a_{k j} \lambda_{j}=1 \quad ; \quad k=1,2 \cdots N \tag{123}
\end{equation*}
$$

The N equations (123), from symmetry, reduce to

$$
\begin{equation*}
N^{*}\left(=\frac{N}{4}=\frac{k^{2}}{2}\right) \quad \text { equations } \tag{124}
\end{equation*}
$$

The equations are then solved by the Gauss-Seidel iterative method with $\epsilon=0.0001$ and the K is computed as before by (114). Table 8 exhibits the value of k as N increases.

In this case, K gradually increases from 0.35938 to 0.37431 as N increases from 32 to 1800 . No ill conditioning was noticed in this range of N but the machine capacity forced us to stop at $N=1800$. For the unit rectangular plate with edge ratio $1: 2$, we find $k=0.37431$.

2. Isosceles Triangular Plate

Let a thin isosceles triangular conductor ABC (Fig. 10) have its centroid at the origin of a reference frame $O X Y Z$ and it lies in the plane $z=0$. Its boundaries are given by

$$
\begin{aligned}
& x=d \\
& y=x \tan \theta+2 d \tan \theta, \\
& y=-x \tan \theta-2 d \tan \theta,
\end{aligned}
$$

where the meridian $\mathrm{AD}=3 \mathrm{~d}$, and θ is the angle made by AC with the axis of x .

The plate is divided into

$$
\begin{equation*}
N=k^{2} \tag{125}
\end{equation*}
$$

equal triangular sub-areas [rig. $10(a)]$ by drawing 3 sets of ($k-1)$ equidistant parallel lines, parallel to the sides of the triangle, and k in (125) is given by

$$
\begin{equation*}
k=1+(j-1) 3 \quad ; \quad j=2,3, \cdots n \tag{126}
\end{equation*}
$$

Electrostatic capacity of a thin rectangular plate

(EDCE RATIO 2:1)

SUB-AREA N	EQUATION N^{*}	DENSITY AT THE POINTS o_{1} (Centre)	CAPACITY	
32	8	0.20076	0.62369	0.35938
128	32	0.19321	0.99326	0.36815
288	72	0.19049	1.31218	0.37102
648	162	0.18872	1.73780	0.37288
968	242	0.18817	1.99826	0.37354
1352	338	0.18780	2.24514	0.37399
1800	450	0.18758	2.48107	0.37431
		.		

Table 8
(This should be read in conjuction with Fig. 9)

This pattern of sub-divisions gives us 3 rows of sub-areas whose nodal points lie on the 3 meridians of the triangle along with a sub-area whose nodal point lies at the centroid of the triangle. Further the sub-areas thus formed are all equal in size and in form [Fig. $10(a)]$.

From symmetry, the number of independent equations reduces to

$$
\begin{equation*}
N^{*}=\frac{1+(j-1) 3}{2}\{2+(j-1) 3\} ; \quad j=2,3 \cdots n . \tag{127}
\end{equation*}
$$

For the equilateral triangular plate

$$
\begin{equation*}
N^{*}=\frac{j}{2}\{2+(j-1) 3\} ; j=2,3 \cdots n \tag{128}
\end{equation*}
$$

The co-efficients $a_{k j}$ of (112) are computed over the sub-areas, as before, by the centroid method when $j \neq k$. When $j=k$, by Appendix I;

$$
\begin{equation*}
a_{k R}=\sum_{j=1}^{m} \frac{2 \Delta_{j}}{a_{j}} \log \left(\frac{L_{j}+L_{j+1}+a_{j}}{L_{j}+L_{j+1}-a_{j}}\right) \tag{129}
\end{equation*}
$$

where Δ_{j} is the area of the triangle formed by the sides $L_{j}, L_{j}+1$ and a_{j} [Fig. $\left.10(b)\right]$. When $j=m$, in (129) $j+1$ should be replaced by 1 instead of $m+1$; m denotes the number of sides of the polygon.

Equilateral Plate of unit area

For an equilateral plate of unit area $\theta=30^{\circ}$, and a side $B C$ is given by

$$
\begin{aligned}
\frac{1}{2} B C \cdot \Lambda C \sin 60^{\circ} & =1 \\
\text { or } \frac{1}{2} B C \cdot B C \sin 60^{\circ} & =1 \text { or } B C=\left(\frac{2}{\sin 60^{\circ}}\right)^{\frac{1}{2}}
\end{aligned}
$$

The meridian $A D$ is given by

$$
A D=3 d=B C \operatorname{Cos} 30^{\circ}
$$

Fig. 10

Fig. 10(a)

Fig.10(6)

After evaluation of the co-efficients $\dot{a}_{k j}$ of (112) over the triangular sub-areas, the N^{*} equations, where N^{*} is given by (128), are then solved by the Gauss-Seidel iterative method with $\quad \epsilon=0.0001$. The λ_{j} thus obtained are used in (114) to evaluate the capacity of the plate.

The values of the capacity of the thin equilateral triangular conductor of unit area for increasing values of N are given in Table 9. It is evident from the Table that the capacity of the plate is $K=0.38308$, and this value is attained when $N=361$. The density λ distributed along a median, for the above value of N , is given in the Fig. 10 (c).

For $\mathrm{N}=361$, the potential V is calculated at the corner points of the sub-areas along a median of the plate. The reference frame is taken as in Fig. 10. The values of $|v-1|$ thus computed are exhibited in Table 9 (a). It is evident from this Table that the value of $|V-1|$ is the lowest when $\underset{\sim}{p}$ is near the centroid of the plate and gradually increases as we move towards the periphery. The maximum value of it, as expected, lies at an apex of the plate.

Right angled isosceles triangular plate of Unit Area
A thin isosceles triangular plate of unit area with base angles 45° each is divided into N sub-areas by the procedure stated before. In this case $\quad \theta=45^{\circ}$ and hence

$$
A D=A B \sin 45^{\circ}
$$

and $\frac{1}{2} B C \cdot A D=1$ i.e. $\frac{1}{2}\left(2 \mathrm{AB} \operatorname{Cos} 45^{\circ}\right)\left(A B \operatorname{Sin} 45^{\circ}\right)=1$.
Hence $A B=\sqrt{2} \quad$ and $B C=2$.
As in the former case, the N equations (112) are constructed. From symmetry, the N equations reduce to N^{*} equations where N^{*} is'given"by "(127). The equations are then solved, as before, by the Gauss-Seidel iterative method and then K is computed by (114). The values of K for a range of values of N are given in Table 10.

In this case K gradually increases from 0.36174 to 0.40025 as N increases from 16 to 361 . No ill conditioning was noticed in this range of N but the machine capacity forcedus to stop at $N=361$. The value of the capacity attained at this stage is found to be $K=0.40025$.

Following the same procedure, the capacity of an isosceles triangular plate $\left(120^{\circ}, 30^{\circ}, 30^{\circ}\right.$) of unit area is computed for increasing value of N, and are exhibited in Table 11. The capacity of the plate, from Table 11, is $K=0.41011$.

ELECTRO-STATIC CAPACITY OF A THIN EQUILATERAL PLATE

	SUB-AREA	EQUATION	DENSITY AT CENTROID	CAPACITY
\mathbf{i}	N	N^{*}		
2	16	5	0.18340	0.35361
3	49	12	0.18610	0.36527
4	100	22	0.18397	0.37010
5	109	35	0.18277	0.37273
7	256	70	0.18200	0.37438
8	361	92	0.18136	0.38308

Table 9

Fig. 10(c)
iensity distribution along a medinn oc

POTENTIALS GENERATED AT THE CORNER POINTS OF SUB-AREAS LYING ALONG A MEDIAN OF THE THIN EQUILATERAL TRIANGULAR PLATE

COORD. OF THE CORNERPOINTS			
X	Y	V	$V-1$
$0 \cdot 02309$	0.03999	$1 \cdot 00131$	$0 \cdot 00131$
$0 \cdot 09236$	$0 \cdot 15927$	100142	$0 \cdot 00142$
016162	$0 \cdot 27994$	1.00165	$0 \cdot 00165$
0.23089	$0 \cdot 39991$	$1 \cdot 00215$	$0 \cdot 00215$
$0 \cdot 30016$	0.51989	1.00346	0.00346
$0 \cdot 36942$	$0 \cdot 63986$	1.02819	0.02819
$0 \cdot 43869$	$0 \cdot 75984$	$0 \cdot 70133$	$0 \cdot 29867$

Table 9 (a)

ELECTROSTATIC CAPACITY OF A RIGIT ANGLED ISOSCELES TRIANGULAR
PLATE OF UNIT AREA

\boldsymbol{i}	SUB-AREA N	EQUATION \mathbf{N}^{*}	DENSITY AT CENTROID	CAPACITY
2	16	10	0.1845	0.36174
3	49	28	0.1890	0.37372
4	100	55	0.1869	0.37866
5	169	91	0.1859	0.38135
6	256	136	0.1850	0.38303
7	361	190	0.1849	0.40025

Table 10

ELECTROSTATIC CAPACITY OF AN ISOSCELES $\left(120^{\circ}, 30^{\circ}, 30^{\circ}\right)$ TRIANGULAR PLATE OF UNIT AREA

i	SUB-AREA N	EQUATION N^{*}	DENSITY AT CENTROID	CAPACITY
2	16	10	0.1800	0.38498
3	49	28	0.1978	0.39829
4	100	55	0.1932	0.40384
5	169	91	0.1934	0.40688
7	256	136	0.1930	0.40879
7	361			0.1930

Table 11

It is interesting to note how K varies for different shaped triangles of unit area. This is exhibited in Table 12. From this, we see that k decreases as the symmetry increases, reaching its minimum for the equilateral plate. Table 12 (a) exhibits the capacity of unit plates of different shape. It appears from Table 12(a) that, for regular polygons of unit area, K decreases as the number of sides increases, reaching its minimum for a circular plate (Chapter 10).

ELECTROSTATIC CAPACITY OF UNIT/TRIANGULAR PLATES OF DIFTERENT SIIAPE

ANGLES OF TIIE PLATE IN DEGREES		CAPACITY
60	60	60
90	45	45
120	30	30

Table 12

ELECTROSTATIC CAPACITY OF/PLATES OF UNIT AREA

PLATE	CAPAGITY	
EQUILATERAL TRIANGULAR PLATE	$0 \cdot 38139$	
SQUARE	$"$	0.36188
CIRCULAR	$"$	0.35917

Table 12(a)

Analytical Solution

Let V be the potential due to an electrified flat circular disc of unit radius. The centre of the disc defines the origin of a system of cylindrical polar co-ordinates, of which the Z-axis lies perpendicular to the plane of the disc. In cylindrical co-ordinates, V satisfies

$$
\begin{equation*}
\nabla^{2} v=\frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{\partial^{2} v}{\partial z^{2}}=0 \tag{130}
\end{equation*}
$$

with boundary conditions, for $z=0$ (i.e. plane of the disc)

$$
\begin{equation*}
V=1, \quad 0 \leqslant r<1 \tag{131}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial V}{\partial z}=0 \quad, \quad r>1 \tag{132}
\end{equation*}
$$

The 2nd condition (132) comes from the symmetry of V across $z=0$ and absence of charges outside the disc.

The solution of (130) under the above conditions, according to Tranter ${ }^{7}$, is

$$
\begin{equation*}
V=\frac{2}{\pi} \int_{0}^{\infty} r^{-1} e^{-h z} J_{0}(r \mu) \sin p d p . \tag{133}
\end{equation*}
$$

For

$$
r<1
$$

$$
\left(\frac{\partial V}{\partial z}\right)_{z=0}=\frac{2}{\pi} \int_{0}^{\infty} J_{0}(r p) \sin (-p) d p
$$

which is the imaginary component of

$$
\begin{equation*}
I=\frac{2}{\pi} \int_{0}^{\infty} J_{0}(r \mu) e^{-i \mu} d \mu \tag{134}
\end{equation*}
$$

From Watson, ${ }^{8}$

$$
\begin{align*}
& I=\frac{2}{\pi} \frac{1}{\sqrt{(-i)^{2}+r^{2}}}=\frac{2}{\pi} \frac{-i}{\sqrt{1-r^{2}}}, \\
& \therefore\left(\frac{\partial v}{\partial z}\right)_{z=0}=-\frac{2}{\pi} \frac{1}{\sqrt{1-r^{2}}} . \tag{135}
\end{align*}
$$

By relation (6) of Chapter 1, and from symmetry,

$$
\begin{aligned}
-4 \pi \lambda & =\left[\left(\frac{\partial V}{\partial z}\right)_{\text {int. }}+\left(\frac{\partial V}{\partial z}\right)_{\text {ext. }}\right]_{z=0}=2\left(\frac{\partial V}{\partial z}\right)_{z=0} \\
& =-\frac{4}{\pi} \frac{1}{\sqrt{1-r^{2}}} \cdots
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\lambda=\frac{1}{\pi^{2}} \frac{1}{\sqrt{1-r^{2}}} \tag{136}
\end{equation*}
$$

Where λ is the density at a radial distance r from the centre. For a disc of radius a, at a distance r from the centre

$$
\lambda=\frac{1}{\lambda^{2}} \frac{1}{\sqrt{1-\left(\frac{r}{a}\right)^{2}}}
$$

The capacity k of the disc of radius ' a ' is

$$
K=\int_{O B} \lambda(\underline{q}) d q=\int_{r=0}^{a} \int_{\theta=0}^{2 \pi} \frac{1}{\pi^{2}} \frac{1}{\sqrt{1-\left(\frac{r}{a}\right)^{2}}} r d \theta d r
$$

$$
\begin{align*}
& =\frac{2 \pi}{\pi^{2}} \int_{r=0}^{a} \frac{r d r}{\sqrt{1-\left(\frac{r}{a}\right)^{2}}}=a\left(\frac{2}{x}\right) \\
& =0.6366203, \quad \text { when } a=1 . \tag{137}
\end{align*}
$$

Numerical Approach

Apart from the analytical approach, already discussed, the integral equation formulae provide a straightforward numerical approach to solve the problem numerically. Let a density distribution λ on $\partial \bar{\partial}$ (thin circular plate of unit radius) generate the potential V which satisfies the equation (130) i.e.

$$
\nabla^{2} v=0
$$

with boundary conditions (131) and (132) i.e.

$$
V(\underline{n})=1 ; \cdot \underset{\sim}{h} \in \partial B
$$

and on $z=0$,

$$
V^{\prime}(\underline{\sim})=0 \quad ;|\underline{r}|>a
$$

respectively. In the integral equation method the boundary condition (131) is sufficient to solve the problem and hence the condition (132) is redundant in this case. This is essentially because our formulation is a Dirichlet formulation, which confines us to ∂_{B}, whereas Tranter's formulation is a mixed formulation for which we must go outside ∂_{B}.

Since $V=1$ on $\partial B, \quad \lambda$ satisfies the equation (111) which, on discretisation, takes the form (112) i.e.

$$
\sum_{j=1}^{N} a_{k j} \lambda_{j}=1 ; k=1,2 \cdots N
$$

Division of a circular domain into sub-areas
To find a numerical solution of (112), it is necessary to divide $O B$ into sub-areas. To affect the sub-division the circular domain is divided into n annular rings and each ring in its turn is divided into M sub-areas except the inner most ring which is divided into M_{1} subareas (Fig. 11). For sub-areas of equal area we have in a j th ring

$$
\frac{\pi\left(*_{r_{j}^{2}}^{r_{j}}-\stackrel{*}{r}_{j-1}^{2}\right)}{M}=\frac{\pi \stackrel{*}{r}_{1}^{2}}{M_{1}},
$$

i.e. $\quad \stackrel{* 2}{r}_{j}^{*}-r_{j-1}^{* 2}=\left(\frac{M}{M_{1}}\right) \stackrel{*}{r}_{1}$.

Putting $j=2,3, \ldots$ in succession and adding them up, we obtain

$$
r_{n}^{* 2}=\left\{(n-1)\left(\frac{M}{M_{1}}\right)+1\right\} r_{1}^{* 2} .
$$

Since

$$
r_{n}=a \quad(=1, \text { the radius of the disc }),
$$

$$
\stackrel{*}{r}_{1}^{2}=a^{2} /\left[(n-1)\left(\frac{M}{M_{1}}\right)+1\right]
$$

Using this value of $\stackrel{i n}{r}_{\underset{1}{*}}$ in (138) and putting $j=2,3, \ldots n$ in succession, we obtain n annular rings on the circular domain. The value of M_{1} usually equals 6 to obtain the subareas, nearly of equilateral form, in the inner-most ring and, M is determined by

$$
\begin{equation*}
M=6\left(2^{k-1}\right) ; \quad k \leqslant n . \tag{139}
\end{equation*}
$$

n may have any value but to keep the sub-areas in the outermost ring near to square form, we choose n such that it approximately satisfies

$$
\frac{2 \pi r_{n}}{M} \simeq \frac{r_{n}}{n} \text { ie } \frac{6 \cdot 28318}{6\left(2^{k-1}\right)} \simeq \frac{1}{n}
$$

Hence for a particular choice of k, a choice for n, from above, is given by

$$
n=2^{k-1}
$$

This subdivision gives very thin trapezoidal subareas in a few of the inner rings, which are not suitable for numerical work. To eliminate the thin sub-areas, the width of the m th ring is diminished by the adjustment given by

$$
T_{m}=p\left(T_{m}^{1}\right), p<1
$$

where T_{m}^{1} represents the width of the m th ring in (138); m usually equals 4. The width of the rings inner to /ne $^{\text {the }}$ th ring are then determined by

$$
\begin{equation*}
T_{j}=p\left(T_{j+1}\right) ; j=(m-1),(m-2) \cdots 2 . \tag{141}
\end{equation*}
$$

The validity of (141) depends on the features of the inner rings

$$
T_{j}^{1} \geqslant T_{j+1}^{1} \quad \text { and } \quad 0<r<1
$$

Now the radii of the above m-1 concentric rings are given by

$$
\begin{equation*}
r_{j}=r_{m}^{*}-\sum_{l=j}^{m} T_{l}+T_{j} \quad ; \quad j=2,3 \cdots m \tag{142}
\end{equation*}
$$

In the circular area of radius r_{2}, given by (142), k annular rings are introduced where k is given by (139). Each of the k rings has M_{j} equal sub-areas, where

$$
\begin{equation*}
M_{j}=6\left(2^{j-1}\right) ; \quad j=1,2,3 \cdots k \tag{143}
\end{equation*}
$$

Of these k rings, if P_{1} be the radius of the first circle, then P_{1} is given by

$$
e_{1}=\left(\frac{2 \pi r_{2}}{M}\right) q, \quad 0<q<1
$$

where r_{2} is given by (142). After determining P_{1} with a starting value $q=0 \cdot 9$, the radii of the remaining $k-1$ circles are fixed by

$$
\begin{equation*}
\rho_{j}=\rho_{j-1}+\left(2 \pi \rho_{j-1} / M_{j}\right) h_{1} ; j=2,3 \cdots k, \tag{144}
\end{equation*}
$$

where p_{1} is usually set at $1 \cdot 5$. Now the annular gap, given by

$$
D=r_{2}-e_{k}
$$

is divided into J parts to give J annular rings such that

$$
\begin{equation*}
\left|T_{3}-\left(r_{2}-P_{R+J-1}\right)\right| \leqslant \epsilon \tag{145}
\end{equation*}
$$

where ϵ is a preassigned small +ie quantity (usually <0.001) and J is a +ie whole number given by the integral part of Q where,

$$
\begin{equation*}
Q=\frac{D}{\left(\frac{2 \pi \rho_{k}}{M_{R}}\right)}-1 \tag{146}
\end{equation*}
$$

The radii of these J concentric circles are given by

$$
P_{k+1}=P_{k+l-1}+S \times T+(l-1) U ; l=1,2 \cdots J,
$$

where

$$
S \times T=\left(\frac{2 \pi P_{k}}{M}\right) \eta_{i}
$$

and

$$
U=\left[r_{2}-\left\{\rho_{k}+(S \times T) J\right\}\right] / \frac{(J-1) J}{2}
$$

If $Q \leqslant 0, q$ is gradually made smaller until $Q>0$ and the adjustment is stopped at the stage when (145) is satisfied. At this stage P_{k+J} is readjusted by setting

$$
\begin{equation*}
e_{R+J}=r_{2} \tag{147}
\end{equation*}
$$

Now the total number of annular rings on the circular face becomes

$$
\begin{equation*}
N^{*}=(n-2)+R+J \tag{148}
\end{equation*}
$$

and the radii of the concentric circles are given by

$$
\begin{aligned}
& R_{j}=e_{j} ; \quad j=1,2 \ldots(k+J) \\
& R_{k+J+t-2}=r_{l} ; \quad l=3,4 \cdots m
\end{aligned}
$$

$R_{k+J-2+A}=\stackrel{*}{r_{A}} ; A=(i n+1), \cdots n$.

The sub-areas in the lst ring are quadrilaterals with shapes very near to that of an equilateral triangle. From the 2 nd up to the ($k-1$) th ring, the sub-areas are pentagons $[$ Fig. 11 (a)] in which slant side $B E$ of a sub-area is p_{1} times the side $B D$. From the k th up to the ($\stackrel{*}{N}-2$) th ring, the sub-areas are trapezoidal in form. To make sub-areas smaller in size as we approach the rim, the number of sub-areas are doubled in the $\stackrel{*}{N}$ th ring. by inserting radial line segments through the middle of each sub-area. The sub-areas in the $(\stackrel{*}{N}-1)$ th and in the $\stackrel{*}{N}$ th ring are then made pentagonal in form [Fig $11(\mathrm{a})$].

The total number of sub-areas on the circular plate is

$$
\begin{equation*}
N=\left[6 * 2^{j-1}+\left(N^{*}-k+1\right) 6 * 2^{k-1}+2 * 6 * 2^{k-1}\right. \tag{149}
\end{equation*}
$$

Formulation and solution of equations
For the N sub-areas, there are N algebraic equations in N unknown λ_{j} given by (112). The co efficients $a_{k j}$ of (112), are evaluated over the sub-areas, as before, by the centroid method when $j \neq k$ and analytically when $j=k$.

From symmetry, the N equations reduce to $\stackrel{\star}{N}$ equations where $\stackrel{\star}{N}$ is given by (148). The equations are then solved, as before by the GaussSeidel iterative method with $\epsilon=0.0001$.

Table 13 exhibits the value of the capacity of a thin plate of unit radius with increasing value of N. It is evident from the Table that $K=0.6351872$. The analytic value of K, by (137), is

$$
k=\frac{2}{\pi} \simeq 0.6366203
$$

Table 14 exhibits the density distribution along a radius compared with that obtained analytically by (136). The numerical λ deviates only slightly from the analytical λ except in the neighbourhood of the rim. This behaviour of λ in the neighbourhood of the rim supports the conclusions drawn in Chapter 6. Fig. 12 (a) gives the density profile based upon Table 14.

Fig. 11
SUb-areas on a circllar domain

Fig. 11(a)
A SECTION OF FIG. 11.

ELECTROSTATIC CAPACITY OF A TIIIN CTRCULAR PLATE COMPARED WITH ANALYTICAL VALUE $K=0.6366$

SUB-AREA N	EQUATION N^{*}	NUMERICAL K
162	7	0.6239460
522	12	0.6314764
2202	25	0.634633
2682	30	0.6351872
3162	35	0.6351505

Table 13

DENSITY DISTRIBUTION ON A CIRCUIAR PLATE AIONG. A RADTAL I,INE

RADIAL DIST	ANALYTICAL	NUMERICAL
FROM CEN'RE	λ	λ
0.02797	0.10136	0.10306
0.12294	0.10209	0.10194
0.19271	0.10326	0.10324
0.25042	0.10466	0.10456
0.32629	0.10719	0.10689
0.41929	0.11161	0.10647
0.52502	0.11905	0.12033
0.61273	0.12821	0.12932
0.72462	0.14702	0.14901
0.93499	0.17765	0.18016
0.98732	0.23567	0.27671

Fig. 12
Density distributhon along a radial line
ON THE CIRCULAR FACE OF THIOK DISCS
of InIt Radus

CHAPTER 11

CAPACITY OF THICK CIRCULAR DISCS

Introduction
A thick circular disc (Fig. 13) may be viewed as a right circular cylinder with a small ratio H / a, where H defines the height and a defines the radius of the cylinder. Taking the origin of cylindrical polar co-ordinates at the centroid of the cylinder and the Z-axis to coincide with the axis of the cylinder, the plane boundaries at the ends are

$$
Z= \pm \frac{H}{2}
$$

the curved cylindrical boundary is

$$
r=a
$$

If V be the potential due to a equilibrium charge distribution on $\partial B, V$ satisfies Laplace's equation

$$
\nabla^{2} v=0
$$

with boundary conditions (131) and (132) i.e.

$$
V(\underset{\sim}{p})=1 ; \quad \underset{\sim}{p} \in \partial B
$$

and on $\mathrm{z}=\mathrm{O}$,

$$
V^{\prime}(n)=0 ;|w|>a .
$$

Beoause of the form of ∂B, complications arise in solving the problem analytically. However, the integral equation formulation provides a straightforward numerical approach. In the inteqral equation method, the boundary condition (131) i.e.

$$
V(\underline{h})=1 ; \quad w \in \partial B
$$

is sufficient to solve the problem and hence, as in the case of a thin plate, the boundary condition (132) is redundant. If the density distribution λ generates the potential $V=1$ on ∂B, then λ satisfies (111) which, on discretisation, takes the form (112).

Division of the surface into sub-areas

Each of the plane circular faces is divided into sub-areas as the thin plate in the previous case. Hence if N_{1}^{*} be the number of annular rings and N_{1} be the total number of sub-areas on a plane face, by (148) and (149),

Fig. 13
A THICK CIRCULAR DISC

Fig. $13(a)$

$$
N_{1}^{*}=(n-2)+k+J
$$

and $N_{1}=\sum_{j=1}^{k} 6\left(2^{j-1}\right)+\left(N_{1}^{*}-k+1\right)\left\{6\left(2^{k-1}\right)\right\}+2\left\{6\left(2^{k-1}\right)\right\}$.

If we now insert N_{2}^{*} annular rings in the upper half of the cylindrical surface, then N_{2}^{*} is given by

$$
\begin{equation*}
N_{2}^{*}=\stackrel{L}{L}^{*}-1 \tag{150}
\end{equation*}
$$

where L^{*} is the integral part of

$$
\left[\frac{H}{2} /\left(\frac{2 \pi a}{4 M}\right)\right]
$$

If h_{1} be the width of the ring nearest to the edge, then

$$
\begin{equation*}
h_{1}=\left(\frac{2 \pi a}{4 M}\right)=h(\text { Say }) . \tag{151}
\end{equation*}
$$

Further, if

$$
U_{1}=\left\{\frac{H}{2}-\left(\frac{2 \pi a}{4 M}\right) N_{2}^{*}\right\} /\left\{N_{2}^{*}\left(N_{2}^{*}-1\right) / 2\right\},
$$

the widths of the subsequent rings, as we move towards the plane $z=0$, are given by

$$
h_{j}=h+(j-1) U_{1} \quad ; \quad j=1,2 \cdots N_{2}^{*}
$$

when the breadth of each sub-area is kept constant at h given by (151).

Each of the N_{2} rings contains 4 M sub-areas, and hence the total number of sub-areas on the upper half of the cylindrical surface is

$$
\begin{equation*}
N_{2}=4(M) N_{2}^{*} . \tag{152}
\end{equation*}
$$

The total number of annular rings on the surface is

$$
\begin{equation*}
2 N^{*}=2\left(N_{1}^{*}+N_{2}^{*}\right), \tag{153}
\end{equation*}
$$

and the total number of sub-areas is

$$
\begin{align*}
N & =2\left(N_{1}+N_{2}\right) \\
& =2\left[\sum_{j=1}^{k} 6\left(2^{j-1}\right)+\left(N_{1}^{*}-1-k\right)\left(2^{k-1}\right) 6+2^{k-1}\left(12+24 N_{2}^{*}\right)\right] \\
& =2\left[\sum_{j=1}^{k} 6\left(2^{j-1}\right)+6\left(2^{k-1}\right)\left(N_{1}^{*}+1+4 N_{2}^{*}-k\right)\right] . \tag{154}
\end{align*}
$$

For $H=0.18$ and $k=3$, it is found that $N_{2}^{*}=2, n=4$, and $\mathrm{J}=2$. Hence $\mathrm{N}_{1}{ }_{1}=7$ and, by (153) and (154)

$$
N^{*}=9 \text { and } N=708
$$

The analysis of the sub-areas in each of the annular rings, for the above values of H and k , is given in Table 15.

Formulation and solution of the equations
For the N sub-areas, there are N algebraic equations in N unknowns given by (112). The co-efficients $a_{k j}$ of (112), are evaluated over the sub-areas, as before, by the centroid method when $j \neq k$ and analytically when $j=k$.

From symnetry, the N equations reduce to N^{*} independent equations where N^{*} is given by (153). The equations are then solved, as before, by the Causs-Seidel iterative method with $\epsilon=\cdot 0001$.

Table 16 exhibits the value of k of a thick plate of unit radius and thickness $H=0^{\circ} 18$ with increasing value of N.

NODAL POINTS		ARMS OF SUB-AREAS			AREA
RADIAL DIST r		BD	GE	BE	
ON THE PLANE CIRCULAR SURFACE					
$0 \cdot 10066$	$0 \cdot 2400$	$0 \cdot 00$	$0 \cdot 16184$	$0 \cdot 16184$	0.01310
0.22636	$0 \cdot 2400$	0.08377	0.14957	0.12711	0.01506
$0 \cdot 34580$	$0 \cdot 2400$	0.07543	$0 \cdot 10505$	$0 \cdot 11347$	$0 \cdot 01015$
0.48519	$0 \cdot 2400$	$0 \cdot 10505$	$0 \cdot 14630$	$0 \cdot 15803$	$0 \cdot 01969$
$0 \cdot 62816$. $0 \cdot 2400$	0.14630	0-18312	$0 \cdot 14103$	$0 \cdot 02303$
$0 \cdot 77278$	$0 \cdot 2400$	$0 \cdot 18312$	$0 \cdot 22159$	$0 \cdot 14738$	0.03037
$0 \cdot 92506$	$0 \cdot 2400$	$0 \cdot 11103$	$0 \cdot 13081$	$0 \cdot 15115$	0.01838
ON THE CYLINDRICAL SURFACE					
$1 \cdot 00$	$0 \cdot 20728$	0.06545	0.06545	0.06545	0.00428
1.00	$0 \cdot 13455$	0.06545	0.06545	$0 \cdot 08000$	$0 \cdot 00524$
$1 \cdot 00$	$0 \cdot 04728$	0.06545	$0 \cdot 06545$	$0 \cdot 09455$	$0 \cdot 00619$

Table 15
[This should be read in conjuction with Fig. 11(a) and Fig. 13(a)]

Following the same procedure, the capacity of circular plates of unit radius with various thickness are evaluated and are given in Table 17.

Fitting of a polynomial through the capacity values
Our numerical approach gives the capacity for some discrete values of the thickness H. To approximate the capacity for any value of H in the above range, we attempt to fit a continuous curve through the computed values of capacity utilising the method of least squares. 9

It appears from the difference columns (3) and (4) of Table 17 that the smoothest interpolating function may be a \log function. Considering the analytic value of k when the thickness is zero, we expect the form of the function to be

$$
\begin{equation*}
K=f(H)=\frac{2}{\pi} \log \left(c_{0}+\sum_{j=1}^{m} c_{j} H^{j}\right), \tag{155}
\end{equation*}
$$

where $C_{o}=e$, the base of natural logarithms. For the 11 values of k (Table 18), a polynomial of degree 10 will fit exactly through them. Starting with $m=1$ and gradually increasing m in steps of 1 , it is found that, for $m=5$, the interpolating function (155) fits the computed values to an accuracy of 3 significant figures. Further when $H \rightarrow 0$, $k \quad$ in (155) tends to $\frac{2}{\pi}$ as required.

For $m=5$, the co-efficients are $C_{o}=e=2.71828$,
$C_{1}=2.53801, C_{2}=-2.78274, C_{3}=4.63385 \quad C_{4}=-3.74689$ and $C_{5}=1.18925$. Fig. 14 shows the relation between the computed values and the fitted values of K, based on Table 18, for a disc of unit radius, as thickness varies from 0 to 1 .

SUBAREA N	EQUATION N^{a}	CAPACITY
708	9	0.72143804
1812	14	0.72189708
8244	30	0.72209634
10064	35	0.72201394

Table 16

ELECTROSTATIC CAPACITY OF THICK CIRCULAR DISCS OF UNIT RADIUS AND THE DIFFERENCE COLOUMNS OF CAPACITY

Table 17

CAPACITY OF THICK CIRCULAR DISCS FROM A FITTED POI,YNOMIAL

THICKNESS	COMPUTED	FITTED
H	k	K
$0 \cdot 00$	0.63519	$0 \cdot 63662$
$0 \cdot 18$	$0 \cdot 72210$	$0 \cdot 72197$
$0 \cdot 28$	$0 \cdot 75825$	$0 \cdot 75843$
$0 \cdot 38$	0.79140	$0 \cdot 79141$
$0 \cdot 48$	$0 \cdot 82250$	$0 \cdot 82237$
$0 \cdot 58$	0.85198	$0 \cdot 85196$
$0 \cdot 68$	$0 \cdot 88027$	$0 \cdot 88034$
$0 \cdot 78$	$0 \cdot 90752$	$0 \cdot 90757$
$0 \cdot 88$	0.93385	0.93378
$0 \cdot 98$	$0 \cdot 95938$	0.95941
$1 \cdot 00$	0.96440	0.96453

Table 18

Fig. 14

CAPACITY OF THICK CIRCULAR DISCS

CHAPTER 12

ELECTROSTATIC CAPACITY OF Λ CUBE

Division of surface into sub-areas
We choose a cartesian coordinate system so that the six faces of the cube have the equations

$$
x= \pm a / 2, y= \pm a / 2 \text { and } z= \pm a / 2
$$

As in the case of a square plate, each face of the cube is divided into

$$
N_{1}=k^{2}
$$

square subareas where k is always an odd integer. The total number of sub-areas on the surface ∂B of the cube is

$$
\begin{equation*}
N=6 N_{1}=6 k^{2} \tag{156}
\end{equation*}
$$

Dirichlet Formulation

Let an equilibrium charge distribution λ on $O B$ generate a potential $V=1$ on $O B$. Hence λ satisfies the equation (111) ie.

$$
\int_{\partial B} \frac{\lambda(\underline{q}) d q}{|\underline{q}-\underline{q}|}=1
$$

on discretisation, as before, equation (111) gives N linear algebraic equations for the N unknown λ_{j} viz.

$$
\sum_{j=1}^{N} \lambda_{j} \int_{j} \frac{d q}{\left|q_{k}-q\right|}=1 ; k=1,2,3 \cdots N,
$$

which is of the form

$$
\sum_{j=1}^{N} a_{k j} \lambda_{j}=1, \quad-k=1,2,3 \cdots N .
$$

The co-efficients $a_{k j}$ are evaluated, as before, by the centroid method of approximation when $k \neq j$. When $k=j$, the diagonal elements $a_{k k}$, for a square sub-area of edge length h, is given by (Appendix I)

$$
\dot{a}_{\mathrm{kk}}=4 \mathrm{~h} \log (1+\sqrt{2})
$$

By symmetry, the N equations reduce to N^{*} independent equations, where, from (120),

$$
\begin{equation*}
N^{*}=(k+1)(k+3) / 8 \tag{157}
\end{equation*}
$$

The equations are then solved by the Gauss-Seidel iterative method with $\epsilon=0.0001$ and the capacity k is then computed by (114). The capacity of the unit cube, computed for an increasing N is given in Table 19. The optimum N occurs at $N=1014$, since the density λ_{0} at the centre of a face has remained constant to the three preceding values of N. At this stage, $k=0.6595$.

The upper and the lower bounds for the capacity, determined by Polya and Szego, are

$$
0.6221 a<k<0.7106 a .
$$

Our value of K lies well within the bounds given above. The charge density at the centre of any face is approximately

$$
\lambda_{0}=0.0687 .
$$

Neumann Formulation

If the density distribution 6 of (2) produces a constant potential on ∂B, then from (20) of Chapter 2

$$
\begin{equation*}
-\frac{1}{2} \sigma(h)+\int_{\partial B} G_{i}^{\prime}(h, q) \sigma(\underline{q}) d q=0 \tag{158}
\end{equation*}
$$

On discretisation, (158) gives N linear algebraic equations in N unknown σ_{j} which can be represented by (67) with $\phi_{i}^{\prime}=0$ viz.

$$
\begin{equation*}
[B][0]=0 \tag{159}
\end{equation*}
$$

[B] in (159) is a singular matrix, and the co-efficients $b_{k j}$ are evaluated as in Chapter 5. As before, the N equations reduce to N^{*} independent equations. To solve these equations we delete the N^{*} th row, and we put $\sigma_{N^{*}}=1$ in the $N * t h$ column. Hence (159) reduces to a system of $\stackrel{*}{N}-1$ equations in unknown ratios

$$
\begin{equation*}
x_{j}=\frac{\sigma_{j}}{\sigma_{N^{*}}} ; \quad j=1,2 \cdots\left(N^{*}-1\right) . \tag{160}
\end{equation*}
$$

CAPCITY OF A UNIT CUBE BY SOLVING DIRICHLET PROBLEM

SUB-AREA N	EQUATION N^{*}	DENSITY AT THE CENTRE OF THE FACE	CAPACITY
150	6	0.0691	0.65384292
294	10	0.0691	0.65677327
486	15	0.0687	0.65819403
726	21	0.0687	0.65899621
1350	28	0.0687	0.65945535

Table 19

Equation (159) now reduces to

$$
\sum_{j=1}^{N^{*}-1} b_{k j} x_{j}=-b_{k N^{*}} \quad, k=1,2 \cdots\left(N^{*}-1\right)
$$

and are solved by the Gauss-Seidel iterative method with $\epsilon=0.0001$.
The Neumann formulation (158) does not immediately give
the capacity, since it only provides the relative charge density. However we know that if a conductor ∂B is raised to a constant potential $\mathrm{V}=\mathrm{c}$ by a charge distribution σ on ∂B, then
so that

$$
\int_{\partial B} G(\underline{q}, \underline{q}) \sigma(\underline{q}) d q=C
$$

$$
\begin{equation*}
k=\frac{1}{C} \int_{\partial B} \sigma(\underline{q}) d q_{s} \tag{162}
\end{equation*}
$$

The numerical σ_{j} do not generate a constant V on $\partial B \cdot$ We therefore define

$$
c=\left(\sum_{j=1}^{N} V_{j}\right) / N
$$

Putting this value of c in (162), we obtain k. The values of k thus found, for increasing N are exhibited in Table 20. By contrast with the Dirichlet formulation, no ill-conditioning appeared even at $N=2166$. The capacity of the unit cube obtained by the Neumann formulation is

$$
k(\text { Neuman } n)=0.6475
$$

and that obtained by Dirichlet formulation is

$$
K(\text { Dirichlet })=0.6595 .
$$

Each value is well within the bounds given by Polya and Szego • K (Neumann) appears to lie midway between the bounds whereas K (Dirichlet) lies close to the upper bound.

An alternative comparison with the Dirichlet formulation is possible. We scale the Neumann computed σ_{j} by a factor f so that

$$
\begin{equation*}
\int_{\partial B} f \sigma(\underline{q}) d q_{s}=f \int_{\partial B} \sigma(\underline{q}) d q_{s}=K(\text { Dirichlat }) \tag{163}
\end{equation*}
$$

From (163),

$$
\begin{equation*}
\lambda(\text { Neumann })=f \sigma . \tag{164}
\end{equation*}
$$

CAPACITY OF A UNIT CUBE BY SOLVING NEUMANN PROBIEM

SUB-AREA N	EQUATIONN^{*}	AVERAGE POTENTIAL C	TOTAL RATIO CIAARGES	CAPACITY	
				DIRCHLE'I'	NEUMANN
294	10	$4 \cdot 80998$	$3 \cdot 07528$	0.65677	$0 \cdot 63935$
486	15	$4 \cdot 07314$	$2 \cdot 61327$	$0 \cdot 65819$	$0 \cdot 64159$
726	- 21	$3 \cdot 54252$	$2 \cdot 27895$	$0 ` 65899$	$0 \cdot 64331$
1014	28	$3 \cdot 13809$	$2 \cdot 02308$	$0 \cdot 65946$	$0 \cdot 64469$
1350	36	$2 \cdot 81929$	$1 \cdot 82072$	$0 \cdot 65978$	$0 \cdot 64581$
1534	45	$2 \cdot 56049$	1.65599	$0 \cdot 66001$	$0 \cdot 64675$
2166	55	$2 \cdot 33703$	1.51328	(-ve density appears)	$0 \cdot 64752$

Table 20

This allows us to compare the charge densities yielding the same K.
Table 21 exhibits the value of λ obtained from both formulations for $N=1014$. The two solutions are in good agreement with one another except at the nodal points near the sharp edge and the corner of the cube.

COMPARISON OF DENSITY DISTRIBUTION ON THE SURFACE $z=0.5$

Table 21

PART IV
POTENTIAL FLOW OF A FLUID

CHAPTER 13

SUMMARY OF FORMULATIONS

Introduction

It has been shown in (57), Chapter 4, that for uniform potential flow perturbed by a fixed obstacle B, the disturbance potential ϕ can be generated by a simple source distribution of density σ on $O B$, i.e.

$$
\begin{equation*}
\phi(h)=\int_{\partial B} G(p, q) \sigma(q) d q ; \quad \underline{p} \in B_{e}+\partial B \tag{165}
\end{equation*}
$$

The free flow potential ψ, by (54) of Chapter 4, is

$$
\begin{equation*}
\Psi=-\underset{\sim}{U} \cdot \underset{\sim}{r}+C \tag{166}
\end{equation*}
$$

where $\underset{\sim}{U}$ is the free flow velocity vector and c is an additive constant which does not affect the flow. The distribution σ in (165) satisfies the normal derivative equation

$$
\begin{equation*}
-2 \pi \sigma(h)+\int_{\partial B} \frac{\sigma(q) d q}{|p-q|}=\phi_{e}^{\prime}(\underline{q}) ; \underline{q} \in \partial B \tag{167}
\end{equation*}
$$

in which $\phi_{e}^{\prime}(h)$ is given by (55), i.e.

$$
\begin{equation*}
\phi_{e}^{\prime}(\underline{h})=-\psi_{e}^{\prime}(\underline{h}) ; \quad \underset{\sim}{n} \in O B \tag{168}
\end{equation*}
$$

It has already been shown in Chapter 2 that equation (167) has a unique solution σ which generates ϕ everywhere (including the surface ∂B) as the simple source potential

$$
\begin{equation*}
\phi(h)=\int_{\partial B} \frac{\sigma(q) d q}{|\underline{q}-q|} \tag{169}
\end{equation*}
$$

$$
\underline{U}=-\nabla 4
$$

Be_{e}

Fig. 15

FLOW PAST A FIXED BOUNDARY

Discretising, by Chapter $5,(167)$ becomes

$$
\begin{equation*}
-2 \pi \sigma_{R}+\sum_{j=1}^{N} \sigma_{j} \int_{j} \frac{d q}{\left|q_{R}-\underline{q}\right|}=p_{e}^{\prime}\left(q_{R}\right) ; k=1,2, \cdots N \tag{170}
\end{equation*}
$$

and the computed σ_{j} generate ϕ according to the formula

$$
\begin{equation*}
\phi(\underline{h})=\sum_{j=1}^{N} \sigma_{j} \int_{j} \frac{d q}{|\underline{q}-\underline{q}|} \tag{171}
\end{equation*}
$$

Alternatively, utilising Green's boundary formula ${ }^{11}(60)$ of Chapter 4 , ϕ satisfies

$$
\begin{equation*}
-2 \pi \phi(h)+\int_{\partial B} \frac{\phi(q)}{|\underline{q}-q|_{e}^{1}} d q=\int_{\partial B} \frac{\phi_{e}^{\prime}(q)}{|n-q|} d q ; \underline{\sim}, q \in \partial B . \tag{172}
\end{equation*}
$$

It has been shown in (36), Chapter 2, that equation (172) has a unique solution ϕ on ∂B. On discretisation, by Chapter 5, (172) becomes

$$
\begin{equation*}
\left.-2 \pi \phi\left(q_{k}\right)+\sum_{j=1}^{N} \phi\left(q_{j}\right)\right)_{j} \frac{d q}{\left|q_{k}-q\right|_{e}^{\prime}}=\sum_{j=1}^{N} \phi_{e}^{\prime}\left(q_{j}\right) \int_{j} \frac{d q}{\left|q_{-k}-q\right|} ; k=1,2, \cdots N . \tag{173}
\end{equation*}
$$

The tangential velocity v at a point $\underset{\sim}{p}$ on ∂_{B} is given by

$$
\begin{equation*}
v(k)=\left[\left(-\frac{\partial \Phi}{\partial s_{1}}\right)^{2}+\left(-\frac{\partial \Phi}{\partial s_{2}}\right)^{2}\right]^{\frac{1}{2}} \tag{174}
\end{equation*}
$$

where $\Phi=\phi+\psi$ and Λ_{1}, Λ_{2} are arc lengths along two mutually perpendicular tangential directions at $\underset{\sim}{p} \in \partial_{B}$. When Φ is determined at discrete equidistant points along $\tilde{\beta_{1}}$, the tangential velocity ${ }^{15}$ component along A_{1} at $q_{j+\frac{1}{2}}$ is given by

$$
\begin{equation*}
v_{1}\left(q_{j+\frac{1}{2}}\right)=-\frac{1}{h_{1}}\left[\delta_{1}^{1}-\frac{1}{24} \delta_{1}^{3}+\frac{3}{640} \delta_{1}^{5} \cdots\right], \tag{175}
\end{equation*}
$$

where ${\underset{\sim}{\mathrm{q}}+\frac{1}{2}}$ is the mid point between $\underset{\sim}{q}{ }_{j}$ and $\underset{\sim}{q} \underset{j}{ }+1 ; \quad \delta_{1}^{r}$ is the difference of order r in a central difference table for Φ, and h_{1} is the distance between any two equally spaced consecutive points along A_{1} on $O B$ i.e.,

$$
h_{1}=\left|q_{j+1}-q_{-j}\right|
$$

Axial Flow Past A Symmetric Body

Let $O B$ be an axially symmetric surface, and suppose the free flow is parallel to its axis of revolution. Let us now divide $O B$ into 2 K rings such that the plane of each ring is perpendicular to the axis of flow, and for a ring in the upper part of $O B$ there is a ring of equal width in the lower part of $O B$. If p and \bar{h} represent one such pair of rings in which p lies in the upper part and $\overline{\mathrm{p}}$ lies in the lower part of ∂B (Fig. 16), the serial number of $\overline{\mathrm{p}}$, counting from the top, is given by

$$
\begin{equation*}
\overline{\mathrm{p}}=2 \mathrm{~K}-\mathrm{p}+1 \tag{176}
\end{equation*}
$$

Similarly for a pair q, \vec{q}

$$
\overline{\mathrm{q}}=2 \mathrm{~K}-\mathrm{q}+1
$$

Since the plane of the rings are perpendicular to the direction of flow, at the nodal points in the p th ring σ and ϕ satisfy

$$
\begin{equation*}
(\phi)_{p}=\left(\phi_{j}\right)_{p},\left(\phi^{\prime}\right)_{p}=\left(\phi_{j}^{\prime}\right)_{p} \text { and }(\sigma)_{p}=\left(\sigma_{j}\right)_{p} ; j=1, \cdots M K(h) \tag{177}
\end{equation*}
$$

where $\mathbb{M K}(p)$ is the number of sub-areas in the p th ring.
(a) Sinple Source Formulation

By virtue of (177), the N equations (170) for the N unknown σ_{j} reduce to 2 K equations viz.

$$
\begin{equation*}
\sum_{q=1}^{2 k} E p q(\sigma)_{q}=\left(\phi_{e}^{\prime}\right) p \quad ; \quad p=1,2, \cdots 2 k \tag{178}
\end{equation*}
$$

In (178) $(O)_{\mathcal{G}}$, is the discreto approximation to O at any nodal point in the q theing; $\left(\phi_{e}\right)_{p}$ represents the exterior normal derivative of ϕ at ny nodal

FIG. 16
sub-areas on the surface of a sphere

SUB AREAS
AT THE TOP
FIG. 16 (a)

UPPER SIDE

LONER SIDE

FIG.16(b)
point in the p th ring, and $E_{p q}$ stands for

$$
\begin{aligned}
E_{r q} & =\sum_{-j=1}^{M K(q)} \int_{j} \frac{d q}{| | h-q \mid}, \\
& =-2 \pi+\sum_{j=1}^{M K(q)} \int_{j} \frac{d q}{| | h-q \mid}, q=h
\end{aligned}
$$

where $\underset{\sim}{p}$ is any nodal point in the p th ring. If we take the 2 -axis as the axis of flow, then for a pivotal point (X, Y, Z) in the p th ring there is a pivotal point ($X, Y,-Z$) in the $\overline{\mathrm{p}}$ th ring on ∂B. Hence

$$
\begin{align*}
E_{p q} & =\int_{q} \frac{d q}{|\underline{q}-\underline{q}|}, \quad \text { over the } q \text { th ring } \\
& =\int_{\bar{q}} \frac{d \bar{q}}{|\bar{n}-\bar{q}|}, \quad \text { over the } \bar{q} \text { th ring } \\
& =E_{\bar{q} \bar{q}}=E_{2 k-\mu+1} 2 k-q+1 \tag{179}
\end{align*}
$$

and $\left(\phi^{\prime}\right)_{p}=-\left(\phi^{\prime}\right)_{\bar{p}}=-\left(\phi^{\prime}\right)_{2 k-p+1}$.
Further it is interesting to note that

$$
\begin{equation*}
E_{q p}=\int_{p} \frac{d p}{e^{|q-h|}}=\int_{q} \frac{d q}{d|h-q|}=E_{p q} \tag{181}
\end{equation*}
$$

By virtue of (179) and (180), the system of equations (178) becomes

The solution of (182) has the property (Appendix III)

$$
\begin{equation*}
(\sigma)_{p}=-(\sigma)_{2 k-p+1} \quad ; \quad p=1,2, \cdots k . \tag{183}
\end{equation*}
$$

Hence (182) reduces to K equations viz.

$$
\begin{equation*}
\sum_{q=1}^{k}\left(E_{p q}-E_{p 2 k-q+1}\right)(\sigma)_{q}=\left(\phi_{e}^{\prime}\right)_{p} ; p=1,2, \cdots k . \tag{184}
\end{equation*}
$$

From (183) we see that for every positive source on ∂_{B} there is a negative source of equal strength on ∂B and hence, in accordance with (59), the total source strength on ∂B is zero.
(b) Green's boundary formula

For a free flow parallel to the axis of revolution of a symmetric surface ∂B, the distrubance potential ϕ in every ring, shown earlier, satisfies relation (177). As a result the N equations (173), as before, reduce to 2 K equations given by

$$
\begin{equation*}
\sum_{q=1}^{2 k} H_{p q}(\phi)_{q}=D_{p} ; p=1,2, \cdots 2 k \tag{185}
\end{equation*}
$$

where

$$
\begin{aligned}
H_{h q} & =\sum_{j=1}^{M K(q)} \int_{j} \frac{d q}{|h-q|_{e}^{1}} ; \quad q \neq p \\
& =-2 \pi+\sum_{j=1}^{M K(q)} \int_{j} \frac{d q}{|n-q|_{e}^{\prime}} ; q=p
\end{aligned}
$$

and

$$
D_{h}=\sum_{q=1}^{2 k}\left(\phi_{e}^{\prime}\right)_{q} \int_{q} \frac{d q}{|h-q|}=\sum_{q=1}^{2 k}\left(\phi_{e}^{\prime}\right)_{q} \sum_{j=1}^{M k(q)} \int_{j} \frac{d q}{|h-q|} .
$$

As in the previous case, following the same procedures, it can be shown that

$$
\begin{align*}
& H_{\mu q}=H_{\bar{r} \bar{q}}=H_{2 k-p+1} \quad 2 k-q+1 \tag{186}\\
& \text { and } \quad D_{p} \\
&=-D_{\bar{r}}=-D_{2 k-p+1} \tag{187}
\end{align*}
$$

By virtue of the above results, the 2 K equations in (185), as before, reduce to K equations viz.

$$
\begin{equation*}
\sum_{q=1}^{k}\left(H_{p q}-H_{p 2 k-q+1}\right)(\phi)_{q}=D_{p} ; p=1,2 \ldots k . \tag{188}
\end{equation*}
$$

Test Function

It has already been shown that the approximation to an integral, over a given surface ∂B, approaches the analytic value as the number of sub-areas increases on $\partial \mathrm{B}$. Further, by our fundamental assumption, the density distribution over a surface approaches its true value as the sizes of the
sub-areas decrease and their number increases. Now the question arises what should be the minimum number of subareas, along with their respective sizes on ∂B, which will produce a sound value of the unknown on ∂B. Accordingly we first find a distribution of subareas on ∂B which will generate a test harmonic function h of the same nature as the required function ϕ. The disturbance potential ϕ has the property

$$
\phi=0|n|^{-2} \text { as }|\underset{\sim}{n}| \rightarrow \infty
$$

Hence a comparable test function is

$$
\begin{equation*}
h=\frac{-\underline{U} \cdot \hat{U}}{|h|^{3}} \tag{189}
\end{equation*}
$$

where \hat{U} defines a unit vector in the direction of the flow and h is a harmonic function with right behaviour at infinity i.e.

$$
h=O|h|^{-2} \quad \text { as } \quad|h| \rightarrow \infty
$$

The test function has been very useful in experimenting with the subdivision of $\overline{O B}$ and with our discretisation procedures.

CMAPTER 14

FLOW PAST A SPIIFRE

Introduction

A rigid sphere of radius ' a ' is fixed with its centre at the origin O of spherical polar co-ordinates (Fig. 17). An inviscid incompressible fluid is flowing from infinity with uniform velocity $\underset{\sim}{U}$ given by

$$
\begin{equation*}
\underline{U}=(0,0,-U)=-\nabla \psi, \tag{190}
\end{equation*}
$$

where ψ is the free flow potential, and hence

$$
\begin{equation*}
\psi=U_{2}, \tag{191}
\end{equation*}
$$

taking the constant of integration to be zero. As already noticed in Chapter 4, the disturbance potential ϕ behaves as $0|\underline{p}|^{-2}$ as $p \rightarrow \infty$, satisfies

$$
\begin{equation*}
\nabla^{2} \phi(h)=0 ; \underline{L} \in B_{e} \tag{192}
\end{equation*}
$$

and on ∂B satisfies the boundary condition

$$
\begin{equation*}
\phi_{e}^{\prime}(\underline{h})=-\psi_{e}^{\prime}(\underline{n})=-U(z)_{e}^{\prime}=-U \cos \theta . \tag{193}
\end{equation*}
$$

The solution of (192) subject to boundary condition (193), in spherical polar co-ordinates, is

$$
\begin{equation*}
\phi=\frac{1}{2} \frac{U a^{3} z}{r^{3}} \tag{194}
\end{equation*}
$$

The total velocity potential Φ, by (53), is

$$
\begin{equation*}
\Phi=\phi+\psi=\frac{1}{2} \frac{U a^{3} z}{r^{3}}+U z \tag{195}
\end{equation*}
$$

The fluid velocity on the surface of the sphere, by symmetry, is in the θ increasing direction. This is given by

$$
\begin{equation*}
V_{\theta}=-\frac{1}{r} \frac{\partial \Phi}{\partial \theta}=\frac{1}{2} U a \sin \theta+U a \sin \theta=\frac{3}{2} U a \sin \theta . \tag{196}
\end{equation*}
$$

FLOW PAST A FIXED SPHERE

Our aim is to compute an accurate approximation to (194) using the formulation of the last Chapter. Since the analytical solution of the problem is known, we have a chance to test the soundness of our numerical and geometrical procedures by obtaining a numerical solution for comparison with (194), taking $a=1$. Since.

$$
\begin{equation*}
\phi=\frac{1}{2} \frac{U a^{3} z}{r^{3}}=\frac{1}{2} \frac{z}{r^{3}} \quad(\text { taking } U=1, a=1) \tag{197}
\end{equation*}
$$

$\phi_{\mathrm{e}}^{\prime}(\mathrm{p})$ on ∂_{B} is given by

$$
\begin{align*}
\phi_{e}^{\prime}(h) & =\nabla \phi \cdot \hat{n}_{e} \\
& =-\frac{1}{2}\left[\frac{3 z x}{r^{5}}, \frac{3 y z}{r^{5}},\left(\frac{3 z^{2}}{r^{5}}-\frac{1}{r^{3}}\right)\right] \cdot(x, y, z) a^{-1} \\
& =-\frac{1}{2} \frac{2 z}{r^{3}} a^{-1}=-\frac{1}{a} \frac{\cos \theta}{r^{2}}=-\cos \theta(\because a=1 \text { and } r=1 \text { on } \partial \beta) \\
& =-\psi_{e}^{\prime}(\underline{h})\left[\begin{array}{ll}
\text { by } & (168)],
\end{array},\right. \tag{198}
\end{align*}
$$

where $\hat{n}_{e}=(x, y, z) a_{11,12}^{-1}$ at $\in \partial B$. Introducing (198) in (172), Green's Boundary Formula (Jaswori) defines an equation for ϕ on ∂B with exact solution (197) .Alternatively, introducing (198) in (167) the Simple Source Formulation (A.M.O. Smith) defines an equation for σ with exact solution*

$$
\begin{equation*}
\sigma=\frac{3 \cos \theta}{8 \pi} \tag{199}
\end{equation*}
$$

This σ, by (165), generates ϕ in (197).

$$
\begin{aligned}
-4 \pi \sigma=\phi_{e}^{\prime}+\phi_{i}^{\prime} & =\frac{1}{2}\left[\left(\frac{z}{r^{3}}\right)_{e}^{\prime}+z_{i}^{\prime}\right]_{r=a=1} \\
& =\frac{1}{2}\left[\frac{d}{d r}\left(\frac{\cos \theta}{r^{2}}\right)-\frac{d}{d r}(r \cos \theta)\right]_{r=1}=-\frac{3}{2} \cos \theta . \\
\therefore \quad 0 & =\frac{3 \cos \theta}{8 \pi} .
\end{aligned}
$$

To solve the equations (167) and (172) numerically, the surface ∂_{B} is to be divided into sub-areas. The upper half of the spherical surface $x^{2}+y^{2}+z^{2}=a^{2}$ is divided into K horizontal rings. Each of the list $\mathrm{KN}(<\mathrm{K})$ rings, starting from the pole, is divided into MK_{j} equal subareas by MK_{j} meridian line segments where MK_{j} is given by

$$
M K_{j}=6\left[1+(j-1)^{2}\right], j=1,2, \cdots K N .
$$

Starting from ($K N+1$) up to the K th ring, each ring is divided into M equal sub-areas where

$$
M=M K_{j}=6(1+2 K N) ; j=(K N+1), \cdots k
$$

The total number of rings on the upper hemispherical surface is given by

$$
\begin{equation*}
K=K N+K T=K N+\left(\frac{M+2}{4}\right)=4 K N+2 \tag{200}
\end{equation*}
$$

Any half meridian is divided into K equal parts to give the height h_{k} of a trapezoidal subarea (Fig. 16) adjacent to the equatorial line which is divided into M equal parts to give the breadth b_{k} of the same sub-area. From the above, the ratio $h_{k}: b_{k}$ is given by

$$
r=\frac{h_{k}}{b_{k}}=\frac{\frac{\pi a}{2} / 2(2 k N+1)}{2 \pi a / 6(2 k N+1)}=\frac{3}{4}
$$

where ideally $r=1$ (see Chapter 6). If h_{k} is increased keeping b_{k} fixed and vice versa, the form of the trapezoidal sub-areas near the polar region deviates from the ideal form. This justifies the value of K chosen in (200).

If $d \phi_{j}$ be the angle between any two consecutive meridian line segments in the j th ring, then

$$
d \phi_{j}=\frac{2 \pi}{M k_{j}} ; \quad j=1,2, \cdots k
$$

The width of the 1 st ring is tentatively taken to be l_{1} where

$$
l_{1}=\left(\frac{\pi a}{2} / k T\right) A_{1} ; 1<\Delta_{1}<2 .
$$

This subtends an angle θ_{1} at the centre of the sphere where

$$
\theta_{1}=\ell_{1} a^{-1}
$$

The width of the j th ring is given by

$$
l_{j}=A_{j}\left(a \sin \theta_{j-1}\right) d \phi_{j} ; j=2,3, \cdots k N,
$$

where $\quad \theta_{j}=l_{j} a^{-1} \quad$ and $1<\Delta_{j}<2$. Normally λ_{j} is kept fixed at $1 \cdot 5$. From the $(K N+1)$ th up to the K th ring, the width of a sub-area is given by

$$
l_{k N+j}=D+j(U T) ; j=1,2 \cdots k T,
$$

where

$$
D=\frac{3}{2} a\left(\sin \theta_{k N}\right) d \phi_{k N+1}
$$

and $U T=\left\{a\left(\frac{\pi}{2}-\theta_{k N}\right)-(k T) D\right\} /\{k T(k T+1) / 2\}$.

The total number of sub-areasis

$$
\begin{align*}
N & =2\left[6\left\{\frac{k N}{2}(2+\overline{k N-1} 2)\right\}+M(k T)\right] \\
& =12\left(7 k N^{2}+7 k N+2\right) . \tag{201}
\end{align*}
$$

The analysis of the sub-areas thus formed, for $K N=5$, is given in
Table 22. It is evident from this Table that:
(1) The sides of the triangular sub-areas adjacent to the pole are nearly equal.
(2) From the 2 nd up to the $K N$ th ring the width of any sub-area is nearly 1.5 times its average breadth.
(3) The change in the size of the sub-areas, as we move from the top to the equatorial line, follows a continuous pattern.

Computation of Disturbance Potential
Now we proceed to solve the equations (167) and (172) numerically. Dealing first with the Simple. Source Formulation (167), we find, on discretisation, that this gives (170), a system of N linear algebraic equations in N unknown σ_{j}. From symmetry of $O B$ and for relation (180), the N equations reduce to K equations given by (184). The co-efficients $E_{p q}$ are evaluated as discussed in Chapter 5 and the equations are then solved by the Gauss-Seide1 iterative method with $\boldsymbol{G}=0.0001$.

RING	SUB-AREA	AREA	UPPER SIDE AB	LOWER. SIDE $C D$	$\begin{array}{r} \text { ARM } \\ \text { AD } \end{array}$
1	6	$0.12893 \mathrm{E}-01$	0.00000 E 00	0.16382 E 00	0.15708 E 00
2	18	$0.71676 \mathrm{E}-02$	0.54606E-01	0.88728E-01	0.99929E-01
3	30	0.56405E-02	$0.53237 E-01$	$0.71326 \mathrm{E}-01$	0.90503E-01
4	42	$0.48543 \mathrm{E}-02$	$0.50947 \mathrm{E}-01$	0.62751E-01	$0.85337 \mathrm{E}-01$
5	54	$0.42684 \mathrm{E}-02$	0.48806E-01	$0.57145 \mathrm{E}-01$	0.80530E-01
6	66	$0.39215 \mathrm{E}-02$	0.46755E-01	0.53113E-01	0.78493E-01
7	65	$0.42877 \mathrm{E}-02$	0.53113E-01	0.58993E-01	$0.76457 \mathrm{E}-01$
20	66	0.47242E-02	0.94217E-01	0.94781 E 01	0.49982E-01
21	66	0.45528E-02	0.94781E-01	0.95099E-01	$0.47945 \mathrm{E}-01$
22	66	0.43689E-02	0.95099E-01	0.95200E-01	0.45908E-01

Table 22

The σ_{j} thus obtained satisfy the relation (183). These computed σ_{j} when used in (171), generate the required potential ϕ given by (197). Table 23 exhibits the computed $\sigma(K=46)$ compared with analytical σ given by (199). Table 24 exhibits the ϕ in (197), generated by the above σ_{j}, for the same value of K along with the analytical ϕ at the respective points on ∂B. Fig. 18 exhibits the graphs of analytical and numerical σ based on Table 23. The total velocity potential Φ is then obtained by (53) viz.

$$
\begin{equation*}
\Phi=\phi+\psi \tag{202}
\end{equation*}
$$

where $\Psi=U_{2}=z \quad(\because U=1)$. The graphs in Fig. 19 exhibit ϕ and Φ, based on Table 24, on the upper hemispherical, surface of the sphere.

In (172) ϕ_{e} is given by (198). On discretisation, (172) gives N linear algebraic equations in N unknown $\phi\left(q_{j}\right)$. By virtue of the symmetry of ∂B and for (180), the N equations reduce to K equations given by (188). After evaluation of the $H_{p q}$ and the D_{p}, of (188), the equations are solved by the Gauss-Seidel iterative method with $\epsilon=0.0001$. The $(\phi)_{k}$ thus obtained for $K=46$, are exhibited in Table 24. The total potential Φ is then obtained by (202). The ϕ and the Φ thus obtained, for $K=46$, are exhibited in Fig. 19. Equipotentials

The σ which generates the required disturbance potential ϕ, for ϕ_{e}^{\prime} given by (193), is obtained by solving the equation (167) numerically, as discussed earlier. These σ_{j} then generate the ϕ_{k} by (171) at any point $\mu \in B_{e}+\partial B \quad$. The total velocity potential Φ is then obtained by (202).

For $K=46$, the total potential Φ is then obtained at M^{*} points outside ∂_{B} along with those at the nodal points, each lying on a separate ring, on the upper hemispherical part of ∂_{B}. The equipotentials are then drawn from the K nodal points ${\underset{q}{1}}, \underline{q}_{2}, \ldots q_{k}$ of ∂B through those points ${\underset{\sim}{j}}^{j}$ for which

$$
\left|\Phi\left(\underline{q}_{m}\right)-\Phi\left(\underline{r}_{j}\right)\right| \leqslant 0.001 ; q_{m} \in \partial B, j=1,2, \cdots\left(M^{*}+k\right) .
$$

The equipotentials, thus found, are given in Fig. 20.

DISTRIBUTION OF SOURCE DENSITY ON A UNIT SPHERE

$\begin{gathered} \text { POLAR DISTANCE } \\ \text { IN } \\ \text { RADIAN } \end{gathered}$	DENSITY σ	
	ANALYTICAL	NUMERICAL
0.041	0.11926	0.12073
0.179	0.11746	0.11835
0.290	0.11439	0.11512
0.390	0.11042	0.11105
0.484	0.10564	0.10623
0.579	0.09989	0.10053
0.675	0.09321	0.09387
0.771	0.08565	0.08629
0.867	0007726	0.07787
0.964	0.06810	0.06867
1.061	0.05826	0.05876
1.159	0.04781	0.04824
1.257	0.03686	0.03719
1.356	0.02550	0.02573
1.455	0.01383	0.01396
1.554	0.00198	0.00199

Table 23

Fig. 18

GENEATION OF ϕ O THE SUPFACE OF A UNIT SLDERE

POLAR DISTA:NCE IN RADIAN	dwalytic ${ }^{\text {d }}$	$\begin{aligned} & \text { S.L. POTENTIAL } \\ & \text { (Smith) } \end{aligned}$	\%ERROR	G. 13 . Formilla (Jaswon)	8ERROR
$0.412 \mathrm{E}-01$	0.49958 E 00	0.50019 E 00	0.124	0.50197 E 00	0.478
$0.956 \mathrm{~F}-01$	0.49772 E 00	0.49917 E 00	0.293	0.50009 E 00	0.476
0.139E 00	0.49520 E 00	0.49713 E 00	0.389	0.49757 E 00	0.478
0.179 E 00	0.49201E 00	0.49414 E 00	0.433	0.49435 E 00	0.474
0.217 E 00	0.48822 E 00	0.48612 E 00	0.449	0.49045 E 00	0.457
0.643 E 00	0.40020 E 00	0.40195 E 00	0.437	$0.40186 E 00$	0.412
0.675 E 00	0.39046 E 00	0.39215 E 00	0.433	0.39211 E 00	0.423
0.707 E 00	0.38030 E 00	0.33194 E 00	0.434	0.38194 E 00	0.431
0.739 E 00	0.36973 E 00	0.37133 E 00	0.433	0.37137 E 00	0.441
$0.771 E 00$	0.35877 E 00	0.36033 E .00	0.435	0.36039 E 00	0.452
0.139 e 01	0.90639E-01	0.9.079E-01	0.485	0.91173E-01	0.589
0.142 E 01	$0.74345 \mathrm{~s}-01$	$0.74707 \mathrm{E}-01$	0.487	$0.74785 \mathrm{E}-01$	0.592
0.145 E 01	$0.57944 \mathrm{E}-01$	0.58226E-0.1	0.487	0.58288E-01	0.594
0.149 El	0.41453E-01	0.41655E-01	0.437	0.41700E-01	0.535
0.152 E 01	$0.24891 \mathrm{E}-01$	$0.25013 \mathrm{E}-01$	0.486	0.25040E-01	0.598
0.155 E 01	0.82761E-02	0.83163E-02	0.486	0.83255E-02	0.597

Table 24

Fig. 19

FIG. 20

EQUIPOTENTIALS AROUND A FIXED SPHERE

The analytical value of the fluid velocity at a point $\underset{\sim}{q} \in \partial_{B}$, by (196), is

$$
\begin{equation*}
v_{\theta}(?)=\frac{3}{2} \cup a \sin \theta_{q} \tag{203}
\end{equation*}
$$

where $U=1, a=1$ and θ_{q} represents the value of θ (Fig. 17) at the point q. The numerically computed value of the velocity at $\underset{\sim}{q}$ is found by (175), using the numerical Φ. Since the nodal points on ∂B are not equally spaced and the higher order δ is very small, the velocity component at $q \in \quad \partial B$, in any direction S_{1}, is obtained by taking only the first term in (175) i.e.,

$$
\begin{equation*}
v_{\theta}(q)=-\frac{1}{h_{1}} \delta_{1}^{1} \tag{204}
\end{equation*}
$$

It has already been pointed out, that for symmetry, the flow on the surface is along the meridians on ∂B. The velocity at a point $\underset{\sim}{q}\left(={\underset{\sim}{p}+\frac{1}{2}}\right.$) on ∂B is determined by (204) from the numerical Φ given by (202), in which ϕ is obtained by Simple Source Formulation. Table 25 exhibits the v_{θ} thus obtained, for $K=46$, along with the analytical v_{θ} at the respective points on ∂B. Similarly, V_{θ} is obtained from Φ in which ϕ is determined by Green's Boundary Formula under the same external condition and for the same sub-division of ∂B. The v_{θ} thus obtained are exhibited in Table 25. . Fig. 21 shows the velocity distribution on ∂_{B} base on Table 25.

General Discussion
It is evident from Table 24 that both the formulations, i.e. Simple Source Distrubution (Smith) and Creen's Boundary Formula (Jaswon), are capable of yielding a good approximation. In the case of a flow past a sphere, in this thesis, we obtained ϕ on ∂B by both the methods, in which the maximum error in ϕ at a nodal point on ∂B is $<0.6 \%$. The error in ϕ, generated by the Simple Source Formulation is less than that in ϕ obtained by Green's Boundary Formula.

poliar dismaice IN RADIAS	Ninlytic velocity	$\begin{aligned} & \text { FROM } \\ & \text { S.I.PORENTIAL } \\ & \text { (Smith) } \end{aligned}$	\#ierror	$\begin{aligned} & \text { From } \\ & \text { G. B. Pormula } \\ & \text { (Jaswon) } \end{aligned}$	QERROR
$0.634 \mathrm{E}-01$	0.10257E 00	$0.87146 \mathrm{E}-01$	-0.1506 02	0.102915 00	0.336 E 00
0.117 E 00	0.17533 E 00	0.16434 E 00	-0.627E 01	0.175348: 01	0.334E-02
0.159000	0.23724 E 00	0.23233 E 00	-0.207E 01	0.23823 E 00	0.4205: 00
0.198 E 00	0.295405: 00	0.29369 E 00	-0.582E On	0.29813800	0.922 E 00
$0.236 \mathrm{E}^{\circ} 0^{\circ}$	0.35050: 00	0.35025 E 00	-0.1018 00	0.35401600	0.972E 00
0.659 E 00	0.91819 E 00	0.91970 E 00	0.165 E 00	0.91322 E 00	0.3312-02
0.691500	0.95552 E 0	0.95696 E 00	0.150E 00	0.95566 E 00	0.144E-01
0.723E 00	0.991951: 00	0.99333 E 00	0.139 e 0	0.99220E 00	0.2562-01
0.755 E 00	0.10274 E 01	0.10283E 01	0.1318 eo	0.10278 E 01	0.367E-01
0.787E 00	0.106188: 01	0.10632 E 01	0.126: 00	0.10624 El	$0.477 \mathrm{E}-01$
0.141 E 01	0.14794E 01	0 14817E 01	0.155000	0.14622: 01	0.1878 00
0.144 E 01	0.148688: 01	0.14891 e 01	0.156 E 00	0.14896E: 01	0.190800
0.147 E 01	$0.14926 E 01$	0.149.10e 01	0.157800	0.14954501	0.192 E 00
0.150 E 01	0.14967 E 01	0.14991 E 01	0.158 E 00	0.14996\% 01	0.194 E 00
0.154 E 01	0.14992801	0.15016 E 01	0.158 E 00	0.15021: 01	0.195800

Table 25

Fig. 21
Velocity on the surface of the sphrere

The error in ϕ, obtained by Green's Boundary Formula, is/uniform. As a result, the numerical velocity, near the pole on ∂B, obtained from ϕ given by Green's Boundary Formula is nearer to the analytic velocity than obtained from ϕ given by Simple Source Formulation in that region (Fig. 21).

CIIAPTER 15

FLOW PAST A CYLINDER WITH HEMISPHERICAL CAPS

Introduction

Let the centroid of the cylinder define the origin of a cartesian reference frame OXYZ, the axis of Z coinciding with the axis of the cylinder (Fig. 22). The cylinder is of length. $2 H$ and radius ' a ', and therefore the cylindrical surface has the equation

$$
x^{2}+y^{2}=a^{2},|z| \leqslant H
$$

The two hemispherical surfaces have the equations

$$
x^{2}+y^{2}+(z \mp H)^{2}=a^{2} \text { respectively, with }|z| \geqslant H
$$

The cylinder is supposed to be fixed in an infinite fluid moving with free velocity

$$
\begin{equation*}
\underset{\sim}{U}=(0,0,-1)=-\nabla \Psi \tag{205}
\end{equation*}
$$

where ψ is the free flow potential, and by (205)

$$
\begin{equation*}
\psi=z \tag{206}
\end{equation*}
$$

As before, the disturbance potential $\phi \rightarrow 0|\underset{\sim}{p}|^{-2}$ as $|\underset{\sim}{p}| \rightarrow \infty$ and satisfies

$$
\begin{equation*}
\nabla^{2} \phi(\underline{h})=0 ; \quad \underset{\sim}{r} \in B_{e} \tag{207}
\end{equation*}
$$

with boundary condition

$$
\begin{equation*}
\phi_{e}^{\prime}=-\nabla \psi \cdot \hat{n}_{e}=-(z)_{e}^{\prime} \tag{208}
\end{equation*}
$$

The integral equation formulation provides a straightforward approach to determine ϕ on the boundary. This is achieved by substituting (208) into (167) or (172) and solving the equations numerically.

Discretisation Procedures

The numerical approach demands that the surface ∂B should be divided into sub-areas. To effect the sub-division, the hemispherical part of the surface is divided into K_{1} rings, similar to the surface of the sphere in Chapter 14. Hence, by (200), K_{1} is given by

$$
\begin{equation*}
K_{1}=4 K N+2 \tag{209}
\end{equation*}
$$

Fig. 22

CYLINDER WITH HEMISPHERICAL CAPS

By (201), the toal number of sub-areas of each of the hemispherical surfaces, is

$$
\begin{equation*}
N_{1}=6\left(7 K N^{2}+7 k N+2\right) . \tag{210}
\end{equation*}
$$

The M meridian 1 ines which divide the K_{1} th ring into M sub-areas are extended on the cylindrical surface. The cylindrical surface from $z=H$ to $z=0$ is divided into K_{2} rings, such that the width of the ring at the top of the cylindrical surface nearly equals to the breadth of the sub-area in that ring, i.e.

$$
\frac{H}{k_{2}} \simeq \frac{2 \pi a}{M}
$$

where, by Chapter $14, \mathrm{M}=6(1+2 \mathrm{KN})$. When $H=a=1$, from above, the approximate value of K_{2} is $(1+2 \mathrm{KN})$. Since the width of the sub-area in the K_{1} th ring is little less than the breadth $2 \pi a / M$ (Chapter 14), the value of K_{2}, in this case, is taken to be

$$
\begin{equation*}
K_{2}=3 \mathrm{KN} \tag{211}
\end{equation*}
$$

Each sub-area on the cylindrical surface is of breadth b and width d, where

$$
\mathrm{b}=2 \pi \mathrm{a} / \mathrm{M} \quad \text { and } \mathrm{d}=\mathrm{H} / 3 \mathrm{KN}
$$

The total number of rings on $O B$ is $2 K$, where

$$
\begin{equation*}
2 k=2\left(k_{1}+k_{2}\right)=2(7 k N+2) \tag{212}
\end{equation*}
$$

The total number of sub-areas

$$
\begin{align*}
N & =2\left\{N_{1}+K_{2}(M)\right\} \\
& =2\left[6\left\{7 k N^{2}+7 k N+2\right\}+3 k N+6(1+2 k N)\right] \\
& =12\left(13 k N^{2}+10 k N+2\right) . \tag{213}
\end{align*}
$$

Test function

In order to test our geometrical and numerical procedures, we introduce the test function

$$
\begin{equation*}
h=\frac{z}{r^{3}} \tag{214}
\end{equation*}
$$

which is a harmonic function of similar behaviour to the disturbance potential ϕ. On ∂B,

$$
\begin{equation*}
h_{e}^{\prime}=\nabla h \cdot \hat{n}_{e}=-\left[\frac{3 z x}{r^{5}}, \frac{3 y z}{r^{5}}, \frac{3 z^{2}}{r^{5}}-\frac{1}{r^{3}}\right] \cdot \hat{n}_{e} . \tag{215}
\end{equation*}
$$

Introducing this into the place of ϕ_{e}^{\prime} in (167) and applying our procedures, we solve for δ and generate h at all the nodal points on the surface. The generated values are exhibited in Table 26 for comparison with the analytic values defined by (214) on the boundary. It will be seen from the Table that the error in the numerically computed values, for $K=23$, is less than 1.5%.

We may compute h directly on ∂B by inserting h_{e}^{\prime} from (215) in (172) and applying our procedures. For $k=23$ the computed values of h at the nodal points are exhibited in Table 26 . It will be seen from Table 26 that at no nodal point the error exceeds $1 \cdot 5 \%$. It will be noted further from the Table that the two approaches yield a comparable accuracy. Computation of Disturbance Potential

In the actual problem ϕ_{e}^{\prime} on ∂_{B} is given by (208). Inserting this into (167) and applying our procedures, we solve for σ_{k}. Using these σ_{k} in (171) we generate ϕ on ∂B. For $k=23$, the disturbance potential thus obtained are exhibited in Table 27. The total velocity potential is then obtained by using this ϕ, and ψ given by (206), in (53) i.e.

$$
\begin{equation*}
\Phi=\phi+\psi . \tag{216}
\end{equation*}
$$

Fig. 23 shows the graphs of ϕ and Φ thus obtained for $K=23$.
Similarly we insert ϕ_{e}^{\prime} given by (208) into (172) and compute ϕ directly at the nodal points on ∂B. The ϕ_{k} thus obtained, for $k=23$, are exhibited in Table 27. On the basis of this value of ϕ_{k}, Φ is calculated by (216). Fig. 23 shows the graphs of ϕ and Φ thus obtained for $\mathrm{K}=23$.

It will be seen that the two approaches yeild very similar results.

rable 26

$\begin{aligned} & \text { FIELD } \\ & \text { (CARTESIA } \\ & . . \quad \mathbf{x} \end{aligned}$	$\begin{aligned} & \text { INT } \\ & \text { CO-ORD) } \\ & z \end{aligned}$	$\begin{gathered} \phi \\ \text { S.L.POTENTIAL } \\ \text { (Smith) } \end{gathered}$	$\begin{gathered} \phi \\ \text { G.B. FORMULA } \\ \text { (Jaswon) } \end{gathered}$
ON THE SPHERICAL SURFACE			
0.151	1.989	0.54115 E 00	0.54539 E 00
0.343	1.939	0.51979 E. 00	0.52102 E 00
0.483	1.876	0.49051 E 00	0.49008 E 00
0.602	1.798	0.45467 E 00	0.45338 E 00
0.981	1.192	0.18835 E 00	0.18749 E 00
0.992	1.126	0.16366 E 00	0.16263 E 00
0.998	1.069	0.14374 E 00	0.14258 E 00
1.000	1.021	0.12898 E 00	0.12777 E 00
ON THE CYLINDRICAL SURFACE			
1.000	0.944	0.11006 E 00	0.10838 E 00
1.000	0.833	$0.89885 \mathrm{E}-01$	$0.88547 \mathrm{E}-01$
1.000	0.722	$0.73556 \mathrm{E}-01$	0.72481 E-01
1.000	0.278	$0.25043 \mathrm{E}-01$	0.24696 E-01
1.000	0.167	0.14847 E-01	$0.14643 \mathrm{E}-01$
1.000	0.056	$0.49201 \mathrm{E}-02$	$0.48525 \mathrm{E}-02$

Table 27

Fig. 23
potentials on the surface of a cylinder with HEMISPHERICAI. CAPS

Tangential Velocity on the Surface

By symmetry, the tangential velocity is directed along the meridan of ∂_{B}. The velocity at $\underset{\sim}{p} \in \partial B$, neglecting the terms of higher order in (175), is

$$
\begin{equation*}
v_{1}(h)=v_{1}\left(q_{-j+\frac{1}{2}}\right)=-\frac{1}{h_{1}} \delta_{1}^{1} . \tag{217}
\end{equation*}
$$

The velocity thus calculated by (217), on the basis of the two formulations, are exhibited in Table 28. Fig. 24 shows the graphs of the velocities based on Table 28.

$\begin{aligned} & \text { FIELD } \\ & \mathrm{x} \end{aligned}$	INT	S.L.POTENTIAL	$\begin{aligned} & \text { FROM } \\ & \text { G.B.FORMULA } \end{aligned}$
ON THE SPHERICAL SURFACE			
0.248	1.969	0.35499 E 00	0.37014 E 00
0.414	1.910	0.60332 E 00	0.61404 E 00
0.544	1.839	0.79610 E 00	0.80217 E 00
0.654	1.757	0.96236 E 00	0.95584 E 00
0.973	1.229	0.13580 E 01	$0.13608 \mathrm{E} \mathrm{O1}$
0.987	1.159	0.13569 E Ol	0.13596 E Ol
0.995	1.098	0.13430 E O1	0.13451 E 01
0.999	1.045	0.13076 E 01	0.13087 E 01
ON THE CYL, INDRICAL SURFACE			
1.000	0.889	0.11816 E 01	0.11785 E 01
1.000	0.778	0.11470 E Ol	0.11446 E Ol
1.000	0.667	0.11260 E Ol	0.11240 E Ol
1.000	0.333	0.10960 E 01	0.10947 E 01
1.000	0.222	0.10918 E Ol	0.10905 E 01
1.000	0.111	0.10893 E Ol	0.10881 E 01

Table 28

Fig 24

$$
\int \longleftarrow \quad \longleftarrow \quad \begin{aligned}
& \qquad=(0,0,-1)
\end{aligned}
$$

CHAPTER 16

FLOW PAST A CYLINDER WITH CONICAL CAPS

Introduction

Let the centroid of the cylinder define the origin of a cartesian reference frame $0 X Y Z$, the axis of the cylinder coinciding with the Z - axis (Fig.25). The cylindrical surface is of height 2 H , and has the equation

$$
x^{2}+y^{2}=a^{2} \quad,|z| \leqslant H
$$

If the vertical height of the cone be H_{1}, the conical surfaces have the equations

$$
x^{2}+y^{2}=\left[\pm\left(H+H_{1}\right)-z\right]^{2} \tan ^{2} \alpha ;\left(H+H_{1}\right) \geqslant|z| \geqslant H \text {, respectively, }
$$

where α is the semivertical angle of the cone.
For a potential fluid motion past the cylinder with free flow velocity $\underline{U}=(0,0,-1)=-\nabla \psi$, the disturbance potential 中 satisfies

$$
\nabla^{2} \phi(h)=0 \quad ; \quad \underline{\sim} \in B_{e},
$$

with boundary condition

$$
\begin{equation*}
\phi_{e}^{\prime}=-\nabla \psi \cdot \hat{n}_{e}=-(z)_{e}^{\prime} \quad(\because \psi=z) . \tag{218}
\end{equation*}
$$

As before, the integral equation formulation provides a straightforward approach to determine ϕ on the boundary. This is achieved by substituting (218) into (167) or (172) and solving the equations numerically. Subdivision of Boundary

The numerical method of solution requires that the surface should be divided into smaller sub-areas. For this purpose let us consider a definite boundary by choosing $a=1, \alpha=45^{\circ}$ and $H=1$. Hence $H_{1}=a \cot \alpha=1$.

The cylindrical surface of radius $a=1$ is divided into M vertical approximate rectangular slices each of length 2 H and breadth $2 \mathrm{Ka} / \mathrm{M}$, where

$$
\mathrm{M}=6\{1+(\mathrm{KN}-1) 2\} ; \mathrm{KN}=2,4,6, \ldots \ldots 2 \mathrm{~m}
$$

Following Chapter 15, each of the vertical slices from $z=0$ to $z=H$, is divided into 3 KN rectangular sub-areas.

$$
\text { Feg. } 25
$$

The conical surface is divided into M approximate triangular s1ices (Fig. 25). Each slice in turn is divided into n sub-areas, all of which are approximately trapezoidal in form except the one adjacent to the apex which is triangular in form. The trapezoidal sub-areas are so constructed that in every sub-area the length of the arm is equal to the average breadth of the sub-area [Fig. 25 (a)].

The total number of horizontal rings on the surface is

$$
\begin{equation*}
2 N^{*}=2(n+3 K N) . \tag{219}
\end{equation*}
$$

Smoothing Procedures on Boundary
It has already been stated in Chapter 6 that, in general, we can not expect a good accuracy near asharp edge or a corner by the numerical methods used in this thesis. In our sub-division, the sub-areas adjacent to the tip become very thin and, hence, the results obtained will be untrustworthy. To overcome this difficulty, the sharp tip is replaced by a spherical cap of a radius of curvature ρ_{1} and, though it is not essential, the corner at C (Fig.26) is replaced by an arc of revolution of radius of curvature ρ_{2} such that, as the number of sub-areas increases, both ρ_{1} and ρ_{2} tend to zero.

The cap at the top is so placed that the pole of the cap lies on the axis of z and it touches the slant line $A C$ and A_{1} where $A A_{1}=h_{1}$ (Fig.26). Hence

$$
\begin{equation*}
\rho_{1}=\Lambda_{1} o_{1}=h_{1} \tan \alpha . \tag{220}
\end{equation*}
$$

and the angle $\mathrm{AO}_{1} \mathrm{~A}_{1}=\theta=90^{\circ}-\alpha$.
The are of revolution is so fitted that it touches $A C$ at the point A_{n-1} and $C E$ at C_{1} (Fig.26), where

$$
A_{n-1} C=h_{n}-h_{n-1}=C C_{1} .
$$

The radius of curvature ρ_{2}, from Fig. 26, is

$$
\begin{equation*}
f_{2}=\left(\operatorname{cc}_{1}\right) \cot \left(x_{/ 2}\right) \tag{221}
\end{equation*}
$$

The distance AP_{1}, i.e. the gap between the $\operatorname{tip} \mathrm{A}$ and the pole P_{1} of the cap, is given by

$$
\begin{equation*}
\mathrm{AP}_{1}=\mathrm{AO} 0_{1}-\rho_{1}=\rho_{1} \operatorname{cosec} \alpha-\rho_{1}=\rho_{1}(\operatorname{cosec} \alpha-1) \tag{222}
\end{equation*}
$$

The distance CP_{2} i.e. the perpendicular distance between the $\operatorname{arc} A_{n-1} P_{2} C_{1}$ and C, is given by

Fig. 25 (a)

$$
\begin{align*}
& \frac{b_{r}+b_{r-1}}{2}=h_{r}-h_{r-1} \tag{1}\\
& \text { Now } \frac{b_{r}}{b_{r-1}}=\frac{h_{r}}{h_{r-1}} \text { or } \frac{b_{r}-b_{r-1}}{b_{r}}=\frac{h_{r}-h_{r-1}}{h_{r}}, \\
& \text { or } \frac{b_{r}-b_{r-1}}{b_{r}}=\frac{b_{r}+b_{r-1}}{2 h_{r}} \text {, or } \frac{b_{r}+b_{r-1}}{b_{r}-b_{r-1}}=\frac{2 h_{r}}{b_{r}}=\frac{2 A B}{B C} \text {, } \\
& \text { or } \frac{b_{r-1}}{b_{r}}=\frac{2 A B-B C}{2 A B+B C}=\frac{h_{r-1}}{h_{r}} \text {. } \tag{2}
\end{align*}
$$

Froin (2), $h_{r-1}=\beta h_{r}$, where $\beta=\frac{2 A B-B C}{2 A B+B C}=\alpha$ constant.
Hence, $\quad h_{k}=\beta^{n-k} h_{n} ; k=1,2, \cdots n$.

FIG. 26
$\left(A R C S A_{1} P_{1}, A_{n-1} P_{2} C_{1}\right.$ rotate about the axis $O Z$)

SMOOTHENING OF THE CONICAL TIPS AND THE angular edges of the surface

$$
\begin{equation*}
C P_{2}=\rho_{2}(\sec (x / 2)-1) \tag{223}
\end{equation*}
$$

Table 29 and Fig. 27 exhibit the relation between the total number of subareas N, radii of curvatures P_{1}, ρ_{2} and the gaps $A P_{1}$ and $C P_{2}$ as N increases.

The cap at the top, which is a part of a sphere of radius ρ_{1}, can be divided into sub-areas as was done in Chapter 14. To simplify, the angle θ which the $\operatorname{arc} A_{1} P_{1}$ subtend at O_{1}, is divided into $K N$ parts such that

$$
\theta_{j}=\theta_{j-1}+d \theta+T(k N-j+1) ; j=2,3, \cdots k N
$$

where,

$$
d \theta=\theta /(k N+k N / 2), T=\{d \theta(k N) / 2\} /\{k N(k N+1) / 2\}
$$

and

$$
\theta_{1}=d \theta+T(K N)
$$

The top cap is thus divided into $K N$ rings of which the j th ring is of width

$$
d l_{j}=\rho_{1} d \theta_{j} \quad ; \quad j=1,2, \ldots k N \ldots
$$

As before, the j th ring is divided into $I K_{j}$ sub-areas given by

$$
I K_{j}=6\{1+(j-1) 2\} ; j j=1,2, \ldots k N .
$$

The curved surface, formed by the arc of revolution $A_{n-1} P_{2} C_{1}$ of radius of curvature ρ_{2} is divided into $K N$ rings each is of width

$$
d_{\Delta_{1}}=e_{2}(\alpha / k N)
$$

and each ring in its turn is divided into 2 M sub-areas.
Because of the rounding off, the number of sub-areas in each of the M triangular slices reduces by 2 . Hence the number of rings on the slant curved conical surface reduces to $(n-2)$.

The curved cylindrical surface, of height ($H-C C C_{1}$) above the plane $z=0$, is divided into K_{1} rings each of width.

$$
d s_{2}=\left(H-C C_{1}\right) / k_{1}
$$

where, following Chapter $15, K_{1}=3(\mathrm{KN}-1)$.
Now the total number of rings on the upper half of the cylinder is

$$
\begin{equation*}
K=K N+(n-2)+K N+3(K N-1)=5(K N-1)+n \tag{224}
\end{equation*}
$$

The toal number of sub-areas on the surface is

$$
\mathrm{N}=2\left[\frac{6 \mathrm{KN}}{2}\{2 * 1+(\mathrm{KN}-1) 2\}+(\mathrm{K}-2) 6\{1+(\mathrm{KN}-1) 2\}\right.
$$

TOTAL SUBAREA N	NO. OF RINGS 2 K	ρ_{1}	AP_{1}	ρ_{2}	CP_{2}
14268	90	0.39340	0.16295	0.22235	0.01840
24140	210	0.20617	0.08540	0.16448	0.01355
		0.14183	0.05875	0.13052	0.01075

Table 29
(This should be read in conjunction with fig. 26 and fig.27.)

Successive stages of approximations of the cone at the top and the corner at the edge -

$$
R=\text { RADIUS of CURVATURE }
$$

$$
\begin{align*}
& +2 * 6 \mathrm{KN}\{1+(\mathrm{KN}-1) 2\}+3(\mathrm{KN}-1) 6\{1+(\mathrm{KN}-1) 2\}], \\
& =12\left[\mathrm{KN}^{2}+5(2 \mathrm{KN}-1)(\mathrm{KN}-1)+\mathrm{n}\right] . \tag{225}
\end{align*}
$$

Test Function
The test function in this case, by (189) of Chapter 13, is

$$
\mathrm{h}=\frac{\mathrm{z}}{\mathrm{r} 3}
$$

On the surface $\partial \mathrm{D}$, by (215),
$h_{e}^{!}=-\left[\frac{3 z x}{r^{5}}, \frac{3 y z}{r^{5}},\left(\frac{3 z^{2}}{r^{5}}-\frac{1}{r^{3}}\right)\right] \cdot \hat{n}_{a}$
Introducing this into the place of ϕ_{e}^{\prime} in (167) and applying our procedures, we solve for 6 and generate h at all nodal points on the surface. The generated values are exhibited in Table 30 for comparison with the analytic values defined by (214) i.e. $h=z / r^{3}$ on the boundary. It will be seen that the error in the numerically computed values, for $K=45$, is less than $1 \cdot 0 \%$.

As before, we compute h directly on ∂B by inserting h_{e}^{\prime} from (226) in (172) and applying our procedures. For $K=45$, the computed values of h at the nodal points are exhibited in Table 30. It will be seen from the Table that the maximum error in the computed h occurs at a nodal point either at the rounded off tip or corner of ∂B and the maximum error does not exceed 2.5%. Further, in this case also, the Simple Source Distribution formulation generates
, h at the nodal points of ∂B which are nearer to the analytic values of h than those generated by Green's Boundary Formula. It will be noted from the Table that the two approaches yield a comparable accuracy.

Computation of Disturbance Potential
In the actual problem, ϕ_{e}^{\prime} on $O B$ is given by (218). Inserting this into (167) and applying our procedures, we solve for σ_{j}. Using these σ_{j} in (169) we generate the ϕ_{k} on ∂B. For $K=105$, the ϕ_{k} thus obtained are exhibited in Table 31. The total velocity potential is then given by

$$
\Phi=\phi+\psi
$$

where ψ is given by (218). Fig. 28 exhibits the ϕ and Φ thus obtained for $\mathrm{K}=105$.

Similarly we insert ϕ_{e}^{\prime} given by (218) into (172) and compute ϕ directly. The ϕ thus obtained for $K=105$ are exhibited in Table 21 . Fig 28 exhibits the computed ϕ and Φ thus obtained for $\mathrm{K}=105$.

DFVFLOPMFNT OF TEST FUNCTTON ATONG A MERTDIAN

$Y=0$ ON THE SURFACE

$\begin{gathered} \text { Field } \\ \text { (Cartesian } \\ \times \end{gathered}$	OINT CO-ORD) z	$\underset{h}{\text { ANALYtical }}$	G.b.FORMULA (Jaswon)	serror	$\begin{aligned} & \text { S.L.POTENTIAL } \\ & \text { (Smith) } \end{aligned}$	\%ERROR
ON THE ROUNDED SPHERICAL NOSE						
0.037	1.835	0.29670	0.30291	2.090	0.29863	0.652
0.095	1.825	0.29889	0.30544	2.190	0.30103	0.717
0.232	1.761	0.31415	0.31972	1.770	0.31641	0.719
0.264	1.735	0.32095	0.32664	1.680	0.32323	0.710
On the contcal surface						
0.288	1.712	0.32720	0.32768	0.146	0.32936	0.659
0.304	1.692	0.33255	0.33344	0.237	0.33484	0.658
0.494	1.506	0.37817	0.37939	0.324	0.38030	0.564
0.528	1.472	0.38489	0.38606	0.304	0.38698	0.543
0.846	1.154	0.39391	0.39410	0.047	0.39585	0.491
0.905	1.095	0.38199	038212	0.034	0.38460	0.684
On the rounded off corner						
0.945	1.054	0.37151	0.37919	2.070	0.37404	0.681
0.963	1.031	0.36732	0.37472	2.010	0.37019	0.780
0.996	0.951	0.36426	0.37164	2.030	0.36731	0.836
1.000	0.922	0.36661	0.37570	2.480	0.36983	0.877
On the: cyitmoricat surpace						
1.00	0.878	0.37262	0.37424	0.435	0.37539	0.744
1.00	0.817	0.37942	0.38160	0.576	0.38191	0.657
1.00	0.757	0.38371	0.38586	0.560	0.38603	0.604
1.00	0.151	0.14626	0.14672	0.311	0.14672	0.311
1.00	0.091	0.08968	0.08995	0.300	0.08995	0.300
1.00	0.030	0.03022	0.03031	0.295	0.03031	0.295

Table 30

FIELD POINT (CARTESIAN CO-ORD)\mathbf{x} \mathbf{z}		ϕ	
		S.L.POTENTIAL	G.B.FORMULA
ON THE ROUNDED SPHERICAL NOSE			
0.008	1.941	0.37332	0.37717
0.021	1.940	0.37380	0.37763
0.091	1.908	0.38023	0.38264
0.097	1.902	0.38185	0.38419
ON THE CONICAL SURFACE			
0.102	1.898	0.38336	0.38234
0.106	1.894	0.38476	0.38391
0.215	1.785	0.41595	0.41576
0.468	1.532	0.44412	0.44401
0.907	1.093	0.32913	0.32903
0.944	1.056	0.30000	0.29978
ON THE ROUNDED-OFF CORNER			
0.965	1.035	0.27493	0.27744
0.972	1.027	0.26577	0.26706
0.999	0.961	0.19524	0.19603
1.00	0.951	0.18687	0.18869
ON THE CYLINDRICAL SURFACE			
1.00	0.928	0.17262	0.17285
1.00	0.893	0.15608	0.15646
1.00	0.543	0.07127	0.07148
1.00	0.053	0.00619	0.00621
.. 1.00	0.018	0.00206	0.00207

It will be seen that the two approaches yield similar result.
Tangential Velocity on the Surface
By symmetry, the tangential velocity is directed along the meridians of ∂_{B}. The velocity at $\underset{\sim}{p} \in \partial_{B}$, by (175), neglecting the higher order terms, is given by

$$
v_{1}(h)=v_{1}\left(q_{j+\frac{1}{2}}\right)=-\frac{1}{h_{1}} \delta_{1}^{1} .
$$

The velocities thus calculated, on the basis of the two formulations, are exhibited in Table 32 and graphed in Fig. 29.

We krow from theory of potential flow that the velocity becomes infinite ${ }^{14}$ in the neigh-bourhood of a sharp edge or a corner. Fig. 30 shows the numerically computed velocity in the neighbourhood of a corner C, smoothed out by an arc of a circle of contact of radius P_{2} (Fig. 26). It is interesting to note that the velocity at the corner rises indefinitely as the radius of curvature of the circle of contact decreases.

FIELD POINT (CARTESIAN CO-ORD)x \mathbf{z}		VELOCITY ON THE SURFACE	
		S.L.POTENTIAL	G.B.FORMULA
ON THE ROU	ON THE ROUNDED SPHERICAL NOSE		
0.0148	1.9405	0.06868	0.07038
0.0278	1.9385	0.16228	0.18352
0.0876	1.9110	0.45915	0.47560
0.0943	1.9053	0.47237	0.48111
ON THE CONICAL SURFACE			
0.1043	1.8957	0.46295	0.43375
0.1085	1.8915	0.46450	0.44424
0.2104	1.7896	0.54209	0.54118
0.4413	1.5587	0.69142	0.69139
0.8901	1.1099	1.15854	1.15852
0.9255	1.0745	1.27812	1.28048
ON THE ROUNDED-OFF CORNER			
0.9687	1.0307	1.65374	1.77310
0.9751	1.0226	1.79843	1.81988
0.9984	0.9663	1.88886	1.87750
0.9996	0.9562	1.81258	1.71292
ON THE CYLTNDRICAL SURFACE			
1.00	0.9109	1.47207	1.46797
1.00	0.8759	1.37907	1.37996
1.00	0.5956	1.17657	1.17695
1.00	0.0701	1.11817	1.11856
1.00	0.0350	1.11773	1.11812

Feg. 29

Fig. 30

CLIAPTER 17

POTENTIAL FLOW PAST A THICK DELTA WING

Introduction

A thick isosceles triangular plate of semi-apex angle 60°, perturbs an otherwise uniform free flow directed approximately parallel to the plane of the plate. The centroid O of the plate defines the origin of a cartesian reference frame OXYZ [Fig. 31 (a)], where $O Z$ is perpendicular to the plane of the plate. Relative to the co-ordinates axes, the triangular faces define the planes $z= \pm H[$ Fig. 31(b)].

The free flow is approximately parallel to the XOY plane in the negative Y direction. If velocity vector $\underset{\sim}{U}$ makes an angle $-\theta$ with $O Y[$ Fig. 31 (c) $]$, it follows that

$$
\begin{equation*}
\underset{\sim}{V}=-\nabla \psi=U(0,-\cos \theta, \sin \theta) . \tag{227}
\end{equation*}
$$

Thercfore, taking $U=1$,

$$
\begin{equation*}
\psi=(0, \cos \theta,-\sin \theta) \cdot(x, y, z) \tag{228}
\end{equation*}
$$

$$
14,15
$$

For a small angle ($=\theta$) of attack, the flow remains potential. The disturbance potential $\quad \phi \rightarrow 0|\underline{\sim}|^{-2}$ as $|h| \rightarrow \infty$, and satisfies Laplace's equation

$$
\nabla^{2} \phi(h)=0 \quad ; h \in B_{e}
$$

with boundary condition (168), i.e.

$$
\begin{equation*}
\phi_{e}^{\prime}=-\psi_{e}^{\prime}=(0,-\cos \theta, \sin \theta) \cdot \hat{n}_{e} . \tag{229}
\end{equation*}
$$

The integral equation formulation provides a straight forward approach to determine ϕ on the boundary. This is achieved by substituting (229) into equations (167) or (172) and solving them numerically.

Subdivision of Boundary
To solve the integral equation numerically, we divide $O B$ into sub-areas. In this case, we shall not be forced, as in the previous case, to deal with thin sub-areas, and hence the rounding-off of the corner is not necessary. Of course, rounding-off of the sharp edge and corner improves the solution at the

Fig. $31(a)$
Plane section through the centroid 0 , parallel to the triangular surfaces of the plate, axtubiting orientation of axes and apex A_{0}. The z-axis passes through O and is prependicular to this plane.

Fig. 31 (6)

FLOW fast a thick delta wing

Fig. $31(\mathrm{c})$
expense of greater complications.
From symmetry, the sub-areas on the $\mathrm{plane} z=-H$ are made exactly similar to those on the plane $z=H$. Further, for a sub-area to the right of the plane $x=0$, there is a corresponding sub-area on the left.

From the Fig. 32, the number of sub-areas in the zone ($\mathrm{A} \overline{\mathrm{A}} \overline{\mathrm{F} F}+\overline{\mathrm{F}} \mathrm{FCE} \overline{\mathrm{E}}$) is

$$
\begin{equation*}
N_{1}=(2 N T-1) 7+10 ; N T=3,6 \ldots .3+(n-1) 3 \tag{230}
\end{equation*}
$$

The number of sub-areas in the region (D $\bar{D} \bar{E} E+\bar{D} \bar{E} \bar{A} G$) is

$$
\begin{equation*}
N_{2}=\frac{N T-3}{2}\{2 * 4+(\overline{N T-3}-1)\} * 2+6 . \tag{231}
\end{equation*}
$$

The half thickness H of the plate is determined by

$$
\begin{equation*}
H=A A_{0}=\left(\frac{A C}{4 N T}\right) K N ; \quad K N=2,3, \cdots m \quad . \tag{232}
\end{equation*}
$$

The number of sub-areas in the region $D_{0} C_{0} C[F i g .32$ (a) $]$ is

$$
\begin{equation*}
\mathrm{N}_{3}=2 \mathrm{NT} * \mathrm{KN}, \tag{233}
\end{equation*}
$$

and that on the region $\mathrm{FCC} \mathrm{C}_{\mathrm{o}} \mathrm{O}[$ (Fig. $32(\mathrm{~b})]$ is

$$
\begin{equation*}
N_{4}=(4 N T-2) * K N . \tag{234}
\end{equation*}
$$

If N_{5} is the number of sub-areas on $\mathrm{AFF}_{\mathrm{o}} \mathrm{A}_{\mathrm{o}}[$ Fig. $32(\mathrm{~b})]$, then

$$
\mathrm{N}_{5}=2 * 2 * 2 \mathrm{KN}=8 \mathrm{KN}
$$

Hence, the total number of sub-areas N on ∂_{B} is

$$
\begin{align*}
N & =4 \sum_{j=1}^{5} N_{j}\left(=4 N^{*-} \text { Say }\right), \\
& =4[14 N T+(N T-3)(N T+4)+6 \mathrm{KN}(N T+1)+9] . \tag{236}
\end{align*}
$$

There are 11 different sub-areas on ∂_{B} [Fig. 32, Fig. 32(a), Fig. 32 (b) . An analysis of these for $N T=6$, $K N=2$ are given in Table 33.

(E) 96

ANALYSIS OF SUB-AREA ON TIIE SURFACE FOR $K N=2$ and NT=6

REGION	FORM	BASE	HEIGHT	AREA
$\bar{A} \overrightarrow{A F F}$	TRIANGULAR (7)	0.02083	0.01203	0.00013
	RECTANGULAR (6)	0.02083	0.01203	0.00025
	" (5)	0.02083	0.02405	0.00050
	" (4)	0.04167	0.02405	0.00100
	" (3)	0.04167	0.04810	0.00201
FFEEC	RECTANGULAR (4)	0.04167	0.02405	0.00100
	(3)	0.04167	0.04810	0.00201
	TRIANGULAR (8)	0.04167	0.02405	0.00050
AFEED	RECTANGULAR (1)	0.08333	0.09623	0.00802
	" (2)	0.08333	0.04811	0.00401
$D C C_{0} D_{0}$	RECTANGULAR (9)	0.08333	0.04811	0.00401
$\mathrm{CC}_{\mathrm{O}} \mathrm{F}_{\mathrm{O}} \mathrm{F}$	RECTANGULAR (10)	0.04812	0.04812	0.00232
	" (11)	0.02406	0.02406	0.00058

Table 33
(This should be read in conjunction with Fig.32)

Test Function

We now introduce the test function

$$
\begin{equation*}
h=y^{r^{3}} \tag{237}
\end{equation*}
$$

which behaves in a comparable way to the disturbance potential ϕ. on ∂B,

$$
\begin{equation*}
h_{e}^{\prime}=-\left[\frac{3 x y}{r^{5}}, \frac{3 y^{2}}{r^{5}}-\frac{1}{r^{3}}, \frac{3 y z}{r^{5}}\right] \cdot \hat{n}_{e} \tag{238}
\end{equation*}
$$

Introducing this in place of ϕ_{e}^{\prime} in (167) and applying our procedures, we solve for σ and generate h at the nodal points on the surface. The values of h generated for $K N=2$, $N T=6$ i.e. $N^{*}=207$, are exhibited in Table 34 for comparison with the analytic values defined by (237) on ∂B.

Alternatively we find h directly on ∂B by inserting (238) into (172) and applying our procedures. A few of the values of h at the nodal points in the neighbourhood of the apex of the delta, thus determined, for $N^{*}=207$, are exhibited in Table 34.

It is evident from Table 34 that, for the same sub-division of ∂_{B} the Simple Layer potential method (Smith) generates an h which is nearer to analytic value than that obtained by Green's Boundary Formula (Jaswon).

The percentage error in the computed value of h obtained by Green's Boundary Formula increases, as expected, when it is generated at a nodal point adjacent to the apex or the leading edge of the delta. This error falls rapidly as we move away from the edge.

Computation of Disturbance Potential
In the actual case, ϕ_{e}^{\prime} is given by (229). Substituting this in (167) and applying our procedures we solve for σ_{j}. Using these σ_{j} in (1zo) we generate ϕ on ∂B. For $N T=12, K N=2$ and $\theta=1^{\circ}$, the disturbance potential ϕ is generated at the nodal points on ∂B and some of these values are exhibited in Table 35. The total velocity potential Φ is then obtained by (53) viz.

$$
\Phi=\phi+\psi
$$

where ψ is given by (228).
Similarly, we insert ϕ_{e}^{\prime}, given by (229) into (172) and compute ϕ directly on $\partial \mathrm{B}$. ϕ thus computed for $\mathrm{NT}=12$, $\mathrm{KN}=2$ and $\theta=1^{\circ}$ are exhibited in Table 35.

$\begin{gathered} \text { FIELD } \\ \text { (CIKITESA: } \\ \times \end{gathered}$	$\begin{aligned} & \text { FOLD } \\ & \text { Co-OHO }) \\ & y \end{aligned}$	Aihlizfleal h	$\begin{aligned} & \text { S.L. POTENTIAL } \\ & (\text { Smith }) \end{aligned}$	3ERKOR	G.E.FWEMUIA (Jaswon)	zERFOR
0.007	0.377	6.4009	6.4597	0.918	8.2628	29.149
0.023	0.365	6.7365	6.8004	0.947	8.5138	26.383
0.049	0.365	7.0264	7.0958	0.988	8,9163	26.897
0.069	0.341	7.252)	7.3252	1.009	9.1888	26.709
0.010	0.367	6.7163	6.7816	0.964	7.2132	7.383
0.031	0.349	7.2810	7.3552	1.020	7.5911	4.259
$0.05 ?$	0.343	7.3572	7.432:4	1.023	7.9761	8.412
0.073	0.325	7.8031	$7.89 \% 8$	1.084	8.4657	8.456
0.010	0.349	7.3534	7.4289	1.027	7.4734	1.631
0.031	0.325	8.2516	8.3402	1.074	8.4150	1.981
0.052	0.325	8.0693	8.1566	1.082	8.3040	2.909
0.021	0.301	9.4926	9.5875	0.999	9.5222	1.366
0.010	0.325	8.3453	8.4335	1.056	8.4806	1.621
0.062	0.301	9.0193	9.1162	1.075	9.1889	1.880
0.046	0.217	15.5520	15.5900	0.244	15.5510	-0.008
0.042	0.144	25.4190	24.5260	3.513	24.4960	-3.630
0.042	0.048	31.3320	32.7570	4.549	32.6920	4.342
0.042	-0.048	-31.3320	-34.0760	8.761	-34.2140	-9.201
0.042	-0.120	-29.6030	-29.2020	1.356	-29.3520	0.846

Table 34

Table 35

Tangential velocity Component on the Surface
The downward tangential velocity component of the fluid on the surface is calculated, as in Chapter 14, by taking only the lst term in (175). For $\mathrm{KN}=2, \mathrm{NT}=12$ i.e. $2 \mathrm{~N}^{*}=954$ and $\theta=1^{\circ}$, the velocity thus obtained along a line $x=$ constant, is exhibited in Table 36 . Fig 33 shows the velocity component along $x=$ constant, on the planes $z= \pm H$, based on Table 36 . Table 37 exhibits the downward velocity component distributed along the lines $y=$ constant, adjacent to the upper and lower edges $C D$ and $C D[F i g .31(c)]$ on the planes $z= \pm H$. Fig. 34 shows the graphs of the above velocities based on Table 37.

Effect of Thickness Variation

To keep the error due to the approximations made in the evaluation of the integrals below 1%, the distance between the two triangular planes i.e. the thickness 2 H , must satisfy (102) of Chapter 7, i.e.

$$
\begin{equation*}
2 \mathrm{H} \geqslant 2 \mathrm{~L}, \tag{239}
\end{equation*}
$$

where L is the diagonal of the biggest sub-area on ∂B. From Fig. 32,

$$
L=2\left(\frac{\mathrm{AC}}{4 \mathrm{NT}}\right)
$$

and, by (232),

$$
2 \mathrm{H}=2\left(\frac{\mathrm{AC}}{4 \mathrm{NT}}\right) \mathrm{KN}=\mathrm{L} * \mathrm{KN}
$$

Hence, by (239), the minimum value of KN is 2. For a particular $A C$, keeping $K N$ fixed if $N T$ is increased the thickness decreases satisfying (239) at every stage. Alternately, keeping NT fixed if KN is increased thickness increases keeping the subdivisions on the triangular planes unchanged.

To find the effect of thickness on ϕ, following our procedures, ϕ is calculated for $\theta=0$ taking $K N=2, N T=9$ and again for $\theta=0$ taking $K N=3, N T=9$. The ϕ_{k} thus computed on ∂B, along a line $x=$ constant, are exhibited in Fig. 35.

Discussion

It is evident from Table 35 that the two values of ϕ obtained by the two methods at the nodal points on ∂B approximately agree with one another axcept, as expected, at those points adjacent to the sharp edge and to the corner.

VELOCITY ON THE SURFACES $z= \pm 0.0481$ ATONG THE INTERSECTION OF THE PLANE $x=0.0208$

FIELD POINT Y	DOWNWARD VELOCITY ON SURFACE	
	ON UPPER PLANE $z=0.0481$	ON LOWER PLANE $z=-0.0481$
0.2827	1.12321	1.09748
0.2406	1.10146	1.08326
0.1925	1.08943	1.07649
0.1443	1.08343	1.07501
0.0962	1.08136	1.07733
0.0481	1.08267	1.08314
0.000	1.08806	1.09345
-0.0481	1.10019	1.11138
-0.0962	1.12709	1.14558
-0.1383	1.17239	1.20533
-0.1684	1.34726	1.39694

Table 36

Fig. 33

DOWNWARD VELOCITY COMPONENT ON THE UPPER AND ON THE LOWER SURFACES ALONG A LINE $x=$ CONSTANT (0.0208) PASSING THROUGH E'GD.

DOWNWASH ON THE IINE $y=-0.1684$ ON THE SURFACES $z= \pm 0.0481$

FIELD POINT x	DOWN WASH VELOCITY	
	ON UPPER PLANE $z=0.0481$	ON LOWER PLANE $z=-0.0481$
0.0208	1.34726	1.39694
0.0625	1.34759	1.39713
0.1042	1.34824	1.39750
0.1458	1.34921	1.39806
0.1875	1.35050	1.39880
0.2292	1.35211	1.39972
0.2708	1.35406	1.40084
0.3125	1.35634	1.40216
0.3542	1.35898	1.40370
0.3958	1.36200	1.40550
0.4375	1.36547	1.40759
0.4792	1.36944	1.41004
0.5208	1.37402	1.41295
0.5625	1.37937	1.41644
0.6042	1.38572	1.42078
0.6458	1.39341	1.42625
0.6875	1.40376	1.43400
0.7292	1.42276	1.45227

Table 37

DOWNWARD VELOCITY COMPONENT ON THE UPPER AND ON THE LOWER SURFACES OVER THE LINES $y=$ CONSTANT (-0.17). (v_{y} stands for velocity component in y-direction)

Fig. 35
EFFECT OF THCKNESS ON THE DISTURBANCE POTEATIAL

It is evident from Fig. 33 and Fig. 34 that, near the trailing edge, the downward velocity on the upper surface is less than that at the corresponding point on the lower surface. This clearly indicates that a vortex sheet will be formed behind the delta wing in the case of a real fluid.

Fig. 35 demonstrates that the disturbance, due to the thickness alone, gradually dies out as the thickness diminishes to zero.

CHAPTER 18

FLOW PAST A THIN DELTA WING

Introduction

For symmetric flow past a thick plate the disturbance potential ϕ is, in general, the superposition of two function ϕ_{s} and ϕ_{a}, i.e.

$$
\begin{equation*}
\phi=\phi_{s}+\phi_{a} \tag{240}
\end{equation*}
$$

where ϕ_{s} is symmetric and ϕ_{a} is antisymmetric about the plane of the plate. The former arises from thethickness of the plate and the later arises because of the inclination of the plate to the direction of flow. Thus if 2 H (thickness) $\neq 0$ and θ (angle of attck) $=0, \phi=\phi_{s}$. If $2 \mathrm{H}=0$ and $\theta \neq 0, \quad \phi=\phi_{a}$.

The formulation (169) and (171) are only valid when the volume enclosed by $O B$ differs from zero. Hence they do not apply to a thin delta wing. We may compute ϕ as a limit when the volume enclosed by ∂B tends to zero. To proceed directly with this plan, keeping the numerical error within a tolerable range, 2 H should be determined by (239) of Chapter 17. As a result, to attain a reasonably small value of H , the number of independent equations becomes very large and this in turn demands a huge matrix for storage in the computer. For example, when $\mathrm{NT}=15$, for $\mathrm{KN}=22 \mathrm{H}=0.07698$ and the corresponding number of equations, by (236), becomes 1278. Hence because of the storage capacity alone, leaving aside the attainment of a sufficient degree of accuracy in solving such a huge number of equations, we can not proceed beyond a certain limit.

A way out of the difficulty is to separate the symmetric and antisymmetric components of ϕ for any thickness $t=2 H$. If $\phi_{a}^{+}, \phi_{a}^{-}$ represent ϕ_{a}, and if $\phi_{s}^{+}, \phi_{s}^{-}$represent ϕ_{s} respectively on the upper and on the lower surfaces of ∂B, we have

$$
\begin{align*}
& \phi_{t}=\phi_{a}^{+}+\phi_{s}^{+}, \tag{241}\\
& \phi_{-}=\phi_{a}^{-}+\phi_{s}^{-}, \tag{242}
\end{align*}
$$

where ϕ_{+}, ϕ_{-}represent the values of ϕ on the upper and on the lower surfaces respectively. Since

$$
\phi_{a}^{+}=-\phi_{a}^{-} \quad \text { and } \quad \phi_{s}^{+}=\phi_{s}^{-}
$$

we find

$$
\begin{align*}
& \phi_{s}^{+}=\phi_{s}^{-}=\frac{\phi_{+}+\phi_{-}}{2}, \tag{243}\\
& \phi_{a}^{+}=-\phi_{a}^{-}=\frac{\phi_{+}-\phi_{-}}{2} . \tag{244}
\end{align*}
$$

The relations (243), (244) yield ϕ_{s} and ϕ_{a} of (240). We expect this ϕ_{a} to approximate the value of ϕ for a thin plate inclined at a small angle of attack $\theta \neq 0$.

An useful check on ϕ_{s} is to compute ϕ for a thick plate parallel to the stream (i.e. $\mathcal{O}=0$). This computation can be compared with the ϕ_{s} previously determined on the basis of (243). It will be seen from Table 38 that the two results compare very closely. The same applies to the computation of ϕ_{a}.

Polynomial Interpolation

After computation of ϕ on $O B$ by the methods stated in Chapter 17, ϕ_{a} at the discrete points on $O B$ can be found by (244). If we wish to know the value of ϕ_{a} at any point in the neightbourhood of any discrete point, we shall have to fit a polynomial through the function values at these points, which should represent the function to a certain degree of accuracy. It has been pointed out, in Chapter 6, that this can be done as accurately as we please, by fitting a polynomial of sufficiently high degree to the data.

Let $\phi\left(q_{1}\right), \phi\left(q_{2}\right), \phi\left(q_{3}\right) \cdots \cdot \quad . \quad \phi\left(q_{L}\right)$ represent the values of ϕ at the discrete points ${\underset{\sim}{q}}_{1},{\underset{\sim}{q}}_{2}$. . ${\underset{\sim}{q}}^{q_{L}}$ on $O B$. A suitable polynominal $p(x, y, z)$ of degree m is given by

$$
\begin{equation*}
P=\sum_{j=0}^{m} C_{j} P_{j} \quad ; m \leqslant L \tag{245}
\end{equation*}
$$ THE DISTURBANCE POTENTIAL

DISTURBANCE POTENTIAL ON THE PLANE SURFACE $z=0.0962$ IN THE NEIGHBOURHOOD OF THE TIP

x	Y	ANGLE OF INCIDENCE $\theta=1{ }^{\circ}$			INCIDENCE $\theta=0^{\circ}$$\phi_{\mathrm{S}}$
		ϕ^{+}	ϕ^{-}	$\phi_{S}=\frac{\phi^{+}+\phi^{-}}{2}$	
0.0069	0.3769	0.05767	0.06059	0.05913	0.05914
0.0278	0.3649	0.05747	0.06068	0.05907	0.05908
0.0104	0.3669	0.05360	0.05707	0.05533	0.05534
0.0104	0.3488	0.04707	0.05139	0.04923	0.04924
0.0313	0.3488	0.04965	0.05375	0.05170	0.05171
0.0104	0.3248	0.04098	0.04614	0.04356	0.04357
0.0313	0.3248	0.04215	0.04721	0.04468	0.04469
0.0486	0.3528	0.05631	0.05980	0.05805	0.05806
0.0694	0.3408	0.05690	0.06049	0.05869	0.05870
0.0521	0.3428	0.05160	0.05560	0.05360	0.05361
0.0521	0.3248	0.04436	0.04920	0.04678	0.04679
0.0729	0.3248	0.04832	0.05280	0.05056	0.05056
0.0208	0.3007	0.03650	0.04229	0.03940	0.03940
0.0625	0.3007	0.03942	0.04492	0.04217	0.04218

where P_{j} is a homogeneous polynomial of degree j and C_{j} is the coefficient of P_{j}. If we wish to approximate ϕ by P to a certain degree of accuracy, defined by a pre-assigned small quantity $f(>0)$, starting from $m=2$ we increase m by a step of 1 and at every stage the C_{j} are determined by the least squares method until a stage comes when

$$
\begin{equation*}
\left|\phi\left(q_{k}\right)-p\left(q_{k}\right)\right| \leqslant \epsilon ; k=1,2, \cdots L . \tag{246}
\end{equation*}
$$

In this case, ϕ is a harmonic function symmetric with respect to x and antisymmetric with respect to z. Hence the P_{j} are to be so chosen that they must satisfy

$$
\begin{gather*}
\nabla^{2} P_{j}=0, \\
\quad P_{j}(x, y, z) \quad=\quad P_{j}(-x, y, z) \\
\text { and } \frac{\partial}{\partial Z} P_{j}(x, y, z)=-\frac{\partial}{\partial z} P_{j}(x, y,-z) \quad . \tag{247}
\end{gather*}
$$

Under the above conditions the polynomials P_{j} may be chosen as

$$
\begin{aligned}
P_{0}= & 1 \\
P_{1}= & y+z \\
P_{2}= & x^{2}+y^{2}+y z \\
P_{3}= & y^{3}+z^{3}-3 x^{2} y+x^{2} z-4 y^{2} z \\
P_{4}= & x^{4}+y^{4}-6 x^{2} y^{2}+6 x^{2} y z-y z^{3}-z y^{3} \\
P_{5}= & y^{5}+z^{5}+x^{4} z+y^{4} z+5 x^{4} y-10 x^{2} y^{3}-5 x^{2} z^{3}+5 y^{2} z^{3}+9 x^{2} y^{2} z \\
P_{6}= & x^{6}-y^{6}-15 x^{4} y^{2}-x^{4} y z+15 x^{2} y^{4}+x^{2} y^{3} z+x^{2} y z^{3}-y^{5} z+3 y^{3} z^{3}-y z^{5} \\
P_{7}= & y^{7}-2 z^{7}-7 y x^{6}+4 x^{6} z+35 x^{4} y^{3}-25 x^{4} y^{3}-21 x^{2} y^{5}+21 x^{2} z^{5} \\
& +4 y^{6} z-25 y^{4} z^{3}+21 y^{2} z^{5}+15 x^{4} y^{2} z+15 x^{2} y^{4} z-60 x^{2} y^{2} z^{3}
\end{aligned}
$$

and so on.

Computed Results

It has already been pointed out that the Simple Layer Formulation yields a tolerably accurate ϕ, particularly near the edges and the apex. Hence to obtain information about ϕ near the apex of the delta, we consider the values of ϕ obtained by the Simple Layer potential method only. Further, since values of ϕ at the nodal points, adjacent to the tip and the leading edge, are not so reliable, these values are not taken into consideration.

Table 39 exhibits the values of ϕ_{a}^{+}near the tip of the delta for $t=211=0.07693$. Leaving the 4 values which are at the nodal points adjacent to the leading edge, the polynomial P, given by (245), is fitted

INTERPOLATION OF POLYNOMIAL THROUGH THE COMPUTED VALUE OF ϕ_{a}^{+}NEAR THE TIP
TOTAL SUB-AREAS $=2556$
EQUATIONS $=1278$

		$z=0.03849$ ϕ^{+}	$z=-0.03849$ ϕ^{-}	ϕ_{a}^{+}	FITTED ϕ_{a}^{+}
0.0028	0.03817	$0.302867 \mathrm{E}-01$	$0.321257 \mathrm{E}-01$	$-0.18390 \mathrm{E}-02$	
0.0111	0.3769	$0.302825 \mathrm{E}-01$	$0.322881 \mathrm{E}-01$	$-0.20056 \mathrm{E}-02$	
0.0194	0.3721	$0.299089 \mathrm{E}-01$	$0.320787 \mathrm{E}-01$	$-0.21698 \mathrm{E}-02$	
0.0278	0.3673	$0.302348 \mathrm{E}-01$	$0.324788 \mathrm{E}-01$	$-0.22440 \mathrm{E}-02$	
0.0042	0.3777	$0.288050 \mathrm{E}-01$	$0.309338 \mathrm{E}-01$	$-0.10644 \mathrm{E}-02$	$-0.10625 \mathrm{E}-02$
0.0125	0.3705	$0.273680 \mathrm{E}-01$	$0.298600 \mathrm{E}-01$	$-0.12460 \mathrm{E}-02$	$-0.14493 \mathrm{E}-02$
0.0208	0.3681	$0.281888 \mathrm{E}-01$	$-0.306419 \mathrm{E}-01$	$-0.12265 \mathrm{E}-02$	$-0.12245 \mathrm{E}-02$
0.0292	0.3608	$0.270332 \mathrm{E}-01$	$0.297689 \mathrm{E}-01$	$-0.13679 \mathrm{E}-02$	$-0.13795 \mathrm{E}-02$
0.0042	0.3705	$0.263423 \mathrm{E}-01$	$0.289474 \mathrm{E}-01$	$-0.13025 \mathrm{E}-02$	$-0.13121 \mathrm{E}-02$
0.0125	0.3608	$0.245812 \mathrm{E}-01$	$0.276223 \mathrm{E}-01$	$-0.15205 \mathrm{E}-02$	$-0.14432 \mathrm{E}-02$
0.0208	0.3608	$0.254590 \mathrm{E}-01$	$0.283889 \mathrm{E}-01$	$-0.14649 \mathrm{E}-02$	$-0.14059 \mathrm{E}-02$
0.0250	0.3512	$0.237079 \mathrm{E}-01$	$0.270389 \mathrm{E}-01$	$-0.16655 \mathrm{E}-02$	$-0.16627 \mathrm{E}-02$
0.0042	0.3608	$0.241135 \mathrm{E}-01$	$0.272119 \mathrm{E}-01$	$-0.15492 \mathrm{E}-02$	$-0.14678 \mathrm{E}-02$
0.0083	0.3512	$0.225456 \mathrm{E}-01$	$0.260311 \mathrm{E}-01$	$-0.17427 \mathrm{E}-02$	$-0.17427 \mathrm{E}-02$

Table 39
through these values in the least-squares sense, taking $t=0.0001$. The condition (246) is satisfied at every point ${\underset{\sim}{1}}_{1},{\underset{\sim}{2}}_{2} \cdot$ • ${\underset{\sim}{q}}_{10}$ when $m=7$, and at this stage the co efficients are found to be

$$
\begin{aligned}
& C_{0}=-5.25287, C_{1}=32.82636, C_{2}=92.36869 \\
& C_{3}=218.21335, C_{4}=-390.53000, C_{5}=595.55897 \\
& C_{6}=501.92655 \text { and } C_{7}=103.60649 .
\end{aligned}
$$

The fitted values of ϕ_{a}^{+}thus found are exhibited in Table 39.
Fluid velocity near the Apex of the Delta Wing
To find the nature of the flow near the tip of the thin delta, a polynomial P, given by (245) is fitted through the values of ϕ_{a}^{+}in the neighbourhood of the tip. If the tip 0 of the delta $O A B$ defines the origin of a cylindrical polar frame $0 \times \eta 2$ [Fig. 36(a)], the simplest formula for the velocity component on ∂B in the η increasing direction is given by

$$
\begin{equation*}
v\left(q_{k+\frac{1}{2}}\right)=-\left\{\phi_{a}\left(\underline{q}_{k+1}\right)-\phi_{a}\left(\underline{q}_{k}\right)\right\} / d, \tag{248}
\end{equation*}
$$

where $q_{-k}=(r, \eta, z), \underline{q}_{k+1}=(r, \eta+d \eta, z) ; \underline{q}_{k+\frac{1}{2}}=\left(q_{k+1}-q_{k}\right) / 2$
and $d=r d \eta$. For numerical calculation d was taken to be 0.001 radians. Table 40 exhibits the tangential velocity component on the plane $\dot{z}=H$ for different values of r. It is evident from Table 40 that, on the upper surface, the tangential velocity component is maximum near the leading edge and it gradually falls to zero on the central line od [fig. 36]. Since $\phi_{a}^{-}=-\phi_{a}^{+}$, the tangential component of the velocity at any point ($r, \eta,-z$) will be of the same magnitude, but of the opposite sign to that at the point (r, η, z). Hence on the lower surface, near the tip, the fluid is coming away from the central line OD towards the leading edges. Table 40 exhibits the above property of the flow near the apex of the delta. Fig. 36 gives the graphs of the velocity component near the tip based on Table 40.

FIELD POINT		$Z=0.03849$	
r	η in degree		$\mathrm{z}=-0.03849$
0.0099	30	$0.62974 \mathrm{E}-01$	-0.62974E-01
"	45	0.44458E-01	-0.44458E-01
"	60	$0.27776 \mathrm{E}-01$	-0.27776E-01
1	75	0.13229E-01	-0.13229E-01
"	90	0.0	0.0
0.0199	30	0.53943E-01	-0.53943E-01
"	45	0.30463E-01	-0.30463E-01
"	60	0.15891E-01	-0.15891E-01
"	75	0.68995E-01	-0.68995E-02
"	90	0.0	0.0

Table 40

Fy. 36 .
tangential component of velocity along the CIRCILAR ARCS ON THE SURFACES $Z= \pm H$ near the tip of the delta.

CIMPTER 19

BEHAVIOUR OF Φ NEAR THE TIP OF A DELTA

Introduction

In the case of flow past a thin delta wing with small angle of attack, the flow remains potential. The disturbance potential ϕ is antisymmetric in character and singular at the tip. According to Brown and Stewartson ${ }^{16}$ and to Arscott and Taylor, for points sufficiently near the apex, in spherical polar co-ordinates (r, ξ, η) with the origin at the tip (Fig.37),

$$
\begin{equation*}
\phi=r^{\nu} V(\xi, \eta) \tag{249}
\end{equation*}
$$

where V is some function of the angular co-ordinates ξ and η. The angular sector lies in the plane $\xi=90^{\circ}$ between the lines $\eta=90^{\circ}-\propto$ and $\eta=90^{\circ}+\alpha$, where α is the semi-apex angle of the sector. $v(\xi, \eta)$ is a constant along any radius vector and hence we may write for points along a radius vector,

$$
\begin{equation*}
\phi=c r^{2} \ldots \tag{250}
\end{equation*}
$$

The exponent ν, which determines the order of the singularity, has an infinite set of possible values of which the smallest positive value is of greatest interest for practical purposes. For semi-apex angle $\alpha=60^{\circ}$, $\nu=0.69$.

Computed Values of ϕ

Following our procedures, we compute for each choice of H, a set of values of ϕ_{a}^{+}. Omitting the values of ϕ_{a}^{+}at the nodal points adjacent to the leading edge and the apex, the polynomial (245) is fitted for $\epsilon=0.0001$ through the ϕ_{a}^{+}in the neighbourhood of the apex. In each case, we have $L=10$ and the condition (246) was satisfied for $m=7$. The coefficients C_{j} of P, thus found for 4 different values of $2 H$ i.e. thickness, are given in Table 41.

For a given H the line $\xi, \eta=$ constant intersects the plane $z=11$ at a point $\underset{\sim}{p}(x, y, z)$ [The origin of the cartesian frame is at the centroid

NT	KN	EQUATIONS$2 \mathrm{~N}^{*}$	HALF THICKNESS Z	CO-EFFICIENTS							
				C_{0}	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}
15	2	1278	0.03849	-5.25287	32.82636	92.36869	218.21335	-390.53000	595.55897	501.92655	103.60649
12.	2	954	0.04311	-0.70087	4.13993	-3.47074	168.50832	-836.79922	1202.47260	103.44603	-706.67361
9	2	666	0.06415	-0.56808	3.07722	2.43991	45.87133	-226.61312	336.51414	33.57290	-206. 33711
12	3	1010	0.07217	-2.24340	11.42473	6.99570	147.13780	-744.44676	1068.63150	58.78167	-665.38939

Table 41
of the thin plate (Fig. 37)]. This is not necessarily a nodal point. At this point

$$
\begin{equation*}
\mathbf{r}=\mathbf{z} \operatorname{Sec} \xi, \tag{251}
\end{equation*}
$$

which determines r. Now at (r, ξ, η) ϕ is determined by

$$
\begin{equation*}
\phi \simeq P(x, y, z) \tag{252}
\end{equation*}
$$

where P is the approximate polynomial defined in Chapter 18. For different values of z the corresponding values of r and ϕ thus obtained for a given set of ξ and η are given in Table 42.

Numerical Determination of ν
Taking log of both sides of (250), we have

$$
\begin{equation*}
\log \phi=\log c+\nu \log r \tag{253}
\end{equation*}
$$

This relation is fitted, in the least square sence, through the set of values of ϕ obtained from (252) for given values of r along a radial line through the tip. The $\phi_{a}^{+}(=\phi$ in the case of a thin delta wing) thus fitted along different radial lines are given in Table 43. The 2 thus found for different radial lines, in the neighbourhood of the tip, are given in Table 44. The perpendicular OD of the triangular sector (Fig. 37), in the case under consideration, is 0.5774 . To consider the values of ϕ sufficiently near the tip, the values of r, in this case, is not exceeded beyond 0.065 which is nearly the 10% of $O D$.

It is evident from Table 44 that the computed ν, for the set of computed ϕ_{a}^{+}nearest to the tip, closely approximates the theoretically expected value $\nu=0.69$. The average value of ν, from the $T a b l e$, is $0 \cdot 71$.

EHO bNIM VLTヨI NHL $\forall=10$

$$
t \varepsilon \cdot \operatorname{bor}_{y}
$$

COMPUTED VALUES OF ϕ_{a}^{+}NEAR THE TIP OF THE DELTA

r	ξ	$\phi_{\text {a }}{ }^{+}$		
		$\eta=30^{\circ}$	$\eta=60^{\circ}$	$\eta=90^{\circ}$
0.039	5°	-0.721E-03	-0.820E-03	-0.854E-03
0.048	5°	-0.901E-03	-0.105E-02	-0.107E-02
0.064	5°	-0.114E-02	-0.121E-02	-0.124E-02
0.039	10°	-0.821E-03	-0.998E-03	-0.106E-02
0.049	10°	-0.103E-02	-0.103E-02	-0.120E-02
0.065	10°	-0.119E-02	-0.134E-02	-0.140E-02

Table 42

THE FITTIED VALUE OF ϕ_{a}^{+}ALONG A RADIUS VECTOR

\cdots		ϕ_{a}^{+}		
r				
			READING	FITTED VALUE
0.038	5°	60°	$-0.8196 \mathrm{E}-03$	$-0.84215 \mathrm{E}-03$
0.048	$"$	$"$	$-0.1045 \mathrm{E}-02$	$-0.99609 \mathrm{E}-03$
0.064	$"$	$"$	$-0.1211 \mathrm{E}-02$	$-0.12363 \mathrm{E}-02$
0.038	$"$	90°	$-0.8540 \mathrm{E}-03$	$-0.87333 \mathrm{E}-03$
0.048	$"$	$"$	$-0.1066 \mathrm{E}-02$	$-0.10244 \mathrm{E}-02$
0.064	$"$	$"$	$-0.1236 \mathrm{E}-02$	$-0.12583 \mathrm{E}-02$

Table 43

DETERMINATION OF \cup FOR TIIE ANGULAR
SECTOR OF SEMIAPEX ANGLE 60°

r	ξ	η	ν
0.038	5°	30°	0.88
0.048	$"$	60°	0.75
0.064	$"$	90°	0.72
0.039	10°	30°	0.72
0.049	$"$	60°	0.58
0.065	$"$	90°	0.55

Table 44

CHAPTER 20

SOLUTION BY SUCCESSIVE APPROXIMATION

Introduction

In the case of potential flow past a fixed boundary the disturbance potential ϕ is zero at infinity and remains generally small compared with the free flow potential $\Psi(=-\underset{\sim}{U} \cdot \underset{\sim}{r} ;|\underset{\sim}{U}|=1)$ on ∂B. Hence we take $\phi=0$ as the zeroth approximation to ϕ in the right hand side of Green's boundary formula

$$
\begin{equation*}
\phi(\underline{b})=\frac{1}{2 \pi} \int_{\partial B} \frac{\phi(q)}{|n-q|_{e}^{\mid}} d q-\frac{1}{2 \pi} \int_{\partial B} \frac{\phi_{e}^{\prime}(q)}{|n-q|} d q ; \underline{\sim}, q \in \partial B, \tag{254}
\end{equation*}
$$

and so define a better approximation to ϕ given by

$$
\begin{equation*}
\phi_{1}(\underline{n})=-\frac{1}{2 \pi} \int_{\partial B} \frac{\phi_{2}^{\prime}(\underline{q})}{\left|h_{-}-\underline{q}\right|} d q ; \underline{p}, \underline{q} \in \partial B . \tag{255}
\end{equation*}
$$

Insertion of this ϕ_{1} into (254) yields ϕ_{2}, given by

$$
\begin{equation*}
\phi_{2}(\underline{n})=-\frac{1}{2 \pi} \int_{\partial B} \frac{\phi_{1}(\underline{q})}{|n-q|} d q+\phi_{1}(\underline{n}) ; \underline{\sim}, \underline{q} \in \partial B . \tag{256}
\end{equation*}
$$

So proceeding, we compute successive approximate $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ to ϕ, of which the convergence can be examined.

The integral can be computed numerically as before. On discretisation

$$
\begin{align*}
& \phi_{1}\left(q_{k}\right) \simeq \frac{1}{2 \pi} \sum_{\bar{j}=1}^{N} \phi_{k}^{\prime}\left(q_{j}\right) \int_{j} \frac{d q_{k}}{\left|q_{-}-q\right|} ; k=1,2, \cdots N, \tag{257}\\
& \cdots \tag{258}\\
& \phi_{n}\left(q_{k}\right) \simeq-\frac{1}{2 \pi} \sum_{j=1}^{N} \phi_{n-1}\left(q_{j}\right) \int_{j} \frac{d q}{\left|q_{k}-q\right|}+\phi_{1}\left(q_{k}\right) ; k=1,2, \cdots N .
\end{align*}
$$

This procedure yields a set of approximation to ϕ at the pivotal points ${\underset{\sim}{q}}_{1},{\underset{\sim}{q}}_{2}$, . . ${\underset{\sim}{q}}_{N}$. The approximation to ϕ at the point ${\underset{\sim}{q}}^{q}$ after the
r th iteration is written as

$$
\begin{equation*}
\phi^{r}\left(\underline{q}_{m}\right) ; \quad r=1,2, \ldots n \ldots \tag{259}
\end{equation*}
$$

For a pre-assigned small positive quantity ϵ, if there exists an M such that

$$
\begin{equation*}
\left|\phi^{M}\left(q_{k}\right)-\phi^{M-1}\left(q_{k}\right)\right|_{\max }=B^{M} \leq \epsilon ; \quad k=1,2, \cdots N, \tag{260}
\end{equation*}
$$

then ϕ^{M} is said to be the approximate solution of (254).

Flow past a sphere

Applying the above approach to the case of flow past a sphere, it appears that the approximation converges to the expected solution (Table 45). Referring to (260), for $K N=4$, i.e. $N=2544[$ see (201) $]$ and for $\epsilon=0.0001$, the approximation converges for $M=9$ with $B^{l}=0.69493$ and $B^{3}=0.00006$.

The computed value of ϕ obtained by the successive approximation method has the worst behaviour at the point $\underset{\sim}{q}(0.998,0.000,0.070)$ and it is exhibited in Fig. 38.

Flow past a thick delta wing
In the case of flow past a thick delta wing, given in Chapter 17, the solution obtained by the successive approximation method does not converge. Fig. 39 exhibits the non-convergence of the computed ϕ, obtained by the above method, for a plate of thickness $t=0.0962$ with a number of sub-areas $N=1908$. Fig. 40 exhibits the behaviour of computed ϕ at a point $q(0.005,0.376,0.048)$ [See Fig. $31(c)$, Chapter 17$]$ at which the value of ϕ, determined by the integral equation method, is 0.0372 .

Table 46 exhibits the approximate ϕ obtained at some representative points on the surface of the wing of thickness 0.0962 for $\psi=38$ [see (259)] compared with the ϕ obtained by the integral equation method.

DISTURBANCE POTENTIAL ALONG A MERIDIAN

FIELD POINT		ϕ		
x	z	ANALYTICAL	INTEGRAI EQN.	SUCCESSIVE APPROX.
0.091	0.996	0.49795	0.50339	0.50340
0.209	0.978	0.48899	0.49421	0.49423
0.230	0.954	0.47703	0.48206	0.48208
0.332	0.924	0.46214	0.46687	0.46688
0.457	0.890	0.44483	0.44905	0.44906
0.526	0.851	0.42533	0.42932	0.42933
0.590	0.808	0.40376	0.40761	0.40762
0.649	0.761	0.38042	0.38414	0.38415
0.999	0.023	0.01140	0.01154	0.01154

swollusalt zassajons no

(2) 10 T

Fig. 39
behaviour of the solution on successive ITERATIONS

BEHAVIOUR OF THE SOLUTION AT A FIXEO PONTP
on successne iterations : value of d at pis 0.0372 (INTEGRNL EQUNTION METHOD).

COMPARISON OF SOLUTIONS OBTAINED BY DIFFERENT METHODS IN CASE
OF FLOW PAST A THICK DELTA WING

DISTURBANCE POTENTIAL ON THE SURFACE NEAR THE TIP

FIELD POINT		ϕ	
x	Y	INTEGRAL EQN.	SUCCESSIVE APPROX.
0.005	0.376	0.03720	0.03886
0.005	0.367	0.03180	0.03359
0.016	0.367	0.03473	0.03597
0.006	0.355	0.02903	0.03083
0.016	0.355	0.02979	0.03158
0.026	0.364	0.03714	0.03882
0.026	0.355	0.03139	0.03317
0.037	0.355	0.03692	0.03759
0.010	0.343	0.02684	0.02365
0.031	0.343	0.02842	0.03023

Table 46

APPENDIX I

Evaluation of

$$
\begin{equation*}
\left.S=\int_{\partial B} \frac{d q}{\mid \underline{\sim}-q} \right\rvert\, \tag{1}
\end{equation*}
$$

when ∂_{B} is a plane rectangular area.
. Let $\partial \mathrm{B}$ define a rectangular area, in the plane $Z=0$ with sides $2 a$ and $2 b$, of which the centroid 0 defines the origin of a reference frame OXYZ Fig.41(a) . Let the co-ordinates of $\underset{\sim}{p}$ be (X, Y, Z) and those of \underline{q}, since $q \in \partial_{B}$, are (x, y, O).

$$
\begin{aligned}
\therefore S & =\int_{-b}^{b} d y \int_{-a}^{a} \frac{d x}{\sqrt{(x-x)^{2}+(y-y)^{2}+z^{2}}} \\
& =\int_{-b}^{b}\left[\int_{x-a}^{x+a} \frac{d a}{a^{2}+(y-y)^{2}+z^{2}}\right] d y ; \alpha=x-x, \\
& \left.=\int_{-b}^{b} \log \left\{(x+a)+\sqrt{(x+a)^{2}+z^{2}+(y-y)^{2}}\right\}-\log \left\{(x-a)+\sqrt{(x-a)^{2}+z^{2}+(y-y)^{2}}\right\}\right] d y, \\
& =S_{1}-S_{2} \quad \text { (Say), Where }
\end{aligned}
$$

$$
S_{1}=\int_{-b}^{b} \log \left\{(x+a)+\sqrt{(x+a)^{2}+z^{2}+(y-y)^{2}}\right\} d y
$$

$$
=\int_{k=Y-b}^{k=Y+b} \log \left\{c+\sqrt{D^{2}+k^{2}}\right\} d k ; \quad C=x+a, \quad D^{2}=c^{2}+z^{2}, k=Y-y,
$$

$$
\begin{aligned}
& =\left[k \log \left(C+\sqrt{D^{2}+k^{2}}\right)-\int \frac{\frac{1}{2} \cdot 2 \cdot k \cdot k}{\left(C+\sqrt{D^{2}+R^{2}}\right)} d k\right]_{k=Y-b}^{k=Y+b} \\
& =\left[k \log \left(C+\sqrt{D^{2}+k^{2}}\right)-\int \frac{D^{2}+R^{2}-C^{2}+\left(C^{2}-D^{2}\right)}{\left(C+\sqrt{D^{2}+k^{2}}\right) \sqrt{D^{2}+k^{2}}} d k\right]_{R=Y-b}^{k=\dot{Y}+b} . \\
& =\left[\log \left\{\left(C+\sqrt{k^{2}+D^{2}}\right)^{k}\left(k+\sqrt{k^{2}+D^{2}}\right)^{c}\right\}-k\right]_{k=Y-b}^{k=Y+b}+z^{2} \int_{k=Y-b}^{Y+b} \frac{d k}{\left(C+\sqrt{k^{2}+D^{2}}\right) \sqrt{k^{2}+D^{2}}}, \\
& =\left[\log \left\{\left(C+\sqrt{R^{2}+D^{2}}\right)^{k}\left(k+\sqrt{R^{2}+D^{2}}\right)^{C}-k-z \sin ^{-1} \frac{D^{2}+C \sqrt{R^{2}+D^{2}}}{D\left(C+\sqrt{R^{2}+D^{2}}\right.}\right]_{R=Y-b}^{k=Y+b}\right.
\end{aligned}
$$

Similarly putting. $E=x-a, F^{2}=E^{2}+Z^{2}$

$$
S_{2}=\left[\log \left\{\left(E+\sqrt{R^{2}+F^{2}}\right)^{k}\left(k+\sqrt{R^{2}+F^{2}}\right)^{E}\right\}-k-Z \sin ^{-1} \frac{F^{2}+E \sqrt{R^{2}+F^{2}}}{F\left(E+\sqrt{R^{2}+F^{2}}\right)}\right]_{k=Y-b}^{R=Y+b}
$$

Now $\quad S=S_{1}-S_{2}$,

$$
\begin{equation*}
=\left[\log \left\{\left(\frac{C+\sqrt{R^{2}+D^{2}}}{E+\sqrt{R^{2}+F^{2}}}\right)^{k} \frac{\left(k+\sqrt{R^{2}+D^{2}}\right)^{c}}{\left(k+\sqrt{R^{2}+F^{2}}\right)^{E}}\right\}+Z\left\{\sin ^{-1}\left(\frac{F^{2}+E \sqrt{R^{2}+F^{2}}}{F\left(E+\sqrt{R^{2}+F^{2}}\right)}\right)-\sin ^{-1}\left(\frac{D^{2}+C \sqrt{R^{2}+D^{2}}}{D\left(C+\sqrt{R^{2}+D^{2}}\right.}\right)\right\}_{k=Y-b}^{k=Y+b}\right. \tag{2}
\end{equation*}
$$

When $O B$ is a square of edge length h and p cancides with the centroid of ∂B, we have

$$
\text { and } \begin{aligned}
\mathrm{X} & =\mathrm{Y}=\mathrm{Z}=0 \\
\mathrm{a} & =\mathrm{b}=\frac{1}{2} \mathrm{~h}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
S=4 h \log (1+\sqrt{2}) \tag{3}
\end{equation*}
$$

2. Evaluation of S over a triangular area when $\underset{\sim}{p}$ concides with a vertex of the triangle.

Let the triangular area $A B C$, bounded by arms r_{1}, r_{2} and r_{3}, lie in the plane $Z=0[$ Fig. 41 (b)]. The vertex C defines the origin of a cylindrical polar reference frame with CA as the initial line. In this frame, the arm CB is given by

$$
\theta=\theta_{1}
$$

p coincides with C and the co-ordinates of q are $(r, \theta, 0)$. Now

$$
\begin{aligned}
S & =\int_{O B} \frac{d q}{\left|r^{-r}\right|} \\
& =\int_{\theta=0}^{\theta_{1}}\left[\int_{r=0}^{f(\theta)} \frac{1}{r} r d r\right] d \theta=\int_{\theta=0}^{\theta_{1}} f(\theta) d \theta
\end{aligned}
$$

Let the equation of $A B$ in a cartesian frame $O X Y Z$, with the origin at C and Z-axis coinciding with the initial line $C A$, be

$$
y=m x+C
$$

with conditions

$$
\begin{aligned}
y & =0 & \text { when } & x=r_{2} \\
\text { and } y & =r_{1} \sin \theta_{1} & \text { when } & x=r_{1} \cos \theta_{1}
\end{aligned}
$$

Hence, $C=-m r_{2}$ and $m=r_{1} \sin \theta_{1} /\left(r_{1} \cos \theta_{1}-r_{2}\right)$.
In terms of r and $\theta, f(\theta)$ stands as

$$
f(\theta) \equiv r=\frac{r_{1} r_{2} \sin \theta_{1}}{\left(r_{2}-r_{1} \cos \theta_{1}\right) \sin \theta+r_{1} \sin \theta_{1} \cos \theta}
$$

If $a=r_{2}-r_{1} \cos \theta_{1}$ and $b=r_{1} \sin \theta_{1}$, we have

$$
\begin{aligned}
& a^{2}+b^{2}=r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \theta_{1}=r_{3}^{2} \\
& \text { and } f(\theta)=\frac{r_{1} r_{2} \sin \theta_{1}}{a \sin \theta+b \cos \theta}
\end{aligned}
$$

Using these in (4)

$$
\begin{align*}
& S=r_{1} r_{2} \sin \theta_{1} \int_{\theta=0}^{\theta_{1}} \frac{d \theta}{a \sin \theta+b \cos \theta}, \\
& =\frac{r_{1} r_{2} \sin \theta}{\sqrt{a^{2}+b^{2}}}\left[\log \left(\frac{b \sin \theta-a \cos \theta+\sqrt{a^{2}+b^{2}}}{b \cos \theta+a \sin \theta}\right)\right]_{\theta=0}^{\theta_{1}} \\
& -\frac{2 \Delta}{r_{3}}\left[\log \left(\frac{r_{1} \sin \theta_{1} \sin \theta-\left(r_{2}-r_{1} \cos \theta_{1}\right) \cos \theta+r_{3}}{r_{1} \sin \theta_{1} \cos \theta+\left(r_{2}-r_{1} \cos \theta_{1}\right) \sin \theta}\right)\right]_{\theta=0}^{\theta_{1}}, \\
& =\frac{2 \Delta}{r_{3}} \log \left(\frac{r_{1}-r_{2} \cos \theta_{1}+r_{3}}{r_{2} \sin \theta_{1}} \cdot \frac{r_{1} \sin \theta_{1}}{r_{3}-r_{2}+r_{1} \cos \theta_{1}}\right), \\
& =\frac{2 \Delta}{r_{3}} \log \left(\frac{r_{1}^{2}+r_{1} r_{3}-r_{1} r_{2} \operatorname{Cos} \theta_{1}}{r_{2} r_{3}-r_{2}^{2}+r_{1} r_{2} \operatorname{Cos} \theta_{1}}\right) \\
& =\frac{2 A}{r_{3}} \log \left(\frac{r_{1}+r_{2}+r_{3}}{r_{1}+r_{2}-r_{3}}\right), \tag{4}
\end{align*}
$$

where \triangle is the area of the triangle $\triangle B C$:

APPENDIX It

Evaluation of

$$
S^{\prime}=\int_{\partial B} \frac{d q}{|h-q|} ; \quad \underline{q}, q \in \partial_{B} .
$$

Let ∂B be the part of a sphere of radius ' a^{\prime}. The centre of the sphere defines the origin of a spherical polar coordinates, in which the coordinates of $\underset{\sim}{p}$ are $(a, 0,0)$ and those of $\underset{\sim}{q}$ are (a, θ, η). Now $\quad \frac{1}{\prod_{i}|\underline{\sim}-\underline{q}|}=\frac{1}{\prod_{i}\left|q_{k}-\underline{q}\right|} \quad$, (replacing $\underset{\sim}{p}$ by ${\underset{\sim}{q}}_{k}$)

$$
\begin{aligned}
& =\frac{(q-q) \cdot \hat{n}_{e}\left(q_{k}\right)}{\left|\underline{q}_{R}-\underline{q}\right|^{3}}=\frac{2 a \sin (\theta / 2) \cdot \sin \left(\theta_{2}\right)}{8 a^{3} \sin ^{3}\left(\theta_{2}\right)} \\
& =\frac{1}{4 a^{2} \sin \left(q_{2}\right)}
\end{aligned}
$$

where $\eta_{e}\left(q_{k}\right)$ denotes the unit vector normal to ∂B at the point ${\underset{\sim}{k}}$.

$$
\begin{aligned}
\therefore \quad S^{\prime} & =\int_{\eta=0}^{2 \pi} \int_{\theta=0}^{0} \frac{a \sin \theta d \eta a d \theta}{4 a^{2} \sin (\theta / 2)} \\
& =2 \pi \int_{\theta=0}^{0} \frac{2 a^{2} \sin (\theta / 2) \cos (\theta / 2) d \theta}{4 a^{2} \sin (\theta / 2)} \\
& =2 \pi[\sin (\theta / 2)]]_{\theta=0}^{0}=2 \pi \sin (\theta / 2),
\end{aligned}
$$

where $2 \odot$ is the solid angle, subtended by ∂B, at the centre of the sphere [Fig. 41(c)].

If $A P B$ be the rim of the circular cap ∂B with its centre at ${ }_{\sim}^{q}{ }_{k}$ and if $q_{k} A=h_{k}$,

$$
\begin{equation*}
S^{\prime}=\frac{\pi 2 a \sin (\delta / 2)}{a}=\frac{\pi h_{k}}{a} \tag{5}
\end{equation*}
$$

For a flat surface $O B$,

$$
\left(\underline{q}_{k}-\underline{q}\right) \cdot \hat{n}\left(\underline{q}_{k}\right)=0=\left(\underline{q}-q_{k}\right) \cdot \hat{n}(\underline{q})
$$

$$
\begin{equation*}
\therefore \int_{\partial B} \frac{d q}{|h-q|}=\int_{\partial B} \frac{d q}{|p-q|^{\prime}}=0 \tag{6}
\end{equation*}
$$

Fig. $41(a)$

Fig. $41(b)$

APPENDIX III

Nature of the solution of a system of $2 k$ linear algebraic equations represented by

$$
\begin{equation*}
[\mathrm{A}][\mathrm{X}]=[\mathrm{B}], \tag{7}
\end{equation*}
$$

where $[A]$ is a square matrix of order $2 k \times 2 k$ with $|A| \neq 0$; the elements of $[A]$ and $[B]$ satisfy

$$
a_{i j}=a_{2 k-i+1} \quad 2 k-j+1
$$

and $\quad b_{i}=-b_{2 k-i+1}$
respectively.

On the above conditions, the expanded form of (7) is given by

Since the determinant of $|A| \neq 0$, i.e.

$$
D=|A| \equiv\left|a_{11} a_{22} \cdots a_{k k} \cdots \cdots a_{11}\right| \neq 0
$$

by Cramer's rule,

$$
x_{r}=\frac{\left|a_{11} a_{22} \cdots b_{r} a_{r+1} \cdot \cdots a_{k k} \cdots a_{11}\right|}{|A|}, r<k
$$

Simiarly,

$$
\begin{aligned}
x_{2 k-r+1} & =\frac{\left|a_{11} a_{22} \cdot a_{k k} \cdot \cdots-b_{r} a_{r-1 r-1} \cdot a_{11}\right|}{|A|}, \\
& =\frac{-\left|a_{11} a_{22} \cdot \cdots a_{k k} \cdot \cdots b_{r} a_{r-1 r-1} \cdot a_{11}\right|}{|A|}, \\
& =\frac{\mid a_{11} a_{22} \cdot \cdots a_{r} a_{r+1} \cdot}{|A|}, \\
& =-x_{r+1},
\end{aligned}
$$

i.e. $\quad x_{r}=-x_{2 k-r+1}$

The above relation holds good for $r=1$, . . k.

REFERENCES

1. Kellogg,0. D., 1929 Foundations of Potential Theory, P.152, 162, 168, 223, 237, 277, 287. Ungar: New York.
2. Jaswon, M. A., 1963 Proc. Roy. Soc. A, 275 .
3. Lamb,H., 1953 Hydrodynamics. Cambridge University Press.
4. Simmons,G. F., 1963 Introduction to Topology and Modern Analysis. McGraw Hill.
5. Froberg,C. E., 1964 Introduction to Numerical Analysis. World Student Series: Addison-Wesley.
6. Polya,G. and Szego,G., 1951 Isoperimetric Inequalities in Mathematical Physis. Princeton University Press .
7. Tranter,C. J., 1966 Integral Transforms in Mathematical Physics. Methuen's Monographs .
8. Watson,G. N., 1952, A Treatise on the Theory of Bessel Functions. Canbridge University Press .
9. Hayes,J. G., 1970 Numerical Approximation to Functions and Data. The Athlone Press: London.
10. Hess,J. L. and Smith,A. M. O., 1967 Calculation of Potential Flow about Arbitrary Bodies. Progress in Aeronautical Sciences. Vol. 8 . Pergamon Press .
11. Jaswon,M. A. and Ponter, A. R., 1963 Proc. Roy. Soc. A, 273 .
12. Jaswon, M. A. and Maiti,M. and Symm, G. T., 1967 Numerical Biharmonic Analysis and Some Applications. Int. J. Solid Structures.
13. Redish,K. A., 1966 An Introduction to Computational Methods. The English University Press.
14. Landau,L. D. and Lifshitz,E. M., 1966 Fluid Mechanics. Pergamon Press.
15. Robinson,A. and Laurnann,J. A., 1956 Wing Theory, Cambridge University Press .
16. Brown,S. N. and Stewartson, K., 1969 Flow Near the Apex of a Plane Delta Wing. J. Inst. Maths Applics. 5 .
17. Taylor,R. S., 1971 A New Approach to the Delta Wing Problem. J. Inst. Maths Applics. 7 .
