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SUMMARY

This paper proposes a penalized likelihood method to estimate a trivariate probit model, which accounts

for several types of covariate effects (such as linear, nonlinear, random and spatial effects), as well as error

correlations. The proposed approach also addresses the difficulty in estimating accurately the correlation

coefficients, which characterize the dependence of binary responses conditional on covariates. The param-

eters of the model are estimated within a penalized likelihood framework based on a carefully structured

trust region algorithm with integrated automatic multiple smoothing parameter selection. The relevant nu-

merical computation can be easily carried out using the SemiParTRIV() function in a freely available

R package. The proposed method is illustrated through a case study whose aim is to model jointly adverse
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birth binary outcomes in North Carolina.

Key words: additive predictor, correlation-based penalty, penalized regression spline, simultaneous parameter estima-

tion, trivariate probit model.

1. INTRODUCTION

Regression models usually involve one response variable and a set of covariates. However, modeling

simultaneously more responses in a regression setting can be of considerable empirical relevance. The

particular case of trivariate models has been discussed in the literature in various applied and method-

ological contexts (see, for instance, Genest et al., 2013; Król et al., 2016; Zhang et al., 2015; Zhong et al.,

2012, and references therein).

This paper is about trivariate probit models which can be traced back to the seminal article by Ashford & Sowden

(1970) on multivariate probit models. Chib & Greenberg (1998) later proposed a Bayesian approach for

estimating such models. In these works, non-parametric covariates effects are not allowed for and the

difficulty in estimating accurately the model’s correlation coefficients at small or modest sample sizes is

neither discussed nor dealt with. We address the first issue by considering trivariate probit models with ad-

ditive or semi-parametric predictors, hence allowing for several types of covariate effects (such as linear,

non-linear, random and spatial effects). This may help uncover interesting structures in the data and re-

duce the risk and consequences of mis-specifying covariate-response relationships (e.g., Donat & Marra,

2016, and references therein). The second issue is dealt with by introducing an approach for penalizing

the correlation coefficients, which characterize the dependence of the binary responses conditional on

regressors. Estimating such parameters accurately is crucial to obtain unbiased joint outcome probabil-

ities, for instance. To implement these advances a reliable estimation algorithm needs to be developed.

To this end, we extend to this context the penalized likelihood framework based on a trust region method

with automatic smoothing parameter selection developed by Marra et al. (2016). Such extension relies
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on the availability of the analytical score and Hessian components of the model’s log-likelihood, which

are derived in this paper and represent a contribution in itself. Asymptotic arguments of the proposed

estimator are also provided. Note that in the bivariate binary case (see, for instance, Radice et al., 2016,

and references therein) it is not necessary to penalize the correlation coefficient since the behavior of

the respective log-likelihood function suggests that there is enough information that can be exploited in

estimation. Moreover, while the analytical score vectors and Hessian matrices are readily available for

bivariate binary models, they are not in the multivariate binary context.

This paper also illustrates the use of SemiParTRIV() in the package SemiParBIVProbit (Marra & Radice,

2017) for the R environment (Team, 2016), which implements the advances discussed in this paper. Cur-

rent functions for fitting trivariate probit models are triprobit() (Terracol, 2002) or mvprobit()

(Cappellari & Jenkins, 2003) in STATA (LP, 2015), and mvProbit() in the R mvProbit package

(Henningsen, 2015). These implementations do not deal with the problems that this paper addresses.

Moreover, mvProbit() may be unusably slow (as the author points out) and it requires all equations

to have the same set of covariates. Note that we have focused on trivariate binary models, however the

formulation in Section 2 can in principle be extended to the multivariate case as is the proposed estimation

framework (see, for instance, the lemma and propositions in Sections 3 and 4).

The remainder of the paper is organised as follows. Section 2 introduces the trivariate probit model

with additive predictors. Section 3 provides details on the model’s likelihood whereas Section 4 discusses

parameter estimation. Section 5 extends the estimation method by introducing a correlation-based penalty

approach. Section 6 illustrates the proposed method through a case study whose aim is to estimate a model

for three binary outcomes of newborn infants in North Carolina. The last section summarizes the paper

and discusses some possibilities for future research. The supplementary on-line contains various details

and proofs.
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2. TRIVARIATE PROBIT MODEL WITH FLEXIBLE COVARIATE EFFECTS

The aim of the paper is to estimate and to make inference from a trivariate binary model in which the

responses are determined by

y∗mi = v
⊤
miγm +

Ñm∑

νm=1

smνm(zmνmi) + εmi, i = 1, . . . , n, ∀m = 1, 2, 3, (2.1)

where n is the sample size, y∗mi is a latent continuous variable, vmi contains binary and/or categorical

predictors, vector γm represents the effects of the variables in vmi, and smνm(zmνmi) is a smooth function

of continuous covariate zmνmi, ∀νm = 1, . . . , Ñm with Ñm being the number of smooth terms in themth

equation. Latent variable y∗mi determines the observed outcome as follows: if y∗mi > 0 then ymi = 1 and

0 otherwise. As for the error terms, we have that (ε1i, ε2i, ε3i)
⊤ iid∼ N3(0,Σ) where

Σ =





1 ϑ12 ϑ13
ϑ21 1 ϑ23
ϑ31 ϑ32 1



 .

The error variances in Σ are normalized to unity (e.g., Greene, 2003, pp. 728), while the off-diagonal

elements represent the correlations between the error terms and ϑkz = ϑzk for z 6= k.

Smooth functions can be specified in several ways; see Ruppert et al. (2003) for details. We opted

for the regression spline approach popularized by Eilers & Marx (1996) because of its computational

efficiency, theoretical properties and flexibility in representing several types of covariate effects (e.g.,

Wood, 2006; Yoshida & Naito, 2014). Using this approach, smνm(zmνmi) is approximated by a linear

combination of known basis functions bmνmj(zmνmi) and regression parameters αmνmj . That is,

smνm(zmνmi) ≈
Jmνm∑

j=1

αmνm,jbmνm,j(zmνmi) = Lmνm(zmνmi)αmνm , (2.2)

where Lmνm(zmνmi) is a vector containing the Jmνm basis functions evaluated at zmνmi, that is Lmνm(zmνmi) =

{bmνm,1(zmνmi), bmνm,2(zmνmi), . . . , bmνm,Jmνm
(zmνmi)}, and αmνm is the corresponding parameter

vector defined as αmνm =
(
αmνm,1, αmνm,2, . . . , αmνm,Jmνm

)⊤
, ∀m, νm. Moreover, each αmνm has

an associated quadratic penalty λmνmα⊤
mνmSmνmαmνm which enforces specific properties on the mνthm

function, such as smoothness. Smoothing parameter λmνm ∈ [0,∞) controls the trade-off between fit
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and smoothness. The overall penalty can be written as α⊤Sλα, where α = (α1,α2,α3)
⊤

, α⊤
m =

(

α⊤
m1, . . . ,α

⊤
mÑm

)

∀m, Sλ =
∑3
m=1

∑Ñm

νm=1 λmνmSmνm , λ is a vector containing all smoothing pa-

rameters and Smνm are positive definite or semi-definite symmetric known square matrices. Centering

constraint
∑

i smνm(zmνmi) = 0 is imposed on all smooth terms in the model for identification purposes.

The above formulation allows us to represent many types of covariate effects depending on the nature of

the covariate(s) considered; some common examples are described in Supplementary Material A.

Using regression spline representation (2.2), we can express (2.1) in a more compact way as

y∗mi = v
⊤
miγm + L⊤

miαm + εmi = ηmi + εmi,

where ηmi = v
⊤
miγm+L⊤

miαm =
(
v
⊤
mi,L

⊤
mi

)
(γm,αm)

⊤
= x⊤

miβm and L⊤
mi = {Lm1(zm1i)

⊤, . . . ,LmÑm
(zmÑmi

)⊤},

where xmi and βm are vectors of length Pm.

3. MODEL’S LIKELIHOOD

Because of the presence of additive predictors in the model, classical maximum likelihood estimation

(MLE) is not appropriate for parameter estimation as over-fitting is likely to occur in practical situations.

This issue is overcome by adopting a penalized approach where a penalty term, controlling for the model’s

smoothness, is added to the original objective function. Simultaneous estimation of all parameters of the

trivariate additive probit model is therefore achieved by penalized MLE (PMLE) through problem

δ̂ := argmin
δ

−ℓp(δ) = argmin
δ

−{logL(Y; δ)− 1

2
α⊤Sλα}, (3.3)

where δ = (β⊤,ϑ⊤)⊤, β = (β⊤
1 ,β

⊤
2 ,β

⊤
3 )

⊤, ϑ = (ϑ12, ϑ13, ϑ23)
⊤

, α⊤Sλα = δ⊤S̃λδ with

S̃λ=diag
(

0
⊤
P̃1
, λ1ν1S1ν1 , . . . , λ1Ñ1

S1Ñ1
,0⊤
P̃2
, λ2ν2S2ν2 , . . . , λ2Ñ2

S2Ñ2
,0⊤
P̃3
, λ3ν3S3ν3 , . . . , λ3Ñ3

S3Ñ3
, 0, 0, 0

)

,

0
⊤
P̃m

=
(
0m1, . . . , 0mP̃m

)
and P̃m denotes the number of variables in vm. For a 3-dimensional binary re-

sponse vector we have 23 trivariate probabilities expressed via the cumulative distribution function (cdf)
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of the trivariate normal distribution. The likelihood is given by the joint density of observed outcomes

L(Y; δ) =

n∏

i=1

23∏

k̃=1

Lik̃(yi; δ) =
n∏

i=1

23∏

k̃=1

Ψ
Y

ik̃

ik̃
,

where Lik̃ is derived from Lemma 3.1 for M = 3. Term Yik̃ denotes an indicator variable for the k̃th

combination of the three possible events y1i = ē1, y2i = ē2, y3i = ē3 with ēm ∈ {0, 1} ∀m and Ψik̃ is

the corresponding trivariate normal cdf. For instance, if k̃ = 3 corresponds to events y1i = y3i = 1 and

y2i = 0 then Yi3 = y1i(1− y2i)y3i and Ψi3 = P(y1i = 1, y2i = 0, y3i = 1).

LEMMA 3.1 Quantity Lik̃ evaluated at the vector (Biηi)k̃ is equal to the cdf of a multivariate standardized

normal vector with correlation matrix (BiΣBi)k̃, that is

Lik̃(yi; δ) = Ψ
Y

ik̃

ik̃
=
{
ΦM,εi

((Biηi)k̃;0, (BiΣBi)k̃)
}Y

ik̃ =
{
ΦM,εi

((wi)k̃;0, (Υi)k̃)
}Y

ik̃ ,

where wi = Biηi = (w1,i, w2,i, . . . , wM,i)
⊤

, Υi = BiΣBi, wm,i = ỹmiηmi, for ỹmi = (2ymi − 1),

ηmi = x⊤
miβm, ηi = (η1i, η2i, . . . , ηMi)

⊤, Bi denotes a diagonal M ×M matrix with main diagonal

elements ỹmi = (2ymi − 1) that depend on y∗mi, that is Bi = diag(2y1i − 1, 2y2i − 1, . . . , 2yMi − 1).

Proof. See Supplementary Material B. �

We can therefore express the log-likelihood function as

logL(Y; δ) = ℓ(δ) =

n∑

i=1

23∑

k̃=1

ℓik̃(δ) =

n∑

i=1

4∑

k̃=1

{

Yik̃ logΨik̃ + Yi(4+k̃) logΨi(4+k̃)

}

,

where Ψik̃ = Φ3,εi
((wi)k̃;0, (Υi)k̃), Ψi(4+k̃) = Φ3,εi

(−(wi)k̃;0, (Υi)k̃), Φ3,εi
corresponds to trivari-

ate normal integrals, and wi and Υi are defined in Lemma 1. Note that for each k̃ the form of wi and

Υi is different as their structure depends on the k̃th combination of the three possible events. In gen-

eral there are no exact methods for calculating the multivariate normal (MVN) probabilities ΦM,εi
, for

M > 2. Accurate approximations, however, can be obtained via the R function pmnorm() in pack-

age mnormt (Azzalini, 2014). The approximation method by Trinh & Genz (2015) is another possibility

for computing the MVN probabilities. As compared to pmnorm(), this approach gains computational
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speed but becomes less accurate for highly correlated responses. Both methods have been implemented

in SemiParTRIV(); their full description can be found in Supplementary Materials C.1 and C.2. Once

P(y1i = 1, y2i = 1, y3i = 1) ∀i has been obtained, the remaining probabilities can be efficiently calcu-

lated using relationship
∑n
i=1 {p111i + p110i + p101i +p011i + p000i + p001i + p010i + p100i} =

∑n
i=1 {p11i + p10i + p01i + p00i} =

∑n
i=1 {p1i + p0i} = 1, where pē1ē2ē3i = P(y1i = ē1, y2i = ē2, y3i =

ē3), pē1ē2i = P(y1i = ē1, y2i = ē2) and pē1i = P(y1i = ē1).

Since the correlation parameters can only take values in [−1, 1], we use Fisher transformation ϑ∗zk =

tanh−1(ϑzk) and redefine δ as (β⊤,ϑ∗⊤)⊤ to ensure that in optimization δ ∈ R
Q, where ϑ∗ =

(ϑ∗12, ϑ
∗
13, ϑ

∗
23)

⊤
and Q is the total number of parameters in δ. To ensure positive-definiteness of Σ,

we need to include range restrictions on the correlations; in this case, if we fix ϑ13 and ϑ23 then ϑ12 is

restricted to take values in
(

ϑ13ϑ23 −
√

(1− ϑ213)(1− ϑ223), ϑ13ϑ23 +
√

(1− ϑ213)(1− ϑ223)
)

. In prac-

tice, such a restriction is imposed using the eigenvalue method (Rousseeuw & Molenberghs, 1993). A

detailed description of the approach and the relevant geometric proof can be found in Supplementary

Materials D.1 and D.2 for reader’s convenience.

4. PARAMETER ESTIMATION

Joint estimation of δ and λ via (3.3) would clearly lead to severe over-fitting as the optimal value of ℓp(δ)

would be reached when λ̂ = 0 (e.g., Ruppert et al., 2003). Following Gu (2002), Marra et al. (2016) and

Wood (2004), we estimate the model and smoothing parameters using a two stage approach; one step

concerns estimation of δ conditional on λ and the other estimation of λ conditional on δ. Note that such

an approach is philosophically very similar to the Bayesian estimation method discussed, for instance, by

Klein & Kneib (2016) where Bayesian sampling is used to estimate δ and λ conditional on each other.

Holding λ fixed at a vector of values, we seek to minimize −ℓp(δ). This is achieved via a trust-region

algorithm which has generally proved to be more stable and faster than standard numerical optimization

procedures for simultaneous models (e.g., Donat & Marra, 2016; Radice et al., 2016). Each iteration κ of
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the trust-region algorithm solves the sub-problem

min
s

Qp(δ
[κ]) := −

{

ℓp

(

δ[κ]
)

+ s⊤gp(δ
[κ]) +

1

2
s⊤Hp(δ

[κ])s

}

subject to ‖s‖ 6 ∆
[κ],

δ[κ+1] = argmin
s

Qp(δ
[κ]) + δ[κ],

where Qp(δ
[κ]) is a quadratic approximation of ℓp at δ[κ], gp(δ

[κ]) denotes the penalized score function

defined as g(δ[κ]) − S̃
λ̂
δ[κ], Hp(δ

[κ]), the penalized Hessian matrix, is given by H(δ[κ]) − S̃
λ̂

, ‖ · ‖

denotes the Euclidean norm and ∆
[κ] is the radius of the trust region. A more detailed description of the

trust region approach is given in Supplementary Material E. The analytical score function, gi(δ
[κ]) =

∇δℓi
(
δ[κ]

)
, and Hessian matrix, Hi(δ

[κ]) = ∇δ∇⊤
δ
ℓi
(
δ[κ]

)
, required to implement the trust-region

approach are computed using

∇δℓi(δ) =

(
∂η̄i
∂δ

)⊤
∂ℓi(δ)

∂η̄i
=

(
∂η̄i
∂δ

)⊤{
1

Ψik̃

∂Ψik̃

∂η̄i

}

, (4.4)

∇δ∇⊤
δ ℓi(δ) =

∂ℓi(δ)

∂η̄i

∂2η̄i
∂δ∂δ⊤

+

(
∂η̄i
∂δ

)⊤
∂2ℓi(δ)

∂η̄i∂η̄⊤
i

∂η̄i
∂δ

=

{
1

Ψik̃

∂Ψik̃

∂η̄i

}
∂2η̄i
∂δ∂δ⊤

+

(
∂η̄i
∂δ

)⊤
{

− 1

Ψik̃Ψ
⊤
ik̃

∂Ψik̃

∂η̄i

(
∂Ψik̃

∂η̄⊤
i

)⊤

+
1

Ψik̃

∂2Ψik̃

∂η̄i∂η̄i

⊤
}(

∂η̄i
∂δ

)

, (4.5)

where, for each i, η̄i = (η1i, η2i, η3i, η4i, η5i, η6i)
⊤

with (η4i, η5i, η6i) = (ϑ∗12, ϑ
∗
13, ϑ

∗
23), ∂η̄i/∂δ =

diag (∂η1i/∂β1, ∂η2i/∂β2, ∂η3i/∂β3, ∂ϑ
∗
12/∂ϑ

∗
12, ∂ϑ

∗
13/∂ϑ

∗
13, ∂ϑ

∗
23/∂ϑ

∗
23) = diag (∂η1i/∂β1, ∂η2i/∂β2, ∂η3i/∂β3, 1, 1, 1)

and ∂ℓ(δ)/∂η̄i=(∂ℓ(δ)/∂η1i, ∂ℓ(δ)/∂η2i, ∂ℓ(δ)/∂η3i , ∂ℓ(δ)/∂ϑ∗12, ∂ℓ(δ)/∂ϑ
∗
13, ∂ℓ(δ)/∂ϑ

∗
23)

⊤
. Predic-

tor η̄i is functionally dependent on the Q-vector δ, that is η̄i = η̄i(δ). The difficulty with deriving an-

alytical expressions for the derivative components in (4.4) and (4.5) is that they require working with

trivariate integrals, which is not straightforward. Propositions 1 and 2 provide the key derivatives for the

log-likelihood function of a generic multivariate probit model with correlation matrix structured as

Υ
∗
i =








1 r∗12,i r∗13,i . . . r∗1M,i

r∗12,i 1 r∗23,i . . . r∗2M,i
...

...
...

. . .
...

r∗1M,i r∗2M,i r∗3M,i . . . 1







,
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where r∗zk,i = tanh(ϑ∗zk)(2yzi − 1)(2yki − 1), ∀z, k, i. The propositions below have been used to imple-

ment expressions (4.4) and (4.5) after setting M = 3.

PROPOSITION 1 Assume that wi is a multivariate standardized normal vector with correlation matrix

equal to Υ
∗
i . Then the first-order derivative of the M -variate normal cdf ΦM (wi;0,Υ

∗
i ) with respect to

βm, ∀m = 1, . . . ,M , can be expressed as

∂ΦM (wi;0,Υ
∗
i )

∂βm
= φ(wm,i; 0, 1)ΦM−1(w−m,i|wm,i;M∗m

i ,Θ∗m
i )(2ymi − 1)x⊤

mi,

where M denotes the total number of equations under a multivariate probit framework, wm,i denotes the

linear predictor of the mth equation and is equal to (2ymi − 1)x⊤
miβm, βm denotes the parameter vector

of covariate vector xmi and the vector of linear predictors w−m,i is defined as (w1,i, w2,i, . . . , wm−1,i ,

wm+1,i, . . . , wM,i)
⊤

. The mean M∗m
i and variance-covariance matrix Θ

∗m
i is equal to Θ

∗m
21,iwm,i and

Θ
∗m
22,i −Θ

∗m
21,iΘ

∗m
12,i, respectively, with Θ

∗m
12,i, Θ

∗m
21,i and Θ

∗m
22,i defined by re-ordering Υ

∗
i as follows

Υ
∗m
i =

(
1×1
︷ ︸︸ ︷

Θ∗m
11,i

1×(M−1)
︷ ︸︸ ︷

Θ
∗m
12,i

Θ
∗m
21,i

︸ ︷︷ ︸

(M−1)×1

Θ
∗m
22,i

︸ ︷︷ ︸

(M−1)×(M−1)

)

.

The element Θ∗m
11,i is equal to 1, the off-diagonal blocks Θ∗m

12,i and Θ
∗m
21,i consist of the correlations r∗m̟,i,

∀ ̟ ∈ {1 : M} \m, for m 6= ̟ and the symmetric sub-matrix Θ
∗m
22,i has main diagonal elements equal

to 1 and off-diagonals equal to r∗ϕ̟̄,i, ∀ϕ̄,̟ ∈ {1 :M} \m, for ϕ̄ 6= ̟.

Proof. See Supplementary Material F.1. �

PROPOSITION 2 Assume that wi is a multivariate standardized normal vector with correlation matrix

equal to Υ
∗
i . Then the first-order derivative of the M -variate normal cdf ΦM (wi;0,Υ

∗
i ) with respect to

ϑ∗zk, ∀z = 1, . . . ,M − 1, k = z + 1, . . .M , can be expressed as

∂ΦM (wi;0,Υ
∗
i )

∂ϑ∗zk
= φ2(wzk,i;0,Θ

∗zk
i )ΦM−2(w−zk,i|wzk,i;M

∗−zk
i ,Θ∗−zk

i )×

(2yzi − 1)(2yki − 1)
4e2ϑ

∗

zk

(e2ϑ
∗

zk + 1)2
,
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whereM denotes the total number of equations under a multivariate probit framework, wzk,i = (wz,i, wk,i)
⊤

,

wz,i and wk,i refer to the linear predictors of the zth and kth equations respectively and are equal to

(2ymi − 1)x⊤
miβm, ∀m = z, k, and βm denotes the parameter vector of covariate vector xmi. The vector

of linear predictors w−zk,i is defined as (w1,i, w2,i, . . . , wz−1,i , wz+1,i, . . . , wk−1,i, wk+1,i, . . . wM,i)
⊤

,

while parameter ϑ∗zk = tanh−1(ϑzk) where ϑzk denotes the correlation coefficient between the zth

and kth responses. The variance-covariance matrix Θ
∗zk
i is equal to Θ

∗zk
11,i, while the mean M∗−zk

i and

variance-covariance matrix Θ
∗−zk
i is equal to Θ

∗zk
21,i

(
Θ

∗zk
11,i

)−1
wzk and Θ

∗zk
22,i −Θ

∗zk
21,i

(
Θ

∗zk
11,i

)−1
Θ

∗zk
12,i,

respectively. The sub-matrices Θ∗zk
11,i, Θ

∗zk
12,i, Θ

∗zk
21,i and Θ

∗zk
22,i are defined by re-ordering Υ

∗
i as follows

Υ
∗zk
i =

(

2×2
︷ ︸︸ ︷

Θ
∗zk
11,i

2×(M−2)
︷ ︸︸ ︷

Θ
∗zk
12,i

Θ
∗zk
21,i

︸ ︷︷ ︸

(M−2)×2

Θ
∗zk
22,i

︸ ︷︷ ︸

(M−2)×(M−2)

)

.

The sub-matrix Θ
∗zk
11,i has unit diagonals and off-diagonals equal to r∗zk,i. The first row (column) of Θ∗zk

12,i

(Θ∗zk
21,i) contains the correlations r∗z ¯̺,i, for ¯̺ ∈ {1 :M}\z, while the second row (column) of Θ∗zk

12,i (Θ∗zk
21,i)

contains the correlations r∗ῡk,i, for ῡ ∈ {1 :M} \ k. The diagonal block Θ
∗zk
22,i is a symmetric matrix with

unit diagonals and off-diagonal elements equal to r∗χψ,i, ∀ χ, ψ ∈ {1 :M} \ {z, k} for χ 6= ψ.

Proof. See Supplementary Material F.2. �

The analytical derivatives have been verified via numerical differentiation using the R package numDeriv

(Gilbert & Varadhan, 2015). Full matrices Υ∗m
i and Υ

∗zk
i can be found in Supplementary Material G.

Estimation of λ conditional on an updated estimate for δ is obtained using the method detailed in

Supplementary Material H for the sake of space. The two steps are iterated until the algorithm satisfies

criterion
|ℓ(δ[κ+1])−ℓ(δ[κ])|
0.1+|ℓ(δ[κ+1])| < 1e − 07. At convergence, well founded point-wise confidence intervals for

linear and non-linear functions of the model coefficients can be obtained using result δ∼̇N
(

δ̂,−Ĥ
−1

p

)

;

see Supplementary Material H.1 for further details.
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4.1 Simulation Study I

A simulation study was conducted to investigate the practical performance of the proposed approach as

compared to the available alternative routine mvprobit() available in STATA.

4.1.1 DGP1 In order to compare the results obtained from SemiParTRIV() and mvprobit(),

we employed a Data Generating Process (DGP) based on the fully parametric model. Exact simulation

settings and the code used to generate the data can be found in Supplementary Material I.1. The syntax

used to fit trivariate probit models is

out <- SemiParTRIV(formula = f.l, data = dat)

where f.l consists of a list of three equations

eqn1 <- y1 ˜ v1 + z1; eqn2 <- y2 ˜ v1 + z1; eqn3 <- y3 ˜ v1 + z1

f.l <- list(eqn1, eqn2, eqn3)

and v1 and z1 denote the binary and continuous covariates, respectively. Argument data refers to the

data frame containing the variables in the model.

The results for n = 1000 are summarized in Figure 1, whereas those for n = 10000 can be found

in Supplementary Material I.1. The regression coefficient estimates of both methods are satisfactory and

converge to their true values as n increases. As expected, the variability of the estimates decreases as the

sample size grows large. As for the correlation parameters, SemiParTRIV() considerably outperforms

mvprobit() whose estimates do not improve as n increases. This may have important inferential im-

plications; for instance, obtaining unbiased joint outcome probabilities requires accurate estimation of the

correlation coefficients (e.g., Neelon et al., 2014). For the sake of space, a brief discussion regarding the

unsatisfactory performance of mvprobit() is reported in Supplementary Material I.1, while the STATA

and R codes used to run the models for the above study are given in Supplementary Material I.1.1.
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4.1.2 DGP2 The proposed approach does have some limitations, however. On occasion, the algorithm

does not satisfy the first and second order necessary conditions for convergence (that is, zero gradient and

positive definite Hessian matrix). When this occurs, we observed that the non-zero gradient components

and/or negative eigenvalues of the Hessian matrix are typically associated with the correlation parameters.

To shed light on this issue, we conducted more simulation studies based on different configurations of the

correlation matrix. We refer to the simulation settings of one such study as DGP2 whose description is

given in Supplementary Material I.1. Table 1 displays the percentage biases and root mean squared errors

(RMSEs) for the correlation estimates. The results show that the estimation performance improves as n

grows large, however at n = 1000 the method is not deemed to perform satisfactorily. The estimated

regression coefficients (not shown here) were similar to those of the previous study at both sample sizes.

The R code used for this study is given in Supplementary Material I.1.2.

To gain more insights into the above mentioned issue, we looked at the log-likelihood behavior over

the correlation parameters. For instance, we produced univariate transects through ℓ by evaluating ℓ(δ) at

the optimal MLE values for β, ϑ∗12 and ϑ∗13, for a grid of ϑ∗23 values. Figure 2 shows the corresponding

ℓ(δ) versus ϑ∗23, based on 10 replicates, from which we observe a minimum that tends to be very shallow.

This suggests that at small sample sizes the log-likelihood (and thus the model) may provide little infor-

mation with which one can make inferences. Greater uncertainty is also expected. When this happens the

parameter is weakly or not identified. The methodology described in the next section addresses this issue.

5. CORRELATION-BASED PENALTY

The aim of this section is to further augment the penalized log-likelihood function by introducing a penalty

which addresses the difficulty in estimating the correlation parameters. The PMLE problem (3.3) then

becomes

δ̂ := argmin
δ

−{ℓ(δ)− 1

2
δ⊤S̃λδ − Pλϑ∗

(δ)}, (5.6)



Penalized likelihood estimation of a trivariate additive probit model 13

where Pλϑ∗
(δ) is a penalty acting on the correlations that depends on λϑ∗ which determines the amount

of shrinkage required for ϑ∗zk, ∀z, k. In this work, we employ the Ridge, Lasso and Adaptive Lasso

approaches.

Suppose that Rq = diag (0, 0, . . . , 0, 1, 0, . . . , 0) where the value of 1 on the (q, q)th entry of the

matrix corresponds to the qth parameter in δ, ∀q = 1, . . . , Q. Then, the penalties can be expressed as

Lasso: PL
λϑ∗

(δ) = PL
λϑ∗

(‖Rqδ‖1) = λϑ∗ (|ϑ∗12|+ |ϑ∗13|+ |ϑ∗23|) , (5.7)

Ridge: PR
λϑ∗

(δ) = PR
λϑ∗

(‖Rqδ‖22) =
1

2
λϑ∗

(
ϑ∗212 + ϑ∗213 + ϑ∗223

)
, (5.8)

Ad. Lasso: PAL
λϑ∗

(δ) = PAL
λϑ∗

(‖Rqδ‖1) = λϑ∗

(

|ϑ∗12|
|ϑ̂∗MLE

12 |γ̄
+

|ϑ∗13|
|ϑ̂∗MLE

13 |γ̄
+

|ϑ∗23|
|ϑ̂∗MLE

23 |γ̄

)

, (5.9)

∀q = Q − 2, Q − 1, Q, where superscripts L, R, and AL refer to the Lasso, Ridge and Adaptive Lasso

penalties, respectively. The expression for the Adaptive Lasso is obtained as follows. Suppose that δ̂ is a

root-n-consistent estimator for δ, in which case we can use δ̂MLE. Then by picking a γ̄ > 0 it is possible

to define adaptive weights as wq = 1/|Rqδ̂MLE|γ̄ (Zou, 2006). Thus, we have that wQ−2 = 1/|ϑ̂∗MLE
12 |γ̄ ,

wQ−1 = 1/|ϑ̂∗MLE
13 |γ̄ and wQ = 1/|ϑ̂∗MLE

23 |γ̄ . Based on simulation studies, we found that γ̄ = 1 works

well in most situations, however a sensitivity analysis trying different values for this parameter could be

carried out. Note that when using Adaptive Lasso different amounts of shrinkage for each correlation are

used and thus each coefficient is weighted differently. The derivation of expressions (5.7)-(5.9) can be

found in Supplementary Material J.1.

5.1 Computational aspects

As pointed out by Ulbricht (2010), a penalty function should satisfy the following properties: (P.1) Pλϑ∗
:

R
+ → R

+, Pλϑ∗
(0) = 0; (P.2) Pλϑ∗

is continuous and strictly monotone in R⊤
q δ; and (P.3) Pλϑ∗

is

continuously differentiable, ∀Rqδ 6= 0, such that ∂Pλϑ∗
/∂Rqδ > 0. The Ridge penalty is a quadratic

function and satisfies (P.1)-(P.3). By contrast, the Lasso and Adaptive Lasso penalties are singular at δ = 0

(and thus not differentiable at this point) and non-concave with respect to δ. In these cases, it would
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be unfeasible to maximize the penalized likelihood function using the approach described in Section 3.

We therefore elect to approximate these two non-differentiable penalties by differentiable ones. Such

approximations are available in the literature. For instance, Fan & Li (2001) approximated quadratically

the non-convex SCAD penalty, while Ulbricht (2010) applied this idea to Lasso penalties. Rippe et al.

(2012) approximated quadratically the L0-type penalty by employing a weighted Ridge penalty. In this

work, we employ the local quadratic approximation approach.

5.1.1 Approximations of non-differentiable norms The non-differentiability of L1-type penalties such

as Lasso and Adaptive Lasso can be avoided by approximating a norm at the critical point ‖Rqδ‖1 = 0.

Let ‖Rqδ‖1 = ‖ξq‖1. As in Koch (1996), norm ‖ξq‖1 in a penalty function can be approximated by

(
ξ⊤q ξq + c̄

)1/2
, where c̄ is a small positive real number which controls how close the approximation and

the exact function are; Oelker & Tutz (2013) argue that c̄ ≈ 10−8 works well in most cases. Similarly as

in Oelker & Tutz (2013), we combine this approximation with a trick by Fan & Li (2001) as well as an

idea introduced by Ulbricht (2010). We assume that an approximation to each norm ‖ξq‖l exists such that

‖ξq‖l = Kl(ξq, C) = limC̄→C Kl(ξq, C̄), where C̄ represents a set of possible tuning parameters, C is the

set of boundary values for ‖ξq‖l and Kl(ξq, C̄) should be at least twice differentiable ∀l > 1. Additionally,

for all ξq , for which derivative ∂ ‖ξq‖l /∂ξq is defined, we assume that ∂ ‖ξq‖l /∂ξq = limC̄→C Dl(ξq, C̄),

where Dl(ξq, C̄) = ∂Kl(ξq, C̄)/∂ξq ∀l. We further assume that Dl(0, C̄) = 0. As mentioned above, theL1

norm is approximated by K1(ξq, C̄) = (ξ⊤q ξq+c̄)
1/2. The first derivative D1(ξq, C̄) =

(
ξ⊤q ξq + c̄

)−1/2
ξq

is a continuous approximation for the first-order derivative of the L1 norm. In general, K1(ξq, C̄) deviates

only slightly from K1(ξq, C). That is, for ξq = 0 the deviation is
√
c̄, while for any other value of ξq the

deviation is <
√
c̄.

Penalty PG
λϑ∗

(δ), for G = {L,AL}, can be locally approximated by a quadratic function as follows.

Suppose that δ̃ is an initial value close to δ̂. Then we approximate PG
λϑ∗

(δ) by a Taylor expansion of order

1 at δ̃, that is, PG
λϑ∗

(δ) ≈ PG
λϑ∗

(δ̃) + ∇
δ̃
PG
λϑ∗

(δ̃)⊤(δ − δ̃). As proved in Supplementary Material J.2,
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PG
λϑ∗

(δ) can be approximated as

PG
λϑ∗

(δ) ≈ 1

2
δ⊤







∇‖Rq δ̃‖1
PG
λϑ∗

(δ̃) · D1(Rqδ̃)
(

Rqδ̃
)⊤

RqR
⊤
q







δ ≈ 1

2
δ⊤ΛG

λϑ∗

δ,

where ∇‖Rq δ̃‖1
PG
λϑ∗

(δ̃) = ∂PG
λϑ∗

(δ̃)/∂‖Rqδ̃‖1, D1(Rqδ̃) = ∂‖Rqδ̃‖1/∂Rqδ̃, ΛG
λϑ∗

has the following

form

Λ
G
λϑ∗

=

(
0Q×Q 0Q×3

03×Q A
G
λϑ∗

)

,

and A
G
λϑ∗

is a 3× 3 diagonal matrix that corresponds to the correlation parameters that have to be penal-

ized. The expressions for the penalty matrices of Lasso and Adaptive Lasso are

Λ
L
λϑ∗

= λϑ∗ diag

(

0P1×P1
,0P2×P2

,0P3×P3
,

1
√

ϑ∗212 + c̄
,

1
√

ϑ∗213 + c̄
,

1
√

ϑ∗223 + c̄

)

, (5.10)

Λ
AL
λϑ∗

= λϑ∗ diag

(

0P1×P1
,0P2×P2

,0P3×P3
,
1/|ϑ̂∗MLE

12 |γ̄
√

ϑ∗212 + c̄
,
1/|ϑ̂∗MLE

13 |γ̄
√

ϑ∗213 + c̄
,
1/|ϑ̂∗MLE

23 |γ̄
√

ϑ∗223 + c̄

)

. (5.11)

Note that ΛG
λϑ∗

needs to be updated at each iteration of the algorithm as it depends on the estimated cor-

relations. In the Ridge penalty case we simply have Λ
R
λϑ∗

= λϑ∗ diag (0P1×P1
,0P2×P2

,0P3×P3
, 1, 1, 1).

The derivations of (5.10) and (5.11) are given in Supplementary Material J.3.

It follows that the penalized log-likelihood, score and Hessian matrix can be expressed as ℓp(δ) =

ℓ(δ) − 1
2δ

⊤
Γλ̄δ, gp(δ) = g(δ) − Γλ̄δ and Hp(δ) = H(δ) − Γλ̄, where Γλ̄ = S̃λ + Λ

G
λϑ∗

or Γλ̄ =

S̃λ+Λ
R
λϑ∗

and λ̄ includes both λ and λϑ∗ . Problem (5.6) can now be solved using the approach described

in Section 3 where matrix S̃λ is replaced by Γλ̄. If Pλϑ∗
(δ) = 0 then Γλ̄ clearly reduces to S̃λ.

The asymptotic behavior of the proposed estimator is detailed in Supplementary Material K for the

sake of space.

5.2 Simulation Study II

The aim of this simulation study is to assess the performance of the correlation-based penalty approach

described above. We will use DGP2 from Section 4.1.2. Finally, the effectiveness of the method in esti-

mating smooth function components will be explored.
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5.2.1 DGP2 Recall from Simulation Study I in Section 4.1 that the correlation parameter estimates

were not deemed satisfactory at n = 1000. Here, we re-examine this case by employing trivariate probit

models with penalized correlations, using

outR <- SemiParTRIV(f.l, data = dat, penCor = "ridge" )

outL <- SemiParTRIV(f.l, data = dat, penCor = "lasso" )

outAL <- SemiParTRIV(f.l, data = dat, w.alasso = w.al, penCor = "alasso")

where f.l and data are defined in Section 4.1. Argument penCor specifies the type of penalty used for

the correlation parameters (ridge, lasso or alasso) and w.alasso denotes a 3×1 vector including

the adaptive weights chosen as

w.al = c(theta12.ML, theta13.ML, theta23.ML)

where theta12.ML, theta13.ML and theta23.ML correspond to ϑ̂MLE
12 , ϑ̂MLE

13 and ϑ̂MLE
23 . Table

2 shows substantial gains in accuracy and precision when penalizing the correlation parameters. In this

case, using lasso produced better overall performances as compared to alasso and ridge, although

such differences may be judged as negligible.

5.2.2 DGP3 To assess the ability of SemiParTRIV() in estimating smooth function components,

we modified slightly DGP2 by introducing non-linear effects for the continuous variable in the model.

Estimation was achieved using the same syntax as that shown in the previous section but with equations

specified as

eqn1 ˜ v1 + s(z1); eqn2 ˜ v1 + s(z1); eqn3 ˜ v1 + s(z1)

where s(z1) defines a smooth function of the continuous covariate z1. A detailed description of DGP3

as well as the corresponding R code can be found in Supplementary Material I.2. In this case the coeffi-

cients of the spline bases and the correlations were penalized. The Lasso-type correlation-based penalty

was employed (using Ridge and Adaptive Lasso produced virtually identical results). The estimates for
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the correlations and parametric part of the model were very similar to those of the previous study. Figure

3 shows that the estimated curves recover the true functions reasonably well. For n = 1000, the estimates

are rather variable and there are cases where the estimated functions are either wigglier or smoother than

they should be. This does not come as a surprise recalling that we are dealing with simultaneous binary

models and as the sample size grows large the results improve considerably. Finally, we calculated 95%

average coverage probabilities for the model’s smooth functions using point-wise intervals based on the

result mentioned in Section 4. The coverages for s1(z1), s2(z1) and s3(z1) were 0.959, 0.956 and 0.974

for n = 1000, and 0.949, 0.950 and 0.951 for n = 10000, hence confirming the good performance of the

employed approximation.

The proposed approach generally proved effective. However, one should bear in mind that if the ob-

served proportions of some trivariate binary events are very low then estimation may become challenging

if not infeasible in some cases.

6. ANALYSIS OF NORTH CAROLINA DATA

Birth weight and gestational age are strongly related with infant morbidity and mortality (Paneth, 1995;

Butler et al., 2007). Infant’s low birth weight (LBW) and preterm birth (PTB) are typically defined as bi-

nary variables taking value 1 when weight is less than 2500 grams, and number of gestation weeks is less

than 37, respectively (e.g., Neelon et al., 2014). Kiely (1998) and Martin et al. (1999) argued that multiple

birth (MB), also modeled as a binary variable, is strongly related with PTB and LBW. These variables are

typically influenced by geographic, demographic and behavioral characteristics (e.g., Neelon et al., 2014;

Miranda et al., 2009; South et al., 2012). This section illustrates the proposed modeling framework using

2007-2008 birth data from the North Carolina Center for Health Statistics (http://www.schs.state.nc.us/).

The goal is to analyse jointly LBW, PTB and MB conditional on flexible functions of covariates and to

account for residual dependence between the responses.
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6.1 Model specifications and results

The data set consists of 61, 426 female newborns (similar results were obtained for male infants) which

provides details on infant, maternal health and parental characteristics. The choice of variables included

in the model was mainly driven by previous work on the subject (e.g., Miranda et al., 2009; South et al.,

2012; Neelon et al., 2014). The responses are plurality (mb), a binary variable that takes value 1 for single-

ton birth and 0 otherwise, infant’s birth weight (lbw) and preterm birth (ptb) which have been defined

above. The covariates are maternal race categorized as non-white and white (nwhite), smoking sta-

tus with 1 indicating a mother smoking during pregnancy (smoker), weight gained by mother during

pregnancy in pounds (gained), age of mother in years (mage) and county in which the birth occurred

(county). We employed STATA’s function mvprobit() and the proposed SemiParTRIV(). The

model equations are

mb∗
i = β11 + β12nwhitei + β13smokeri + gainedi + magei + countyi + ε1i,

lbw∗
i = β21 + β22nwhitei + β23smokeri + gainedi + magei + countyi + ε2i,

ptb∗
i = β31 + β32nwhitei + β33smokeri + gainedi + magei + countyi + ε3i.

The regression coefficient estimates for the two competing methods were very similar and are not reported

here. However, as shown in Table 3, the estimated correlations are significantly different. Moreover, the

proposed approach was faster and produced narrower intervals as compared to those of STATA’s routine.

Figure 4 depicts the joint probabilities (averaged by county) that birth is multiple, infant’s birth weight is

normal and the baby is born full term. The probabilities obtained using mvprobit() are overall higher

than those obtained using SemiParTRIV(). This can be attributed to the different correlation estimates

of the two methods. Our simulations showed that STATA’s routine produces biased correlation estimates,

hence we would be reluctant to trust such results.

Our approach allows for flexible functional dependence of the responses on the covariates. We there-



Penalized likelihood estimation of a trivariate additive probit model 19

fore re-specify the model using the following equations

mb∗
i = β11 + β12nwhitei + β13smokeri + s11(gainedi) + s12(magei) + s1spatial(countyi) + ε1i,

lbw∗
i = β21 + β22nwhitei + β23smokeri + s21(gainedi) + s22(magei) + s2spatial(countyi) + ε2i,

ptb∗
i = β31 + β32nwhitei + β33smokeri + s31(gainedi) + s32(magei) + s3spatial(countyi) + ε3i,

where sm1 and sm2, ∀m = 1, 2, 3, are smooth functions of gainedi and magei represented using

penalized thin plate regression splines with 20 base functions and second order penalties, and smspatial

models spatial regional effects using a Markov random field approach.

An example of estimated regression effects is shown in Figure 5 for the lbw equation. This suggests

that the likelihood of low birth weight decreases with weight gained by the mother during pregnancy

(with a pick at around 40 pounds) and then increases (although with quite some uncertainty). The effect

of mother’s age on the propensity of lower infant’s birth weight appears to be almost steady up to 30 years

with a dramatic increase for women older than 40 years. Note that the estimated smooths are centered

around zero because of centering identifiability constraints (see Section 2), however this does not affect

interpretation. The point-wise confidence intervals do not contain the zero line in most of the ranges of

the gained and mage values. This suggests that these two variables are important factors in determining

lbw. The spatial map shows the effects of the county variable on the outcome, where darker colors

correspond to a decreased propensity of low birth weight. P-values for testing smooth components for

equality to zero were obtained by adapting the results discussed in Wood (2013a) and Wood (2013b) to

the current context. These showed that the covariate effects are significant at least at the 5% level.

7. DISCUSSION

We have introduced a penalized likelihood method to estimate a trivariate system of probit regressions

that incorporate additive or semi-parametric effects. The approach can also penalize the model’s correla-

tion coefficients via differentiable and approximations of non-differentiable penalties. This addresses the
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difficulty in estimating accurately the correlation parameters at small or modest sample sizes, an issue

that has been neglected in the literature and that is likely to have a detrimental impact on the empirical

performance of simultaneous binary models with more than two responses. The proposed developments

are backed by a reliable estimation method which requires analytical information on the score vector and

Hessian matrix of the model’s log-likelihood. Such information is not readily available in the literature

and has been provided in this paper. Some asymptotic properties of the proposed estimator have also been

discussed. The proposed model can be easily fitted using the SemiParTRIV() function in the R package

SemiParBIVProbit. The proposed method has been illustrated through simulations as well as a case

study whose aim was to estimate a simultaneous model for three binary outcomes of newborn infants in

North Carolina. Our results showed that joint outcome probabilities are affected by the way the model’s

parameters are estimated, especially the correlation coefficients.

Future work will look into the feasibility of modeling the correlation parameters as functions of flexi-

ble predictors, and into extending the material in Section 4 to accommodate link functions other than pro-

bit. Another interesting extension would be to exploit pair-copula and composite likelihood constructions

to allow for non-Gaussian dependencies between the responses. A future release of SemiParBIVProbit

will also incorporate the option of fitting trivariate probit models with double sample selection (e.g.,

Zhang et al., 2015); this will require deriving the model’s log-likelihood and its respective score and Hes-

sian components, but the proposed framework will be essentially unaffected by such changes.
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Method Comparison − DGP1 − n = 1000
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Fig. 1: Boxplots of parameter estimates obtained by applying mvprobit() and SemiParTRIV() to

250 datasets simulated according to DGP1. The sample size was equal to 1000 and the true parameter

values are represented by horizontal gray dotted lines.

DGP2

n = 1000 n = 10000

Estimator Bias (%) RMSE Bias (%) RMSE

ϑ̂12 11.36 0.0935 -0.79 0.0262

ϑ̂13 13.53 0.1204 1.86 0.0320

ϑ̂23 -2.02 0.0567 0.16 0.0129

Table 1: Percentage biases and root mean squared errors of the correlation estimates obtained by ap-

plying SemiParTRIV() to 250 datasets simulated according to DGP2. RMSE(ϑ̂zk) is given by
√

1
250

∑250
ι=1{ϑ̂zk,ι − ϑzk0}2 where ϑ̂zk,ι denotes the ι-th estimated value and ϑzk0 is the true one.
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Fig. 2: Profile log-likelihood function of the trivariate probit model for correlation parameter ϑ∗23, for 10

data sets of sample size 1000 generated using DGP2. The true value is represented by the vertical grey

line.

DGP2, n = 1000

Estimator Correlation-based penalty Bias (%) RMSE

ϑ̂12

Unpenalized 11.36 0.0935

Ridge 0.10 0.0903

Lasso 0.02 0.0835

Adaptive Lasso -0.31 0.0862

ϑ̂13

Unpenalized 13.53 0.1204

Ridge 0.13 0.1158

Lasso 0.07 0.1092

Adaptive Lasso 0.03 0.1142

ϑ̂23

Unpenalized -2.02 0.0567

Ridge -0.03 0.0551

Lasso -0.02 0.0475

Adaptive Lasso 0.01 0.0428

Table 2: Percentage biases and root mean squared errors of the correlation estimates obtained by applying

SemiParTRIV() to 250 datasets simulated according to DGP2 when the unpenalized approach as well

as Ridge, Lasso and Adaptive Lasso correlation-based penalties are employed.
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Fig. 3: Estimated smooth functions for s1(z1), s2(z1) and s3(z1) obtained by applying SemiParTRIV()

to 250 datasets simulated according to DGP3. The first row shows the estimated curves obtained from sam-

ples of 1000 observations, whereas those in the second row correspond to samples of 10000 observations.

The black lines represent the estimated smooth functions over all replicates and the red solid lines refer to

the true functions.

SemiParTRIV() mvprobit()

ϑ̂12 (95% CI) −0.7617 (−0.7612,−0.7622) −0.5191 (−0.5027,−0.5351)

ϑ̂13 (95% CI) −0.6397 (−0.6390,−0.6402) −0.4277 (−0.4107,−0.4443)

ϑ̂23 (95% CI) 0.7853 ( 0.7850, 0.7856) 0.6796 ( 0.6692, 0.6897)
Execution Time 296.26 349.41

Table 3: Correlation parameter estimates obtained by using SemiParTRIV() and mvprobit(). Cor-

responding 95% intervals (CIs) are reported in parentheses. The execution time (in seconds) for each

method is reported at the bottom of the table.



28 REFERENCES

0
.5

1
.0

1
.5

SemiParTRIV

0
.5

1
.0

1
.5

mvprobit

Fig. 4: Joint probabilities (in %) that mb is multiple, lbw is > 2500 grams and ptb is > 37 weeks by

county in North Carolina, obtained using by SemiParTRIV() and mvprobit().
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Fig. 5: Smooth effects of gained and mage on lbw and associated 95% point-wise confidence intervals.

The jittered rug plot, at the bottom of each graph, shows the covariate values. The numbers in brackets in

the y-axis captions specify the edf of the smooth curve (edf = 1 corresponds to a straight line estimate;

the higher the value the more complex the estimated curve). The map on the right hand side shows the

magnitude of the regional variable in each of the 100 counties in North Carolina.
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