

City, University of London Institutional Repository

Citation: Kulesza, T., Stumpf, S., Burnett, M., Wong, W., Riche, Y., Moore, T., Oberst, I.,

Shinsel, A. & McIntosh, K. (2010). Explanatory debugging: Supporting end-user debugging
of machine-learned programs. Proceedings - 2010 IEEE Symposium on Visual Languages
and Human-Centric Computing, VL/HCC 2010, pp. 41-48. doi: 10.1109/VLHCC.2010.15

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/211/

Link to published version: https://doi.org/10.1109/VLHCC.2010.15

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Explanatory Debugging:
Supporting End-User Debugging of Machine-Learned Programs

Todd Kulesza1, Simone Stumpf2, Margaret Burnett1, Weng-Keen Wong1,

Yann Riche3, Travis Moore1, Ian Oberst1, Amber Shinsel1, Kevin McIntosh1
1Oregon State University, 2City University London, 3Riche Design

{kuleszto, burnett, wong, moortrav, obersti, shinsela, mcintoke}@eecs.oregonstate.edu
Simone.Stumpf.1@city.ac.uk, yann@yannriche.net

Abstract

Many machine-learning algorithms learn rules of
behavior from individual end users, such as task-
oriented desktop organizers and handwriting
recognizers. These rules form a “program” that tells
the computer what to do when future inputs arrive.
Little research has explored how an end user can
debug these programs when they make mistakes. We
present our progress toward enabling end users to
debug these learned programs via a Natural
Programming methodology. We began with a
formative study exploring how users reason about and
correct a text-classification program. From the results,
we derived and prototyped a concept based on
“explanatory debugging”, then empirically evaluated
it. Our results contribute methods for exposing a
learned program’s logic to end users and for eliciting
user corrections to improve the program’s predictions.

1. Introduction
Machine learning techniques are increasingly used

in software adapted to end users’ own data, such as
SPAM filters, recommender systems, and predictive
text tools. These applications generate rules of
behavior that are statistically derived via a particular
user’s idiosyncratic patterns of behavior. We refer to
these generated rules as machine-learned programs.
While such programs can become fairly accurate, due
to their statistical nature, they also remain fallible.

Who can fix a mistake made by a machine-learned
program? The machine learning specialist who wrote
the generator algorithm cannot fix every generated
program for each individual user. Only one person is in
a position to judge the correctness of the generated
program: the very end user from whom the program
has been learned.

End users, however, are given little power to correct
a learned program’s errors. For example, SPAM filters
confine user corrections to implicit approval and
explicit disapproval. The user is permitted to scold the
algorithm when it is wrong, but cannot tell the system
why it was wrong.

This situation partly exists because enabling end
users to debug machine-learned programs is hard.
Learned programs use complex logic and, as generated
programs, have no “source code” to directly represent
this logic. Nevertheless, end users are capable of
providing descriptive corrections beyond the binary
scoldings commonly available today [12, 19].

We present and evaluate a new Explanatory
Debugging approach to harness this capability. Our
approach supports debugging of learned programs by
an iterative exchange of explanations between the
program and the end user: the program explains how it
arrived at its decisions, and the user explains where, in
that decision-making process, it went wrong. We call
this “explanatory” because it supports debugging via a
give and take of explanations relating to existing or
new machine learning features based on the user’s
natural descriptions of concepts. (Features are
elements used by machine learning reasoning, e.g.,
words, punctuation, etc.)

1.1. Domain: Coding in qualitative research
Our domain is coding—labeling segments of a

transcript with codes for analysis in qualitative
research—a common task for social scientists and HCI
researchers. Such codes are developed based on the
study’s research questions, so a code set is rarely
reused in its entirety. Research involving coding of
subjects’ verbalizations is labor-intensive, requiring
hours of painstaking work. If a computer could “learn”
from early examples how to code the remainder of an
experiment’s transcripts, the time saved could be
enormous. We refer to this possibility as auto-coding.

This domain is ideal for considering end-user
debugging of machine-learned programs for three
reasons. First, auto-coding is representative of a
popular domain (text classification) that figures heavily
in machine learning applications, e.g. SPAM filtering
and predictive text technology. Second, debugging the
program’s coding is needed because most studies have
only a few subjects, resulting in too little data to
reliably train the program. Third, if users can teach the
program how to code well, the timesaving will be
significant. If, however, they spend too long fixing the

machine, the effort might exceed the time it takes to
code everything by hand. Thus, the exchange between
the program and the user must facilitate an accurate
mental model of the program’s logic and must enable
the user to explain how the coding should be done, so
the learned program can benefit from these corrections.

2. Related work
There are systems that try to auto-code, e.g. the

TagHelper system [5]. While TagHelper can be highly
accurate with lots of training data, obtaining a large set
of coded examples is both expensive (because manual
coding is time-consuming), and unrealistic (because
data sets in qualitative analysis are usually small).

For users to debug the learned program’s logic, they
must be able to see it. Explanations of learned
programs’ logic have taken a variety of forms, such as
relating user actions and the resulting predictions [2],
detailing why a program made a particular prediction
[14], or explaining how an outcome resulted from user
actions [8, 23, 24]. Much of the work in explaining
probabilistic machine learning algorithms has focused
on the naïve Bayes classifier [1, 11, 12] and, more
generally, on linear additive classifiers [18], because
explanations of these systems are relatively
straightforward. More sophisticated but
computationally expensive explanations exist for
general Bayesian networks [13]. However, these
explanations are limited to account for the learned
program’s behavior and do not extend to accepting
user corrections to adapt future behavior.

Debugging involves two-way communication; once
the program explains its logic, there needs to be a way
for the user to adjust it. Some research has begun to
shed light on supporting end users in fixing simple
learned programs [12, 19, 20]. Other systems explore
building a program from the ground up by allowing
users to specify the features it should employ [15].
Research has also aimed at supporting experienced
users in debugging more complex ensemble [22],
sequential [4] and non-sequential [3] classifiers. None
of this work has explored how to successfully engage
end users in a two-way exchange in which they can
introduce new machine learning features to fix
complex learned logic.

3. Study #1: Explanations in debugging
Following the Natural Programming methodology

[17], we began with a formative study (Study #1).
Natural Programming is a user-centered methodology
for designing programming languages and systems. It
investigates users’ existing mental models
(descriptions of existing concepts and processes) for a
given task, and avoids influencing how participants
think they are expected to do said task. The new system
is designed to fit the users’ existing mental models.

Using this methodology, we investigated:

RQ1: Natural Explanations: How do end users
“naturally” describe how to fix machine-learned
programs?

RQ2: Existing Mental Models: How do end users
think machine-learned programs make decisions?

RQ3: Mental Model Mutability: Can new
information change end users’ existing mental models
of machine-learned programs?

3.1. Participants, procedure, and tasks
Nine Psychology and HCI students (five female,

four male) participated in our study; none had any
experience with machine learning. Five participants
had coded transcripts before, and all were familiar with
Excel (required to understand the transcripts’ content).

The pre-task introduction involved practicing
coding to become familiar with the technique and our
codes, and completing a background demographic
questionnaire. For the main task, we asked participants
to help improve the accuracy of a system by judging
the correctness of each code, fix the code when
necessary, and to explain their reasoning.

We gave participants coded transcripts on printouts
which they could mark-up using pens, colored pencils,
etc., as they preferred. We also asked participants to
“think aloud” and recorded their verbalizations,
prompting them if their remarks were unclear.

The first 30 minutes of the main task aimed at
eliciting natural participant responses and probing their
existing mental models (RQ1 and RQ2). Participants
worked on coded transcripts without explanations, then
answered how they believed the computer did make its
decisions and what information it should use. The final
20 minutes aimed at determining how explanations
might influence users’ existing mental models (RQ3).
This involved a variant of the coded transcript with
explanations, after which participants told us how they
now believed the computer made its decisions.

3.2. Materials
The transcripts came from an unrelated study about

debugging spreadsheet errors. Although we told our
participants that a computer had coded these
transcripts, they had been hand-coded by a researcher
using four codes: Seeking Information, Information
Gained, Information Lost, and None. To elicit
participant corrections, we introduced errors by
randomly changing 30% of the expert’s codes.

We used paper printouts instead of a software
prototype to elicit participant corrections in any form
participants deemed appropriate, thus avoiding a tool
that would restrict their range of expression.

Figure 1 (left) shows a transcript for the first part of
the study, with no explanations of the reasoning behind
the codes. Figure 1 (right) includes the explanations
from the second part. These explanations were
inspired by the Whyline [9], which supports end-user

debugging by answering questions about program
behavior, and was recently adapted to explain machine
learning to end users [12, 14]. Each explanation
included two reasons why the segment was classified
as a particular code, plus two reasons each why it was
not classified as the other codes. The explanations used
10 types of features and sequential relationships that
learning algorithms can use for classification.
(Sequential relationships are features derived from
nearby features, e.g., a question mark observed in
segment #4 increases the probability of a certain code
appearing in segment #5.) Our explanations drew on
relationships within segments twice as frequently as
relationships between segments, but distributed other
feature types and relationships evenly.

3.3. Analysis methodology
Four researchers established an initial code set for

analysis of the marked-up printouts and study
transcripts, extending a code set used to research
simpler machine learning approaches [19]. Two
researchers iteratively coded small sections of a
transcript, adjusting the code set to clarify application.
Inter-coder reliability between the two researchers on
the final code set (applied to a different, complete
transcript) was calculated by the Jaccard index as 81%.
Given this acceptable level of code robustness, the two
researchers coded the transcripts and questionnaire
data. Table 1 shows the final code set.

3.4. Results: How should the program reason?
We first consider how participants explained how a

learned program should reason (RQ1). As Figure 2
shows, before having seen the explanations,
participants mainly discussed 1) single or multiple
words and punctuation, and 2) entire segments of text.
When talking about this information, participants were
about three times as likely to mention its presence than
its absence as a reason for applying a code. These
information types hold three implications for enabling
end-user debugging of learned programs.

First, participants’ emphasis on entire segments
suggests that learned programs need to reason about
them as well. Second, although punctuation comments
were few, they suggest that it cannot be carelessly
removed when a learned program preprocesses data.

Third, although text classification algorithms tend
to deal with individual words, participants talked more
about word combinations (e.g., P6: “‘Why does’ is a

key phrase that should tip us off that they’re seeking
information”). This further motivates the need to pair
end user debugging with machine-learned intelligence:
attending to all possible combinations of n consecutive
words would introduce many irrelevant features to the
program’s logic. Similarly, the algorithm designer
cannot elicit relevant word combinations for each end
user’s specific needs. Instead, we can allow end users
to teach the program about the specific multi-word
phrases it should attend to.

Relationships among different words or segments
(e.g., P1: “So is this part a continuation of this?”)
were used 44 times. An implication is that learned
programs should support sequential relationships
among data, but this is not done by many machine
learning systems, including the naïve Bayes algorithm
often used for text classifiers. In addition, sequential
classifiers typically use relationships between adjacent
segments, whereas relationships suggested by end
users may be of greater distance. There is a rich space
of sequential relationships that could be used by the
algorithm, but as in the multi-word case, it is infeasible
for the program to reason about every possibility. Here
again, end-user debugging is needed to explain to the
machine which relationships matter.

Finally, participants used the process of elimination
34 times, e.g. P2: “It’s really neither looking for info,
it’s not losing info, they’re just looking at it so I’d go

Figure 1: Paper prototypes without (left) and with (right) explanations.

Table 1: Code set for data analysis. Gray entries are
parameters for the top-level codes (white).

Code:
 (Parameter) Participant talked about…

Word/Punctuation:
 (Single) …a single word!s presence/absence.
 (Multiple) …multiple words! presence/absence.
 (Punctuation) …punctuation!s presence/absence.
 (Adjustment) …a change in word(s) importance.
 (Process) …how features should be processed.
Segment ...a segment as a whole.
Relationship:
 (Word) …relationship between words.
 (Segment) …relationship between segments.
 (QA-Pair) …a question-answer segment pair.
 (Reference) …some other portion of the transcript.
 (Double code) …one statement spanning two segments.
Code
Elimination

…the segment not fitting into any of the
other codes.

Probabilities …the statistical nature of reasoning.
Other Other or unclear.

with ‘None’.” This is evidence that in some cases
participants want to guide the learned program to
reason by exclusion, especially when dealing with
incomplete or uncertain information.

3.5. Results: How did the program reason?
In this section, we consider how participants

thought the computer did reason (RQ2), emphasizing
how the program’s explanations were able to refine
participant’s mental models about its logic (RQ3).

As Table 2 shows, before explanations were
provided, almost all participants thought the computer
made decisions based on the presence of single
keywords. At that point, only two participants talked
about multiple keywords. Almost half of the
participants said punctuation was also important.

Their before-explanation models were generally
focused on word and punctuation presence. Nobody
thought the computer used absence of words or
punctuation, and only one participant thought it
reasoned about relationships. Note that these mental
models of how they thought the computer did make
decisions were much simpler than how they thought
the program should make decisions (Section 3.4).

After working with the explanations, however, most
participants’ mental models included more complex
types of reasoning. Seven participants now thought
sequential relationships mattered, five thought word
combinations were used, and five implied the
machine’s reasoning was probabilistic, e.g. P1:
“...Uses probabilities of certain codes occurring
before and/or after other codes.”

A problem, however, arose with the participants’
perception of how probabilities worked. Their
conceptualization was that probabilities are consistent
rules. This reflects a nuance of statistical reasoning
called the outcome approach: a tendency to interpret
probabilities as binary, rather than the likelihood of a
particular response [10]. Thus, while participants
understood that the computer was using probabilities,
they still expected it to obey binary rules, e.g. P6:
“...and goes with the code with the strongest keyword
or situation.”

That participants changed their mental models after
learning new information contradicts findings by [23],
whose participants’ mental models were persistent

(possibly because counter-evidence was not presented
early enough for them to discard already entrenched
mental models). In our study, presenting participants
with explanations resulted in the integration of new
details into their mental models. While no participant’s
post-study mental model could be considered
complete, the fact that they were mutable is a key
prerequisite for incrementally explaining a program’s
logic to end users, and is an underpinning for our
Explanatory Debugging approach.

4. An Explanatory Debugging approach
As per the Natural Programming methodology, we

used the results from Study #1 to design our
Explanatory Debugging approach. Recall that the
elements of Explanatory Debugging are an interactive
give and take of explanations relating to existing or
new machine learning features based on the user’s
natural descriptions of concepts. Our AutoCoder
prototype instantiates this approach and supports all of
the results from Study #1 except for the Code
Elimination feedback type, which we could not
implement in the time available. This section points
out these ties to Study #1 as it describes the prototype.

The basic coding and reasoning functionalities,
which provide the context for Explanatory Debugging,
are as follows. AutoCoder allows users to code
segmented text transcripts (Figure 3 A) with the same
predefined codes as in Study #1 (Figure 3 B).
AutoCoder colors the codes to give users an overview
of their coding activity. The navigation scrollbar then
uses these colors to indicate each code’s occurrence
over the whole transcript (Figure 3 C). The user can
manually code any segment; in machine learning
parlance, these are training data. After the user assigns
three codes, the computer will predict codes for the
remaining segments. Because sequential relationships
between words and segments mattered in Study #1, our
prototype uses a variant of the naïve Bayes algorithm

Figure 2: Number of occurrences for each feedback type.

Table 2: Participants! mental models before (!) and
after (") explanations. Categories with <2 before and

after instances are omitted.

Su
bj

ec
t

Si
ng

le

w
or

ds

M
ul

tip
le

w

or
ds

Pu
nc

tu
at

io
n

Re
la

tio
ns

hi
p

Pr
ob

ab
ilit

ie
s

P1 ! ! " ! " "
P2 ! " ! "
P3 ! " " "
P4 ! " ! "
P5 ! " "
P6 ! " "
P7 ! " ! " "
P8 ! " ! " "
P9 " "

41"
98"

12"

157"

44" 34"
4"

0"

80"

160"

that supports sequential information. If the user
changes a code, the change becomes additional training
data and the learned program updates its predictions.

For this coding and reasoning context, we devised
facilities to support Explanatory Debugging. These
facilities, described next, allow (but do not require) a
two-way exchange about why the program or user has
made a coding decision.

Two debugging strategies used by professional
programmers are inspecting code and evaluating
program runtime data (testing); recent research shows
that end users also heavily employ both [21]. To enable
each strategy, our approach supports two-way
exchanges about both “source code” and runtime
outputs. Learned programs have no obvious source
code for end users to look at, but there are learned
“rules” that represent the logic the program follows.
Prior research [6, 20] has shown that users want to
understand this logic. Our approach supports
exchanging explanations about such “source code”
(program logic), and exchanging explanations about
runtime data (program outputs).

4.1. Explanations about logic
Participants in Study #1 expressed fixes in a variety

of forms, including single words, word combinations,
punctuation, segments, and relationships.

To explain the logic behind a user’s code
assignment, the user can highlight single and
consecutive words, plus punctuation (Figure 4 W4).
These explanations can be complex, introducing
features the learned program did not use before.
Combinations of non-consecutive words in either the
same or adjacent segments are allowed, modeling
relationships between words and segments, e.g., “‘?’ in
the preceding segment followed by ‘OK’ in this
segment often means this segment is ‘Info Gained’”.

System-generated explanations of AutoCoder’s
logic are similar to the explanations in Study #1, which
were inspired by the “Why” explanations in [12]. Why-
oriented explanations have shown success in other
studies about learned programs [14], and they
improved the complexity of participant mental models
in Study #1. Because Study #1 showed that
participants had problems with the probabilistic nature
of learned programs, we worded explanations to make
clear that the logic is open to uncertainty.

AutoCoder shows the most influential features

(Figure 4 W1) that governed each prediction,
expandable to a full list ordered by influence. A
computer icon identifies the explanation as being
generated by the machine (W1), and a user icon
identifies logic corrections the user entered (W4). User
explanations are incorporated into the machine
learning system as new features with high weight for
predicting the user-specified code. The user can delete
any logic that seems wrong.

Because Study #1 showed that participants did not
realize that absence of features mattered to the
program, the machine’s explanations cover absent
features (Figure 4 W2), e.g. “The absence of ‘?’ often
means that a segment is ‘Info Gained’”. Expressing
how absent features affect the machine’s predictions to
users has previously had mixed success [12, 19].

One logic rule may be relevant to many segments,
so AutoCoder shows counts (Figure 4 W5) of how
many segments each rule potentially affects (i.e., how
many segments contain this suggestion’s features).
This impact is also displayed graphically: when a user
selects a logic rule, AutoCoder responds by
highlighting segments affected by it.

4.2. Explanations about runtime outputs
Professional programmers use testing and

debugging steppers to see the effects of their logic
changes on program outputs. AutoCoder also shows
runtime effects on logic changes users make.

As soon as new data or rules are entered, the
classifier outputs new predictions. To help users
understand the runtime effects of their last action,

Figure 3: The basic AutoCoder prototype showing a

series of segments (A), their corresponding codes (B),
and an overview of the transcript!s codes (C).

Figure 4: Widgets supporting debugging: Machine-

generated Explanation (W1); Absence Explanation (W2);
Prediction Confidence (W3); User-generated Suggestion
(W4); Impact Count (W5); Change History Markers (W6);

Popularity Bar (W7).

Change History Markers (Figure 4 W6) provide
feedback on where changes in the program’s
predictions occurred: a black dot is displayed adjacent
to predictions that changed. As the user makes changes
that do not alter the prediction for a segment, its
change marker gradually fades away.

In addition to predictions themselves, learned
programs generate data about their certainty in each
prediction. Thus, we designed a Prediction Confidence
(Figure 4 W3) widget. This is a pie graph showing the
program’s probability of coding a given segment as
each of the possible codes. A graph containing
similarly sized wedges for each code (color) indicates
the program cannot confidently determine which code
to apply. This further supports users’ needs to
understand the probabilistic nature of learned programs
(from Study #1), as well as alerting users to predictions
whose uncertainty suggests they may be incorrect.

Finally, the Popularity Bar (Figure 4 W7) addresses
a problem with learned programs called class
imbalance, in which a classifier’s training data is
unrealistically biased toward a single class (in this
case, a class imbalance results in the learned program
predicting one code far more than it should). Our
Popularity Bar represents proportions of each code
amongst the user-coded and machine-predicted
segments. The left bar represents the proportion of
each code the user has manually applied to segments,
while the right bar contrasts the proportion of codes the
machine is predicting for remaining segments. We
included this runtime information because prior work
has shown users falling prey to class imbalance when
they are not aware of it [12].

5. Study #2: How well did Explanatory
Debugging work?

In order to investigate how Explanatory Debugging
supports end users fixing machine-learned programs,
we conducted an empirical study exploring the
following research questions:

RQ4: Effectiveness: Which kinds of information
(logic, runtime, or both) enabled end users to most
effectively debug the learned program?

RQ5: User Attitudes: How did users react to the
availability of logic and runtime debugging
information?

5.1. Procedure, participants, and materials
Our prototype supported debugging exchanges

about logic and runtime information. To investigate
these aspects independently, we developed four
versions, VC (control), VL (logic), VR (runtime), and
VLR (logic and runtime), each embedding specific
widgets targeted at supporting Explanatory Debugging.
The control version (VC) provided machine-generated
explanations, user suggestions, and change history
markers, as these were considered the bare essentials

necessary to correct a learned program. Table 3
summarizes the widgets added to each version.

We recruited 74 participants (40 males, 34 females)
from the local student population and nearby residents.
None had experience with machine learning algorithms
and only one had prior experience with coding.

A 30-minute hands-on tutorial taught participants
the concept of coding, the codes, and the prototype’s
functionalities. An hour-long main task followed. In
the first half, participants coded a transcript with one
version of the prototype; the final half consisted of a
brief tutorial about a second version of the prototype
and coding a second transcript. Versions and transcript
orders were counter-balanced across participants.

After each part, participants answered free-form
questions about how they believed the program made
its decisions, plus Likert questions regarding the
usefulness of each widget and participants’ perceived
accuracy of the program. They also answered the
NASA-TLX survey [7] to evaluate difficulties and
their perceived success. Afterward, participants told us
which of the prototypes they preferred.

5.2. Results: Debugging effectiveness
Did the participants’ debugging improve the learned

program? We measured the accuracy of each learned
program by calculating its F1 score. This evaluation
metric uses precision (the count of correct
classifications divided by the count of all
classifications) and recall (the count of correct
classifications divided by the count of classifications
that should have been made). We can summarize the
tradeoff between precision and recall as an F1 score (0
being worst and 1 being best), where
F1=(2*precision*recall) / (precision+recall).

We compared the F1 scores of a baseline algorithm
against an algorithm that took user corrections into
account [16]. The baseline used participants’ code
changes only, whereas our algorithm used both the
code changes and participants’ detailed explanations.

As Figure 5 suggests, participants debugging with
VR improved the learned program significantly over
the baseline, with a mean improvement of 18% and
range of -33% to 204% (Wilcoxon rank-sum test, Z=
-2.53, p<.02). Participants who used VC, VL or VLR
did not succeed as well—many of their changes did
more harm than good. Ultimately, participants using
VC, VL, and VLR did not significantly change the

Table 3: The widgets included in each version of the
AutoCoder prototype. Gray: common to all prototypes.

 W1 W2 W3 W4 W5 W6 W7
VC ## ## ##
VL ## ## ## ## ##
VR ## ## ## ## ##

VLR ## ## ## ## ## ## ##

accuracy of their learned programs. VR’s leading
position may be explained by participants’ attitudes
about it, as we discuss next.

5.3. Results: Participant attitudes toward
Explanatory Debugging

Via participants’ questionnaire responses, we
analyzed reactions to individual logic- and runtime-
oriented widgets. As Figures 6 and 7 suggest, reactions
relating to runtime information were more positive
than reactions relating to logic information.

5.3.1. Logic-oriented explanations (VL, VLR)
Recall that the logic-oriented explanations depicted

underlying logic, akin to a traditional program’s source
code. Significantly more participants scored two logic-
oriented widgets, W2 (Absence Explanations) and W5
(Impact Counts), as “unhelpful” than would be the case
in a uniform distribution of attitude scores (Figure 6),
(!2(1,70)=6.91, p<.009 and !2(1,63)=8.39, p<.004,
respectively). As others [19] have reported, many
participants had trouble understanding how absence of
something played a role in the program’s decision-
making. As one participant explained:
P10: “[Absence explanations were] very confusing
and provided no help.”

Although not described as confusing, many
participants did not recall or seem to care about the
information presented by the Impact Counts:

P11: “The number in the circle means nothing to me.”
These results are consistent with participants’

preference for each prototype. Figure 7 (middle)
illustrates that participants rarely preferred VL to other
versions, and (right) that they expressed significantly
more frustration, mental demand, and effort (from the
NASA-TLX survey) when working with VL, as
compared to other versions (!2(3,69)=7.92, p<.05).
However, participants’ responses improved when
runtime-oriented information was included alongside
the logic, as in VLR (Figure 7, middle). Thus,
providing logic-oriented information alone was
confusing and appeared to be of little use to
participants, but its presence did not deter participants
from continuing to find runtime information helpful.

5.3.2. Runtime-oriented explanations (VR, VLR)
As Figure 7 shows, participant reactions to runtime-

oriented explanations were fairly positive. The two
treatments explaining runtime information (VR and
VLR) scored reasonably well in terms of preference
and being less challenging to debug (Figure 7, middle).
Attitudes toward the Popularity Bar were split but still
higher than the logic-oriented widgets (Figure 6), and
significantly more participants found the Confidence
graphs helpful than would be expected in a uniform
distribution (!2(1,59)=7.47, p<.007).

Interestingly, the runtime-oriented widgets may
have influenced participants’ debugging behavior
beyond our intent. Some participants in Study #1
commented on being uncertain how to code certain
segments. The Prediction Confidence widget may have
led participants to be over-confident in the program’s
choices. As one participant phrased it:
P12: “If I was undecided, the pie would help me
decide.”

Some participants, on the other hand, did not
appreciate the computer’s help:
P13: “I felt like I HAD to agree with the program.”

Similarly, the Popularity Bar influenced some
participants’ behavior in unintended ways:
P14: “I had an internal drive to want to teach the
computer to be equal. I think this caused me to favor
one answer over the next.”

Finally, given participants’ positive attitudes toward
the runtime widgets, the success of VR over VLR is
intriguing. Recall that VR had only a subset of the
VLR widgets, yet participants working with VR
performed better than those working with VLR.
Possibly having so many widgets present in VLR
confused participants into giving corrections that
harmed the system’s accuracy. The remedy does not
seem to be a straightforward “just use VR”, because
VLR had advantages over VR (e.g., Figure 7, middle).
A better solution may involve guiding participants

-5%"

20%"

VC "VL "VR "VLR "

0%"
20%"
40%"

Absence"
(W2)"

Impact"
(W5)"

Confidence"
(W3)"

Popularity"
(W7)"

0%"
20%"
40%"

VC
"

VL
"

VR
"

VL
R
"

VC
"

VL
"

VR
"

VL
R
"

VC
"

VL
"

VR
"

VL
R
"

Figure 5: The average change in F1 scores after

participants corrected their learned programs.

Figure 6: For the widgets we manipulated across

versions, the percentage of participants who rated each
as “very unhelpful” (darkest) to “very helpful” (lightest).

Figure 7: The percentage of participants picking each
version in which they felt most successful (left: more is

better), they most preferred (middle: more is better), and
in which they felt most burdened and frustrated (right:

less is better).

Runtime Logic

toward providing corrections that do more good than
harm, a challenging open question.

6. Conclusion
This paper presented a new Explanatory Debugging

approach for debugging machine-learned programs.
Explanatory Debugging is based on the notion
debugging is a two-way exchange of information,
introducing new facts along the way and using
descriptions both parties understand.

Explanatory Debugging supports exchanges about
logic (to support debugging’s code inspection aspects)
and about outputs (to support debugging’s testing
aspects). Our prototype let users see why the computer
produced the outputs it did and explain their
corrections. These explanations can introduce new
features, such as non-contiguous word combinations.
As per Natural Programming, explanations’ form and
content were derived from a formative study so as to
use descriptions of concepts natural to the users.

Our support for runtime debugging was the most
effective, but whether these results stem from the way
our widgets represented information or the logic vs.
runtime distinction requires further investigation.
Results were mixed when logic and runtime were
combined, and lowest when participants had the logic-
oriented version alone. Participants were most effective
using the runtime version, and held the most positive
attitudes about this system and its widgets.

Most important, when using the Explanatory
Debugging runtime-only variant, participants improved
their programs significantly more than the current state
of the art (changing labels). How to guide users toward
the most helpful corrections remains an open question,
but this paper illustrates that a substantive exchange
between an end user and their learned program is
viable for users and can lead to more accurate
machine-learned programs.

Acknowledgments
We thank Forrest Bice, Valentina Grigoreanu, Joe

Markgraf, Kyle Rector, and Rachel White for their
help. This work was supported by NSF IIS-0803487.

References
1. Becker, B., Kohavi, R., and Sommerfield, D. Visualizing
the simple Bayesian classifier. In Fayyad, U, Grinstein, G.
and Wierse A. (Eds.) Information Visualization in Data
Mining and Knowledge Discovery, (2001), 237-249.

2. Billsus, D., Hilbert, D. and Maynes-Aminzade, D.
Improving proactive information systems. Proc. IUI, ACM
(2005), 159-166.

3. Chen, J. and Weld, D. Recovering from errors during
programming by demonstration. Proc. IUI, ACM (2008),
159-168.

4. Culotta, A., Kristjansson, T., McCallum, A. and Viola, P.
Corrective feedback and persistent learning for information
extraction. Artificial Intelligence 170 (2006), 1101-1122.

5. Dönmez, P., Rosé, C., Stegmann, K., Weinberger, A. and
Fischer, F. Supporting CSCL with automatic corpus analysis
technology. Proc. CSCL, ACM (2005), 125-134.

6. Glass, A., McGuinness, D. and Wolverton, M. Toward
establishing trust in adaptive agents. Proc. IUI, ACM (2008),
227-236.

7. Hart, S. and Staveland, L. Development of a NASA-TLX
(Task load index): Results of empirical and theoretical
research, Hancock, P. and Meshkati, N. (Eds.), Human
Mental Workload, (1988), 139-183.

8. Herlocker, J., Konstan, J. and Riedl, J. Explaining
collaborative filtering recommendations. Proc. CSCW, ACM
(2000), 241-250.

9. Ko, A. and Myers, B. Designing the Whyline: A debugging
interface for asking questions about program failures. Proc.
CHI, ACM (2004), 151-158.

10. Konold, C. Informal conceptions of probability. Cognition
and Instruction 6(1) (1989), 59-98.

11. Kononenko, I. Inductive and bayesian learning in medical
diagnosis. Applied Artificial Intelligence 7, (1993), 317-337.

12. Kulesza, T., Wong, W.-K., Stumpf, S., Perona, S., White,
S., Burnett, M., Oberst, I. and Ko, A. Fixing the program my
computer learned: Barriers for end users, challenges for the
machine. Proc. IUI, ACM (2009), 187-196.

13. Lacave, C., and Diez, F. A review of explanation methods
for Bayesian networks. Knowledge Engineering Review 17, 2,
Cambridge University Press, (2002), 107-127.

14. Lim, B. Y., Dey, A. K., and Avrahami, D. 2009. Why and
why not explanations improve the intelligibility of context-
aware intelligent systems. Proc. CHI, ACM (2009), 2119-
2128.

15. Maulsby, D., and Witten, I. Cima: an interactive concept
learning system for end-user applications. Applied Artificial
Intelligence 11, (1997), 653-671.

16. Obsert, I., Moore, T., Wong, W.-K., Kulesza, T., Stumpf,
S., Riche, Y., Burnett, M. End-user feature engineering in the
presence of class imbalance (Technical Report). Oregon State
University, School of EECS (2009).
http://hdl.handle.net/1957/13225.

17. Pane, J., Myers, B. More natural programming languages
and environments, In H. Lieberman, F. Paterno, V. Wulf
(Eds.) End User Development, Springer (2006), 31-50.

18. Poulin, B., Eisner, R., Szafron, D., Lu, P., Greiner, R.,
Wishart, D. S., Fyshe, A., Pearcy, B., MacDonnell, C., and
Anvik, J. Visual explanation of evidence in additive
classifiers. Proc. IAAI, (2006).

19. Stumpf, S., Rajaram, V., Li, L., Burnett, M., Dietterich, T.,
Sullivan, E., Drummond, R. and Herlocker, J. Toward
harnessing user feedback for machine learning. Proc. IUI,
ACM (2007), 82-91.

20. Stumpf, S., Sullivan, E., Fitzhenry, E., Oberst, I., Wong,
W.-K. and Burnett, M. Integrating rich user feedback into
intelligent user interfaces. Proc. IUI, ACM (2008), 50-59.

21. Subrahmaniyan, N., Beckwith, L., Grigoreanu, V., Burnett,
M., Wiedenbeck, S., Narayanan, V., Bucht, K., Drummond,
R., and Fern, X. Testing vs. code inspection vs. what else?:
male and female end users’ debugging strategies. Proc. CHI,
ACM (2008), 617-626.

22. Talbot, J., Lee, B., Kapoor, A., and Tan, D. S. 2009.
EnsembleMatrix: interactive visualization to support machine
learning with multiple classifiers. Proc. CHI, ACM (2009).
1283-1292.

23. Tullio, J., Dey, A., Chalecki, J. and Fogarty, J. How it
works: a field study of non-technical users interacting with an
intelligent system. Proc. CHI, ACM (2007), 31-40.

24. Vig, J., Sen, S., and Riedl, J. Tagsplanations: explaining
recommendations using tags. Proc. IUI, ACM (2009), 47-56.

