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ABSTRACT

In this paper, music genre classification is addressed in a
multilinear perspective. Inspired by a model of auditory
cortical processing, multiscale spectro-temporal modulation
features are extracted. Such spectro-temporal modulation
features have been successfully used in various content-based
audio classification tasks recently, but not yet in music genre
classification. Each recording is represented by a third-order
feature tensor generated by the auditory model. Thus, the
ensemble of recordings is represented by a fourth-order data
tensor created by stacking the third-order feature tensors
associated to the recordings. To handle large data tensors
and derive compact feature vectors suitable for classifica-
tion, three multilinear subspace techniques are examined,
namely the Non-Negative Tensor Factorization (NTF), the
High-Order Singular Value Decomposition (HOSVD), and
the Multilinear Principal Component Analysis (MPCA). Clas-
sification is performed by a Support Vector Machine. Strat-
ified cross-validation tests on the GTZAN dataset and the
ISMIR 2004 Genre one demonstrate the advantages of NTF
and HOSVD versus MPCA. The best accuracies obtained by
the proposed multilinear approach is comparable with those
achieved by state-of-the-art music genre classification algo-
rithms.

1 INTRODUCTION

To manage large music collections, tools able to extract use-
ful information about musical pieces directly from audio
signals are needed. Such information could include genre,
mood, style, and performer [13]. Aucouturier and Pachet
[1] indicate that music genre is probably the most popular
description of music content. Classifying music recordings
into distinguishable genres is an attractive research topic in
Music Information Retrieval (MIR) community.

Most of the music genre classification techniques, em-
ploy pattern recognition algorithms to classify feature vec-
tors, extracted from short-time recording segments into gen-
res. In general, the features employed for music genre clas-
sification are roughly classified into three classes: timbral
texture features, rhythmic features, and pitch content fea-

tures [20]. Commonly used classifiers are Support Vector
Machines (SVMs), Nearest-Neighbor (NN) classifiers, or
classifiers, which resort to Gaussian Mixture Models, Lin-
ear Discriminant Analysis (LDA), etc. Several common au-
dio datasets have been used in experiments to make the re-
ported classification accuracies comparable. Notable results
on music genre classification are summarized in Table 1.

Reference Dataset Accuracy
Bergstra et al. [4] GTZAN 82.50%

Li et al. [12] GTZAN 78.50%
Lidy et al. [14] GTZAN 76.80%

Benetos et al. [3] GTZAN 75.00%
Holzapfel et al. [6] GTZAN 74.00%

Tzanetakis et al. [20] GTZAN 61.00%

Holzapfel et al. [6] ISMIR2004 83.50%
Pampalk et al. [19] ISMIR2004 82.30%

Lidy et al. [13] ISMIR2004 79.70%

Bergstra et al. [4] MIREX2005 82.34%

Lidy et al. [14] MIREX2007 75.57%
Mandel et al. [16] MIREX2007 75.03%

Table 1. Notable classification accuracies achieved by mu-
sic genre classification approaches.

Recently, within MIR community, genre has been crit-
icized as being a hopelessly, ambiguous, and inconsistent
way to organize and explore music. Consequently users’
needs would be better addressed by abandoning it in favor of
more generic music similarity-based approaches [17]. From
another point of view, end users are more likely to browse
and search by genre than either artist similarity or music
similarity by recommendation [11]. Furthermore, Aucou-
turier et al. [2] have observed that recent systems, which as-
sess audio similarity using timbre-based features, have failed
to offer significant performance gains over early systems
and in addition their success rates make them unrealistic for
practical use. It is clear that new approaches are needed to
make automatic genre classification systems viable in prac-
tice. McKay et al. [17] argues on the importance of con-
tinuing research in automatic music genre classification and
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encourages the MIR community to approach the problem in
a inter-disciplinary manner.

The novel aspects of this paper are as follows. First,
we use bio-inspired multiscale spectro-temporal features for
music genre classification. Motivated by the fact that each
sound is characterized by slow spectral and temporal mod-
ulations and investigations on the auditory system [22], we
use the auditory model proposed in [21] in order to extract
features that map a given sound to a high-dimensional repre-
sentation of its spectro-temporal modulations. The auditory
high-dimensional representation can be viewed as a high-
order tensor that is defined on a high-dimensional space.
Note that in the field of multilinear algebra, tensors are con-
sidered as the multidimensional equivalent of matrices or
vectors [8]. In addition, cortical representations are highly
redundant [18]. Therefore, it is reasonable to assume that
the tensors are confined into a subspace of an intrinsically
low dimension.

Feature extraction or dimensionality reduction thus aims
to transform such a high-dimensional representation into a
low-dimensional one, while retaining most of the informa-
tion related to the underlying structure of spectro-temporal
modulations. Subspace methods are suitable for the afore-
mentioned goal. Indeed subspace methods, such as Princi-
pal Component Analysis (PCA), Linear Discriminant Anal-
ysis (LDA), and Non-Negative Matrix Factorization (NMF)
have successfully been used in various pattern recognition
problems. The just mentioned methods deal only with vec-
torized data. By vectorizing a typical three-dimensional cor-
tical representation of 6 scales × 10 rates × 128 frequency
bands results in a vector having dimension equal to 7680.
Many pattern classifiers, can not cope with such a high-
dimensionality given a small number of training samples. In
addition, handling such high-dimensional samples is com-
putationally expensive. Therefore, eigen-analysis or Singu-
lar Value Decomposition cannot be easily performed. De-
spite implementation issues, it is well understood that re-
shaping a 3D cortical representation into a vector, breaks the
natural structure and correlation in the original data. Thus,
in order to preserve natural structure and correlation in the
original data, dimensionality reduction operating directly on
tensors rather than vectors is desirable. State-of-the-art mul-
tilinear dimensionality reduction techniques are employed,
e.g. Non-Negative Tensor Factorization (NTF) [3], High-
Order Singular Value Decomposition (HOSVD) [9], and Mul-
tilinear Principal Component Analysis (MPCA) [15] in or-
der to derive compact feature vectors suitable for classifica-
tion. Classification is performed by an SVM.

Stratified cross-validation tests on two well-known data-
sets, the GTZAN dataset and the ISMIR2004Genre dataset,
demonstrate that the effectiveness of the proposed approach
is compared with that of state-of-the-art music genre classi-
fication algorithms on the GTZAN dataset, while its accu-
racy exceeds 80% on the ISMIR2004Genre one.

In Section 2, the computational auditory model and the
cortical representation of sound are described. Basic multi-
linear algebra and multilinear subspace analysis techniques
are briefly introduced in Section 3. The application of mul-
tilinear subspace analysis to cortical representations is dis-
cussed in this section as well. Datasets and experimental
results are presented in Section 4. Conclusions are drawn
and future research direction are indicated in Section 5.

2 COMPUTATIONAL AUDITORY MODEL AND
CORTICAL REPRESENTATION OF SOUND

The computational auditory model, proposed in [21], is in-
spired by psychoacoustic and neurophysiological investiga-
tions in the early and central stages of the human auditory
system. An acoustic signal is analyzed by the human audi-
tory model and a four-dimensional representation of sound
is obtained, the so-called cortical representation. The model
consists of two basic stages. The first stage converts the
acoustic signal into a neural representation, the so-called au-
ditory spectrogram. This representation is a time-frequency
distribution along a tonotopic (logarithmic frequency) axis.
At the second stage, the spectral and temporal modulation
content of the auditory spectrogram is estimated by mul-
tiresolution wavelet analysis. For each frame, the multires-
olution wavelet analysis is implemented via a bank of two-
dimensional Gabor filters, that are selective to spectrotem-
poral modulation parameters ranging from slow to fast tem-
poral rates (in Hertz) and from narrow to broad spectral
scales (in Cycles/Octave). Since, for each frame, the anal-
ysis yields a scale-rate-frequency representation, thus the
analysis results in a four-dimensional representation of time,
frequency, rate, and scale for the entire auditory spectro-
gram. Mathematical formulation and details about the audi-
tory model and the cortical representation of sound can be
found in [18, 21].

Psychophysiological evidence justifies the choice of sca-
les ∈ {0.25, 0.5, 1, 2, 4, 8} (Cycles / Octave) and posi-
tive and negative rates ∈ {±2,±4,±8,±16,±32} (Hz) to
represent the spectro-temporal modulation of sound. The
cochlear model, employed by the first stage, has 128 fil-
ters with 24 filters per octave, covering 5 1

3 octaves along the
tonotopic axis. For each sound recording, the extracted four-
dimensional cortical representation is averaged along time
and the average rate-scale-frequency cortical representation
is thus obtained, that is naturally represented by a third-
order tensor. Accordingly, the feature tensorD ∈ R

I1×I2×I3
+ ,

where I1 = Iscales = 6, I2 = Irates = 10, and I3 =
Ifrequencies = 128 results. During the analysis, we have
used the NSL Matlab toolbox 1 .

1 http:// www.isr.umd.edu/CAAR/pubs.html
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3 MULTILINEAR SUBSPACE ANALYSIS

Recently, extensions of linear subspace analysis methods to
handle high-order tensors have been proposed. In this sec-
tion, three multilinear subspace analysis methods are briefly
addressed. To begin with, a short introduction in multilinear
algebra is given.

3.1 Multilinear Algebra Basics

In the field of multilinear algebra, tensors are considered as
the multidimensional equivalent of matrices (second-order
tensors) and vectors (first-order tensors) [8]. Throughout
this paper, tensors are denoted by calligraphic letters (e.g.
D), matrices by uppercase boldface letters (e.g. U), and vec-
tors by lowercase boldface letters (e.g. u).

A high-order real valued tensor D of order N is defined
over the tensor space R

I1×I2×...×IN , Ii ∈ Z, i = 1, 2, . . . , N .
Each element of tensor D is addressed by N indices, Di1,i2,

i3,...,iN
. Basic operations can be defined on tensors. The

mode-n vectors are column vectors of matrix D(n) ∈ R
In×(I1

...In−1In+1...IN ) that results by mode-n unfolding the tensor
D.

The symbol ×n stands for the mode-n product between
a tensor and a matrix. The mode-n product of a tensor
D ∈ R

I1×I2×...×IN by a matrix U ∈ R
Jn×In , denoted

by D ×n U, can be computed via the matrix multiplica-
tion B(n) = UD(n), followed by re-tensorization to undo
the mode-n unfolding.

The inner product of two tensorsA andB ∈ R
I1×I2×...×IN

is denoted as < A,B >. The Frobenius norm of a tensor A
is defined as ||A||F =

√
< A,A >.

An N -order tensor D has rank 1, when it is decomposed
as the Kronecker product of N vectors u(1), u(2), . . . , u(N),
i.e. D = u(1) ⊗ u(2) ⊗ . . .⊗ u(N). The rank of an arbitrary
N -order tensorD, R = rank(D), is the minimal number of
rank-1 tensors that yield D, when linearly combined.

3.2 Non-Negative Tensor Factorization

NTF using Bregman divergences is proposed in [3]. The
NTF algorithm is a generalization of the NMF algorithm
[10] for N -dimensional tensors. NTF is able to decompose
a tensor D ∈ R

I1×I2×...×IN
+ into a sum of k rank-1 tensors:

D =
k∑

j=1

uj
1 ⊗ uj

2 ⊗ · · · ⊗ uj
N (1)

where uj
i ∈ R

Ii
+ . In [3], the NTF is performed by minimiz-

ing various Bregman divergences, when auxiliary functions
are employed. Furthermore, NTF algorithms using multi-
plicative update rules, for each specific Bregman divergence
are proposed.

In this paper, the NTF algorithm with the Frobenius norm
is used. In order to apply the NTF algorithm for an N -order
tensor, N matrices U(i) ∈ R

Ii×k
+ , i = 1, 2, . . . , N should

be created and initialized randomly with non-negative val-
ues. Let ∗ stand for the Hadamard product and& denote the
Khatri-Rao product. The following update rule in matrix
form is applied to each U(i):

U(i) = Ũ
(i) ∗ D(i)Z

Ũ
(i)

ZT Z
(2)

where Z = U(N)& . . .&U(i+1)&U(i−1)& . . .&U(1) and
Ũ(i) refers to the matrix before updating. It is worth noting,
that operators such as Khatri-Rao product preserve the inner
structure of data.

3.3 High Order Singular Value Decomposition

HOSVD was proposed by Lathauwer et al. in [9] as a gen-
eralization of Singular Value Decomposition (SVD) applied
to matrix for high-order tensors. Every tensor D can be ex-
pressed as:

D = S ×1 U(1) ×2 U(2) ×3 . . .×N U(N). (3)

Each U(n) is a unitary matrix containing the left singular
vectors of the mode-n unfolding of tensor D. Tensor S ∈
R

I1×I2×...×IN , known as core tensor, has the properties of
all orthogonality and ordering. The HOSVD of a tensor D
according to equation (3) is computed as follows.

1. Compute matrix U(n) by computing the SVD of the
matrix D(n) and setting U(n) to be its left singular ma-
trix, n = 1, 2, . . . , N .

2. Solve for the core tensor:

S = D ×1 U(1)T ×2 U(2)T ×3 . . .×N U(N)T

. (4)

HOSVD results in a new ordered orthogonal basis for rep-
resentation of the data in subspaces spanned by each mode
of the tensor. Dimensionality reduction in each subspace is
obtained by projecting data on principal axes and keeping
only the components that correspond to the largest singular
values.

3.4 Multilinear Principal Component Analysis

Recently, Lu et al. [15] proposed the Multilinear Principal
Component Analysis as a multilinear equivalent of PCA.
Similarly to PCA, let {Dm ∈ R

I1×I2×...×IN , m = 1, 2,
3, . . . , M} be a set of M tensor samples. The total scatter
of these tensors is defined as:

ΨD =
M∑

m=1

||Dm −D||2F (5)
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where D is the mean tensor. MPCA aims to define a mul-
tilinear transformation that maps the original tensor space
R

I1×I2×...×IN onto a tensor subspace R
P1×P2×...×PN with

Pn < In, n = {1, 2, . . . , N} such that most of the variation
observed in the original tensor objects is captured, assuming
that the variation can be measured by the total tensor scatter.
Details and an algorithm for MPCA can be found in [15].

3.5 Multilinear Dimensionality Reduction of Cortical Re-
presentations

In each step of a stratified cross-validation test, the dataset
used in the experiments (see Section 4) is split into two sub-
sets, one used for training and another used for testing. As
mentioned in Section 2, each recording is represented by a
third-order feature tensor D ∈ R

Iscales×Irates×Ifrequencies

defining its average cortical representation. Thus, by stack-
ing the third order feature tensors, associated to training
recordings, a fourth order data tensor T ∈ R

Isamples×Iscales×
×Irates×Ifrequencies is obtained, where samples is the num-
ber of training set recordings.

3.5.1 Multilinear Dimensionality Reduction by NTF

The resulting data tensor T is approximated by k rank-1
tensors obtained by NTF. Without loss of generality, NTF
approximation is expressed in matrix form as:

T(1) = U(1)(U(4) & U(3) & U(2))T ⇐⇒
TT

(1) = (U(4) & U(3) & U(2))U(1)T

(6)

where T(1) ∈ R
samples×(scales·rate·frequencies) is the mode-

1 unfolding of tensor T , U(1) ∈ R
samples×k, U(2) ∈ R

scales×k, U(3) ∈ R
rates×k, and U(4) ∈ R

frequencies×k.
From (6), it is clear that every column of TT

(1), i.e. vector-
ized cortical representation of a sound, is a linear combina-
tion of the basis vectors, which span the columns, of the ba-
sis matrix W = U(4) & U(3) & U(2) with coefficients taken
from the columns of coefficient matrix U(1)T

. Performing
Gram-Schmidt orthogonalization on basis matrix W, an or-
thogonal basis matrix Q can be obtained. The orthogonal-
ized bases span the same space as that of learned bases. The
above step was employed, because previous research [5] has
shown that orthogonality increases the discriminative power
of the projections. Thus, the suitable features for classifica-
tion are derived from the projection x̃i = QT di, where di is
the vectorized cortical representation of the ith recording of
the dataset.

3.5.2 Multilinear Dimensionality Reduction by HOSVD

The resulting data tensor T is decomposed to its mode-n
singular vectors using the algorithm described in Subsec-
tion 3.3. Then, the singular matrices U(scales), U(rates), and

U(frequencies) are obtained. These matrices are orthonor-
mal ordered matrices, which contain the subspace of singu-
lar vectors. In order to produce a subspace that approxi-
mates the original data, each singular matrix is truncated by
setting a threshold so as to retain only the desired principal
axes for each tensor mode.

Features suitable for classification are derived as follows.
Each feature tensor Di corresponding to ith recording of
the dataset is projected onto the truncated orthonormal axes

Û
(scales)

, Û
(rates)

, and Û
(frequencies)

and a new feature
tensor X̂i is derived:

X̂i = Di ×1 Û
(scales) ×2 Û

(rates) ×3 Û
(frequencies)

. (7)

The actual features for classification x̃i are derived from the
vectorization of X̂i.

3.5.3 Multilinear Dimensionality Reduction by MPCA

In a similar manner to HOSVD, a multilinear transformation
that maps the original tensor space R

I1×I2×I3 onto a tensor
subspace R

P1×P2×P3 with Pn < In, n = {1, 2, 3}, such
that the subspace captures most of the variation observed in
the original tensor objects is obtained by MPCA on T . Fea-
tures for classification, x̃i, are derived from the vectorized
form of the projected Di using the multilinear transforma-
tion obtained by MPCA.

4 EXPERIMENTAL RESULTS

Experiments are performed on two different datasets widely
used for music genre classification [4, 6, 12, 13, 19, 20].
The first dataset, abbreviated as GTZAN, consists of fol-
lowing ten genre classes: Blues, Classical, Country, Disco,
HipHop, Jazz, Metal, Pop, Reggae, Rock. Each genre class
contains 100 audio recordings 30 seconds long. The sec-
ond dataset, abbreviated as ISMIR 2004 Genre, is from the
ISMIR 2004 Genre classification contest and contains 1458
full audio recordings distributed over six genre classes as
follows: Classical (640), Electronic (229), JazzBlues (52),
MetalPunk (90), RockPop (203), World (244), where the
number within parentheses refers to the number of record-
ings belong to each genre class.

Features are extracted from the cortical representation of
sound using the aforementioned multilinear subspace anal-
ysis techniques. The value of parameter k in NTF algorithm
was set to 150 and 140 for the GTZAN dataset and the IS-
MIR 2004 Genre one, respectively. The number of retained
principal components for each subspace, when HOSVD is
employed for feature extraction, is set to be 5 out of 6 for
rate, 7 out of 10 for scale, and 12 out of 128 for frequency.
The features extracted by MPCA capture 98% of the total
variation in each mode. In Figures 1 and 2, the number of
retained principal components in each subspace is shown as
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Figure 1. Total number of retained principal components in
each subspace (e.g. scale, rate, and frequency) as a function
of the portion of variance retained for the GTZAN dataset.

a function of the portion of variance retained for the GTZAN
and ISMIR2004 Genre dataset, respectively.

Classification was performed by SVM with an RBF ker-
nel. In order to tune the RBF kernel parameters, a grid
search algorithm similar to algorithm proposed in [7] was
used. Linear and polynomials kernels were also considered,
but they achieve poor performance.

The classification accuracies reported in Table 2 are the
mean accuracies obtained by 10-fold stratified cross-valida-
tion on the full datasets. They are obtained by the various
multilinear subspace analysis techniques followed by SVM.
The row marked by NTF contains the classification results
achieved by features extracted using NTF for both datasets.
The row marked by HOSVD contains the classification re-
sults achieved by features extracted using HOSVD, while
the row marked by MPCA contains the classification results
achieved by features extracted using MPCA. The effective-
ness of NTF and HOSVD as feature extraction techniques is
self-evident in both datasets.

GTZAN ISMIR2004Genre
NTF 78.20%(3.82) 80.47%(2.26)

HOSVD 77.90% (4.62) 80.95% (3.26)
MPCA 75.01% (4.33) 78.53% (2.76)

Table 2. Classification accuracy on GTZAN and IS-
MIR2004Genre datasets. The accuracy is calculated by ten-
fold stratified cross-validation. The number within paren-
theses is the corresponding standard deviation.

On the GTZAN dataset, the best classification accuracy
outperforms the rates reported by Tzanetakis et al. [20]
(61.0%), Lidy et al. [14] (76.8%), Holzapfel et al. [6]

80 82 84 86 88 90 92 94 96 98
0

2

4

6

8

10

12

14

16

18

20

22

Variance (%)

N
um

be
r 

of
 P

rin
ci

pa
l C

om
po

ne
nt

s

 

 
Scale subspace
Rate subspace
Frequency subspace

Figure 2. Total number of retained principal components in
each subspace (e.g. scale, rate, and frequency) as a function
of the portion of variance retained for the ISMIR2004Genre
dataset.

(74%), and it is comparable to the rate achieved by Li et
al. [12] (78.5%). Bergstra et al. in [4] reported a classifica-
tion accuracy equal to 82.5% on the GTZAN database, but
they do not disclose details on the experimental setup (e.g.
the number of folds).

On the ISMIR2004Genre dataset classification, accura-
cies achieved for features extracted by NTF and HOSVD
are comparable and exceed 80%. It is not possible to com-
pare directly our results with the results obtained by other
researchers on this dataset, because of the quite different ex-
perimental settings [6, 13, 19].

5 CONCLUSIONS - FUTURE WORK

In this paper, the problem of automatic music genre clas-
sification is examined in a multilinear framework. Features
have been extracted from the cortical representation of sound
using three multilinear subspace analysis techniques. The
best classification accuracies reported in this paper are com-
parable with the best accuracies obtained by other state-of-
the-art music genre classification algorithms. The effec-
tiveness of spectro-temporal features obtained by NTF and
HOSVD has been demonstrated. It is true, that multilinear
techniques applied in straightforward manner, although they
provide a more accurate representation to be exploited by
the subsequent classifier, do not yield a recognition accuracy
much higher than state-of-the-art linear algebra techniques
do. Therefore, more effort is required toward addressing the
small sample case in the multilinear algebra as well. It is
worth noting that the multilinear dimensionality reduction
techniques employed in the paper are unsupervised. In the
future, supervised multilinear subspace analysis techniques
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based on NTF will be developed and tested for the automatic
music genre classification.

Finally, in our experiments, we have considered that each
song belongs to only one genre class. Obviously, it is real-
istic to use overlapping class labels for labelling music by
style [4]. In general, high-order tensors are structures that
are suitable for a such multi-labelling classification prob-
lem.
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