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Abstract
According to personality psychology, personality traits determine many aspects of
human behaviour. However, validating this insight in large groups has been
challenging so far, due to the scarcity of multi-channel data. Here, we focus on the
relationship between mobility and social behaviour by analysing trajectories and
mobile phone interactions of ∼1000 individuals from two high-resolution
longitudinal datasets. We identify a connection between the way in which individuals
explore new resources and exploit known assets in the social and spatial spheres. We
show that different individuals balance the exploration-exploitation trade-off in
different ways and we explain part of the variability in the data by the big five
personality traits. We point out that, in both realms, extraversion correlates with the
attitude towards exploration and routine diversity, while neuroticism and openness
account for the tendency to evolve routine over long time-scales. We find no
evidence for the existence of classes of individuals across the spatio-social domains.
Our results bridge the fields of human geography, sociology and personality
psychology and can help improve current models of mobility and tie formation.

Keywords: Human mobility; Social behaviour; Computational social science; Digital
data; Personality traits

1 Intro
Our social and spatial behaviour are shaped by both internal and external constraints. On
one hand, external factors [1] such as time, cognition, age or the need for food constrain
our possibilities. On the other hand, we are driven by internal needs, purposes and prefer-
ences. Specifically, within personality psychology, it has been conjectured that personality
traits play a key role in shaping our choices across various situations [2, 3].

In the social realm, individuals cope with cognitive and temporal constraints by estab-
lishing and maintaining connections in a distinctive [4, 5] and persistent [4] manner. For
example, the size of an individual’s social circle is bounded under ∼150, the so-called Dun-
bar number [6], but varies among individuals around this limit [7]. These differences result
from an interplay between physical and extrinsic factors such as gender [8], age [9] and
socio-economic status [10] as well as from stable individual dispositions underlying per-
sonality [11].

Spatially, individuals are characterised by an activity space of repeatedly visited locations
within which they move during their daily activities [12], but this geo-spatial signature
varies in size [13] and spatial shape [14]. However, unlike the social case, the conjecture
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that individuals’ spatial behaviour is persistent in time [15] had not been verified until
recently.

Here, we capitalise on the recent discovery that the size of the activity space is con-
served and correlates with the social circle size [16] to test the conjecture that the same
personality dispositions in part determine social and spatial behaviour. We test this theory
by analysing two long-term datasets consisting of ∼1000 individuals mobility trajectories
and their phone interactions (for previous studies see Sect. 2 below).

First, we test the hypothesis that the strategies individuals adopt in order to choose
where to go and with whom to interact are similar. Then, we identify and characterise
the prevailing socio-spatial profiles appearing in the datasets. Finally, we show that socio-
spatial profiles can be partially explained by the widely adopted big-five personality trait
model, often used to describe aspects of the social and emotional life [7, 11, 17–22]. In
Sect. 2, we review the relevant literature; in Sect. 3 we describe data collection and pre-
processing, and we provide details of the methods implemented; in Sect. 4 we present our
findings.

2 State of the art
Individual-level variability in social and spatial behaviour has mostly been investigated in
isolation so far, with few notable efforts to reconcile the two. Here, we briefly review the
empirical findings in the two domains.

2.1 The social domain
Individuals deal with limited time and cognitive capacity resulting in finite social networks
[6, 23] by distributing time unevenly across their social circle [4, 24–28]. While this is a
shared strategy, there is clear evidence for individual-level variation. First, social circles
vary in terms of diversity: they differ in size [7]—within a maximum upper-bound of ∼150
individuals [6]—and in structure [4, 29]. Second, individuals display different attitudes
towards exploration of social opportunities as they are more or less keen on creating new
connections [30–33]. Finally, individuals manage social interactions over time in different
ways. Some are characterised by high level of stability as they maintain a very stable social
circle, while others renew their social ties at high pace [5].

These heterogeneities can be partially explained by factors including gender [8, 34], age
[9, 35, 36], socio-economic status [10, 37] and physical attractiveness [38]. Moreover, as
conjectured by personality psychologists [2, 39], differences in personalities partially ex-
plain the variability in social circle composition [7, 11, 17, 40–44], and the different atti-
tudes towards forming [30, 45], developing [20, 46] and replacing [29] social connections.
It is worth noticing that many of these findings are recent, resulting from the analysis of
digital communication traces.

2.2 The spatial domain
Constraints including physical capabilities, the distribution of resources, and the need to
coordinate with others limit our possibilities to move in space [1]. Individuals cope with
these limitations by allocating their time within an activity space of repeatedly visited lo-
cations [47], whose size is conserved over several years according to a recent study based
on high-resolution trajectories [16], and previous ones based on unevenly sampled and
low spatial resolution data [48, 49]. The activity space varies across individuals in terms
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of size [16] and shape [14]: it was shown that two distinct classes of individuals, returners
and explorers, can be identified based on their propensity to visit new locations, similarly
to the social domain [5]. Heterogeneities in spatial behaviour can be explained in terms of
gender [50], age [51, 52], socio-economic [35, 53] and ethnic [54] differences. There has
only been sporadic efforts to include personality measures in geographic research, despite
the strong connections between the two [55]. Recent works [44, 56] suggest that spatial
behaviour can be partially explained from personality traits. However, in [56], this under-
standing is based on biased data collected from location-based social networks. In [44],
the connection between spatial behaviour and personality is not investigated extensively,
as it is not the main focus of the study.

2.3 Social and spatial connection
Recently, connections between the social and spatial behaviour of pairs [57–62] and
groups [63] of individuals have been demonstrated, and used to design predictive models
of mobility [58, 64, 65] or social ties [59, 66–68]. Shifting the attention to the individual
level, recent works based on online social network data [69, 70], mobile phone calls data
[62] and evenly sampled high resolution mobility trajectories [16] have shown correla-
tions between the activity space size and the ego network structure, calling for further
research to more closely examine the connections between social and spatial behaviour at
the individual level.

3 Methods
3.1 Data description and pre-processing
Our study is based on 850 high resolution trajectories and call records of participants in
a 24 months longitudinal experiment, the Copenhagen Networks Study (CNS) [71]. Re-
sults on the connections between social and spatial behaviour were corroborated with
data from another experiment with fixed rate temporal sampling, but lower spatial reso-
lution and sample size: the Lausanne Mobile Data Challenge (MDC) [72, 73], lasted for 19
months (see Table 1).

3.1.1 CNS dataset
The Copenhagen Networks Study (CNS) experiment took place between September 2013
and September 2015 [71] and involved ∼1000 Technical University of Denmark students
(∼22% female, ∼78% male) typically aged between 19 and 21 years old. Participants’ po-
sition over time was estimated combining their smart-phones WiFi and GPS data using
the method described in [16, 74]. The location estimation error is below 50 meters in 95%
of the cases. Participants’ calls and SMS activity was also collected as part of the experi-
ment. Individuals’ background information were obtained through a 310 questions survey
including the Big Five Inventory [75], which measures how individuals score on five broad

Table 1 Characteristics of the mobility datasets considered. N is the number of individuals, δt the
temporal resolution, T the duration of data collection, δx the spatial resolution, TC the median
weekly time coverage, defined as the fraction of time an individual’s location is known

N δt T δx TC

CNS 850 16 s 24 months 10 m 0.84
MDC 185 60 s 19 months 100–200 m 0.73
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domains of human personality traits: openness, conscientiousness, extraversion, agree-
ableness, neuroticism. The personality questionnaire used in the study is a version of the
Big Five Inventory [75], translated from English into Danish. It contains 44 individual items
and each trait is computed as the average of 7–10 items. Data collection was approved by
the Danish Data Protection Agency. All participants provided individual informed con-
sent. Mobility patterns of participants in the CNS experiment display statistical properties
consistent with previous literature [13], as shown in [16].

3.1.2 MDC dataset
Data was collected by the Lausanne Data Collection Campaign between October 2009
and March 2011. The campaign involved an heterogeneous sample of ∼185 volunteers
with mixed backgrounds from the Lake Geneva region (Switzerland), who were allocated
smart-phones [73]. In this work we used GSM data, that has the highest temporal sam-
pling. Following Nokia’s privacy policy, individuals participating in the study provided in-
formed consent [73]. The Lausanne Mobile Data Challenge experiment involves 62% male
and 38% female participants, where the age range 22–33 year-old accounts for roughly 2/3
of the population [76].

3.2 Metrics
In this section, we define the concepts and metrics used to quantify the social and spatial
behaviour of an individual i.

Exploration behaviour is characterised by the following quantities:
Number of new locations/week: nloc(i, t) is the number of locations discovered by i in the

week preceding t.
Number of new ties/week: ntie(i, t) is the number of individuals who had contact with i

(by SMS or call) for the first time in the week preceding t.
Note that locations/ties are considered ‘new’ only if discovered after 20 weeks from the
beginning of data collection.

Exploitation behaviour can be quantified by considering:
Activity space: The set AS(i, t) = {�1,�2, . . . ,�j, . . . ,�C} of locations �j that individual i vis-

ited at least twice and where she spent a time τj larger than 200 min during a time-
window of T = 20 weeks preceding time t (see Additional file 1 for the analysis with
T = 30 weeks). Among the locations in the activity space, i visited �j with probabil-
ity p(�j) = τj/

∑
τj. (It is worth noting that this time-based definition of activity space

includes all significant locations independently of their spatial position and it is only
loosely connected with space-oriented definitions widespread in the geography liter-
ature such as the “standard deviational ellipse” and the “road network buffer” [77].)

Social circle: The set SC(i, t) = {u1, u2, . . . , uj, . . . , uk} of individuals uj with whom individ-
ual i had a number of contacts nj > 5 by SMS or call during a time-window of T = 20
consecutive weeks preceding time t (see Additional file 1 for the analysis with T = 30
weeks). The probability that i has contact with a given member uj of her social circle
is p(uj) = nj/

∑
nj.

For these two sets AS(i, t) and SC(i, t), we consider their sizes C(i, t) and k(i, t), quantifying
the number of favoured locations and social ties, respectively; their entropies HAS(i, t) and
HSC(i, t), measuring how time is allocated among locations and ties; their stabilities JAS(i, t)
and JSC(i, t), quantifying the fraction of conserved locations and ties, respectively, across
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Table 2 Definition of the metrics characterising the activity space and the social circle. (1) The size of
a set is the number of elements in the set. (2) We compute the entropy of a set considering the
probability p(j) associated to each element j of the set. (3) We measure the stability JAS by computing
the Jaccard similarity between the activity space at t and at t – T , with T = 20 weeks. JSC is computed
in the same way for the social circle. (4) We compute the rank turnover of a set by measuring for each
of its elements j the absolute change in rank between two consecutive time windows of length
T = 20 weeks. The rank is attributed based on the probability p(j). The average absolute change in
rank across all elements corresponds to the rank turnover

Activity space Social circle

(1) Size C(i, t) = |ASi(t)| k(i, t) = |SC(i, t)|

(2) Entropy HAS(i, t) = –
C(i,t)∑

j=1

p(j) logp(j) HSC(i, t) = –
k(i,t)∑

j=1

p(j) logp(j)

(3) Stability JSC(i, t) =
|SC(i, t)∩ SC(i, t – T )|
|SC(i, t)∪ SC(i, t – T )|

∗ JAS(i, t) =
|AS(i, t)∩ AS(i, t – T )|
|AS(i, t)∪ AS(i, t – T )|

∗

(4) Rank turnover RAS(i, t) =
N∑

j=1

|r(j, t) – r(j, t – T )|
N

† RSC(i, t) =
N∑

j=1

|r(j, t) – r(j, t – T )|
N

†

∗Here T = 20 weeks, see Additional file 1 for the analysis with T = 30 weeks.
† r(�k , t) and r(uk , t) denote the rank of a location �k and individual uk at t, respectively.

consecutive non-overlapping windows of T = 20 weeks (see Additional file 1 for T = 30);
their rank turnovers RAS(i, t) and RSC(i, t) measuring the average absolute change in rank
of an element in the set between consecutive windows. The mathematical definition of
these quantities is provided in Table 2

3.2.1 Other metrics
In order to compare the difference in entropy between two different sets, we compute their
Jensen–Shannon divergence (JSD). The JSD between two sets P1 and P2 is computed as
JSD(P1, P2) = H( 1

2 (P1 + P2)) – 1
2 [H(P1) + H(P2)] (see also [4]).

4 Results
Both in their spatial and social behaviour, individuals are constantly balancing a trade-off
between the exploitation of familiar options (such as returning to a favourite restaurant or
spending time with an old friend) and the exploration of new opportunities (such as visit-
ing a new bar or going on a first date) [78]. We adopt this exploration-exploitation perspec-
tive to analyse the relationship between social and spatial strategies in our dataset [16].

We quantify the propensity for exploration and exploitation within each individual, i,
using the metrics reported in Table 3, Fig. 1 and described in Sect. 3. We focus on two
aspects of exploitation, (i) diversity, characterising how individuals allocate time among
their set of familiar locations and friends, and (ii) evolution, characterising the tendency
to change exploited locations and friends over time.

Exploration and exploitation are persistent in time. First, we verify that individual be-
haviour is persistent in time. For all the aforementioned measures, we compare the indi-
vidual self-variation across time dself (i) with a reference difference dref (i, j) between indi-
viduals i and j. In the case of the activity space size, for example, self-variation is mea-
sured as dself = 〈|C(i, t) – C(i, t – T)|〉, where 〈·〉 is the average across time and T = 20
weeks (see Additional file 1 for T = 30); the reference difference is computed as dref (i, j) =
|〈C(i, t)〉 – 〈C(j, t)〉|. If dself (i) < dref (i, j) for most j, we can conclude that for individual i,
fluctuations of the activity space size are negligible compared to the difference with other
individuals. The same procedure is followed for all metrics with an adjustment in the case
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Table 3 Metrics characterising social and spatial behaviour. The metrics are defined in Sect. 3

.

Exploration Exploitation: Diversity Exploitation: Evolution

Spatial New locations/week, nloc Activity space size, C Activity space stability, JAS
Activity space entropy, HAS Activity space rank turnover, RAS

Social New ties/week, ntie Social circle size, k Social circle stability, JSC
Social circle entropy, HSC Social circle rank turnover, RSC

Figure 1 Schematic description of our framework

Table 4 CNS dataset: Persistence of social and spatial behaviour. For each of the social and spatial
metrics, dself is the average self-distance and dref is the reference distance between an individual
and all others, averaged across individuals. The third column reports the fraction of cases where
dself (i) < dref (i, j), averaged across the population

dself dref dself (i) < dref (i, j)

Social circle size, k 0.04±0.09 12±5 99%
Activity space size, C 0.04±0.07 7±3 99%
New ties/week, ntie 0.05±0.10 0.9±0.5 96%
New locations/week, nloc 0.10±0.17 1±1 95%
Social circle entropy, HSC 0.002±0.007 0.7±0.2 99%
Activity space entropy, HAS 0.002±0.005 0.4±0.1 99%
Social circle stability, JSC (9±22) · 10–4 0.13±0.05 100%
Activity space stability, JAS (9±26) · 10–4 0.10±0.04 99%
Social circle rank turnover, RSC 0.05±0.39 2±1 99%
Activity space rank turnover, RAS 0.04±0.10 2±1 99%

of entropies: The persistence of the entropy HAS is verified by comparing the Jansen–
Shannon divergences dself = JSD(AS(i, t), AS(i, t – T)) and dref = JSD(AS(i, t), AS(j, t)). The
same method was used for HSC (see Sect. 3 and [4]).

Results from the CNS dataset reported in Table 4 show that for all metrics dself (i) <
dref (i, j) holds in more than 99% of cases on average (MDC: 97%, see Additional file 1, Ta-
ble S1). Moreover, the average self-variation across the population dself is consistent with
dself = 0 within errors, and dself significantly smaller than the average reference difference
dref (see Tables 4 and S1 in Additional file 1).

These results extend previous findings [4, 16] and suggest that each individual is charac-
terised by a distinctive socio-spatial behaviour captured by the ensemble of these metrics
averaged across time. In fact, these averages are heterogeneously distributed across the
samples considered (see Fig. 2).

Exploration and exploitation are correlated in the social and spatial domain. A natural
way to test the interdependency between social and spatial behaviours is measuring the
correlation between a given social metric and a corresponding spatial one. We find positive
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Figure 2 Distribution of social (above line) and spatial (bottom line) metrics for the CNS and MDC datasets

and significant correlations for all metrics and datasets (see Figs. 3 and S1 in Additional
file 1).

We find that individuals with high propensity to explore new locations are also more
keen on exploring social opportunities (see Fig. 3(A)). Those with diverse mobility rou-
tine are also likely to have a correspondingly large social circle (see Fig. 3(B)), and those
that often replace social ties, have also an unstable set of favourite locations (see Fig. 3(C)
and (D)).

We verify that the observed correlations are not spurious by performing multiple regres-
sion analyses that control for other possible sources of variation: gender, age, and time
coverage (the average time an individual position is known). We implement five multi-
ple linear regression models M1, M2, M3, M4 and M5. Each regression model predicts a
given spatial metric (the activity space size C, the activity space entropy HAS, the number
of new locations/week nloc, the activity space stability JAS and the rank turnover RAS) using
the corresponding social metric and the control variables (age, gender and time coverage)
as regressors. The relative importance of each regressor is assessed using the Lindeman,
Merenda and Gold (LMG) [79] method.

Results obtained via weighted least square regression (see Table 5 for the CNS dataset
and Table S2 in Additional file 1 for the MDC dataset) reveal that the social metrics are
significant predictors for spatial metrics (p-value < 0.01 in all cases except for M4 in the
MDC dataset), and they typically have more importance than factors such as gender, time,
coverage and age group (see Fig. 4).

Among the control variables, gender is a significant predictor of spatial behaviour in
the CNS dataset: Females display higher level of routine diversity and propensity towards
exploration, in accordance with [80]. Time coverage, measuring the fraction of time an in-
dividual position is known, plays a significant role in explaining spatial entropy and activ-
ity space stability, since individuals who spend long time in the same place (or leave their
phone in the same place) are more easily geo-localised. Age differences are not present
within the sample of students participating in the CNS study, and they are not estimated
to be relevant with respect to spatial behaviour in the MDC study.

We do not identify distinct classes of individuals. A natural question is whether or not, in
the samples considered, there is evidence for distinct classes of individuals based on their
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Figure 3 CNS dataset: correlation between the four dimensions of social and spatial behaviour. (A) Activity
space vs social circle size. (B) Activity space vs social circle composition measured as their entropy. (C) Average
number of new locations vs new ties per week. (D) Stability of the activity space vs the stability of the social
circle measured as the Jaccard similarity between their composition in consecutive time-windows. (E) Rank
turnover of the activity space vs the rank turnover of the social circle. Coloured filled areas correspond to
cumulative probabilities estimated via Gaussian Kernel Density estimations. Grey lines correspond to linear fit
with angular coefficient b reported in the legend. The Pearson correlation coefficient, with corresponding
p-value, is reported in the legend

socio-spatial behaviour [5, 14]. We approach this problem by reducing the set of metrics
to a smaller number of uncorrelated variables by applying Principal Component Analysis
[81, 82]. The principal components represent the data through linear combinations of the
original variables: In Table 6 we report the percentage of variance in the data explained
by all components; in Table 7 we report the coefficients w describing how the original
variables are linearly combined to obtain the first two principal components.

In both datasets, we find that the first principal component (PC 0) explains ∼40% of
the differences between individuals (see Table 6). For the CNS dataset, the variables con-
tributing the most to PC 0 (e.g. such that w2 > 0.1) are, in order, the activity space size C,
the social circle size k, the number of new locations/week nloc, the activity space entropy
HAS and the number of new ties/week ntie. nloc and ntie characterise the attitude towards
exploration. The other metrics (C, k and HAS) are related to routine diversity, or the ten-
dency to dispose of a large set of familiar locations and friends. Since the sign of w is the
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Table 5 Linear regression models for the CNS dataset. For each model, we show the coefficients
(coeff ) calculated by the regression model, the probability (p val) that the variable is not relevant, and
the relative importance (LMG) of each regressor computed using the Lindeman, Merenda and Gold
method [79]. Gender is a binary variable taking value 1 for females and 2 for males. For this dataset,
age is not relevant as all participants have similar age. For each model, we report the R2 goodness of
fit, the F-test statistics with the corresponding p-value pF

coeff p val LMG

Model M1: Activity space size, C
Social circle size, k 4±0 < 10–50 0.94
Gender –0.4±0.2 0.05 0.05
Time coverage 0.4±0.2 0.06 0.01
[R2 = 0.32, F = 100.44, pF = 0.0 ]

Model M2: Activity space entropy, HAS
Social circle entropy, HSC 0.07±0.01 < 10–6 0.42
Gender –0.06±0.01 < 10–4 0.22
Time coverage –0.07±0.01 < 10–5 0.36
[R2 = 0.11, F = 27.30, pF = 0.0]

Model M3: New locations/week, nloc
New ties/week, ntie 0.60±0.05 < 10–32 0.9
Gender –0.16±0.05 < 10–3 0.08
Time coverage 0.001±0.047 1.0 0.01
[R2 = 0.22, F = 61.99, pF = 0.0]

Model M4: Activity space stability, JAS
Social circle stability, JSC 0.024±0.004 < 10–10 0.6
Gender 0.007±0.003 0.05 0.04
Time coverage 0.017±0.004 < 10–5 0.36
[R2 = 0.16, F = 33.36, pF = 0.0]

Model M5: Activity space rank turnover, RAS
Social circle rank turnover, RSC 1±0 < 10–56 0.98
Gender 0.12±0.07 0.06 0.01
Time coverage –0.12±0.07 0.07 0.01
[R2 = 0.36, F = 108.31, pF = 0.0]

same for all the metrics above, we can conclude that individuals with higher propensity
towards exploration tend to have a more diverse social and spatial routine, and vice-versa.
Similar conclusions could be drawn by looking at results obtained for the MDC dataset.

The second principal component (PC 1) accounts for ∼15% of the total variation (see
Table 6). It is dominated by the social circle stability JSC (CNS: w2 = 0.21, MDC: w2 = 0.52)
and the activity space stability JAS (CNS: w2 = 0.24, MDC: w2 = 0.26) for both datasets (see
Table 7). The sign of the coefficients w for JSC and JAS are the same, further confirming that
these two metrics are correlated (see also Fig. 3). We can conclude that the second prin-
cipal component accounts for the effects of routine evolution, or the tendency to change
familiar locations and friends over long time scales. We consider the first two principal
components, PC 0 and PC 1, to reduce the effects of noise and we test the hypothesis that
there exists different classes of individuals applying the gap statistic method [83]. We apply
it by looking at the gap between the within-cluster dispersion expected under a uniform
distribution of the data and the dispersion obtained after applying K-means. For all pos-
sible choices of K > 1, we find that the gap is not large enough to support the existence of
more than one class of individuals.

The big-five personality traits partly explain spatial and social behaviour. We verify if the
differences between individuals can be explained by the Big five personality traits model
[75], typically used to describe social and emotional life (see Table 8). We build two multi-
ple linear regression models that use the Big five personality traits as regressors and one of
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Figure 4 Relative importance of regressors. LMG of each regressor computed using the Lindeman, Merenda
and Gold method [79] for models M1 (A), M2 (B), M3 (C), M4 (D) and M5 (E). Plain bars show results for the
CNS dataset, dashed bars for the MDC dataset. Variables that are not significant in the regression model are
marked with *

Table 6 Variance explained by principal components. The fraction of variance explained by each
principal component for the CNS and MDC dataset

PC 0 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9

CNS 0.39 0.17 0.12 0.08 0.07 0.06 0.04 0.03 0.03 0.01
MDC 0.43 0.14 0.13 0.08 0.07 0.06 0.04 0.03 0.02 0.01

the principal components describing socio-spatial behaviour as target. Results, shown in
Table 9, show that three personality traits, neuroticism, openness and extraversion, are rel-
evant predictors for socio-spatial behaviour. In particular, extraversion is the most impor-
tant predictor of the first principal component: it positively correlates with the tendency to
diversify routine and to explore opportunities. Neuroticism and openness explain instead
the second principal component, since it correlates with the tendency to change routine
over time (see also Fig. 5).

Finally, we perform all analyses considering only spatial metrics. Results are in line with
those obtained considering all metrics: The first two principal components account for a
large fraction of the variability in the data (see Table 10); The first component is domi-
nated by the activity space size C, the number of new locations/week nloc and the activity
space entropy HAS, while the second is mostly controlled by the activity space stability JAS
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Table 7 Contribution of the original variables to the first principal component. The scalar projection
w of the first (PC 0) and second (PC 1) principal components, along the axis defined by each of the
original variables. Each principal component has unit norm, hence the sum of w2 is 1. Results are
shown for the CNS and MDC datasets

CNS MDC
w (PC 0) w (PC 1) w (PC 0) w (PC 1)

Social circle size, k 0.41 0.16 0.37 –0.15
Activity space size, C 0.42 –0.24 0.42 –0.08
New ties/week, ntie 0.33 0.28 0.27 0.33
New locations/week, nloc 0.38 –0.05 0.37 0.19
Social circle entropy, HSC 0.31 0.30 0.34 0.09
Activity space entropy, HAS 0.38 –0.16 0.30 –0.07
Social circle stability, JSC –0.16 –0.46 0.07 –0.72
Activity space stability, JAS –0.10 –0.49 –0.12 –0.51
Social circle rank turnover, RSC –0.20 0.28 –0.33 0.10
Activity space rank turnover, RAS –0.30 0.44 –0.38 0.17

Table 8 The Big-five traits and examples of adjectives describing them [84]

Trait Related Adjectives

Extraversion Active, Assertive, Energetic, Enthusiastic, Outgoing, Talkative
Agreeableness Appreciative, Forgiving, Generous, Kind, Sympathetic
Conscientiousness Efficient, Organised, Planful, Reliable, Responsible, Thorough
Neuroticism Anxious, Self-pitying, Tense, Touchy, Unstable, Worrying
Openness to experience Artistic, Curious, Imaginative, Insightful, Original, Wide Interests

Table 9 Extraversion, openness, and neuroticism explain socio-spatial behaviour. The result of a
multiple linear regression explaining principal components of socio-spatial data (see Table 7). The
value of each coefficient (coeff ) is reported together with the probability (p val) that the coefficient is
not relevant for the model. The relative importance of each coefficient (LMG) is computed using the
LMG method [79]

PC 0
R2 = 0.17, F = 21.40, pF = 0.0

PC 1
R2 = 0.03, F = 3.64, pF = 0.0

coeff p val LMG coeff p val LMG

Extraversion 0.85±0.09 < 10–19 0.85 0.12±0.06 0.05 0.14
Openness –0.17±0.08 0.03 0.02 0.13±0.06 0.02 0.33
Neuroticism 0.25±0.09 0.004 0.04 0.15±0.06 0.02 0.3
Agreeableness 0.11±0.08 0.2 0.04 –0.07±0.06 0.2 0.12
Conscientiousness 0.06±0.08 0.4 0.04 –0.07±0.06 0.2 0.11

(Table 11). For the CNS dataset, extraversion is the most important predictor of the first
principal component, while openness, extraversion and neuroticism account for the sec-
ond component (see Table 12 and Fig. 6). The result presented above hold when choosing
a time-window with length T = 30 weeks (see Additional file 1, Sect. S2).

5 Discussion
Using high resolution data from two large scale studies, we have investigated the connec-
tion between social and spatial behaviour for the first time. We have shown that, in both
domains, individuals balance the trade-off between exploring new opportunities and ex-
ploiting known options in a distinctive and persistent manner. We have found that, to a sig-
nificant extent, individuals adopt a similar strategy in the social and spatial sphere. These
strategies are heterogeneous across the two samples considered, and there is no evidence
suggesting that there exist distinct classes of individuals. Finally, we have shown that the
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Figure 5 Relative importance of personality traits for socio-spatial behaviour. LMG of each regressor
computed using the Lindeman, Merenda and Gold method [79] for the multiple regression model of the
principal components (see also Table 9)

Table 10 Variance explained by principal components (only spatial data). The fraction of variance
explained by each principal component for the CNS and MDC dataset

PC 0 PC 1 PC 2 PC 3 PC 4

CNS 0.53 0.21 0.13 0.10 0.04
MDC 0.56 0.19 0.13 0.07 0.04

Table 11 Principal components (only spatial data). The weight of each metric in the first two
principal components, for both datasets

CNS MDC
PC 0 PC 1 PC 0 PC 1

Activity space size, C –0.58 0.02 0.55 0.12
New locations/week, nloc –0.48 –0.19 0.51 –0.09
Activity space entropy, HAS –0.50 –0.08 0.43 0.20
Activity space stability, JAS –0.02 0.94 –0.19 0.95
Activity space rank turnover, RAS 0.43 –0.25 –0.47 –0.16

big five personality traits explain related aspects of both social and spatial behaviour. In
particular, we have found that extraverted individuals are more explorative and have di-
verse routines in both the social and the spatial sphere while neuroticism and openness
associate with high level of routine instability in the social and spatial domain.

Our findings confirm the usefulness of mobile phone data to study the connections be-
tween behaviour and personality [29, 40, 44, 85–87]. The results are in line with previous
findings on the relation between personality and social behaviour: extraversion correlates
with ego-network size [18, 41, 43] and diverse composition [88], openness to experience
to social network turnover [29] and neuroticism does not correlate with social network
size [11]. Furthermore, our findings establish a relation between personality and spatial
behaviour, validating the theories suggesting that spatial choices are partially dictated by
personality dispositions [15] and that a single set of personality traits underlies many as-
pects of a person’s behaviour [2, 3].



Alessandretti et al. EPJ Data Science  (2018) 7:36 Page 13 of 17

Table 12 Extraversion, openness, and neuroticism explain spatial behaviour. The result of a multiple
linear regression explaining principal components of spatial data (see Table 7). The value of each
coefficient (coeff ) is reported together with the probability (p val) that the coefficient is not relevant
for the model. The relative importance of each coefficient (LMG) is computed using the LMGmethod
[79]

PC 0
R2 = 0.10, F = 12.83, pF = 0.0

PC 1
R2 = 0.03, F = 3.50, pF = 0.0

coeff p val LMG coeff p val LMG

Extraversion –0.50±0.07 < 10–10 0.77 –0.11±0.05 0.02 0.3
Openness 0.19±0.07 0.004 0.08 –0.11±0.04 0.009 0.45
Neuroticism –0.07±0.07 0.4 0.03 –0.10±0.05 0.03 0.21
Agreeableness –0.10±0.07 0.2 0.07 0.01±0.05 0.8 0.01
Conscientiousness –0.05±0.07 0.5 0.05 0.03±0.04 0.4 0.03

Figure 6 Relative importance of personality traits for spatial behaviour. LMG of each regressor computed
using the Lindeman, Merenda and Gold method [79] for the multiple regression model of the principal
components (see also Table 12)

Our findings on the connection between spatial behaviour and personality are consis-
tent with the existing literature on personality. The correlation between exploration and
extraversion could be explained by the fact that extraverted individuals are more likely to
be risk-takers in various domains of life [89]. Extraverted individuals are also generally
more likely to engage in social activities [90], which could partially explain why they al-
locate time among a larger set of locations. Furthermore, the key finding that individuals
who score high in neuroticism and openness display a tendency to change familiar loca-
tions, and friends, over time fits well within the existing picture. In the case of neuroticism,
it is well known that this trait is closely related with ‘stability’ [91], such that the trait of
neuroticism is sometimes referred to as (low) ‘emotional stability’ [92]. Also, at the core
of neuroticism is the tendency to experience negative emotions [93] including dissatisfac-
tion [94], which in turn can lead into desire for change [95, 96]. Finally, it is known that
people scoring high in neuroticism have a larger number of weak ties [42] and perceive
that they tend to have less social support [97, 98], in line with our observation that they
dispose of an unstable ego-network. Openness to experience has been shown to correlate
with ‘disloyal’ behaviour also in other contexts such as politics [99] and shopping [100].
Our results, in agreement with previous studies on social [29, 40, 44, 85–87] and online
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[101–104] behaviour, show that personality traits explain only partially how individuals
behave in specific situations [105].

As a final point, we emphasize that the individual characterisation of spatial behaviour
and connections with personality are fundamental to develop conceptual [55] and predic-
tive [106] models of travel behaviour accounting for individual-level differences.

Additional material

Additional file 1: Supplementary information. (PDF 455 kB)
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