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Abstract

In this thesis, a synthesis is presented of the knowledge models required by clinical informa-
tion systems that provide decision support for longitudinal processes of care. Qualitative
research techniques and thematic analysis are novelly applied to a systematic review of
the literature on the challenges in implementing such systems, leading to the development
of an original conceptual framework.
The thesis demonstrates how these process-oriented systems make use of a knowledge

base derived from workflow models and clinical guidelines, and argues that one of the
major barriers to implementation is the need to extract explicit and implicit information
from diverse resources in order to construct the knowledge base. Moreover, concepts in
both the knowledge base and in the electronic health record (EHR) must be mapped
to a common ontological model. However, the majority of clinical guideline information
remains in text form, and much of the useful clinical information residing in the EHR
resides in the free text fields of progress notes and laboratory reports. In this thesis, it
is shown how natural language processing and information extraction techniques provide
a means to identify and formalise the knowledge components required by the knowledge
base.
Original contributions are made in the development of lexico-syntactic patterns and the

use of external domain knowledge resources to tackle a variety of information extraction
tasks in the clinical domain, such as recognition of clinical concepts, events, temporal
relations, term disambiguation and abbreviation expansion. Methods are developed for
adapting existing tools and resources in the biomedical domain to the processing of clinical
texts, and approaches to improving the scalability of these tools are proposed and evalu-
ated. These tools and techniques are then combined in the creation of a novel approach
to identifying processes of care in the clinical narrative.
It is demonstrated that resolution of coreferential and anaphoric relations as narratively

and temporally ordered chains provides a means to extract linked narrative events and
processes of care from clinical notes. Coreference performance in discharge summaries and
progress notes is largely dependent on correct identification of protagonist chains (patient,
clinician, family relation), pronominal resolution, and string matching that takes account
of experiencer, temporal, spatial, and anatomical context; whereas for laboratory reports
additional, external domain knowledge is required. The types of external knowledge and
their effects on system performance are identified and evaluated.
Results are compared against existing systems for solving these tasks and are found

to improve on them, or to approach the performance of recently reported, state-of-the-
art systems. Software artefacts developed in this research have been made available as
open-source components within the General Architecture for Text Engineering framework.
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Glossary of abbreviations used in this thesis

General

API Application programming interface

CDS Clinical decision support

CDSS Clinical decision support system

CIG Computer-interpretable guideline

CPG Clinical practice guideline

CPOE Clinical physician order entry system

CSCW Computer-supported co-operative work

CUI Concept unique identifier

EHR Electronic health record (see also EPR)

EPR Electronic patient record

GATE General Architecture for Text Engineering

GL Guideline

HIS Health information system

HL7 Health Level 7

IE Information extraction
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Glossary of abbreviations used in this thesis

NLM National Library of Medicine

NLP Natural language processing

OWL Web ontology language

PDF Portable document format

PN Petri Net

RDF Resource descriptor framework

RTF Rich text format

RIM Reference Implementation Model

SD System dynamics

SNOMED CT Systematized Nomenclature of Medicine – Clinical Terms

SOA Service oriented architecture

SSM Soft systems methodology

SWRL Semantic Web rule language

UMLS Unified Medical Language System
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WfMS Workflow management system
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Part of speech tags for natural language processing

CC Conjunction

IN Preposition

JJ Adjective

NN Noun

NP Noun phrase

PP Prepositional phrase

PRP Pronoun

RB Adverb

VG Verb group

VP Verb phrase
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1. Introduction

1.1. Background and motivation

Clinical decision support systems (CDSS) aim to provide patient-specific diagnostic and

treatment recommendations to clinicians by matching information known about the pa-

tient to relevant medical knowledge residing in a repository or knowledge base[1]. CDSS

have evolved over the years from standalone, single-domain1 expert systems that, when

provided with manually entered data, gave diagnostic and treatment suggestions, to more

recent systems that monitor events in the electronic health record (EHR) and provide de-

cision support in the form of reminders, alerts and advice on treatment and management

derived from published clinical guidelines. Typically, such systems provide support for

individual clinical decisions at a single point in time, but recently there have been calls

for the development of process-oriented systems that provide support for longitudinal pro-

cesses of care and decision-making that extend over time[2].

Peleg and Tu[3] describe two key knowledge management tasks in the development of a

modern CDSS: 1) a requirements engineering task that involves identifying the processes

of care, the goals, flow of information work activities required by the organisation and the

roles and patterns of communication between care providers; and 2) a modelling task which

involves representing clinical and organisational knowledge in a computer-interpretable

formalism. In addition, for the CDSS to apply this modelled knowledge to data in the

EHR, clinical terms and process knowledge concepts both in the knowledge base and the

EHR need to be mapped to a common, controlled terminology[4][5].

In a recent review, Ahmadian et al.[6] found that a critical factor in the success of CDSS

1e.g. for differential diagnosis of abdominal pain or infectious diseases.
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implementation was the availability of data mapped to a standard terminology. However,

in the structured data entry environment of a typical EHR, data items required by CDSS

are not always present, and it has been suggested that up to 50% of the useful clinical

information resides in free text fields[7]. Demner-Fushman et al.[8] also noted that many

opportunities for decision support can only be found in the free text of the patient record,

such as described in history and examination or laboratory reports.

For some years, researchers have been calling for the availability of shared knowledge

base components, and the tools for creating them. Clayton[1] argued that the lack of

structured information, in the form of coded patient data and decision rules, was the main

barrier to the uptake of CDSS (although, as we shall see in Chapters 2 and 3, there are

many other factors to consider also). Greenes[9], when comparing the impact of search

engines, such as Google, on the use of the World Wide Web to answer clinical questions,

with the current state of CDSS, gave the following call to arms:

‘Imagine the stimulus that a well-researched, evidence-based repository of

knowledge, in a standardized, computable form, and tools for delivery of it

in local settings in a patient- specific manner at times of need, would have on

the ability to implement and demand for CDS capabilities’[9].

‘A variety of clinical problems can be addressed simply by considering a knowl-

edge base of rules. Error prevention/patient safety depends on rules that can

be used to warn about potentially harmful actions, such as medical contraindi-

cations, and to alert providers to situations requiring action such as abnormal

lab results. Best practice depends on rules that are used in actionable parts of

guidelines that are translated into real-time treatment recommendations and

alerts’[9].

and

‘It may be desirable to maintain common repositories of computer-interpretable,

unambiguous knowledge content (e.g. guidelines, or decision rules) for use

across an enterprise’[10].
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1.1. Background and motivation

Greenes suggested that the lack of such a shareable, knowledge-based infrastructure

has hampered the widespread usage of CDSS, as the majority of applications have been

in a single host, application-specific environment[9]. Demner-Fushman et al.[8] argued

that natural language processing (NLP) techniques have the potential to facilitate the

knowledge base creation process, both in terms of extracting decision rules from clinical

guidelines and extracting facts from the free text of clinical notes.

Sittig et al.[7] identified a number of ‘grand challenges’ in clinical decision support,

which included the identification and classification of information in the free text of the

EHR to drive clinical decision support. However, Fox et al.[11] raised concerns about

the clinical safety of relying on information automatically extracted in this way, although

Wagholikar et al.[12] have recently demonstrated an accurate cervical cancer screening

CDSS that makes use of a free-text knowledge base as envisaged by Sittig et al., with the

aim of guiding the physician with recommendations rather than completely automating

the decision-making process.

The application of both statistical and lexical NLP techniques to extract terms and

concepts in clinical narratives has a long history, starting with the work of Pratt and

Pacak in 1969[13]. Interest in this area has grown rapidly over the past few years as a

result of the increase in availability of anonymised clinical notes from US institutions for

research purposes: for example, the i2b2 datasets[14], and in the UK there have been recent

plans to make similar data available for research. Similarly, there has been an increase in

clinical information available via the World Wide Web, in the form of guidelines available

from the National Guideline Clearing House in the US, and the National Institute for

Clinical Evidence (NICE) in the UK.

A number of previous research efforts have tended to focus on applications that extract

terms and relationships from specific types of clinical texts (e.g. discharge summaries[15],

radiology reports[16], and clinical guidelines [17]), but there have been few attempts to

generalise a framework that can be used across each of these data sources (see Chapter

5). While there are a number of individual, open-source components for addressing each

of these sub-domains, combining them together into a pipeline requires a large amount of
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ad hoc ‘glue’ code[18]. Another of Sittig et al.’s[7] ‘grand challenges’ was the creation of

shareable, ‘plug and play’ modules for CDSS. Therefore the challenge to develop shareable,

interoperable components in a framework without requiring any ‘glue’ code is an additional

motivating factor for this research.

1.2. Aims and objectives

The aim of this research is to build on existing methods for automated identification and

classification of clinical concepts and processes of care from heterogenous textual resources

(residing in clinical guidelines, protocols, free text clinical notes and research papers in a

variety of text encodings and formats). By providing new methods and tools to do this, we

aim to facilitate the knowledge formalisation process and the development of knowledge

bases for process-oriented clinical decision support systems.

This research has the following objectives:

1. Identify the types of formalised knowledge required by health information systems

(HIS) that provide process-oriented clinical decision support.

2. Identify the current challenges in implementing process-oriented HIS.

3. Develop a conceptual model for the development of process-oriented HIS, and iden-

tify where a framework for automated knowledge extraction and formalisation might

sit within such a model;

4. Identify current research problems in the automated extraction of conceptual and

process knowledge in the clinical domain.

5. Design, develop and evaluate an open-source2, modular framework to solve a subset

of these research problems and evaluate them along the following axes:

a) performance in relation to accuracy in comparison with manually curated knowl-

edge resources;

2Where ‘open source’ follows the Open Source Initiative definition of freely distributable software and
source code: http://opensource.org/osd.html

8
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b) performance in relation to previous approaches in terms of accuracy and speed.

Following Greenes and Sittig’s suggestion for shareable, ‘plug and play’ modules, a

related objective is that the developed framework should not be monolithic; it should

consist of interoperable modules that can be swapped and configured for different clinical

knowledge extraction tasks, with minimal configuration and without requiring program-

ming expertise by the end user – a weakness of some existing open-source frameworks for

processing clinical text, as discussed in Chapter 5.

1.2.1. Research hypotheses

The background, motivation, aims and objectives of this research lead to two hypotheses:

1. Complex clinical information extraction tasks can be assembled from linear pipelines

of self-contained components, in which the output from component A may form the

input to component B. However, component B should not require component A in

order to complete its own subtask, only on the output of global components required

by both A and B.

2. Such components can be created from external knowledge resources, and lexical and

syntactic patterns derived from regular expressions operating over lexemes extracted

from these knowledge resources.

1.2.2. Methodology and scope

A high-level overview of the research methodology employed in this research comprises:

1) systematic literature review and thematic analysis (Chapter 3); followed by 2) an iter-

ative development cycle (Chapter 4) involving purposive sampling of external knowledge

resources and representative documents to identify patterns (Chapters 5–8); 3) evaluation

of system performance using publicly available ‘gold standard’ data sets in the clinical

and biomedical domain; and 4) review of results against stated research objectives and

results from previous research. Chapter 4 sets out the overall research and evaluation

9
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methodology, and methods specific for individual framework tasks are detailed in their

respective chapters that follow.

The aims and objectives allow us to limit the scope of this thesis to the clinical knowl-

edge extraction, concept mapping and formalisation process. The output of individual

components of the framework developed are evaluated against known ‘gold standard’ data

sets; however the creation and validation of a formalised knowledge base for CDSS from

the structured information extracted by this process is out of scope, but remains an area

for future research (see Chapter 9).

1.3. Structure of this thesis

Chapter 2 gives an overview of approaches to modelling processes of care in the form of

computer-interpretable guidelines and clinical workflows (which tend to reflect idealised

processes and are external to the patient record), and care plans and care pathways (which

aim to reflect patient-specific care processes and are part of the patient record). The aim of

such models is to facilitate the provision of contextual clinical decision support at the point

of care, i.e. tailored for the specific patient under consideration by the clinician during

a consultation. The question of how these models are realised in practice is considered

in Chapter 3, which reports on a systematic review of the literature on the challenges in

implementing health information systems that provide process-oriented clinical decision

support, and in which a conceptual model of the development process is proposed.

Chapter 4 selects one component of the model developed in Chapter 3 – the extrac-

tion and formalisation of clinical knowledge from text – as the focus for development.

It provides a brief overview of NLP techniques in the clinical domain and details the re-

search, development and evaluation methodology used in the remainder of the thesis. This

method is applied in the development of a modular, open-source framework for extracting

clinical concepts and process information from the textual data in clinical guidelines and

patient notes, as described in Chapter 5. In that chapter, the core components of the

framework are outlined and evaluated. Chapter 6 attempts to generalise some of the ap-

proaches of Chapter 5 into a more lightweight approach to clinical concept identification

10
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and classification.

One clinical NLP problem not so far considered in the framework is the handling of

abbreviations and acronyms. We can identify that the ‘NLP’ being discussed here refers

to ‘natural language processing’, not ‘neuro-linguistic programming’ (a process known as

disambiguation[19]), by either linking each mention of ‘NLP’, at the point at which it

occurs in the document, back to its most recent definition in the text, or, in the absence

of a such an expansion, select all its definitions from a dictionary and make use of con-

textual features in the document to select the best one. A method for implementing this

is described and evaluated in Chapter 7, and is made use of in the ensemble pipeline in

Chapter 8, which considers the problem of coreference resolution: the identification of

textual descriptions that refer to the same real-world entity or event. In that chapter, it

is argued that coreference resolution, in combination with identification of temporal ex-

pressions, events and their relations (developed in Chapter 5), is an important component

in the identification of processes of care as linked chains of narrative events. In Chapter

8, a method for coreference resolution in the clinical narrative is developed, implemented

as a pipeline process that makes use of all the framework components developed in the

preceding chapters, and evaluated against a large corpus of clinical notes.

Finally, Chapter 9 discusses the results of the research in the wider context of identifying

temporal processes of care, considers directions for future research, and draws conclusions.

The Appendices to this thesis contain additional material for Chapters 3 and 8. In

addition, the CD that accompanies this thesis contains the data collection spreadsheet

used for the systematic review (Chapter 3) and the software components developed in

Chapters 5 to 8.

1.4. Contributions to knowledge

This thesis make contributions to knowledge in the following areas:

1. A qualitative meta-synthesis of research over the last 15 years into the modelling of

clinical processes for decision support and a corresponding conceptual implementa-

tion framework (Chapter 3). This work was recently published in the Journal of the

11



1. Introduction

American Medical Informatics Association[20].

2. Methods for adapting existing tools in the biomedical NLP domain to the task of

processing clinical texts, and an evaluation of different approaches to improving the

scalability of these tools when processing larger documents such as clinical guidelines

(Chapter 5). Such approaches lead to linear scaling of processing time in relation to

document size, rather than the exponential scaling currently encountered with some

of these tools. This work was presented at the Intelligent Data Analysis in Medicine

and Pharmacology Workshop at the 13th Conference on Artificial Intelligence in

Medicine (AIME’11)[21].

3. A method for identifying and expanding biomedical abbreviations that uses regu-

lar expressions dynamically generated from document content (Chapter 7). The

method provides in-place annotation, expansion and coreference of abbreviations

back to their initial or most recent definition in the text, in a single processing pass

through each document. The method requires no training data; however, via runtime

customisation of its input parameters it can be trained if required so that optimal

parameter values can be calculated to tune the performance for different corpora[22].

In addition, a contribution to knowledge is made in terms of provision of corrected

versions of two reference corpora used for evaluating the performance of biomedical

abbreviation identification systems.

4. A method for semantic decomposition and rule-based recombination of ontology re-

sources for simplifying the creation of biomedical and clinical concept recognisers

(Chapter 6). In this thesis, the method is applied to identifying anatomical terms

and disease concepts, and is evaluated against a corpus of manually annotated clin-

ical notes. A contribution is also made in terms of a systematic quality assurance

process for ontologies, which has allowed a number of errors in two reference stan-

dard biomedical ontologies – the Foundational Model of Anatomy and the Disease

Ontology – to be identified, validated and corrected.

5. A method for resolution of coreference and anaphoric relations between terms oc-

12
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curring in clinical notes, which makes use of the above methods and all the modules

developed during this research (Chapter 8). The work was recently published in the

Journal of Biomedical Informatics[23]. A contribution to knowledge is also made in

terms of an analysis of the role of external domain knowledge resources in identifying

these relations.
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2. Modelling processes of care

This chapter provides an overview of approaches to the modelling of healthcare processes

at the clinical and organisational level. These types of representation aim to capture both

declarative knowledge (definitions and statements of facts about concepts, their proper-

ties and relations) and procedural knowledge (sequences of tasks and rules that involve

operations on declarative concepts). In the context of decision support, such representa-

tions aim to provide a formal definition of the clinical data items that form the input and

output of the process, the flow of information, sequencing of tasks, and the roles of the

participants that will perform the tasks involved in the care process. In addition to the

ability to support individual clinical decision making at the point of care, the goal of such

formalisms is to support the treatment and management of care processes that extend

over time.

Terminology often used to describe processes of care in the context of clinical decision

support include clinical guidelines, protocols, care pathways, care plans, and clinical work-

flow. This chapter shall define, compare and contrast these terms (Section 2.1) and will

consider the different types of formalisms that have been used to model the healthcare

processes to which they refer (Sections 2.2 and 2.3). Moreover, they all sit within the

overarching concept of workflow, so we begin with a definition of this term.

2.1. Definitions

2.1.1. Workflow

Workflow involves the sequencing of tasks and flow of information in an organisational

process (clinical or otherwise) and is defined by the Workflow Management Coalition
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2. Modelling processes of care

(WfMC) as:

The automation of a business process, in whole or part, during which doc-

uments, information or tasks are passed from one participant to another for

action, according to a set of procedural rules.[1]

In addition:

The automation of a business process is defined within a process definition,

which identifies the various process activities, procedural rules and associated

control data used to manage the workflow during process enactment.[1]

and

A Workflow Management System (WfMS) consists of software components to

store and interpret process definitions, create and manage workflow instances

as they are executed, and control their interaction with workflow participants

and applications.[1]

(my emphasis added)

In a workflow system, the definition and execution of the appropriate control and data

flow, the assignment of people to tasks and the invocation of the application logic blocks

(workflow execution) are separate from the application logic (programming code) itself.

Changes to the process can therefore be made without impacting the application logic[2].

2.1.2. Clinical workflow

Niazkhani et al.[3], in developing a conceptual model based on the principles of workflow

and computer-supported co-operative work (CSCW), defined clinical workflow as

the flow of care-related tasks as seen in the management of a patient trajectory:

the allocation of multiple tasks of a provider or of co-working providers in the

processes of care and the way they collaborate[3]

Niazkhani et al. categorise clinical workflow into four inter-related and inter-dependent

elements:

18



2.1. Definitions

1. structuring of clinical tasks: integration of domain and healthcare knowledge (what,

when, where, who);

2. co-ordination of work: scheduling, synchronisation, roles, resource allocation, tem-

poral constraints

3. information flow: integrating expertise, guidelines and protocols with knowledge

from the medical record

4. monitoring: making dynamic changes to clinical tasks in the light of new information

2.1.3. Clinical decision support systems

Clinical decision support systems (CDSS) aim to provide diagnostic and treatment rec-

ommendations and advice at the point of care, i.e. information tailored for the specific

patient under consideration by the clinician at a given moment[4], in order to improve

practitioner performance, the quality of care, and better patient outcomes, as a result of

more informed, evidence-based decision making[5]. Such systems can be classified as active

and passive[5][6]. Active systems provide automated advice in the form of alerts, commen-

tary and recommendations in response to events occurring within the application while the

user works. For example, following the entry of a medication order into a computerised

provider order entry (CPOE) system, the CDSS may automatically check for potential

contraindications or unwanted drug interactions[5]. Alternatively, an active CDSS may

automatically provide treatment recommendations following the availability of new data

in the electronic health record (EHR) (e.g. demographic information, family history, vital

signs, laboratory results). In a passive CDSS, however, the user is required to manually

invoke or consult the system first before receiving decision support. One common method

of implementing a passive CDSS is via infobuttons[7], where the clinician invokes a con-

textual information button that sends a message payload, containing parameterised user

and patient data (e.g. details of the clinical task being performed; patient gender, date of

birth, diagnosis) as a search query to an online knowledge resource, which returns relevant

results.
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A systematic review of the features of clinical decision support systems critical for im-

proving clinical practice[8] found that active rather than passive CDSS were more likely

to improve practice (as measured by patient outcomes or measures such as guideline ad-

herence or reduction in prescribing errors). In addition, they found that the provision

of actionable recommendations via a computer, at the point of care, and integrated with

clinical workflow were key success factors in a CDSS.

2.1.4. Clinical guidelines

Clinical guidelines (also known as clinical practice guidelines and clinical protocols) have

been defined as “systematically developed statements to assist practitioner and patient

decisions about appropriate health care for specific clinical circumstances”[9]. Such state-

ments contain recommendations for best practice based on systematic reviews of clinical

evidence, consensus statements and expert opinion. The goal of guidelines is to reduce

variation in medical care by promoting the most effective treatments, and to provide

a means of quality control in clinical practice (for example, auditing treatment provide

against that suggested by guidelines).

The use of and adherence to guidelines by clinicians is often claimed to be poor[45]. A

number of reasons have been suggested for this:

1. Information overload: the sheer number of guidelines available, and the amount of

time and effort required to absorb the information contained within them[46][47].

In the UK alone, best practice guidelines for a large number of conditions are avail-

able from a variety of sources; for example, the Scottish Intercollegiate Guidelines

Network (SIGN); NHS Clinical Knowledge Summaries; the National Institute for

Clinical Excellence (NICE); the Royal College of Physicians, among others.

2. The fact that most guidelines are available only as free text, making it difficult for

the clinician to find the most appropriate information[46].

3. Guidelines may either be too general, ambiguous, incomplete or they may be too

specific, making them hard to fit to local practice[47].
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4. Guideline recommendations may not fit the actual flow of patient encounters or

clinical workflow in an organisation[48].

5. There may be a mismatch between guideline recommendations and the clinician’s

mental model of what is appropriate care for a specific patient[49].

6. Guidelines do not necessarily provide the knowledge and information required in

order to implement them in practice[50].

Goud et al.[51], following the work of Cabana et al.[52], summarised these barriers to

guideline use in practice as being internal and external. Internal barriers include the clin-

ician’s attitude towards and knowledge of the guideline content. External barriers include

the guideline content itself (e.g. complexity, consistency, ambiguity); patient factors (e.g.

consent to treatment); and organisational factors (e.g. lack of time and resources). Care-

fully planned organisational change is required to overcome these barriers for successful

guideline implementation[51].

The ‘computerisation’ of clinical guidelines (e.g. via the Web or on CD-ROM) has

been proposed as a method for removing some of the barriers to adoption and use of

guidelines[53]. However, simply providing clinical guidelines in an electronic format is not

sufficient to lead to improved decision making or guideline adherence[54][55][56]. Instead,

guidelines need to be seamlessly integrated into the existing health information system

(HIS) or electronic patient record (EPR), integrated with day-to-day clinical workflow,

tailored to the individual patient and be available at the point of care[55][57][58].

Systematic reviews have shown that when clinicians make use of clinical decision sup-

port systems that include a knowledge-base derived from clinical practice guidelines, their

adherence to guidelines is improved[59]. However, the effect on patient outcomes of such

systems is mixed. A randomized-controlled trial of guideline-based care suggestions pre-

sented to physicians when writing orders for the treatment of patients with chronic respi-

ratory diseases found no effect on patient outcomes[60], echoed also general finding of a

recent systematic review.[61]

Shiffman et al.’s[62] systematic review of the functionality and effectiveness of guideline-
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based CDSS found that such systems can improve guideline adherence and quality of

documentation. However, the wide variety of system design, level of description, guideline

implementation strategy and clinical setting made it difficult to determine which factors

were important in influencing the system’s success or failure. A more recent systematic

review suggested that overall processes of care (e.g. information sharing, retrieval and

automated provision of advice) are improved by guideline-based CDSS[63], although nearly

40% of the studies selected were reported by the system developers, and what was meant by

process of care was different for each study, being a post-hoc binary intervention variable

based on the conclusion of each study. Neither review distinguished between systems

that simply present guideline-based recommendations on a computer – i.e. for individual

clinical decisions – from systems that model and support longitudinal, longer-term clinical

processes. Section 2.3.2 gives an overview of some of these models.

2.1.5. Care plans and care pathways

Care plans, or treatment plans, are “plans of future activities, specific to a patient’s

problem(s), treatment and goals, which are signed and time-stamped”[10]. Care plans

may be discipline-specific (e.g. a nursing care plan), or multidisciplinary, but in both

cases they are based on a full assessment of the patient’s needs, and form a goal-directed

treatment plan on how those needs are to be addressed. These plans form part of the

patient record in the EHR, but may be referred to, in whole or in part ,in the free text of

the patient’s progress notes.

In contrast there is no single, agreed definition of a ‘care pathway’, and despite many

years of use, the concept is somewhat unclear[11], often being used interchangeably with

care plans, clinical guidelines and protocols[10]. The critical path method (see Section

2.2.2) used for project management seems first to have been applied to the management

of clinical processes in the US by Zander[12] to improve the quality and efficiency of pa-

tient care, and the term ‘critical pathways’ was coined in relation to care processes. This

evolved into the use of the term ‘care maps’ and ‘clinical pathways’ as outcome mea-

sures for planned processes of care were introduced[13]. In the UK, the term ‘integrated
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care pathway’ (ICP) tends to be used. A widely cited definition of integrated care path-

ways (referred to here as ‘care pathways’ hereafter) by Campbell et al. [14] neatly links

the concepts of care plans, clinical guidelines, protocols and workflow with the idea of a

process-oriented patient record:

... structured multidisciplinary care plans which detail essential steps in the

care of patients with a specific clinical problem ... They offer a structured

means of developing and implementing local protocols of care based on evi-

dence based clinical guidelines. They also provide a means of identifying the

reasons why clinical care falls short of adopted standards. [They] describe the

tasks to be carried out together with the timing and sequence of these tasks

and the discipline involved in completing the task. They consist of a single

multidisciplinary record which is part of the patient’s clinical record.[14]

(my emphasis)

Care pathways are considered to be a complex intervention[11]: a recent systematic

review[15] noted the poor quality of reporting of the care pathway implementation process

which prevented analysis of which factors were critical to their success or failure, despite

finding that the use of care pathways is associated with improved process of care (as

measured by reduced in-hospital complications and improved documentation) but without

increasing length of stay or hospital costs.1 Perhaps one of the reasons for lack of reporting

of the implementation process is that there are differing views on what a care pathway

should contain and how it should be developed. Further confusion arises when the term is

used to describe and model higher-level care commissioning processes, patient flows[16], or

paths to care and routes of referral[17][18]. This is discussed further in [19] and in Section

2.3.5 below.

1Such findings might be considered to be unsurprising given that care pathways tend to focus on
patients with a single, well-defined condition[11], but that is a discussion for another report.
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2.2. Modelling organisational workflow processes

In order to automate a process, the components of that process, and the dependencies

between them, must be formally defined and represented in a way that allows operations

to be performed on them, and on the system as a whole. This section provides an overview

of some of the ways in which workflow processes are modelled.

2.2.1. Discrete event models for workflow

In the workflow view of the world, processes consist of discrete events that occur in some

scheduled order – which may be defined at design-time or may change as the process

unfolds, depending on some predefined constraints being satisfied. A number of notations

and formalisms have been developed for the purpose of modelling these events and their

relationships.

Notations of various levels of formality include:

• Business Process Modelling Notation (BPMN) — an industry standard notation

from the Object Modelling Group (OMG) and WfMC for visualising workflow pro-

cess definitions

• XPDL[20] — an XML serialisation format for BPMN that also defines executable

properties of the workflow

• Event-driven Process Chains (EPC)[21] — a graphical business process description

language consisting of functions, events and logical connectors developed for use in

the ARIS business process modelling framework.

• YAWL[22] — a workflow language based on a rigorous analysis of existing workflow

management systems and workflow languages, using the semantics of Petri Nets (see

below) as a starting point.

General, mathematical formalisms that underpin some of the above workflow notations

include:
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• Petri Nets (PNs)[23] – a formalism comprising finite collections (‘bags’ – sets in

which duplicate elements are permitted) of places, transitions, and input and output

functions that define mappings from transitions to places and vice versa. PNs can

be visualised as a bipartite directed graph, i.e. with nodes consisting of places and

transitions, where every place is connected to at least one transition and vice versa.

PNs were originally designed to model concurrent interacting processes, and have

been proposed as a suitable formalism for workflow modelling by van der Aalst[24].

A change of state is represented by the movement of tokens between an input place

and an output place via an enabled transition.

• Finite State Automata (FSA) – a formalism comprising a finite set of states, and a

transition function that maps the transition from one state to another based on an

input alphabet of symbols. FSA can be visualised as a state transition table or as a

directed graph. Their use as a formal model in workflow systems has been developed

by Wombacher et al.[25], in which the input alphabet represents the possible events

or messages that can be handled by the workflow.

• Temporal logic[26] – an extension of predicate logic with ‘necessity’ and ‘possibil-

ity’ temporal modifiers. In temporal logic based workflows, task ordering and con-

trol flow is not predefined, but are scheduled for execution when they satisfy some

global dependencies. However the computational costs of verifying such workflows

has been criticised as being too high[26]. Temporal logic features in computer-

interpretable guideline formalisms such as Asbru, GLARE[27] and PROforma[28]

(see Section 2.3.2), and guideline temporal constraints can also be modelled with an

extended PN model known as ‘coloured’ Petri Nets[29]. Clinical guidelines encoded

in the Asbru and GLARE formalisms have been verified using temporal logic model

checkers[30][31], in which logical dependencies are decomposed into finite state au-

tomata.

• Transaction logic[26] – an extension of predicate logic comprising declarative and

procedural operators for specifying state changes in logic programs and when mod-
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elling database operations. Transaction logic can be used to model workflow as a

series of database transactions, and has been used to simulate and provide proofs

for workflow processes[26].

The Workflow Patterns Initiative[32] aims to formally describe and systematise the types

of process control flow constructs that workflow languages and systems should support.

These constructs are described by patterns: the abstraction of recurring forms that appear

in a range of contexts. Forty-three control flow patterns have been identified, grouped as

follows:

• Basic control flow (e.g. sequence, parallel split, exclusive choice)

• Advanced branching and synchronisation (e.g. multi-choice, multi-merge)

• Iteration patterns (e.g. arbitrary cycles, structured loops)

• State-based patterns (e.g. deferred choice, milestones)

• Cancellation patterns (cancel task)

• Termination patterns (implicit and explicit workflow termination)

• Trigger patterns (task external activation)

Petri Nets are considered to be particularly suitable for modelling workflow processes

for the following reasons[33]:

• They combine a formal semantics with a graphical representation. This provides

an unambiguous, tool-independent representation with reasoning and mathematical

proof properties. PNs can model simple workflow primitives (AND/OR joins and

splits, iteration) as well as the more complex workflow patterns described above.

• They allow both state-based and event-based execution. This allows a distinction

to be drawn between the enabling of a task and the actual execution of a task:

important for modelling temporal constraints, delays, and manual task execution.
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• Numerous analysis techniques are available, such as detection of unreachable states,

of deadlock, and confirmation that the workflow will always terminate eventually

(i.e. that the workflow is ‘sound’)[33].

Figure 2.1 shows one of the basic control flow patterns, the parallel split, modelled as

a Petri Net. For examples of other workflow patterns, including animations, see http:

//www.workflowpatterns.com/patterns/control/.

Figure 2.1.: Flow of control splits into two parallel threads in state p1–p2, allowing both
tasks B and C to be activated

i1 is the input place (signalling the entry point of the workflow fragment), o1 and o2 are
output places (signalling the termination of the workflow fragment), c represents some
transition condition, CID represent the case identifier of the workflow instance.

Source: http://www.workflowpatterns.com/patterns/control/

2.2.2. Systems models of organisational processes

In many real-world systems, boundaries between tasks, roles and organisational groups

may overlap. There may be a number of workflows or activity paths occurring simultane-

ously. There may be separate information flows, not connected to discrete workflow tasks

and processes. Processes may also be continuous and dynamic; we might be interested in

overall rates of flow of quantifiable things – for example, the flow of patients. A number

of discrete and continuous models for representing dynamic systems have been developed.

PERT/CPM

PERT (program evaluation and review technique) and CPM (critical path method) are

closely related, but independently developed, network techniques for planning and coor-
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dinating project activities, developing and monitor a project schedule[34]. The features of

both techniques have been combined into the PERT/CPM method for project manage-

ment.

With PERT/CPM, an activity-on-node project network is created as a directed, acyclic

graph consisting of nodes, representing project activity completion milestones (events),

and arcs, representing the activities themselves that lead toward milestones, with the

direction of the arc indicating the precedence relationship between milestones (Figure

2.2).

Figure 2.2.: Activity-on-node network
Source: Hillier and Liebermann[34]
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The estimated duration of each activity is assigned to each node. The start and finish

times of each activity, if no delays occur in predecessor activities, can be represented by

the earliest start time (EST) and earliest finish time (EFT) of the activity. EST and EFT

times are found by making a forward pass through the network. Similarly, the latest start

(LST) and latest finish times (LFT) are the latest possible activity start and finish times

that do not delay the overall project completion, and are found by making a backward

pass through the network. In the example in Figure 2.2, completion of all activities

requires ABCEFJLN = 44 days (as ABCDGHM=40, ABCIJLN=42, ABCEFJKN=43,

ABCIJKN=41). The EST for activity H–M is via ABCDGH=2+4+10+6+7=29 days, its

LST is 44-2-9=33 days.

Gantt charts

Gantt charts[35] provide a way of visualising an instantiated PERT/CPM network (from

a given start day and date) after earliest and latest start and finish times for each activity

have been calculated. The chart allows a timeline of execution of parallel and sequential

tasks to be visualised, as well as the dependencies between them (Figure 2.3).

Figure 2.3.: Gantt chart for visualising task dependencies
Source: http://en.wikipedia.org/wiki/File:Pert_example_gantt_chart.gif

The activity-on-node representation of PERT/CPM and Gantt charts formed the basis

of Chu’s[36] care pathway model, and the EST/EFT temporal constraints of these models

are formalised in the Asbru computer-interpretable guideline formalism[37] (see Section

2.3.5 below).
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System dynamics

A system can be defined as a collection of parts organised for a purpose[38]. System

dynamics (SD) is a branch of management science that deals with the dynamics and

controllability of managed systems (i.e. those that are influenced by the actions of people).

Managed systems make use of policies (inputs, controls) to control the system behaviour

as time passes and circumstances change, making use of feedback loops that affect rates of

change in the system variables[54]. The temporal aspect of system dynamics distinguishes

it from other approaches such as decision theory, and the use of continuous variables that

model rates of change and rates of flow distinguishes it from discrete event modelling

formalisms such Petri Nets.

A key part of system dynamics is the use of the influence diagram or causal loop diagram.

An influence diagram shows flows into and out of parts of the system, and the variables

that affect this flow. Solid lines show physical flows — the consequences of actions. A

‘+’ means that as the variable at the tail of the arrow increases, the variable at the

head changes in the same direction; a ‘–’ means that as the variable at the tail of the

arrow increases, the variable at the head changes in the opposite direction (Figure 2.4).

A simulation model is then constructed using a stock-flow diagram (Figure 2.5). If the

influence diagram has been drawn correctly, the stock-flow model can be written from it

directly. Software is available to assist in this step.

Brailsford[16] suggests some reasons why system dynamics is useful for modelling health-

care systems:

• SD focuses on system structure and drivers for change;

• SD models are high level models that use aggregate functions, and do not require

large amounts of individual data items;

• SD can represent large, complex systems whose boundaries overlap with other or-

ganisations.

Examples of possible uses of SD for modelling organisational and managerial processes

in healthcare include:
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Figure 2.4.: Example influence diagram for hospital admissions
Source: Brailsford[16]

Figure 2.5.: Example stock-flow diagram for hospital admissions
Source: Brailsford[16]

• determining optimal patient flows into referral/treatment, given varying waiting list

times and discharge delays;

• determining the optimal number of acute beds required in order for the organisation

to meet a given protocol target;

31



2. Modelling processes of care

• determining the shortest initial assessment waiting time required in order to provide

a given referral to treatment time exploring the impact of changing antidepressant

prescribing rate on patient recovery.

Soft systems methodology

Soft systems methodology (SSM)[39] is an approach to systems thinking that focuses on the

human and social factors involved in organisational change. In contrast to the reductionist

approaches that might be involved in formal modelling of deterministic workflow systems,

SSM aims to develop a consensus view of the whole system that is greater than the sum

of its parts. It is designed to model complex organisational systems with a plurality of

viewpoints — features that are typical of a healthcare organisation.

SSM involves[40]:

1. Building a ‘rich picture’ of the organisation, in collaboration with the various stake-

holders. This will be a conceptual map that may share features of the influence

diagram used in system dynamics.

2. From the rich picture, one or more root definitions are developed that describe the

system under study.

3. For each root definition, perform a CATWOE analysis of the stakeholders and pro-

cesses involved:

• Customer: the beneficiaries of the system

• Actor: who performs the activities in the system

• Transformation: the process - what input is transformed into what output?

• Worldview: the vision of what the process should achieve

• Owner: the owner of the process, who has the decision to change or abolish the

system

• Environment: the environment in which process takes place or that is assumed

by the system
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4. Develop a conceptual model for the Transformation (T) described in CATWOE in

terms of the set of activities required to execute T.

5. Compare the conceptual models with the rich picture developed in Step 2 and develop

an agenda of possible changes to the system.

6. Select desirable and culturally feasible changes that may be implemented.

7. Implement the changes, which may involve the use of hard/reductionist systems

methodologies.[40]

The following section considers how these various formalisms and approaches, including

combinations and variations thereof, have been used to model clinical processes of care.

2.3. Modelling clinical processes

In this section we discuss approaches to modelling planned processes of care using ap-

proaches that combine the procedural knowledge expressed in a workflow model with the

declarative knowledge expressed in a clinical taxonomy or, more formally, an ontology. An

ontology provides a conceptual representation of knowledge within a given domain. It com-

prises a controlled vocabulary of concepts, their properties, relationships and restrictions.

Such relationships include type (class membership), intersection, exclusive disjunction,

meronymy (whole–part) and synonymy. These relationships can be used to describe and

carry out inferential reasoning about the domain.

Ontologies also provide a means of mapping concepts from one domain to another, to

facilitate data sharing and interoperability. In the biomedical and clinical domains, there

have been efforts to create various interoperable, open-source reference ontologies, such

as the Foundational Model of Anatomy (FMA)[41], the Systematized Nomenclature of

Medicine – Clinical Terms (SNOMED CT)2, and Logical Observation Identifiers Names

and Codes (LOINC)3. The National Library of Medicine’s Unified Medical Language Sys-

tem (UMLS)4 attempts to integrate these separate resources into a Metathesaurus, where
2http://www.ihtsdo.org/snomed-ct/
3http://loinc.org/
4http://www.nlm.nih.gov/research/umls/
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terms common to a number of individual ontologies are mapped to a single, canonical

form. These ontologies are curated at a number of online libraries, such as the BioPortal

at the US National Center for Biomedical Ontology, and the Open Biomedical Ontology

Foundry.

The World Wide Web Consortium (W3C) has developed the Web Ontology Language

(OWL) formalism to provide a means for developing ontologies that can be shared over the

World Wide Web, and allows the creation of larger ontologies that can reference or import

component ontologies via the use of namespaces. OWL ontologies are a core component

of the Semantic Web[42], which aims to create a web of interoperable, reusable data from

the web of unstructured documents. As we will discover in Chapter 3, the use of OWL

and other semantic web formalisms is becoming increasingly important in the modelling

and execution of clinical process workflows.

Given that we are concerned with care processes that extend over time, this section

begins by looking at how concepts of time and temporal relationships between concepts

have been modelled by researchers.

2.3.1. Formalising temporal knowledge for clinical processes

In Section 2.2.2 we considered how temporal constraints between tasks such as earliest

start and finish times could be calculated from estimated task durations and traversing

the directed graph of activities and events in a forward and backward direction. However,

representing temporal clinical knowledge in terms of such a directed, acyclic graph is

limited as it does not represent repetitions or periodicity that typify many real-world

clinical processes – for example, a treatment regime consisting of therapy repeated 6 times

where each cycle of therapy last 5 days, with a defined delay between each cycle, and

where on each therapy day medication is administered every 12 hours[43].

TimeML[44] is an emerging standard for capturing and reasoning with temporal expres-

sions occurring in narrative text. As a markup language (i.e. containing elements that

wrap textual phrases, with information about the concept metadata stored as attributes

of the element), it allows events described in documents to be annotated with respect to
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their anchors in time, relative ordering and context (e.g. ‘in 2 weeks’), and persistence.

TimeML has separate representation primitives for the identification of events (<EVENT>),

temporal expressions (<TIMEX3>), and the relationships between events or between an

event and a temporal expression (<TLINK>).

The TimeML specification is fairly complex and detailed, so only a few examples applied

to the clinical domain will be given here (see Chapter 5 for an application of TimeML to

clinical discharge summaries). From a clinical perspective, a TimeML <EVENT> would be

a clinical concept (e.g. ‘type 1 diabetes mellitus’, ‘renal function’), a verb or verb group

representing a process (e.g. ‘should be referred’, ‘will be discharged’), or a concept or

process modifier (e.g. ‘decreasing’, ‘severe’). A <TIMEX3> annotation captures specific,

relative or approximate dates, durations and frequencies. For example, the approximate

duration

for at least 3 days

would be specified in TimeML as

<TIMEX3 tid="t0" type="DURATION" value="P3D" mod="EQUAL_OR_MORE">3 days</TIMEX3>

Optional beginPoint and endPoint attributes can be used to anchor the duration to

specific dates that are not available at workflow design-time, but only at run-time. For

example, if a process is begun at 10pm on 29 July 2012, represented as

<TIMEX3 tid="t1" type="DATE" value="2012-07-29T22:00">

then the above expression would become:

<TIMEX3 tid="t0" type="DURATION" value="P3D"

mod="EQUAL_OR_MORE" beginPoint="t1">3 days</TIMEX3>

Cycles and repetitions are dealt with by the SET type. For example

Once a day for 3 days each week for 4 weeks

would be specified in TimeML as
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<TIMEX3 tid="t2" type="SET" value="P1D">Once a day</TIMEX3>

<TIMEX3 tid="t3" type="SET" value="P1W"

quant="EACH" freq="3D">3 days each week</TIMEX3>

<TIMEX3 tid="t4" type="DURATION" value="P4W">4 weeks</TIMEX3>

While the above – and more complex – expressions of repetition and periodicity can be

represented in TimeML, one potential problem with the specification is that its primitives

are anchored to natural language. For example, the SET type can specify a repetition,

but the specification only allows beginPoint and endPoint attributes to be used for

DURATION types. Anselma et al.[43] sought to more formally specify the type of con-

structs required by care processes, and that may require more complete specification than

TimeML-annotated clinical texts. They defined a Repetition primitive with more fully

specified attributes than the equivalent TimeML SET type, such as repetition conditions

while() and onlyIf(), fromStart() and inBetween() constraints that allow minimum

and maximum delay times to be specified from the start of the first repetition, and between

subsequent repetitions.

Anselma et al.’s formalism aimed to provide a method for both specifying and checking

the consistency of temporal constraints defined in clinical guidelines. More generally,

computer-interpretable clinical guideline (CIG) models aim to specify guideline processes,

concepts and their dependencies, to allow both the clinical and temporal aspects of the

care process to be captured and reasoned with computationally. The following sections

provide an overview of these models.

2.3.2. Modelling clinical guidelines

In an effort to standardise the design and development of guideline-based CDSS, several

formalisms for encoding content into a CIG format have been proposed. A number of

comparative analyses of the most developed formalisms have been published[64][65][66].

Tu et al.[67] identified a typology of guideline modelling formalisms:

1. end-to-end flowcharts for algorithmic problem-solving processes consisting of ‘IF ...

THEN ... ELSE’ statements for simple yes/no decision trees (e.g. see [68] and [69]
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for example implementations);

2. decision maps – sets of patient scenarios forming a transition network of decision

points, without specific start or end points;

3. partially ordered activities in care plans (see Section 2.1.5 and 2.3.4) that aim to

meet defined goals (e.g. the Asbru formalism[70]); and

4. workflows (see Section 2.1.1 and 2.2.1) that take an organisational and role-based

view of care processes (e.g. the GUIDE[71] and the ADEPT[72] systems).

More recent modelling formalisms take a hybrid approach that integrates these pro-

cesses, such as GLIF3[73] and PROforma[28].

Tu et al.[74] proposed that guidelines either be modelled as decision maps for individual

clinical decisions or as workflow processes that extend over time:

‘We propose that recommendations in a clinical guideline can be structured ei-

ther as collections of decisions that are to be applied in specific situations or as

processes that specify activities that take place over time. We formalize them

as “recommendation sets” consisting of either Activity Graphs that represent

guideline-directed processes or Decision Maps that represent temporal recom-

mendations or recommendations involving decisions made at one time point.

We model guideline processes as specializations of workflow processes.’[74]

Identifying and extracting these ‘recommendation sets’ and their selection criteria from

the text of the guideline may be possible with natural language processing techniques[75]

(see Chapters 4 and 5), potentially providing a mechanism to reduce the information

overload and information retrieval barriers that free-text guidelines present, or as an in-

termediate step towards guideline formalisation[76].

Broadly, the published guideline modelling formalisms fall into four categories:

1. Rule-based: e.g. Arden Syntax[77]

2. Document-based: e.g. GEM[78]
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3. Decision-logic expression languages: e.g. GELLO[79]

4. Task-network models: GLIF[73], PROForma[28], SAGE[80], Asbru[70], GUIDE[71]

Standards exist for the first three categories: Arden Syntax, GEM and GELLO have

been adopted as standards by HL7. Arden and GELLO are American National Stan-

dards Institute (ANSI) standards; GEM is an American Society for Testing and Materials

(ASTM) standard. None of these, however, are sufficient for representing dynamic, com-

plex care processes:

1. Arden Syntax is able to represent individual, independent clinical rules as Medical

Logic Modules (MLM)[77] but lacks a defined semantics for representing clinical

guidelines that are more complex than individual IF...THEN rules[28]. However

MLM modules can be chained (one module invoking another if certain conditions

are met) or invoked as sub-routines, although this requires a MLM composition logic

to be defined, which simply defers the problem[81].

2. GEM provides a formalism for structuring complete guideline documents[50], but

does not, on its own, provide a mechanism for execution or rule inferencing.

3. GELLO[[79] is query language that uses an object-oriented data model based around

HL7 Reference Implementation Model (RIM) concepts to form a ‘virtual medical

record’ (VMR). Its purpose is to provide a platform- and vendor-independent lan-

guage for extracting, manipulating, and reasoning about data from medical records.

Essentially, it provides an interface between the guideline (encoded in some process-

oriented formalism) and the medical record.

The fourth type of formalism, which is yet to be standardised, specifies a process-

flow-like model in which guidelines are composed of a network of tasks that unfold over

time[82] and aim to support the type of process-oriented decision support described earlier.

Although their syntax, semantics, and individual focus differ, these ‘task network models’

share a common set of features[64][65][66][82]:
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• Decomposition of guideline concepts into a finite set of task-based primitives repre-

senting individual guideline steps, such as clinical actions, decisions, enquiries, and

logical branch and synchronisation steps.

• The use of an ontology to classify the hierarchy of primitives, their attributes, and

control relations that define their sequencing.

• The ability to organise the primitives into a clinical plan of nestable components,

and the creation of sub-plans and sub-guidelines.

• The assignment of state to guideline steps, for example, in-progress, suspended,

completed, cancelled, and conditions on the transitions between these states.

• The ability to define control flow: sequential, parallel and iterative task execution.

• The ability to define guideline entry points, and guideline step pre-conditions and

post-conditions.

• The ability to specify temporal constraints on guideline steps.

• A graphical editor for creation of instances of encoded guidelines.

• An execution engine for enacting the encoded guideline instance.

One other feature these formalisms share is the ability to express a number of the

standard workflow patterns summarised in Section 2.2.1. A study by Mulyar et al.[82]

considered the expressive power of some the major CIG formalisms (PROforma, Asbru,

EON, GLIF) as measured by the number of control-flow workflow patterns that they

supported. They found that although these formalisms supported only around 50% of

the workflow patterns, they offered unique features not found in current WfMS. These

included the ability to model complex decisions via argumentation rules (rule out activity

x, rule-in activity y) or expression languages, and the ability to specify multiple entry and

exit points. However, they suggested that the CIG community might be advised to use

more general information-driven workflow formalisms that allow more flexible execution,

rather than construct specific languages for modelling clinical processes[82].
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2.3.3. Modelling clinical workflow

Dadam et al.[72] first proposed the use of a WfMS to support and manage clinical workflow.

While they accepted the need not to impede existing work processes and to allow flexibility

in the selection and execution of clinical activities, they acknowledged the difficulty in

supporting dynamic changes in a system where there may be complex interdependencies

between tasks, given such sequences of tasks have been explicitly modelled. In practice,

it was only possible dynamically insert a new task that was not dependent on others.

In a widely cited and seminal paper, Quaglini et al.[71] described a methodology and

system architecture for ‘careflow’ (Figure 2.6): an integration of a CIG model for clinical

tasks with a commercial workflow engine for managing organisational processes, and ap-

plied this to the management of acute stroke. Their system allowed for dynamic modifica-

tions (exceptions) to the predefined process by allowing tasks to be omitted or substituted

for others. Schadow et al.[83] suggested that WfMS would be best used for well-defined

and standardised clinical processes, such as immunization or clinical trials. Though nei-

ther Schadow or Quaglini used the term, there is much similarity between their approaches

and the concept of a computerised care pathway, and we discuss this further in Section

2.3.5.

Figure 2.6.: Methodology for building a careflow management system
Quaglini[71]
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2.3.4. Modelling care plans

In contrast to clinical guidelines, there have been few attempts to construct a formal

model for representing care plans in a computer-interpretable way, although the Asbru

formalism[70], with its plan-based, intention-oriented semantics, might be considered to of-

fer a starting point. All clinical activities should be carried out for a specific reason: usually

either to achieve, maintain or avoid a situation or patient state. However, clinical guide-

lines often fail to make explicit the clinical goals underpinning their recommendations[10].

Figure 2.7 provides a high-level model of goal-based clinical decision making derived

from the goal properties proposed by Hashmi et al. (cited in [10]). Drawing on AI

research on goal-directed behaviour, Fox et al.[10] proposed a process model that evaluates

a set of goal properties, summarised in Figure 2.8. Based on the PROforma clinical

process modelling language[28], they then proposed a high-level ontology of goal classes

and attributes. This consists of two core goal classes: knowledge goals (acquisition of

information, deciding between alternative hypotheses) and action goals (achieve some

state, enact tasks). The ontology class hierarchy is summarised in Figure 2.9. Goal

descriptions typically consist of an antecedent entry point (e.g. ‘if the patient is mobile and

can self-care’), verb phrase–noun phrase action pairs (e.g. ‘[discharge the patient]VP to [the

intermediate care team]NP’), a temporal constraint (‘within [3 days]Duration’), requirement

(e.g. optional or obligatory), and rationale (e.g. from a National Service Framework or

NICE guidelines). Potentially, parsing out these goal statements from protocol or guideline

documents and the free text of patient notes may be possible with information extraction

techniques (see Chapters 4 and 5).

However, a fully developed syntax and semantic for formally specifying clinical goals

that affords computational reasoning and inference remains to be developed. Recently,

Grando et al.[87] have added to PROforma a stateful Goal task-type (e.g. with states

dormant, in progress, suspended, completed) that models the intention (achieve, maintain,

prevent) of the transition from an initial patient state to a target state shown in Figure

2.7.
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Figure 2.7.: Patient state transitions in goal-based clinical reasoning
Source: derived from descriptions from Hashmi et al. in [10]

2.3.5. Modelling care pathways

As discussed in Section 2.1.5, while there are a number of views on what constitutes a

care pathway and how it should be developed, there is some agreement that there should

be four components[19][88] [89]:

1. a process map, or workflow, determining the sequence of steps and activities that

should be performed, decision points within the process, and the roles assigned to

have responsibility for each step;

2. a timeline specifying when each of the activities in the process map should be per-

formed;

3. evidence-based outcome measures, milestones, guidelines and protocols;

4. a ‘variance record’ i.e. method for documenting and recording where deviations from

the planned pathway have occurred. A variance can include:

• an activity performed by a different role than planned;

• an activity performed later or earlier than planned;
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Figure 2.8.: Goal process model
Source: derived from descriptions in Fox et al.[10]

• an activity repeated more or less often than planned;

• an activity being omitted;

• additional, unplanned activities being performed.

de Luc[89] defined electronic care pathways (‘e-pathways’) as systematically developed,

computerised care pathways that describe: (1) the clinical data sets used (representation

of declarative knowledge); (2) the on-screen forms and user interface elements required;
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Figure 2.9.: High level ontology of goal classes
Source: derived from descriptions in Fox et al.[10]

(3) the formal model of the roles, tasks, sequencing, and business rules of clinical workflow

(representation of procedural knowledge); and (4) the messages to be exchanged between

the systems that invoke the pathway. Wakamiya and Yamauchi proposed five core re-

quirements for electronic care pathway implementations: recording notes in the EHR,

statistics and variance recording, provision of computerised physician order entry, activity

checklists, and editable pathway templates[13].

Page and Herbert[90] developed an object-oriented e-pathway conceptual model using

the Unified Modelling Language (UML) formalism. Their model distinguishes a ‘model’

care pathway template (much like a workflow process definition) from the instantiated,

in-use pathway (similar to a workflow instance), which has a state (under consideration,

in use, ended). Their model represents the pathway goal, patient entry criteria, and

individual pathway activities. Each activity has an activity state, roles, patient, and

patient state.

de Luc and Todd[91] proposed the concept of ‘generic pathways’ for representing an

idealised patient journey through an idealised service for a given clinical condition, and

distinguish these from ‘localised pathways’ that have been adapted for a specific insti-

tution. These ideas are mirrored by the concepts of generic guidelines and localised,

consensus guidelines described by the CIG community[92]. In addition, the Page and Her-
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bert model[90] shares a number of features of the task-network CIG formalisms discussed

in Section 2.3.2. It is not surprising, therefore, that recent computerised care pathway

implementations have used these formalisms (see below and Chapter 3).

Literature on care pathway implementations suggests that a combination of systems

approaches (see Section 2.2.2) and discrete-event models (see Section 2.2.1) are required

to model complex clinical processes. Todd[93] argues for a systems approach to developing

care pathways for the following reasons:

• care pathways are multidisciplinary and holistic; they involve many stakeholders and

so require a whole-systems view;

• care pathways involve both clinical and patient goals;

• lower level process maps can be developed from higher-level concept maps.

Systems modelling tasks for care pathways include[93]

1. organisational change (organisation-level process mapping, service commissioning);

2. evidence management (best evidence search and appraisal);

3. computerisation:

• definition of data sets;

• design of onscreen forms;

• organisational ontology design (roles, tasks, sequencing, business rules, clinical

workflow);

• message definitions[93].

A SSM approach to developing care pathways has been described for the management

of stroke[93] where the output was a paper-based pathway that represented a high-level

view of the patient journey: a computerised version was planned but it was not clear how

SSM was to be used to translate the paper pathway to electronic form. SSM was used

for modelling chronic disease pathways across different clinics[94], where the output was a
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series of high-level clinical workflow and information flow diagrams, but no implementation

was provided.

Evidently, both system dynamics and SSM are useful for high-level service modelling and

defining the organisational and clinical processes that make up a care pathway. However,

these then need to be developed into a discrete-event model for modelling clinical processes

at the individual patient level. This modelling hierarchy is visualised in Figure 2.10[95].

Figure 2.10.: Healthcare service model.
Levels 1 and 2: SD and SSM service model; Level 3: process ontology level; Level 4:
discrete event level for clinical and organisational task decision support.

Source: Dang et al.[95]

A precedence diagram method (PDM), based on Gantt and PERT/CPM techniques,

was used as the basis for Chu’s[36] computerised care pathway implementation. This

application used an activity-on-node network, where each node expands to a hierarchical

network of composite tasks — a ‘multi-level care map’ (Figure 2.11). In Chu’s PDM

model, the finish-to-start relationships of PERT/CPM nodes were augmented with finish-

to-finish and start-to-start constraints to allow two tasks to start simultaneously, or to start

or finish one after another within a specified lag time. However, these techniques, while

useful, may have limitations for modelling clinical processes at the individual patient level,
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as they do not provide explicit support for personalisation or dynamic modification[96].

The Asbru computer-interpretable guideline formalism (see Section 2.3.2) has explicit

constructs for modelling PERT/CPM/Gantt-type EST, EFT, LST and LFT constraints,

making it another potential formalism for modelling care pathways (Figure 2.12).

Figure 2.11.: Activity-on-node precedence diagram for representing temporal constraints
between care pathway tasks (top) and composite task decomposition
(bottom)

Source: Chu et al.[36]
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Figure 2.12.: Modelling temporal constraints in processes of care
Source: Shahar et al.[37]

The extended Petri Net model that formed the basis of the ‘careflow’ framework[71] de-

scribed in Section 2.3 meets many of the required components of a care pathway described

above. Petri Nets were selected as the CIG representation formalism for careflows as guide-

line and workflow properties could be verified and validated using standard tools available,

allowing simulation runs to be performed before enacting the careflow in a live setting.

The use of sub-nets to represent composite tasks provides a more formal representation of

the multi-level care map approach of Chu[97] (Figure 2.13).

Given the similarities between the task-network guideline models (see Section 2.3.2)[65][82],

it is perhaps not surprising that other CIG formalisms can also be expressed as Petri

Nets. Grando et al.[29] demonstrated that the PROforma formalism could be mapped

to an equivalent PN representation. Combi et al.[27] argued that Petri Nets are a nat-

ural candidate formalism to cope with clinical guideline semantics, as they are explicitly

geared towards the representation of processes, and are equipped with powerful verification

mechanisms. They presented examples using the GLARE CIG formalism.

The CREDO project[98] uses the PROforma formalism to model the ‘triple assessment’

pathway into a decision support system for the assessment and management of breast

cancer. The care pathway was based on assessment and treatment recommendations from

a number of clinical guidelines. The system comprised a visual, knowledge formalisation

tool, and an execution engine for running the pathway in a Web browser (Figure 2.14).

The results of a limited evaluation using simulated cases were reported. While adherence
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Figure 2.13.: Graphical GUIDE editor for modelling stroke guideline (top) and formal PN
representation (bottom)

Source: Quaglini et al.[71]
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to best practice guidelines was improved, the strict workflow and task sequencing imposed

by the system was seen as a potential hindrance if used in live clinical settings — findings

common to other studies on clinical workflow[3].

Figure 2.14.: Design (top) and web-based enactment (bottom) of the triple assessment
care pathway

Source: Patkar and Fox[98]
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2.4. Summary

This chapter has provided an overview of various approaches to modelling processes of

care via clinical guidelines, care pathways and workflows in the provision of decision sup-

port. The common aim of each is to improve clinical practice via better communication,

documentation and adherence to guidelines. Evidence from systematic reviews suggest

that this is the case, if such systems are integrated with the EHR, day-to-day working

practices and provide support at the point of care. However, these reviews do not dis-

tinguish between systems that provide support for individual clinical decisions, and those

that manage care processes that extend over time[96].

Individually, the various models and formalisms discussed are all complementary[96],

and as we have seen, can potentially be used to model both clinical guidelines and path-

ways, but the question of how to combine them and integrate them with the patient record

and with clinical workflow has rarely been addressed. In the following Chapter 3, we ad-

dress this question, by presenting a synthesis of the findings of a systematic review of

the literature on how these modelling approaches have been implemented within health

information systems.
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3. Implementing process-oriented health

information systems: review and

meta-synthesis

3.1. Introduction1

In Chapter 2 we noted that computerised care pathways, guidelines and workflow-based de-

cision support systems aim to improve clinical practice and to enable and enhance clinical

workflow. In practice, the relationship between clinical workflow and health information

systems is more complex. Over 12 years ago, Schneider[2] noted that:

‘Implementation of clinical information systems (CIS) still requires major changes

in workflow... mastering ... how technology is integrated into the clinical prac-

tice of medicine, continues to be the key success factor for producing a usable

solution’.

The types of workflow changes that clinical information systems tend to impose on

the user have been criticised, such as increased cognitive load and inflexible serialisation

of task sequences previously done in parallel[3], and a narrow focus on data entry and

fragmentation of tasks and roles previously performed collaboratively[4]. Approaches that

attempt to square this circle – implementing models of best-practice clinical decision-

making and local organisational processes, while integrating with actual clinical workflow

– are the subjects of this chapter.
1This chapter has been published in an abbreviated form as ‘Computerization of workflows, guide-

lines, and care pathways: a review of implementation challenges for process-oriented health information
systems’[1] with some additional material in Results, Discussion and Conclusion
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3. Implementing process-oriented health information systems

Song et al.[5] defined ‘computer-aided healthcare workflows’ as the integration of guide-

lines and protocols with a health information system (HIS) such as an EHR. We extend

this idea and define a process-oriented health information system as one that formally

models guidelines, workflows, or care pathways and provides support for clinical decisions

that extend over time. In this chapter, we carry out a systematic review of the literature

on process-oriented health information systems to identify the implementation challenges,

and the features critical to success. Of particular interest are the steps involved in de-

veloping a clinical and organisational workflow model from text-based clinical guidelines,

and what cognitive, informatics, technical and organisational resources are required for

implementation and integration with day-to-day workflow.

The objectives of this review are to:

1. Provide an account of the processes, resources and challenges involved in developing

a process-oriented HIS

2. Compare implementations in terms of knowledge engineering and system architec-

tures

3. Examine the human and organisational factors involved in the development of the

system

Review questions include:

1. How are formal knowledge models used in process-oriented HIS created from textual

resources?

2. How are HIS integrated with the EHR?

3. How are such systems integrated into clinical workflow?

4. How are such systems made available at the point of care?

3.2. Methods

This review considers a number of phenomenological questions about a process. When

one wants to explore a phenomenon about which little is known, in order to gain greater
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understanding and develop hypotheses to explain the phenomenon, qualitative methods

are an appropriate choice[6]. Therefore we reviewed the literature from this perspective,

by treating each paper as a textual narrative from which to extract and categorise the

underlying themes that describe the studies as a whole.

The need to include qualitative data in systematic reviews, and the need to under-

take reviews of qualitative research in a systematic way, has been recognised for some

time[7][8][9], although there are three main practical problems involved:

1. How to select qualitative studies for review.

2. How to appraise the quality of qualitative studies.

3. How to produce a meta-analysis of qualitative evidence[9]

On the first problem, selection, Evans et al.[7] propose selection criteria based on sim-

ilarity of participants, study focus and themes, and description of qualitative method.

Regarding the second problem, appraisal, although there seems to be little agreement on

criteria for appraising qualitative literature, there are core principles:[7]

1. clear description of method;

2. clear description of participants

3. evidence of a data trail, so that theme and category labels, which may differ across

studies, can be mapped to a unified set during synthesis[7]

These principles informed the basis of our selection criteria. Finally, for meta-analysis

of qualitative data, Dixon-Woods[9] suggests identifying variables within qualitative data

and weighting them according to the strength of evidence. However, for qualitative data,

it is also important to create a meta-synthesis: an interpretative analysis of the themes

and categories from a representative sample of studies[7]. In this review, we used both

approaches. Within the qualitative research field, study heterogeneity is accepted[7], so

differences were compared and contrasted, and areas of commonality identified through a

process of iterative, comparative analysis.
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3.2.1. Search strategy and inclusion criteria

Searches were performed using ScienceDirect, Web of Science, PubMed, and the specialist

health informatics OpenClinical web resource. Articles in English published since 1995

were considered in order to analyse how implementation processes have evolved over time.

The broad search concepts of health information systems, computerisation, modelling,

workflow, pathways, and guidelines were combined into search statements specific to each

database queried.

The following broad search concepts were used to query ScienceDirect and Web of

Science:

Concept 1: computer systems (systems OR electronic OR computer*) AND

Concept 2: healthcare (health* OR clinical OR care OR medical) AND

Concept 3: guidelines and workflows (pathway OR workflow OR careflow OR guideline)

These three concepts were combined to perform a title search on ScienceDirect and Web

of Science:

TITLE ((systems OR electronic OR computer*) AND (health* OR clinical OR care OR

medical) AND (pathway OR workflow OR careflow OR guideline))

The following all-fields search statement was performed in ScienceDirect:

ALL (workflow pathways plans guidelines)

The following search statements were executed on PubMed and the results combined:

• (electronic OR computer-interpretable OR computerized OR computerised) AND

((care OR clinical) pathway)

• modelling AND ((clinical guideline) OR ((care OR clinical) pathway) OR workflow)

• workflow AND ((care OR clinical) pathway)

• (clinical guideline) AND ((care OR clinical) pathway)
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An initial screening of titles and abstracts excluded opinion pieces, editorials, letters,

posters, studies related to non-computerised care pathways, and studies about other types

of pathway, for example, biochemical, neural, or motor pathways. Papers on ‘patient

flows’, ‘pathways to care’ and ‘commissioning pathways’ were also excluded at this stage

as these focus on the larger goal of strategic planning rather than clinical workflow and

decision making at the individual patient level. Reviews of CIG and workflow models

(such as those described in Chapter 2) were selected as background material, and were

used as a source of additional citations.

Full text articles were screened and included if they met the three inclusion criteria: (1)

the study addressed the modelling process for the computerisation of clinical workflow,

clinical guidelines, or care pathways within the context of a HIS; (2) the outcome was the

exposition of a new methodology, knowledge model, framework, system implementation,

or system architecture that instantiated the process under study; and (3) there was an

evaluation, even if this was only formative and descriptive.

We generally excluded trials, retrospective EHR data analyses and systematic reviews of

the clinical impact (on rates of medical error, adherence to guidelines, length of stay, costs,

etc.) of care pathways or solely of the relative effects of ‘computer generated guideline

recommendations’ or ‘computerised guidelines’ vs. paper guidelines. First, such studies

are addressing different questions to our review. Second, this area has already been well-

covered in the CDSS and care pathway literature (e.g. Kawamoto et al.[10], Rotter et

al.[11]). Third, such studies tend not to discuss the informatics process of ‘computerising’

the guideline (e.g. Eccles et al.[12]) or how the computerised guidelines are validated with

respect to the original text guideline (e.g. Rood et al.[13]). A ‘computerised’ guideline

might simply be the full-text of the guideline in HTML or other electronic format (the

clinician still has to read it). However, if such a study also addressed the aims and

objectives of this review, it was included.
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3.2.2. Data collection and quality assessment

Following Evans and Pearson,[7] a data collection form was created in Microsoft Excel to

identify papers for review. The quality of each was judged using criteria from Burns[14]

and Greenhalgh[6] such as a clearly formulated question, rationale for and description of

setting and participants, methodological, theoretical, and analytical rigor, data audit trail,

and justification of conclusions.

Information for each of these criteria from each study was entered into the data collection

spreadsheet2. Not all criteria were relevant for each paper (e.g., model formulations and

system architectures may not have any participants or data audit trail). Papers that could

not meet the criteria were discarded.

3.2.3. Data abstraction and thematic analysis

Thematic analysis was carried out using an approach informed by qualitative concept

analysis, in which research aims are defined in advance, and categories are brought to

the material and continually refined against it, with the goal of reducing the material[15].

This was guided by the three-stage approach discussed in Miles and Huberman[16]: (1)

initial, descriptive coding, developing toward (2) more interpretative coding (high-level

concepts that encompass the descriptive coding performed in step 1) as knowledge of the

phenomenon under study increases; and (3) pattern coding (emerging themes) toward the

end of the analysis in which themes are developed that seek to explain and make causal

links in the phenomenon.

Challenges identified by Song et al.[5] were used to help develop the initial working list

of descriptive codes with which to annotate the data (step 1 described above). Briefly,

these were:

• data collection and normalisation

• workflow integration

• legal/regulatory/safety issues
2The complete spreadsheet is too large to reproduce here; it is available on the CD that accompanies

this thesis.
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• usability

• data/workflow visualisation

• adaptability

• flexibility

• maintenance

• systems integration

• validation and verification

• workflow formalisation

The list of codes was refined and enhanced as new themes emerged from the literature

during analysis (step 2). Examples of emerging themes used to code the literature are

shown in the tag cloud in Figure 3.1. The text size of each term in the tag cloud is

proportional to its frequency in the corpus (theme frequency shown in parentheses after

each term).
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Figure 3.1.: Initial coding themes that emerged from thematic analysis
(Theme frequency shown in parentheses)
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The final set of pattern codes was used to thematically annotate each paper in the

review (step 3). Up to five variables that reflected the study’s key concerns, results, and

conclusions, were assigned to each study – these were the ‘challenge theme’ variables, that

is, factors that need to be addressed when developing a system.

RefViz[17] is a tool for clustering bibliographic references for visualisation and analy-

sis. We created a custom reference file in ISI ResearchSoft RIS format[18], where each

entry contains title, year, author, and challenge theme variables for each paper, as in the

following example:

TY - JOUR

ID - J631

T1 - Embedding Oncologic Protocols into the Provision of Care:

The Oncocure Project

A1 - Eccher

Y1 - 2009

N2 - System-architecture, Separation-of-concerns, Data-mapping,

Process-modelling

This reference file, containing entries for all selected studies, was imported into RefViz

for analysis. RefViz applies standard mathematical clustering algorithms to partition the

data set into concept-based groups of similar papers based on the co-occurrence of themes

between papers. RefViz’s Galaxy view performs principal component analysis (PCA) in

which a larger set of possibly correlated variables are transformed into a smaller, more

fundamental set of independent variables[19]. The co-occurrence and clustering of the

challenge theme variables arising from the thematic analysis were explored using PCA in

RefViz, in order to see if the set of variables could be transformed into a smaller number of

principal components that further summarise the studies and from which an integrative,

conceptual model of the implementation process could be developed.

61



3. Implementing process-oriented health information systems

3.3. Results

From 1308 screened citations, 200 full text articles were retrieved, and 108 met the in-

clusion and quality criteria for detailed review. The selection process is shown in Figure

3.2.

PubMed, ScienceDirect, Web of Science, OpenClinical

(systems OR electronic OR computer*) AND 

(health* OR clinical OR care OR critical OR 

medical) AND (pathway OR workflow OR 

careflow OR guideline)

workflow, pathways, plans, guidelines

n=1308

Removal of duplicates

Abstract screening

• Excluded opinion pieces, editorials, 

letters, posters

• Excluded articles that were not about 

care pathways, clinical workflow in 

general or computerised guidelines

• Patient flows, pathways to care, 

commissioning pathways excluded 

• Literature reviews and reviews of 

computer-interpretable guideline models 

were selected as background and 

introductory material but excluded from 

this review n=200

n=1108

n=16

Publications selected:

n=108

Full text screening

Excluded articles that were book chapters 

and were essentially the same as material 

presented elsewhere, e.g. conference, 

journal article

Excluded conference papers if also 

published in substantially the same form in 

a peer-reviewed journal (which was taken 

as the version for review) 

Exclude studies covering the clinical impact 

of ‘computerised’ guidelines and care 

pathways unless the process of 

computerising the guideline is explicitly 

covered.

Exclude papers looking at the process of 

paper guideline or care pathway 

development

n=37

Data quality assessment

n=163

n=55

Figure 3.2.: Screening flowchart
Source: Gooch and Roudsari[1]

3.3.1. Publication date distribution

In the more general area of clinical decision support, Greenes[20] identified five distinct

phases of research interest between 1960 and the present:

1960–1985: ‘a long infatuation’ – initial research enthusiasm;

1985–1998: ‘a troubled courtship’ – implementations showing benefit but limited dis-

semination outside the academic environment;

1998-2003: ‘renewed passions’ – knowledge explosion, safety and quality agenda;
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2003–: ‘long lasting relationship’ — full-systems implementations of EHR, CPOE, e-

prescribing; and improved understandings of requirements;

2004–: ‘a new party to the relationship’ – recognising knowledge management as a

necessary infrastructure.

It may be possible to identify similar trends in the modelling and implementation of

process-oriented health information systems in the selected studies, which are explored in

the remainder of this review. Figure 3.3 shows the publication date distribution of the

search results after abstract screening but prior to full-text screening (n = 200). There

appears to be an overall trend towards increased interest in computational modelling and

execution of clinical guidelines, workflows and care pathways, although this trend may not

be significant (R2 = 0.3469).

Figure 3.3.: Publication year distribution of selected studies

3.3.2. Characteristics of selected publications

The review identified 79 journal articles and 29 conference proceedings papers. Fifty-seven

(53%) studies were conducted within a non-clinical academic or commercial research and

development environment. The remainder took place within university teaching hospitals

and medical centres (n = 16, 15%), outpatient clinics (n = 8, 7%), and general hospitals,

stroke units, or emergency or ICU departments (n = 27, 25%).

Methods used by selected studies ranged from qualitative research involving usability

evaluations (n = 1) or questionnaires, interviews, and observational studies (n = 20),

to formal methods papers (n = 26), model formulations (n = 26), system case studies
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(n = 20), prototype implementations (n = 33), and system architectures (n = 26). These

categories were not mutually exclusive; a number of studies had multiple objectives: for

example combining model formulation, prototype implementation, and system architec-

ture.

Eight distinct knowledge model types were identified in the publications. Fifty-four

publications (50%) focused on providing details of system architecture or system prototype

implementation. Forty-four (41%) studies had evaluation results reported in the form

of interviews, questionnaires, and observational case studies where the study size was

quantified. The remaining studies reported informal evaluation in terms of the features of

the model or method, or overall benefits of the system implemented.

3.3.3. Challenges in implementing process-oriented systems

The final set of the 25 challenge theme variables and their descriptions, derived from

thematic analysis of the 108 papers, are shown in Table 3.1. The association between

themes was explored using the Galaxy and Matrix views within RefViz. The weight of

each theme within each cluster is calculated by RefViz’s implementation of PCA and

indicates the strength of association between the theme and the cluster, on a scale from

-1 (strongest negative association) through 0 (no association) to +1 (strongest positive

association). RefViz identified ten clusters (see Appendix A for the complete matrix of

association scores), from which the concept map shown in Figure 3.4 was developed.

In Figure 3.4, each cluster is shown as a circle, where the radius of the circle is pro-

portional to the number of papers in the cluster. Only the positively associated themes

(i.e., with non-zero or non-negative weights) are shown, and the thickness of the line is

proportional to the strength of association between the cluster and the theme. Table 3.2

provides a description of each challenge theme cluster, where the numeric group identifier

relates to each cluster in Figure 3.4.
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Figure 3.4.: Concept map derived from RefViz Galaxy and Matrix analysis, showing as-
sociation between study clusters and the ‘challenge theme’ variables.

The radius of each circle is proportional to the number of studies in the cluster; the thick-
ness of the line between cluster and theme is proportional to the strength of association
between the cluster and the theme.

Source: Gooch and Roudsari[1]

Table 3.1.: Challenge themes: 25 variables identified from initial thematic analysis

Variable Description

Clinical implementation Implementing the model into a usable system that is con-

gruent with individual and collaborative clinical workflow in

a live, clinical environment

Clinician attitude Beliefs in own self-efficacy, and relevance and quality of

guidelines and pathways to clinical practice

Continued on next page
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Table 3.1 – continued from previous page

Variable Description

Complexity Ability to evaluate and check the model with reasonable run-

time behaviour (e.g. polynomial time) in real-world scenar-

ios

Data mapping Mapping electronic health record (EHR) data to procedural

tasks in the guideline or pathway; mapping guideline con-

cepts to terminologies

Contract There is an implied ‘contract’ between system workflow doc-

umentation and treatment process; incorrect or unexpected

system use, staff miscommunication, or model/implemen-

tation constraints have the potential to cause divergence

between system records and actual treatment (e.g. ticked

action not actually being performed)

Exception handling Ability to handle unplanned deviations from the pathway or

guideline (variance)

Execution Executing the guideline or pathway model within the EHR;

semantic interoperability

Expressivity The need to adequately represent complex clinical informa-

tion, rules, and exceptions in a formal model

Flexibility and adapt-

ability

Adapting the pathway at run-time to individual patient

(variance); handling incomplete or ambiguous patient data

Goal modelling Modelling clinical and organisational processes is insuffi-

cient: the intention for each task needs to be explicit

Guideline translation Guidelines are ambiguous and cannot easily be translated

into logic rules; contain implicit knowledge that is incom-

pletely specified

Continued on next page
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Table 3.1 – continued from previous page

Variable Description

Information/rule ex-

traction

Ability to automatically extract clinical knowledge and rules

from guideline text

Localisation Adapting the pathway to local needs (consensus and col-

laboration). Domain experts creating shareable guidelines

must agree on meaning and interpretation of the guideline

Maintenance Need to keep guideline, pathway, and workflow model up to

date with latest evidence or changes in clinical workflow

Model validation Validation of encoded model against clinical relevance and

expected results for the specific patient; explanation of rea-

soning

Model verification Internal consistency of the model, well formedness, proofs of

properties

Organisational change Existing clinical workflow may need to be adapted in order

to successfully implement the system. Staff buy-in, training,

and workflow needs; changes of role (e.g., increased data

entry at point of care)

Organisational mod-

elling

Need to model organisational workflow as well as medical

knowledge; includes role-based access and security

Process modelling Creating a computer-interpretable model of clinical pro-

cesses from guidelines and local clinical knowledge

Reporting, querying,

and visualisation

Getting access to the data held in the system for reporting,

statistics, visualisation

Separation of concerns Separation of medical knowledge from workflow knowledge

that can be integrated into a combined clinical and organi-

sational process model at run-time

Continued on next page
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Table 3.1 – continued from previous page

Variable Description

System architecture Selection of a suitable system architecture congruent with

clinical workflow and organizational needs: for example,

client-server, service-oriented architecture (SOA), semantic

web, transport layer security, authentication, role-based ac-

cess

Temporal abstraction How to model temporal constraints and periodicity in guide-

lines and pathways

Tooling Creation of easy to use tools to model guidelines, workflows,

and pathways

User interface and us-

ability

Accessing the data and guideline/pathway in an easy to use,

easy to navigate way; data entry

Table 3.2.: Description of the challenge theme clusters shown in the concept map of Figure

3.4

ID Studies in the cluster Cluster description

10 24 Studies[21] [22] [23]

[24] [25] [26] [27] [28]

[29] [30] [31] [32] [33]

[34] [35] [36] [37] [38]

[39] [40] [41][42] [43] [44]

Creating a procedural, clinical process model aided

by knowledge acquisition tools and supported by the

system architecture; mapping declarative concepts be-

tween a local electronic health record (EHR) or ‘vir-

tual medical record’ model and the process model; user

interface (UI) and usability design congruent with the

model; separation of organisational, medical, and UI

models

Continued on next page
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Table 3.2 – continued from previous page

ID Studies in the cluster Cluster description

3 23 Studies[45] [46] [47]

[48] [49] [50] [51] [52]

[53] [54] [55] [56] [57]

[58] [59] [60] [61] [62]

[63] [64] [65] [66] [67]

Collaborative process between informaticians and do-

main experts of translating implicit, procedural knowl-

edge into computable rules; extracting declarative and

procedural knowledge into a process model; localisa-

tion of the guideline/pathway for a specific institution

and mapping to the local EHR

1 15 Studies[68] [69] [70]

[71] [4] [72] [73] [74] [75]

[76] [77] [78] [79] [80]

[81]

Integration of clinical and organisational processes

with regard to institution-specific clinical workflow

and preferences; handling workflow exceptions (adap-

tive organisational workflow); bindings/congruence of

enacted workflow with documented clinical processes

9 12 Studies[82] [83] [84]

[85] [86] [87] [73] [88]

[89] [90] [91] [92]

Verification and validity of the clinical process model;

formal proofs; model-driven update and maintenance

of the knowledge base

7 8 Studies[46] [93] [94]

[95] [96] [97] [98] [99]

Clinical validity of EHR–guideline concept mappings;

verification of rule-set completeness and consistency;

verification and validation of temporal constraints and

run-time execution

2 8 Studies[100] [101]

[102] [103] [104] [105]

[106] [107]

Enactment of the model within local EHR/health in-

formation systems (HIS); handling clinician judgment,

task sequencing, and temporal constraints, exceptions,

variance (adaptive clinical workflow)

Continued on next page
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Table 3.2 – continued from previous page

ID Studies in the cluster Cluster description

5 7 Studies[108] [47] [109]

[110] [111] [112] [113]

Addressing usability barriers to implementation of a

computerised guideline or pathway; integration with

clinical and organisational workflow; development of

new tools to support clinical workflow; modification

of existing workflow to fit computerised workflow; re-

porting workflow/pathway statistics, and exceptions

6 4 Studies[114] [115]

[116] [117]

Formal modelling of clinical goals and their temporal

constraints; separation of clinical and organisational

goals; allowance for unplanned run-time deviations in

the model

4 4 Studies[118] [119]

[120] [121]

Handling of complex temporal expressions within the

pathway that provides adequate abstraction while re-

maining computable (trade-off between expressivity

and complexity)

8 3 Studies[122] [123]

[124]

Overcoming the organisational and individual barriers

to implementation of a computerised workflow, guide-

line, or pathway; need for both computerised and real

workflow to adapt to each other

3.3.4. Approaches to implementing process-oriented systems

Electronic health record integration

Twenty-six studies considered the problem of how to integrate a clinical process model

with data in the EHR. Of these 26 studies, only three[26][99][41] were part of a system

implementation within a clinical environment; the remainder were data modelling and/or

integration studies within an academic institution. In terms of approach, the studies can
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be split into three categories:

• Studies that advocated the use of the same underlying data model for both the

guideline or pathway knowledge model and the EHR, using models such as the

HL7 Reference Information Model (RIM), Unified Service Action Model (USAM),

or openEHR[21][36][38][40]

• Studies that attempted to map guideline or pathway knowledge model concepts to

data items within the EHR via guideline expression languages (e.g., GELLO);[25] the

use of a ‘virtual medical record’ (VMR);[52][103][37][41][64] standardised vocabulary

resources such as the Unified Medical Language System (UMLS) and SNOMED

CT;[52][25][31][32][67]; a ‘middleware’ mapping ontology layer;[46][125]; or manually,

on a system-specific basis,[26][66] or via a translation table[101]

• Studies that recognised the need for EHR integration, but did not implement it[50].

Clinical workflow integration and point-of-care use

Studies that considered the use of guidelines and pathways at the point of care can be

divided into model formulations and practical implementations of systems. A number of

the model formulation studies suggest that the barrier to the accessibility of guidelines or

care pathways might be addressed by developing an ontology that integrates organisational

and clinical workflow with EHR data requirements[50] [25] [124] [106]; however, these

papers do not suggest how such point-of-care execution should be implemented in practice.

We found that implementations of workflow integration with point-of-care use tended

to be one of three types:

1. Use of an integrated device for data collection, display, and guideline-based decision

support. Examples included the use of ICU bedside monitoring workstations pro-

viding real-time data trending, and care plan and test result information[83], the

use of mobile devices providing access to clinical guidelines[57], and an emergency

triage pathway implemented as a rules-based expert system in a mobile device[34].

Evaluation details for each of these, however, were brief, tending to focus on the
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hardware/software infrastructure and non-quantified statements about system accu-

racy.

2. Use of electronic patient encounter forms that mirror the structure of existing pa-

per forms. Examples included a guideline-based system for reminders and order

recommendations,[55] and a care pathway for proximal femoral fracture[33] where

guideline-based recommendations were presented as default selections on the form

(e.g., automatically ticked checkboxes). Neither appeared to offer pathways tailored

to the specific needs of the patient, nor made it clear how computer access would be

available at all points of the clinical workflow.

3. Augmented use of paper forms for system input and/or output. Examples included a

rules-based system using guidelines encoded in Arden Syntax that used optical char-

acter recognition (OCR) to scan paper forms, completed at the bedside, to provide

patient-specific, point-of-care recommendations and reminders,[113] and a system

that provided a print-out of daily workflow tasks according to the care pathway mod-

elled. The printed task lists could be used at the point of care as a clinical reminder,

but patient-specific recommendations or decision support were not provided[109].

Brokel et al.[26] suggested that merely integrating clinical decision and workflow rules

within the EHR was insufficient to ensure care pathway recommendations are made at the

point of care: this will only happen if clinicians actually use the system while interacting

with the patient. If clinicians are entering data into the system post-hoc, then the benefit of

point-of-care advice is lost[26]. This theme of a care pathway offering a ‘contract’ between

what is recommended and what treatment is actually recorded was taken up by Lenz et

al.[33], who described the development of a care pathway system that, as in [55], used

structured data collection forms, and that integrated guideline-based recommendations

as default selections on the form (e.g. automatically ticked checkboxes). However, the

‘charting by exception’ approach, where only deviations from the pathway (‘variance’)

are recorded, led to some unintended effects. The lack of integration with an order-

entry system, coupled with the use of default form selections, caused process steps to be
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documented that did not actually take place. The system did not clearly differentiate

between the act of placing of an order and the documentation that an order had been

placed, nor between previous, current and future medications, as orders had to be placed

independently of the system using a paper form.

System implementations: knowledge models, software, and architecture

Table 3.3 defines the eight distinct knowledge model types that were identified. In the

studies retrieved, formal task-network models, which support the representation of both

guideline concepts and workflow patterns, were the most commonly described and imple-

mented.

These models were instantiated in the 54 studies that described a system architecture

and prototype implementation (see Appendix B). Eighteen of these (33%) explicitly imple-

mented clinical workflow support via a defined workflow process and/or workflow engine;

and 26 (48%) described integration with the EHR, but this appears to be largely limited to

conceptual integration – few studies have implemented this in a live, clinical setting[104].

Eleven (20%) described both workflow and EHR integration.

System architectures ranged from standalone desktop[22] [47] [126] [101] [24] [84] [29]

[30] [56] [57] [88] [91] [124] and web browser applications[49] [86] [106] [42] to client-server

systems [109] [69] [111] [96] [83] [99] [34] [77] [113] [62] [107] and distributed, web service

applications[68] [70] [50] [53] [119] [27] [72] [103] [74] [75] [36] [39] [41].

Systems (not mutually exclusive) included computerised guideline implementations[47]

[109] [49] [50] [100] [126] [101] [96] [53] [24] [83] [125] [84] [119] [86] [102] [29] [99] [55]

[103] [104] [34] [57] [88] [89] [113] [62] [36] [39] [41] [121] (n = 31), computerised care

pathway systems[22] [111] [30] [74] [35] [105] [124] [106] [42] [44] [107] (n = 11), integrated

guideline and WfMSs[69] [27] [103] [77] [78] [36] [39] [43] (n = 8), computerised clinical

workflow systems[68] [70] [72] [74] [75] (n = 5), and automated guideline formalisation and

verification applications[56] [88] [91] (n = 3). For the pure guideline-based systems, for the

clinical knowledge component there was a general trend from the use of ad hoc, procedural

code toward the use of more formal, task-network models. For the care pathway systems,

73



3. Implementing process-oriented health information systems

Table 3.3.: Frequency and description of knowledge model types used by studies

Knowledge model Description

Document model (5 studies, 1 sys-
tem implemented[75])

Human readable document with concepts rep-
resented in situ, usually preserving the original
structure of the source document (Guideline El-
ements Mode (GEM) or other document-centric
extensible mark-up language (XML) schema)

Semantic web (9 studies, 6 systems
implemented[125] [119] [72] [103]
[35] [124])

Models proposed by the world wide web consor-
tium (W3C) for representing information on the
web (web ontology language (OWL) ontologies,
Semantic Web Rule Language (SWRL) rules,
OWL-S web services)

Formal workflow model (8 studies, 3
systems implemented[69] [27] [74])

Formalised workflow constructs underpinned by
a formal mathematical model (Petri Nets, Yet
Another Workflow Language (YAWL))

Object model (8 studies, 2 systems
implemented[47] [62])

Object-oriented techniques to model collection
of hierarchical, interacting classes that represent
guideline, workflow, or pathway concepts (Uni-
fied Modeling Language (UML), HL7 Reference
Information Model (RIM), openEHR)

General task-network model (14
studies, 4 systems implemented[22]
[100] [77] [78])

Flowcharts or process maps without formal
semantics (Program Evaluation Review Tech-
nique/Critical Path Method (PERT/CPM),
activity-on-node)

General workflow model (14 studies,
11 systems implemented[68] [70] [72]
[33] [75] [77] [78] [105] [39] [43] [44])

General workflow semantics (Business Process
Modeling Notation (BPMN), Business Process
Execution Language (BPEL))

Block-structured, procedural, logic
rules (20 studies, 11 systems
implemented[68] [49] [126] [84] [86]
[55] [34] [57] [88] [89] [113])

Block-structured, procedural programming lan-
guages, and IF...THEN rules (Arden Syntax; de-
cision tables)

Formal task-network model (48
studies, 23 systems implemented[69]
[47] [109] [50] [101] [96] [53] [24] [83]
[27] [102] [29] [99] [56] [103] [104] [91]
[36] [39] [41] [42] [121] [107])

Guideline-based clinical tasks – actions, deci-
sions, queries – that unfold over time, with a
formal syntax and semantics (Guideline Inter-
change Format (GLIF), PROforma, Asbru)
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the trend was from the use of informal or unspecified models toward the use of a general

workflow model with a task-network or semantic web formalism. Only two of these[33]

[124] appeared to meet all the requirements proposed by Wakamiya and Yamauchi[108]

(see Chapter 2, section 2.3.5).

A number of studies suggested that integration of the care pathway or guideline with

an organisation’s clinical workflow and EHR requires a tightly coupled architecture, in

which system components rely on knowledge of other components’ internal workings to

access their data directly, share the same global data, or directly control the operations of

other components[99] [52] [24] [83] [74] [34] [113] [43]. Tight integration between system

components arguably reduces system portability and interoperability but has the benefit

of greater efficiency, as few components to broker communication between modules are

required[99].

Others proposed a modular approach to reduce coupling between systems. However,

these still tended to be database-centric, tied to specific mapping tables, database engines,

or commercial workflow tools[109] [100] [77] [78]. Those that integrated a guideline-based

system with an existing EHR typically implemented an ‘event listener’ that monitors the

EHR for new clinical events or data from which opportunities for decision support are

identified and invoked[69] [83] [102] [103] [104] [78] [107]. This allows more portability be-

tween components but potentially at the expense of inefficient use of network and database

resources, due to the overhead of creating, transmitting and translating messages brokered

by the event listener or messaging component[99].

Some recent approaches utilise a service-oriented architecture (SOA), where standard

messaging interfaces (such as hypertext transfer protocol (HTTP) and simple object access

protocol (SOAP)) enable loose coupling between applications[70] [53] [125] [119] [27] [72]

[103] [75] [36] [39]. Semantic web-based care pathway architectures[125] [119] [72] [103] [35]

augment the SOA approach by allowing dynamic, context-aware composition of workflows

from individual web services. These use World Wide Web Consortium (W3C) standards

such as OWL-S and SWRL for defining classes of services and resources, and the rules

that relate them.
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3.3.5. Toward a conceptual implementation model

A conceptual model of the implementation process was developed from the theme clusters

shown in Figure 3.4 and Table 3.2, and by referencing each cluster back to the studies

from which they were derived. The model is shown in Figure 3.5 and described below.
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Figure 3.5.: Conceptual model for implementing process-oriented health information
systems.

Source: Gooch and Roudsari[1]

Development of a process-oriented HIS is an iterative, collaborative process[45] [49] [50]

[23] [52] [26] [98] [54] [30] [60] [79] [41] [66] that involves defining a clinical process model

(shaded in figure) comprising formalised medical knowledge (usually from guidelines) (top-

left of figure) and organisational workflow (top-right of figure). A graphical knowledge

acquisition tool is typically used to assist in this task[68] [69] [71] [50] [95] [100] [84] [27]

[86] [29] [33] [104] [36] [39] [107]. The model (typically derived from one or more of the

types presented in Table 3.3) represents an idealised view of the knowledge concepts,

processes, and rules of clinical workflow required to enact the guideline or pathway, and
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tailored to local intervention strategies.

Medical knowledge formalisation typically involves the use of an ontology for the guide-

line concepts and process logic[69] [114] [48] [93] [50] [100] [52] [125] [85] [25] [119] [98] [72]

[102] [34] [77] [35] [106] [64] [42], and a standard medical terminology to map guideline

concepts to terms in the EHR data model or VMR[69] [46] [52] [101] [125] [25] [26] [119]

[103] [35] [37] [41] [64] [66] [67]. Some researchers have attempted to automate the extrac-

tion of clinical rules and process information from guideline statements to ease the process

of formalisation, sometimes with a high degree of recall and precision[48] [56] [65]. This

has been done via the use of linguistic phrase pattern templates[127] [48], and natural

language processing and information extraction pipelines[56] [63]. Such techniques may

be useful for facilitating automatic updates to the knowledge base[73].

This generic model needs to be localised to the setting/ institution[69] [52] [103] [89]

[66]. This task can be commenced prior to modelling, to create a ‘consensus’ version of the

guideline[93] [50] [126] [53] [104], ready for formalisation, or the encoded, generic model

can be shared among institutions, each adapting it according to local needs and data items

available in the institution’s EHR[52] [96] [27] [89] [106] [66]. Localisation also involves

creation of an organisational workflow model, or addition of workflow concepts to the for-

malised medical knowledge model. Workflow modelling may make use of an organisational

ontology[69] [28] [72] [74] [77] to formalise tasks, roles, and treatment goals[69] [114] [93]

[116] [32] [117]. Definition of temporal constraints, often not present in the guidelines

themselves,[115] is required for activity sequencing and scheduling[100] [118] [28] [115] [90]

[65] [120] [121] [117].

Model checking techniques and tools provide formal means of verifying that encoded

models are correct and consistent[69] [95] [82] [85] [87] [115] [90] [91], particularly when

maintaining and updating them[90]. Simulated runs of the model are used to ensure that

the output is clinically valid.[69] [49] [52] [101] [96] [53] [118] [125] [85] [105] [92] [107]

To execute the clinical process model within a HIS, architecture, user-interface design,

and mode of delivery need careful consideration in order to be congruent with actual

clinical workflow[22] [108] [47] [112] [24] [31] [33] [34] [113]. This can be facilitated via
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visualisation of the run-time pathway[24], design of on-screen forms based on the paper

forms of a manual care pathway[30] [55] [33], or automatic generation of forms directly from

the pathway ontology or process model.[119] The enacted process should allow dynamic

adaptation at run-time: this may be manual and clinician-led, where tasks can be skipped,

repeated, or new tasks added[68] [71] [96] [75], or may be system-led via reasoning over

new knowledge added to the ontology at run-time[72] [35].

Implementation in a live, clinical environment requires strategies for organisational

change management to overcome inertia, and allay concerns over lack of support and per-

ceived threats to professional autonomy that workflow automation may bring[122] [123]

[124].

3.4. Discussion

The conceptual model for the implementation of process-oriented systems comprises a

distillation of the cross-cutting challenge themes that have been abstracted from 15 years

of published research. It attempts to provide a concise synthesis for practitioners and

implementers, by summarising the various approaches that have been proposed and im-

plemented to date, while remaining neutral in terms of software, hardware, and knowl-

edge/information model. It extends and generalises the model for the ‘careflow’ devel-

opment methodology illustrated by Quaglini et al.[69] (see Figure 2.6 in Chapter 2) by

showing the types of inputs and outputs required for each stage of the process and the

relationship between idealised (as modelled) and actual (in enactment) clinical workflow,

and how these feed back into an iterative process. The use of thematic analysis and PCA

to summarise the findings of a large corpus of publications may be useful in future reviews,

although further work is needed on applying and validating this technique.

This review is in many ways complementary to the recent review of workflow research

by Unertl et al.[128]. In that paper, the authors identified 18 thematic categories via key

phrase extraction from the papers they selected for review. A number of the themes they

identified – e.g. ‘Communication and collaboration’, ‘Idealized process for simulation’,

‘Design and ergonomics’, ‘Abstract task and process modeling’, ‘Temporality’, ‘Taxonomy
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of workflow tasks’ – are congruent with the themes identified in this review. In that paper,

Unertl et al. also developed a conceptual framework, although the purpose of their model

was to identify and relate the general concepts of workflow in the various definitions they

encountered, rather than to specify a general implementation framework as in the model

presented here.

In the system implementations that we reviewed, there was the assumption that real-

world clinical processes are best represented by a formal model in which discrete events

occur, performed by users with pre-defined roles. However, the application of computerised

workflow systems to the complex, contextual nature of clinical workflow has recently been

questioned[129]. Abstracting such processes into a sequence of discrete workflow steps may

not capture the complex, collaborative nature of clinical processes. Some tasks may be

partially, or provisionally, completed while other tasks are carried out in parallel, and new

knowledge gained from downstream or parallel clinical processes may allow the remainder

of the provisionally undertaken tasks to be completed or even cancelled[1]. Hardstone et

al.[130], in a study of team working within a community mental health team, noted how

paper-based clinical documentation supported real-world clinical workflow. Paper-based

workflows supported informal working that could later be formally ‘written up’, and the

provisional recording of information that could be finalised by the multidisciplinary team.

Individual patient contact notes would be documented, but formal assessments would be

done in rough, until ready to publish in authoritative, electronic form when jointly agreed

as a team, as the information logged there was felt to be non-retractable.

The prevalence of paper-based clinical workflow within institutions that have imple-

mented EHRs was also investigated by Saleem et al.[131] They found that paper provided

a useful cognitive memory aid, better supported complex, longitudinal care processes and

allowed more efficient multitasking. Paper allowed individual clinicians to organise their

work according to their own needs and preferences, effectively allowing processes to be

designed ‘on the fly’ (e.g. by reordering referral forms by various measure of priority, or

addition of notes) — features that were not available in the EHR system. It may be, there-

fore, that attempts to computerise clinical workflow need to acknowledge the existence of
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informal working and the use of provisional clinical decisions.

The ‘semantic web’ approaches to solving this ‘adaptive workflow’ problem (which is a

concern also discussed in the general literature on workflow systems[132] [133]) have, in

addition to the implementations described here, so far yielded a care pathway ontology[134]

[135] which appears to share many features of older task-network models. However, the

crucial distinction is that the semantic web approaches represent an ‘open world’ view[136]

that allows new facts and relationships to be expressed without the constraint of a pre-

defined schema[35], whereas earlier approaches only permit knowledge statements that

are explicitly permitted by the schema. Full realisation of these approaches would require

a knowledge backbone of best practice on the semantic web[134], and semi-automatic

methods for transforming guideline text into a standard formalism, although recent work

in this area has achieved some useful results[48][56][65].

A number of studies addressed the problem of the vagueness of concepts within text-

based guidelines. The use of implicit knowledge, where terms cannot be mapped to a stan-

dard terminology or vocabulary such as SNOMED CT, either as simple, pre-coordinated

concepts, or as compositional, post-coordinated concepts, presents a barrier to interoper-

ability with EHRs. Studies that have looked at coverage of guideline terms in standard-

ised vocabularies have found coverage of 71% (SNOMED CT, pre-operative assessment

guidelines)[137]; 88% (SNOMED CT and LOINC, immunisation guidelines)[64]; and 48%

(UMLS, guidelines for treatment of high blood pressure and high cholesterol). All these

studies noted that the guidelines lacked explicit definitions of many terms, thus requiring

manual or partial mapping to vocabulary concepts.

SNOMED CT post-coordination rules may need to become more sophisticated in order

to enable more mappings to guideline concepts to be made[137]: for example, the ability

to combine anatomical sites with measurements (important for recording pathological

findings, such as size of colorectal mass). Also, guideline terms, even if they can be

entirely mapped to a terminology, must also be mapped to terms used in the patient

record. Combining the post-coordination features of SNOMED CT with the term-coverage

of UMLS may improve concept mapping[137].
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3.4. Discussion

Even when implicit knowledge in guidelines has been made explicit and mapped to a

standardised terminology, the encoded knowledge model needs to be localised to match

local practice. In particular, guideline concepts need to be mapped to available fields in

the local EHR. However, a one-to-one mapping may not be possible: EHR support for

structured data capture of the concepts may be spread over a number of fields, or may

be missing entirely[66]. This is perhaps not surprising: a one-size-fits all EHR that allows

structured data capture of all potential guideline concepts would probably be unusable

and agreement on the schema would probably never be agreed. As we noted in the

introductory chapter (Chapter 1), around 50% of the useful information in the EHR still

remains in free text fields[138]; it may be infeasible to capture it all as structured data

at the point of care for process-oriented decision support purposes, although recently

companies such as Clinithink3 and Nuance4 have been using natural language processing

and speech recognition techniques in order to attempt to solve this.

With the advent of clinical information models such as HL7 RIM and CDA, and

IHE interoperability protocols such as XDS, we have noted the transition from the re-

porting of standalone systems to the reporting of service-based, enterprise integration

architectures[103]. Whether these architectures, in combination with semantic web ap-

proaches, can solve the problem of clinical workflow integration and adaptation, is an area

of current research[139]. The implementation of adaptive, multi-agent, semantically aware,

service-oriented workflows, incorporating formal models of clinical guidelines, appears to

be a major challenge[140].

In a recently published commentary in the Journal of Biomedical Informatics, Sen et

al.[141] also noted the transition from diverse, standalone and ad hoc CDSS systems,

through to service-based architectures converging towards centralised, standardised inte-

grated architectures. Interestingly, though, they did not note the recent trends in dis-

tributed and less centralised semantic web architectures identified in this review.

3http://www.clinithink.com/
4http://www.nuance.co.uk/for-healthcare/by-solutions/clinical-documentation/index.htm
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3. Implementing process-oriented health information systems

3.4.1. Review limitations

By focusing on descriptive studies to provide a rich picture of a process, we have not con-

sidered any measures of the effect of these systems on clinical practice, nor which parts of

the process are associated with successful outcomes. However, a recent systematic review

of the effectiveness of clinical pathways noted that the poor quality of reporting of the

implementation process prevented analysis of factors that might be critical to success[11].

In the prototype development and system architecture studies we selected, the implemen-

tation process was generally well described, but evaluations tended to be formative and

weak. Future reporting of such systems should contain a richer evaluation of both the

process and the outcome, to enable future systematic reviews to consider both aspects,

and to determine the relative importance of the challenge themes identified.

This review has only considered studies that were published in English in peer-reviewed

journals or conference proceedings published between 1995 and 2010. Consideration of

information from additional sources, for example, public- and privately funded research

consortia, technical reports, and professional textbooks, might lead to additional insights.

One criticism of attempting to carry out a meta-synthesis of qualitative research is that

the results may have little validity, as they are based on a third level of interpretation,

far removed from the original event[7]. Although development of the challenge themes

was based on those identified in an earlier expert opinion paper[5], these would need to

be validated by other researchers to improve the reliability and validity of the findings of

this review.

3.5. Summary

This chapter has surveyed the literature on the computerisation of clinical workflow, guide-

lines, and pathways and the underlying, cross-cutting themes that describe the challenges

to implementing process-oriented health information systems have been extracted using

thematic analysis techniques. Principal component analysis has been used to cluster these

themes into ten distinct groups, from which a conceptual model of the implementation

process was developed.
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3.5. Summary

From the development of systems supporting individual clinical decisions, Web technolo-

gies are now being used to integrate guidelines, workflows, pathways and clinical decision

support towards implementation of adaptive care pathways. Such systems incorporate

formal models, shared clinical knowledge resources, organisational ontologies and work-

flow management systems. Combining these promising architectures with more formal

modelling of clinical goals and care plans, and a method for recording where deviations

from these plans have occurred (‘variance’), may offer the best way forward for implemen-

tation. The challenge is to provide adaptive workflow that allows dynamic modification

of tasks, roles, and activity sequencing in response to changing conditions. However, the

evidence-base for these process-oriented systems is in its infancy – perhaps because they

are potential enablers of intervention, rather than interventions in themselves. Neverthe-

less, these systems need to be evaluated on a wider scale within clinical settings.

Whichever architecture is adopted, however, the core problems remain of how to model

clinical processes, translating guideline and pathway text into a computer-interpretable

model, and mapping the concepts contained therein to data in the EHR. To date, these

problems have largely been addressed by a collaborative, time-consuming and iterative

process of manually developing IF...THEN rules from guideline, protocols and pathway

documents, developing clinical algorithms and flowcharts that can then be encoded in a

CIG or workflow model, and creating mapping ontologies between an encoded guideline

and the EHR schema.

Recent attempts to address this ‘knowledge acquisition bottleneck’ through the use of

natural language processing and information extraction techniques have yielded promising

results, and warrant further exploration. The second half of this thesis considers how to

apply these techniques to concept mapping terms both in guidelines and in the free text

of clinical notes in the EHR, extracting process knowledge from guidelines and clinical

notes, and identifying narrative event chains in the latter. The methodology is described

in the following Chapter 4, and the method is implemented in an open source, modular

framework, described and evaluated in Chapters 5 to 8.
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Part II.

Identifying and extracting care

processes from the clinical narrative
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4. Methodology for identification and

extraction of clinical concepts, events and

processes

4.1. Introduction

In Part I, we saw that one of the key tasks in integrating a guideline-based clinical decision

support system with an electronic health record is to map clinical terms contained both in

guidelines and patient notes to a common, controlled terminology. This can facilitate the

provision of point-of-care recommendations and allows encoded guidelines to be shared

across institutions. In Chapter 3 we identified that, despite a extensive body of research

into modelling and formalising clinical processes, some core problems remain, namely how

to extract the conceptual and process information that resides in the unstructured text of

guideline documents, and how to map this information to concepts and process knowledge

in the patient record, much of which resides in the system not as structured fields, but

as free text. In this chapter, a methodology for developing a framework to extract this

knowledge is described.

Extracting structured information from unstructured or semi-structured text is known

as information extraction (IE). For some semi-structured texts, such as tabular material

in HTML or CSV format, techniques such as template filling can be used, which involve

patterns that exploit the structures in the data. For example, in a table, the column

headings can be used to identify the type of data in each column, or text fields separated

by a delimiter can be split into data types based on the position of the delimiter in the
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4. Methodology

line of text – for example, the text before the first tab might be a drug, the text before the

second tab the dosage, and the text before the third tab the frequency. However, across

texts at large, such templates cannot be generalised, and so natural language processing

(NLP) techniques need to be employed.

As with the formal models of clinical and workflows processes we considered in Part

I, computational processing of natural language text requires some formal representation

of the text to be processed. The types of representations can be divided into 4 types,

although in practice they are often combined and the distinction is not always clear-cut:

1. Lexical language models

a) Regular expressions and state machines: Natural language is treated at its

simplest, surface level: as a sequence of characters and strings. Patterns of

characters and strings can be formalised as a finite state machine (see Chapter

2), which can be serialised in a type of algebraic notation known as a regular

expression. For example, a sequence of alphabetical characters following a

word boundary (a space or punctuation), optionally beginning with a single

uppercase letter followed by one or more lowercase letters, then a consonant

followed by the suffix ‘-itis’, can be represented with the regular expression:

\b[A-Z]?[a-z]+[^aou]itis\b

Input text sequences are tested against the expression to see if there is a

match. This expression would match ‘rhinusitis’, ‘Bronchitis’, ‘arthritis’, but

not ‘coitis’.

b) Word and sentence tokenisation: Text is split into tokens that correspond to

words and sentences in the language being processed. In English, this can

be partially achieved by identifying white space and punctuation via regular

expressions, but exceptions for dealing with abbreviations and numbers con-

taining a decimal point need to be accounted for, either via manually created

rules or using a supervised learning algorithm with a statistical model[1].

c) Morphological analysis: Each token is assigned its part of speech (POS): noun,
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4.1. Introduction

verb, adjective, adverb etc, using either dictionaries and manually created rules

(e.g. in English, there is a defined set of determiners and pronouns, many ad-

verbs end in ‘-ly’ etc), or via supervised learning algorithm. Similarly, words

can be broken down into their lemmas, stems (or morphemes) and affixes (pre-

fixes and suffixes) using a morphological parser, using a finite state machine

operating over words[1], or a stemming algorithm such as Porter[2].

2. Syntactic language models

a) Context free grammars (CFG): grammatical text can be generated by produc-

tion rules, and similarly, text can be decomposed into its constituent grammati-

cal units as a hierarchical parse tree, or into linear sequences via shallow parsing

(phrase chunking). For example, a CFG for a sentence will typically consists

of noun phrases (NP), verb phrases (VP) and prepositional phrases (PP), each

of which, depending on the sentence complexity, may be broken down further

into smaller NP, VPs, and PPs, until the terminal leaf nodes of the parse tree

consist of atomic POS units such as determiners, nouns, prepositions, verbs

etc. In English, a set of complex rules for identifying the head of a phrase (the

word around which the phrase is built) has been identified[1], but in practical

NLP applications this is often simplified to selecting the right-most noun of a

NP, PP or VP.

b) Dependency grammars: dependency grammars are less concerned with parts of

speech and more with the role a word plays in a sentence or clause and the

typed relations between words, such as nominal subject, direct or indirect ob-

ject, prepositional modifier, temporal modifier. These relations are modelled

as labelled arcs between nodes of a dependency parse tree, which can be gener-

ated from a standard CFG parse tree via an algorithm[1]. Alternatively, these

relations can be identified via a shallow parse from the position of words rel-

ative to the verb in each phrase chunk, either through rules or learned via a

probabilistic model[3].
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3. Probabilistic language models

a) Bag-of-words: text is modelled as a set of words in which the order of words in

the text is not preserved. Words are indexed and phrases, sentences or complete

documents are represented by vectors of length i, where i is the number of index

entries corresponding to the number of distinct words across the texts. Each

vector represents the frequency distribution of index entries in that text. For

example, for the two sentences

‘For patients who are pregnant, an ACE inhibitor should not be pre-

scribed’

‘An ACE inhibitor is prescribed only if the patient is not pregnant’

the following index would be generated (in practice ‘patients’ and ‘patient’

would be a single index entry after stemming each word):

{ACE: 1, an: 2, are: 3, be: 4, For: 5, if: 6,

inhibitor: 7, is: 8, not: 9, only: 10,

patient: 11, patients: 12, pregnant: 13,

prescribed: 14, should: 15, the: 16, who: 17}

resulting in the following vectors:

[1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1]

[1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 1, 0, 1, 1, 0, 1, 0]

The similarity of two texts can then be scored by calculating the dot product

of their vectors[1]1. Vectors can be combined into a matrix to represent the

entire corpus (collection of texts), over which calculations can be performed to

identify topics in the corpus.

b) N -grams: Unlike bag-of-words, an n-gram is an ordered sequence of n words.

Typically bigrams (n = 2) and trigrams (n = 3) are used. n-grams are collected

1In practice, vector entries are weighted according to some measure, e.g. inverse document frequency
to give preference to words occurring frequently in a given text but less frequently in the texts as a whole.
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from a corpus of documents, by counting sequences of consecutive words (nor-

malised for cliticisation, e.g. what’s → what is) using a sliding window of size

n. A probability model is created based on the collocation frequency of those

words, in order to predict the next word in a sequence of n− 1 previous words,

using the Markov assumption that the probability of word w being the next

word depends only on the previous word: p(wn|wn−1, wn−2...) = p(wn|wn−1) .

4. Conceptual and semantic models

a) Word senses: words are classified according to their meaning. A word paired

with its specific meaning sense is known as a lexeme[1]. For example, ‘stroke’

might refer to the verb ‘to stroke’, as a synonym for ‘to caress’, or be used as a

metonym (figure of speech or alias) for ‘cerebrovascular accident’, depending on

context. Lexical and semantic relations between English words in a variety of

domains have been classified in a database called WordNet[4], which is widely

used in NLP tasks (see Chapter 8), and can assist in word sense disambiguation

(WSD), which is a key problem in clinical natural language processing (for

example, expansion of abbreviations; see Chapter 7).

b) Semantic role labelling (SRL): Verbs are classified as events and their partici-

pant noun phrases as event participants, each with a thematic role[1]. Themat-

ics roles such as AGENT (causer of an event), THEME (thing affected by the event)

and INSTRUMENT (object used by the AGENT in the event) often correspond to

subject, object and indirect object dependency relations. Semantic roles per-

tinent to clinical NLP include PATIENT or EXPERIENCER (often analogous to

THEME but implies some state change), TIME (the time that the event occurred),

INSTRUMENT and GOAL. The FrameNet project[5], a database of over 170,000

role-labelled sentences, aims to model hierarchical structures of related events

and participants to facilitate the development of SRL systems.
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4.2. Research methodology

In this research, we combine the use of public-domain ontologies (see Chapters 2 and 3)

with lexical, shallow syntactic (via phrase chunking: Chapter 5, and some dependency

relations: Chapter 8) and semantic models with hand-crafted patterns, developed iter-

atively through analysis of linguistic patterns that occur in ontology terms and across

clinical texts in general. The exception is the work described in Chapter 8, where patterns

are developed from a subset of an existing corpus (the training set) and then tested on

a previously unseen subset from the same corpus (the test set; see Section 4.2.2 below).

Overall, the approach used throughout this work is to apply knowledge-based principles

to identify general patterns that occur in the domain, and then evaluate them for specific

task performance (term identification and mapping, negation and possibility, abbreviation

expansion, spelling correction, coreference resolution) against a number of corpora.

4.2.1. Development methodology

Clinical NLP research over the last 15 years or so has been dominated by statistical and

machine learning approaches[6]. Recent advances in the application of supervised machine

learning techniques to the biomedical and clinical domains – particularly conditional ran-

dom fields (CRF) and support vector machines (SVM) – have led to the development of

effective systems for concept and relation identification, although these require significant

feature engineering effort (see overview in Uzuner et al.[7]). The focus of the method in

this work, however, is on iterative development of explicit, human- and machine-readable

patterns and rules for the creation of general-purpose, interoperable components. The

justifications for this approach include:

• Features that lead to useful results, and that have been identified via experimenting

with rules and patterns, can still be used as input to a machine-learning process

in future work. Rule-based and machine learning approaches co-exist in many hy-

brid systems: the combination of lexical rules with external knowledge resources

has value in providing input to, or post-processing the output of, statistical and

machine-learning approaches, particularly when available training data is sparse[7].
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For example, Patrick et al.[8] used dictionary lookup to expand abbreviations and

add UMLS classes and identifiers as token features, which were used as input to a

CRF classifier that augmented a rule-based system.

• Supervised learning techniques typically require a large amount of hand-labelled

training data. Although such data is available for participating in specific biomedical

or clinical NLP challenges (such as the annual BioNLP and i2b2 Shared Challenges

– corpora from which are used for evaluating this work), the types of labels and

features used in these corpora are specific to the challenge. It is not clear how a

classifier trained on such data would generalise to other data labelled differently

without requiring retraining on the new data. The goal of this work, however, it to

develop patterns and components that can be used to solve a number of problems

across a range of corpora, with flexibility in the types of concepts and relations

identified.

• Some of the best-performing systems for solving specific NLP problems in the gen-

eral domain, such as identification and normalisation of temporal expressions (see

Chapter 5) and resolution of coreference (see Chapter 8) are entirely rule-based.

• Earlier rule-based systems fell out of fashion as, over time, they resulted in mono-

lithic, unmanageable sets of handwritten rules that could lead to non-deterministic

behaviour[6]. However, advances in Web-based, distributed and modular software

architectures (see Chapter 3), dynamically loaded libraries and ‘pipeline’ based NLP

architectures (see Chapter 5) has made the development of self-contained but ex-

tensible rule-sets more feasible, potentially avoiding the problem of earlier systems

where many interdependent rules became unmaintainable. Clearly defined rule-sets

can be extended and modified by others to suit local needs; and rules can be verified

for consistency and conflict, and validated against organisational requirements.

The use of lexical and syntactic patterns and morphemes for processing clinical text is

not a new idea. Back in 1969, Pratt and Pacak[9] described some principles for mapping

text to terms in the Systematized Nomenclature of Pathology (a forerunner to SNOMED),
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noting that clinical terminology is highly compositional, consisting of Latin, Greek and En-

glish morphemes. They described morphological and lexical transformation rules for iden-

tifying semantically analogous phrases (e.g. ‘atrophy of muscle’ → ‘muscular atrophy’).

The multi-decade Linguistic String Project[10], which led to the commercial MedLEE

system, mapped clinical text to SNOMED concepts by identifying word sequences from a

dictionary of words mapped to lexical categories such as PART, AREA, INDICATION, AMOUNT.

More recently, Patrick et al.[11] used regular expressions, the UMLS Specialist Lexicon,

and an n-gram model to identify and map terms occurring in the free text of EHR patient

notes to SNOMED CT. Kaiser et al.[12] used the MetaMap Transfer application (MMTx

– see Chapter 5), the UMLS Semantic Network and syntactic patterns to identify clinical

actions and conditional statements in guidelines (see also Chapter 3). Serban et al.[13]

identified a number of linguistic patterns useful for the creation of templates to extract

terms and processes from the text of clinical guidelines. For example statements such as:

In the event of [pregnancy]med_context, [patients with diabetes]target_group

[should]recommendation_op be [prescribed calcium channel blocker]med_action

and

For [diabetic patients]target_group with [kidney damage]med_context the [blood

pressure target is 130/80]med_goal

can be generalised by respective patterns

(med_context, target_group, recommendation_operator, med_action)

(target_group, med_context, med_goal)

The methodology used in the current work recapitulates and extends some of the ideas

described by Pratt, Sager, Patrick, Kaiser, Serban and others, and implements and eval-

uates them in a systematic way. In order to develop tools and techniques that can be

implemented in a distributed, web-based environment (see Chapter 3), it makes sense to

use an existing framework that supports this implementation. In this work, the open-

source General Architecture for Text Engineering (GATE)[14] framework will be used for

the natural language processing component. GATE was chosen for the following reasons:
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• its pipeline-based approach allows self-contained components that individually may

use rule, dictionary, or statistical and machine learning approaches, to be integrated

and reconfigured for different tasks;

• it is well supported, with a large, international community of developers and users;

• it is open-source software with a well-documented application programming interface

(API) which facilitates customisation and extension of the core software.

Identification of processes of care in unstructured clinical texts involves the following

tasks[15][16]:

• identification and post-coordination of clinical terms;

• identification of term aliases and abbreviations that point to the same, previously

described real-world entity (coreference);

• identification of events and action phrases (e.g. ‘perform’, ‘prescribe’);

• identification of conditional phrases and clinical rules (‘if ... then’);

• identification of dose unit terms (e.g ‘3 mg’);

• identification of temporal expressions (e.g. ‘24 h’, ‘two days’) and temporal con-

straints (e.g. ‘for at least 2 weeks’, ‘no more than 3 days’);

• identification of negation and possibility (‘absence of symptoms’, ‘pain not controlled

by medication’, ‘surgery may be appropriate’).

In this work, we consider each of these tasks. Chapter 5 deals with all except the second

task, which is dealt with exclusively by Chapters 7 and 8, and Chapter 6 considers an

alternative approach to the first task.

4.2.2. Evaluation methodology

The performance of the tools and techniques, developed during this research to identify

concepts and processes, are evaluated against a range of texts in the clinical and biomedical
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domain: clinical guideline documents, MedLine abstracts, discharge summaries, progress

notes, surgical, pathology and radiology reports. Where available, performance is evalu-

ated against manually annotated corpora. As noted in Chapter 1, the purpose of creating

these labelled corpora is to facilitate the development of systems that can recognise such

concepts and relations automatically, in order to identify opportunities for decision sup-

port.

In creation of these corpora, a team of domain experts are typically given the task of

labelling concepts and relations in accordance with a guidance document produced by

a research team. For example, the task might be to identify all phrases that contain

human anatomical terms, or to identify mentions of clinical procedures, disease concepts,

or medications. In addition to labelling the concepts, domain experts – annotators — may

be asked to assign attributes (features) to each term, such as whether it is expressed in

a positive, negative or possible context (e.g. the non-appearance of a possible symptom,

the rejection of a finding, the possibility of a diagnosis), or whether the term relates to a

described process that has occurred, is planned to occur, or may occur. Agreement between

different annotators will vary; typically, the publishers of the corpora will cite a figure

for the inter-annotator agreement (IAA)[17] using Cohen’s kappa (κ)[18] for agreement

between pairs of annotators or Fleiss’ kappa[19] for more than 2 annotators, where

κ = p0 − pe

1− pe

where p0 is the observed proportion of cases where all annotators agree on a classification

and pe is the proportion of agreement expected by chance. In some cases (e.g. Appendix

2 of [20]), a simplified measure is used that calculates a score based on the ratio of cases

where there is agreement to case where there is disagreement:

IAA = 2×Nmatch

2×Nmatch +Nnonmatch

where Nmatch is the number of cases in which all annotators agree and Nnonmatch is the

number of cases in which they disagree. The aim of an automated system would be to at
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least match the IAA score, i.e. perform at least as well as domain experts agree. In prac-

tice, the corpus will be adjudicated – another set of domain experts will curate the corpus

and resolve cases where there is disagreement between annotators, producing a single set

of documents that represents the corrected version of all the individual annotators’ work.

Such a corpus is referred to as a gold standard, and the aim of an automated system would

be to match this gold standard as closely as possible.

Where labelled corpora are not available, we make use of ‘silver standard’ data by

creating an annotated corpus using an automated tool that has been accepted by the

research community as producing high-quality output and against which other approaches

should be measured. In this case, the National Library of Medicine’s concept recogniser,

MetaMap[21], is used to create the silver standard, as it is considered to be the reference

tool for concept identification in the biomedical domain[22].

The evaluation measures used in this research will be the standard measures used in

the IE and NLP fields: precision, recall, and F 1-measure. Measurement of recall (also

referred to as sensitivity) determines the ratio of correctly identified annotations (‘true

positives’) to the total number of annotations in the gold standard version (i.e the sum

of ‘true positives’ and ‘false negatives’; see Equation 4.1). Measurement of precision (also

referred to as positive predictive value) determines the correctness of the annotations

identified; it is the ratio of true positives to all annotations (correctly and incorrectly)

identified (Equation 4.2). F 1-measure is a measure of the balanced performance of the

system, defined as the harmonic mean of recall and precision (Equation 4.3)2.

recall = TP

TP + FN
(4.1)

precision = TP

TP + FP
(4.2)

where TP is the number of true positives (correct matches), FN is the number of false

negatives (missed matches), FP is the number of false positives (incorrect matches).

2The ‘1’ refers to the value of the weighting coefficient β between precision and recall; more generally,
Fβ = (1 + β2) × precision×recall

(β2×precision)+recall
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F1 = 2× precision× recall
precision+ recall

(4.3)

In practice, precision, recall and F 1-measure can be calculated as either strict, lenient,

partial or average scores. In strict scoring, in addition to matching the classification of

a concept (i.e. a concept classified as Procedure by the system but as Test in the gold

standard would not score as a true positive), the extent of a system-generated annotation

must exactly match that of the corresponding gold standard annotation. For example, if

the system identifies an AnatomicalTerm concept of ‘femur ’ starting at character position

10 from the beginning of the document (the start offset) and ending at character position

15 (the end offset), but the gold standard has an AnatomicalTerm concept of ‘the femur ’

between offsets 6 and 15, this would not be scored as a true positive and would be counted

as a false positive. With lenient scoring, however, system-generated extents that overlap

with the corresponding concept in the gold standard do count as true positives. With

partial scoring, matching concepts with exactly matching extents are each scored 1 and

overlapping extents are each scored 0.5. With average scoring, the mean of strict and

lenient scores are calculated. Unless otherwise specified, strict scoring is used in evaluating

this work.

However, as they stand, Equations 4.1 to 4.3 only calculate scores for matching a single

class of annotation or feature in a single document. In practice, we match multiple classes

(e.g. Procedure, Disease, Treatment, Test concepts) across multiple documents. Across

a corpus and across classes, precision, recall and F 1-measure can be calculated as either

a micro-average or a macro-average. Micro-averaging sums individual numerators and

divides by the sums of individual denominators (Equations 4.4–4.6):

precisionmicro =
∑n

i=1 TPi∑n
i=1 TPi + FPi

(4.4)

recallmicro =
∑n

i=1 TPi∑n
i=1 TPi + TPi

(4.5)
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Fmicro
1 = 2× precisionmicro × recallmicro

precisionmicro + recallmicro
(4.6)

where n is the number of classes being evaluated, or, for evaluating a single class over

a number of documents, the number of documents in the corpus. Whereas macro-average

sums individual scores and divides by the number of scores (Equations 4.7–4.9):

precisionmacro = 1
n

n∑
i=1

TPi

TPi + FPi
(4.7)

recallmacro = 1
n

n∑
i=1

TPi

TPi + FNi
(4.8)

Fmacro
1 = 2× precisionmacro × recallmacro

precisionmacro + recallmacro
(4.9)

Micro-averaging over classes gives performance measures over all classes for the corpus

as a whole, whereas macro-averaging over classes would give a measure of performance

for a typical annotation class. (Similarly, micro-average scores for a single class over each

document gives average performance measures for that class in a document, and macro-

averaging for a single class over the corpus gives average performance measures for that

class over the corpus; this makes more sense when considering the scores for annotation

features, i.e. given a matched annotation, what is the likelihood that the features are

correct – see Chapter 5.) In this work, unless otherwise specified, micro-average measures

are reported.

In their model for evaluation of information system success, DeLone and McLean[23]

(D&M) consider six inter-related axes for evaluation:

1. System quality: ease of use, functionality, reliability, flexibility, and portability

2. Information quality: accuracy, timeliness, completeness, relevance, and consistency

3. System use: frequency of use, number of times system accessed, the degree to which

users depend on the system

99



4. Methodology

4. User satisfaction: users’ perceptions of how important and useful the system is for

achieving their work goals

5. Individual impact: quality of decision making, job performance, task productivity

6. Organisation impact: time and cost savings, improved customer outcomes

Within this model, the evaluation of the current work fits within the second axis of

information quality, in that the techniques and tools developed here transform unstruc-

tured text into semantically enriched data from which decision support information may

be more easily extracted. In terms of D&M, we measure the accuracy, completeness and

consistency of the data generated by the components developed. In addition to the mea-

sures discussed above, we also evaluate the performance of the components developed in

terms of their processing speed (timeliness within the D&M model) on the evaluation

corpora (see Chapter 5). Furthermore, as the components developed in this work have

been released as open source software, formative evaluation of system use might be made

in terms of numbers of downloads or the number of other research or commercial projects

in which these components are subsequently used. This is discussed in Chapter 9.

4.2.3. Data collection

City University and the British Medical Journal (BMJ) have signed a collaboration and

Non-disclosure Agreement (NDA) to allow use of their care pathway and clinical guide-

line data from their Best Practice and Clinical Evidence products. A full data set for

both products has been provided by the BMJ. Additional clinical guideline data will be

harvested from National Institute for Clinical Excellence (NICE) guidelines, which can be

reproduced for educational and not-for-profit uses, and from the US National Guideline

Clearing House.

Deidentified clinical records have been provided by the i2b2 National Center for Biomed-

ical Computing funded in part by grant numbers U54LM008748 and 2U54LM008748 and

were originally prepared for the Shared Tasks for Challenges in NLP for Clinical Data

supported by the VA Salt Lake City Health Care System with funding support from the
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Consortium for Healthcare Informatics Research (CHIR), VA HSR HIR 08-374 and the VA

Informatics and Computing Infrastructure (VINCI), VA HSR HIR 08-204 and the National

Institutes of Health, National Library of Medicine under grant number R13LM010743-01.

A Data Use Agreement has been signed by both parties.

4.2.4. Ethical approval

The City University Research Ethics Committee have confirmed that ethical approval is

not required for this project as it involves the use of existing, anonymised data sets for

which research approval has been granted by the data owners.

4.3. Summary

This chapter has outlined a development and evaluation methodology for a clinical infor-

mation extraction framework. Each of the following Chapters 5 to 8 provides details of

the specific methods used for addressing the domain problems tackled by that chapter.

Chapter 5 describes methods and formative evaluation of the core framework modules of

term identification, concept mapping, negation and possibility, temporal concepts, pro-

cesses and events. Chapter 6 evaluates a method for more efficient ontology-based term

identification. Chapter 7 describes a method and an evaluation of dynamically generated

regular expressions for expanding and coreferencing biomedical and clinical abbreviations.

Chapter 8 integrates all these methods to trace processes of care as linked chains of events

through coreference resolution.
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5. Development of an open-source, modular

framework for clinical concept and

process extraction

5.1. Introduction1

As we saw in Chapter 4, extensive research effort has been invested in developing and

applying lexico-syntactic, knowledge-based and statistical machine learning methods to

the problem of identifying clinical concepts, events, relations and process knowledge in

unstructured text. Despite this effort, while there are a number of individual, open-source

tools and applications for working with text in the biomedical domain (for example, for

identifying genes, proteins, their associations, expressions and interactions), the number

of freely available, general-purpose tools for working with clinical texts are fewer. In this

chapter, we describe the development of, and provide formative evaluation for, a number of

novel, interoperable components for extracting clinical concepts and process information

from clinical guidelines and patient notes.

Existing tools for extracting information from biomedical texts include the Stanford

Biomedical Event Parser[2], the GENIA tagger[3], ABNER[4], AbGene[5], the Penn Bio-

tagger [6] [7], and MutationFinder[8]. MetaMap[9], from the US National Library of

Medicine (NLM), which is probably the most widely used and is considered to be the

reference standard tool for mapping unstructured text to concepts in the UMLS, was orig-

inally developed for retrieving and processing MEDLINE abstracts. Although its use in
1Some material in this paper has been published as ‘A tool for enhancing MetaMap performance when

annotating clinical guideline documents with UMLS concepts’[1].
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its more recent incarnations has been extended to clinical texts, MetaMap only handles

unformatted ASCII text as input, can handle a maximum input size of 3000 characters,

and processing complex phrases can require many hours of computation[10].

Despite the development of these tools, the lack of interoperability between them has

been recognised as a major barrier for researchers in biomedical and clinical natural lan-

guage processing and information extraction[11][12]. Standalone tools typically require

‘glue code’ to work together, as they each may be written for a specific task, and may

have varying input and output formats[12].

The requirement for glue code can be minimised by wrapping the tools around a standard

application programming interface (API) or application framework. In the open-source

arena, there are a number of such frameworks for different programming environments.

Three of the most popular include the Natural Language Processing Toolkit (NLTK)[13]

for the Python language, and the General Architecture for Text Engineering (GATE)[14]

and the Unstructured Information Management Architecture (UIMA)[15] frameworks for

the Java language. These open-source frameworks allow individual components to be used

together in a processing workflow or pipeline in which the output of one component can

be used as the input to a later component[16].

As a result, some of these individual tools have been integrated into these frameworks.

The GENIA tagger, ABNER, AbGene, Penn Biotagger, and MutationFinder have been

made available as GATE components[17]. Researchers at the National Centre for Text

Mining (NaCTeM) have also integrated a number of these tools as components in a UIMA-

based open-source system called U-Compare[11].

In the clinical domain, a well-known, open-source text processing framework is the

Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES)[18], which is

also based on UIMA, integrates the NLM’s Lexical Variant Generation (LVG) tools[19]

(see Chapter 6), and comprises a number of components standard in the general NLP

domain but trained specifically for clinical texts: sentence chunker, tokenizer, and part-

of-speech (POS) tagger; and specific components for extracting clinical concepts and their

coreference relations[20] (see Chapter 8). However, cTAKES has a complex installation
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and configuration process2 and does not appear to be easily used or customised by end

users without programming ability.

One benefit of UIMA is that there is an integration component for MetaMap. However,

the MetaMap integration with UIMA does not provide ‘out of the box’ clinical concept

mapping for end users without configuration, knowledge of the Java programming language

and the UIMA API3.

Another open-source clinical text processing system is the cancer Text Information

Extraction System (caTIES)[21], originally built around the GATE framework. Its focus

is on concept mapping surgical-pathology reports, rather than providing a general-purpose

clinical knowledge extraction pipeline. Although it is integrated with MetaMap via the

MetaMap Technology Transfer (MMTx) application, MMTx has now been deprecated by

the NLM and is no longer supported since the public release in 2008 of the MetaMap

server software4.

The Topaz5 system is also based around GATE. Its main purpose is to identify respi-

ratory conditions in free text, but makes use of modules that implement the well-known

NegEx algorithm[22] for detecting negated clinical findings and ConText[23] for identify-

ing their temporal, hypothetical and experiencer (i.e. patient or family member) contexts.

NegEx uses a list of 270 ‘trigger terms’ that may appear before or after a clinical con-

cept (usually a disease, finding or symptom) that indicate whether the concept is possible

(e.g. ‘may not be ruled out’) or negative (‘no evidence of ’, ‘was ruled out’), and has a

reported precision and recall of 84.5% and 77.8% against a test set of 1235 concepts in

1000 sentences extracted from discharge summaries.

The Health Information Text Extraction (HITEx) system[24] is another GATE-based

suite of tools, consisting of components for identifying smoking status, principal diagnosis,

and discharge medication. However, it is unclear whether this project is still being actively

maintained, as it was developed for an old version of the GATE framework (version 3.1)

which has been significantly updated since then (currently GATE is at version 7.1).

2https://wiki.nci.nih.gov/display/VKC/cTAKES+2.0+User+Install+Instructions
3http://metamap.nlm.nih.gov/README_uima.html
4http://mmtx.nlm.nih.gov/MMTx/
5http://www.dbmi.pitt.edu/blulab/resources.asp#Topaz
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Notably, the tools described above have been developed for quite specific tasks in the

clinical domain. There still seems to be a need for loosely coupled, general-purpose com-

ponents that can be used within an open-source framework for clinical text processing.

These interoperable modules need to be able to work independently, or as part of a larger

pipeline, without the need for additional software development (the ‘glue code’) requiring

programming expertise by the end user. In the remainder of this chapter, we describe and

evaluate a number of software components that aim to address these requirements.

The use of the pipeline paradigm for performing a succession of transformations on

clinical texts was probably first described by Meystre and Haug[25]. In that work, pipeline

steps included text segmentation, clinical problem identification, negation detection, and

post-processing for local code mapping and XML generation. In this research, we build on

the pipeline concept described by Meystre, but with the goal of flexibility in component

sequencing – i.e. one or more components (except for any essential, generic pre-processing

steps, as described below) may be omitted or even used repeatedly without ‘breaking’ the

pipeline, and there is minimal coupling between components.

In this work, each of these components are developed for the GATE framework, as GATE

provides a text processing environment that can be used ‘out of the box’ without requiring

the end user to have programming expertise. Moreover, unlike UIMA, GATE (prior to

this current work) lacked integration with MetaMap, and had no specific components for

identifying basic concepts pertinent to clinical texts, such as

• quantitative concepts: number, measurement, units;

• temporal concepts: time, date, duration, age, frequency;

• process concepts: actions, events, temporal relations;

• negation and possibility;

• spelling correction;

• abbreviations.
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In this chapter, we consider MetaMap integration into the GATE framework, and ap-

proaches to improve its performance. It was noted earlier that MetaMap requires input

text to be segmented into management chunks (< 3000 characters) in order to be able

to process it. Here, we consider different text segmentation approaches to maximise the

capture of contextual information while retaining relative accuracy of annotation in com-

parison to default MetaMap behaviour. In addition, we describe lexico-syntactic patterns

for the identification of the above quantitative, temporal and process knowledge concepts

that provide the context for the clinical terms identified by MetaMap, and we evaluate

the performance of the event, negation and temporal concept identification components

against a corpus of clinical discharge summaries. The latter two items in the above list

(spelling correction and abbreviations) are dealt with in Chapters 6 and 7.

5.2. Methods

5.2.1. Overview of the GATE framework

GATE provides native support for processing source documents in variety of text encodings

and formats, including PDF, RTF, and XML, and has a mature Java API for integrating

other applications – particularly those with their own Java API, such as MetaMap6 –

as components in its processing pipeline. GATE can also serialise processed text in a

generic XML format, where each semantic annotation added by pipeline components is

serialised as an XML element, with annotation features serialised as attributes on the

corresponding element. The output XML can be transformed via an external process (e.g.

an XSLT transformation) into the specific format required by the application that invokes

the GATE pipeline (e.g. RDF, OWL, CSV etc).

GATE comes with a number of general-purpose components for shallow parsing of En-

glish text as part of its ANNIE[14] (A Nearly New Information Extraction system)7: a

Tokenizer, Sentence Splitter, Part of Speech (POS) Tagger, a Morphological Analyser (for

lemmatisation and identification of verb infinitives), Noun Phrase and Verb Group chun-
6http://metamap.nlm.nih.gov/javaapi/javadoc
7It also has components for working with most European language and Chinese, however, in this work,

we only consider medical English and its neoclassical morphemes
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kers, a trie-based Gazetteer component (see below), and the Java Annotation Pattern

Engine (JAPE) rules engine for writing lexico-syntactic patterns over existing annotations

using regular expressions. The typical ordering of these components in a pipeline is shown

in Figure 5.1.

Figure 5.1.: A generic information extraction pipeline using GATE’s ANNIE components

A Gazetteer comprises one or more plain text files (e.g. anatomy1.lst) that function as

lookup lists, each of which is described in an index file that classifies each list according to

major and minor types (e.g. anatomy1.lst:human_anatomy:location) (see Figure 5.2).

The lists themselves comprise one entry per line, where each entry is a term to be looked

up in the document, and can be further classified with one or more feature attributes that

will be added to the annotation created when a lookup term is found in the document (see

Figure 5.3).

A JAPE rules file (see Figure 5.4) consists of one or more pattern-matching rules that

will ‘fire’ when the conditions on the left-hand side of the rule are met; the right-hand

side of the rule determines the action that will be taken on firing: typically, the output of

a new annotation, addition of features to an existing annotation, or other, more complex
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Figure 5.2.: Structure of a GATE Gazetteer list definition file (list of lists)

Figure 5.3.: Structure of a GATE Gazetteer list file

behaviour that can be written in Java code.

According to the review by Krauthammer & Nenadic[26], an system for identification

of clinical terms typically needs to perform three tasks:

1. recognise the text string as a possible term (candidate term selection)

2. classify the candidate term (e.g. body part, disease, physiological function)

3. map the term to a single concept (pre-coordination) or to qualified, multiple concepts

(post-coordination) within a standardised vocabulary or ontology.

The approach used for the first of these tasks is described in the following Section 5.2.2.

Section 5.2.3 describes the method for tackling the second and third tasks. Sections 5.2.4

and 5.2.6 describe the method for identifying process and temporal concepts and relations.
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Figure 5.4.: Structure of a JAPE rules file

5.2.2. Identifying candidate clinical term phrases: text segmentation

As pointed out by Bashyam[27], simply chunking text into noun phrases (NP), verb phrases

(VP) and prepositional phrases (PP) is insufficient for identifying term phrases in clinical

narratives. These may consist of partial or ungrammatical phrases, or consist of semantic

units comprising more than one syntactic phrase type. In clinical texts, noun modifiers

may often be verb past participles, such as ‘increased blood pressure’ or ‘impaired glucose

tolerance’, which a typical phrase chunker would identify as VPs and split them into a

verb group (VG) (‘increased’, ‘impaired’) and a NP (‘blood pressure’, ‘glucose tolerance’),

whereas we wish to identify them as a single lexical unit for the purposes of candidate term

identification. Similarly, clinical concepts may be appear as an adjective or gerund acting

as a noun (‘the elderly’, ‘sneezing’) or as a noun followed by an infinitive postmodifier

(‘refusal to eat’, ‘failure to thrive’).

To address this, the following approach to text segmentation for phrase identification

was taken:

• Start with the output of a standard NP and VG chunker (in this case, the ANNIE
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components described above).

• Write JAPE rules to modify the output of these chunkers to identify phrases that

has a verb modifier with an ‘-ed’ or ‘-ing’ affix.

• Identify adjectives and gerunds not attached to a NP as a potential term if preceded

by a determiner and not followed by a noun.

• Identify ‘is_a’ phrases where the object is an adjective or a verb with an ‘-ed’ or ‘-

ing’ affix and turn this into an equivalent NP. For example, ‘treatment was effective’

→ ‘effective treatment’, ‘patient is disabled’ → ‘disabled patient’, ‘no bleeding was

evident’ → ‘no evident bleeding’.

• Expand adjectival phrases joined to a noun phrase with a coordinating conjunction.

For example ‘mild, moderate and severe hypertension→ ‘mild hypertension, moderate

hypertension and severe hypertension’.

• Identify prepositional phrases comprising phrases identified by the above steps joined

by a positional preposition (of, on, in, under, etc). Segmenting the text into both

NPs and PPs allows contextual information to be captured, for example ‘pain on

the right side of the chest’, ‘family history of congestive heart failure’, ‘no evidence

of cardiovascular disease’, ‘absence of pulse’.

5.2.3. Identifying and mapping clinical concepts: MetaMap integration and

performance improvements

Using the MetaMap Java API, a software component was developed that integrates MetaMap

with GATE, in which, by default, text is normalised and chunked into blank-line delim-

ited segments. These text segments are submitted to MetaMap server (or multiple servers

for parallel processing) and the results converted to GATE annotations and features for

further processing.

Terms containing diacritics are stored in normalised ASCII form within the UMLS

source vocabularies (e.g. Angstrom, Guillain-Barre etc). As MetaMap can only process

ASCII data, it returns term positions as byte offsets relative to the start of the phrase.
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Annotation offsets in GATE are given as encoding-dependent character offsets. Thus,

multi-byte UTF-8 data in the source document payload needs to be normalised to its

single-byte, ASCII equivalent so that MetaMap can map it to the correct term in UMLS

(e.g. Ångström → Angstrom, Guillain-Barré → Guillain-Barre).

To accommodate this, UTF-8 and ISO- 8859-1 data in the payload is normalized to

its ASCII equivalent by using the java.text.Normalizer class8 which implements the

standardised Unicode Normalization Forms[28] to 1) convert the string to its Roman equiv-

alent plus diacritic, 2) strip the diacritic, and 3) convert the resulting string to an ASCII

byte stream from which to create a new ASCII-encoded string that forms the input to

MetaMap. This process allows terms containing diacritics to be correctly recognised and

mapped by MetaMap.

The plugin provides a number of features designed to optimise the processing of large

documents. Although by default the document payload that forms the input to MetaMap

is chunked into line-break delimited segments, this can be modified to one of the following:

• the content of user-defined input annotations (identified by an upstream process,

such as the candidate term phrases described in Section 5.2.2), or specified elements

in the original XML markup;

• only distinct instances of the string content of each input annotation, with remaining

instances linked back to the first mapped term (i.e. coreferencing – see Chapter 8);

• user-defined features on each input annotation, rather than the original source data.

For example, an upstream process might normalise prepositional phrases (see Section

5.2.2 such as ‘cancer of the lung’ → ‘lung cancer ’, or verb phrases such as ‘pain

is severe’ → ‘severe pain’, and store the result as a feature on the term. This

allows these grammatical variants to be treated as equivalent for the purposes of

coreferencing;

• content stripped of leading determiners and possessives: for example ‘He fractured

his right arm’ → ‘fractured right arm’;

8http://java.sun.com/javase/6/docs/api/java/text/Normalizer.html
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• input annotations that do not occur within user-defined section: for example, if only

the Recommendations section of a guideline is to be processed, this can be specified

here;

• input annotations that do not contain user-defined elements. For example, if we

wish to ignore input phrase chunks that contain or are coincident with a temporal

of process concept (see Section 5.2.6 below), then these can be specified here.

5.2.4. Identifying process concepts, events and relations

As we saw in Chapter 4, previous researchers have identified specific verb groups for

identifying process concepts in clinical guidelines, such as activate, perform, prescribe, treat,

either from hand-created lists of verbs extracted from guideline documents[29], or from the

UMLS Semantic Network[30] and an online thesaurus[31]. Here, we consider general verb

group patterns that identify processes ruled in or ruled out, or actions performed, or to

be performed, as part of the care process – for example, parsing out goals and rules from

policy statements or guidelines (see Chapter 2, Section 2.3.4) – but we defer identification

of specific verbs within these patterns required for specific tasks (see Chapter 8).

TimeML considers an event to be some situation that occurs in time, and defines events

as ‘tensed or untensed verbs, nominalizations, adjectives, predicative clauses, or preposi-

tional phrases’[32]. In the case of clinical texts, events can be considered to be clinical

concepts that describe a patient state, such as a symptom, disorder or disease (typically

grouped as Problem in the evaluation corpora used in this work), a procedure, such as a

test or treatment, or some process or occurrence that affects the patient, such as admis-

sion, discharge, referral etc, and their corresponding verb forms. Therefore in addition to

problem, test and treatment-type concepts, we also consider verb groups to be potential

events.

The ANNIE Verb Group (VG) chunker identifies sequences of verbs, including negations

and modals. For example the phrase ‘may not be appropriate to prescribe’ will be identified

as two VGs: ‘may not be’ with negated (‘not’), modal (‘may’) features and ‘to prescribe’

with an infinitive tense feature. Similarly, consider the phrases:
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[Diazepam]NP [may not be]VG.be,modal,neg [appropriate]JJ [to prescribe]VG.inf

[to]IN [this patient group]NP

[Infection]NP [seems]VG.seem,modal [unlikely]JJ [to have been]VG.be,perf [the cause

of these symptoms]PP

[These symptoms]NP [may not have been]VG.be,modal,neg [related]VG [to]IN [the

earlier infection]NP

[The incision]NP [was made]VG [just]RB [inferior]JJ [to]IN [the edge of the tumor]PP.

where JJ = adjective, RB = adverb, PP = prepositional phrase, NP = noun phrase,

IN = preposition, inf = infinitive tense, perf = perfect tense. The relations between the

above NPs/PPs can be generalised by the following patterns:

NP|PP VG.modal JJ VG.inf IN NP|PP

NP|PP VG.modal JJ VG.perf NP|PP

NP|PP VG.modal VG IN NP|PP

NP|PP VG RB JJ IN NP|PP

These subject-predicate-object patterns suggest a more general lexical pattern for iden-

tifying VG predicates that specify some clinical action or process, either performed, pos-

tulated, or planned:

(VG.modal | VG){1, 2} RB? JJ* (VG.inf | VG.perf | IN){1,2}

where |, ?, *, {n,m} represent standard regular expression Kleene operations for speci-

fying occurrence.

Lists of words and phrases expressing temporal relations between terms were created

and mapped, where possible, to their TimeML TLINK relation types of SIMULTANEOUS/-

DURING/OVERLAP; BEFORE/BEFORE_OVERLAP/ENDED_BY; and AFTER/BE-

GUN_BY. For example, the compound preposition ‘prior to’ signifies a BEFORE re-

lation between two events, such as ‘patient complained of [chest pains]Problem prior to

[admission]Event’
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5.2.5. Identifying negation and possibility of concepts and events

MetaMap includes an implementation of the NegEx algorithm[22]. In the current work,

the text segmentation approach described above allows the words that may indicate nega-

tion or possibility surrounding the target noun phrase to be captured and thus processed

by NegEx within MetaMap. For example, prepositional phrase chunking will capture ‘no

evidence of ...’, ‘absence of ...’, verb group chunking will capture ‘... may be excluded’.

However, if the MetaMap integration component is not used (see Chapter 6), a separate

component for identifying negated or possible findings is required. While NegEx is avail-

able as a separate GATE framework component, it was developed for an earlier version

(4.x), it requires a number of sub-components to be installed and instantiated in a specific

order in the pipeline, and this author was unable to get it to work with the latest version

of GATE (7.x). Therefore, a separate negation and possibility component was developed.

Rather than recreate NegEx and use its lists of specific expressions, we use lexical pat-

terns to attempt to generalise the identification of negation and possibility. For example,

a concept or finding preceded by a negating verb group (e.g. ‘was not found’) or word

(e.g. no, absence etc) within a certain window (e.g. between 0 and 3 intervening words)

suggests that that concept is negated.
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(

(

{VG.neg == "yes"}

(

TOKEN_WINDOW

CONCEPT

)[1, 5]

) |

(

CONCEPT

{VG.neg == "yes"}

)

):m

To ensure double negatives or negative possibility is not captured (e.g. ‘does not ex-

clude’), negating phrases are only matched if they do not begin with ‘not’, as shown in

the pattern below:
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!["not"]

(

(

["no|nor|any|deny|denie(s|d)|without|

absen(t|ce)|exclude(d|s)|negative"]

) |

(

["rule(s|d)?"]

TOKEN_WINDOW

["out"]

)

(

TOKEN_WINDOW

CONCEPT

)[1, 5]

)

where TOKEN_WINDOW is a flexible window of intervening words, and CONCEPT is a clinical

term or event identified by a previous pipeline step (e.g. from MetaMap or another process;

see Chapter 6). A similar pattern can be expressed to represent a negating expression

following the concept. We use a similar approach to identify possibility via the presence

of ‘hedge cues’[33] – words that indicate uncertainty or speculation:
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(

"possib(le|ility)|potential(ly)?|presum(e|ed|able|ably)|

question(ed|able|ably)?|consistent|indicate(s|d)?|

suggest(s|ed|ive)?|risk(s|ed)?"]

(

TOKEN_WINDOW

CONCEPT

)[1, 5]

)

5.2.6. Identifying quantitative and temporal concepts

The GATE Tagger_Numbers9 component was used to identify and normalise spelt-out

numbers and roman numerals to their arabic equivalents. This component does not handle

ordinal numbers (21st, fourth etc), so a separate Gazetteer of ordinals from 1-31 (for day

of the month identification) was created, e.g.

...

24th;val=24

twenty-fourth;val=24

twenty fourth;val=24

...

Gazetteer lists of units of measurement, their abbreviations and modifiers (in symbolic

and text form e.g. ‘less than’, ‘at least’, <, >=) were created, and the output of these

lookups were combined with JAPE patterns (e.g. Figure 5.4) to identify clinical relevant

measurement concepts such as values and ranges of weight, volume (e.g. for drug dosages),

length (e.g. for tumour sizes) and pressure.

Similarly, concepts of age, duration, frequency, and date/time were identified with JAPE

string patterns combined with Gazetteers of month and day names, and relevant temporal

units and their abbreviations. For example:
9http://gate.ac.uk/sale/tao/splitch21.html#sec:misc-creole:numbers
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(

{Number}

{Lookup.majorType == time, Lookup.minorType == duration}

):expr

-->

:expr.Duration = {value=:expr.Number.value, unit=:expr.Lookup.unit,

period=:expr.Lookup.period, prefix=:expr.Lookup.prefix}

(

{Duration}

("of")

["age"]

):expr

-->

:expr.Age = {}

where Lookup entries for units of duration and their features are identified from the

Gazetteer:

...

day;unit=H;period=24;prefix=P

days;unit=D;period=1;prefix=P

wk;unit=D;period=7;prefix=P

wks;unit=D;period=7;prefix=P

week;unit=D;period=7;prefix=P

weeks;unit=D;period=7;prefix=P

fortnight;unit=D;period=14;prefix=P

fortnights;unit=D;period=14;prefix=P

...

This allows duration values to be formalised according to the TimeML standard[32] (see

Chapter 2). For example, ‘for three weeks’ has a TimeML value of P21D, generated by mul-
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tiplying the value and period features extracted by the above patterns and prepending

and appending the unit and prefix features.

Frequency concepts are identified by similar patterns and gazetteers (e.g. daily, weekly,

once, twice; for the full complement of patterns used in these modules, see the CD that ac-

companies this thesis), where the TimeML value is calculated by dividing the the period

by the value features. Expressing singular ‘day’ concepts in hours allows frequency values

to be calculated more accurately, e.g. ‘three times a day’ → value=3, period=24, fre-

quency value=24/3=8, TimeML value=RP8H; and ‘twice daily’ → value=2, period=24,

frequency value=24/2=12, TimeML value=RP12H.

TimeML defines a generic TIMEX3 tag for duration, date, time and frequency concepts

where each is distinguished by a ‘type’ feature. The distinct annotations created for each

in the first pass through the document are converted to TIMEX3 annotations in a second

pass (e.g. Duration → TIMEX3.type=Duration). In this second pass, number ranges or

numbers preceded by a modifier in temporal expressions were given a ‘mod’ feature as per

the TimeML standard (e.g. ‘no more than 3 days’ → Duration.value="3", unit="D",

mod="EQUAL_OR_LESS"). These mappings were set up as follows: each Gazetteer entry

has three features: positive context, one for negation, and pre-modifier ‘or’, for example:

more;pos=MORE_THAN;neg=EQUAL_OR_LESS;or=EQUAL_OR_MORE

earlier;pos=LESS_THAN;neg=EQUAL_OR_MORE;or=EQUAL_OR_LESS

These are matched by the corresponding patterns:

(

{Lookup.majorType == value_modifier}

{Number}

):mod

-->

:mod.NumberModifier = {mod=:mod.Lookup.pos}
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(

("no|not|never")

{Lookup.majorType == value_modifier}

("than")?

{Number}

):mod

-->

:mod.NumberModifier = {mod=:mod.Lookup.neg}

(

{Number}

("or")

{Lookup.majorType == value_modifier}

):mod

-->

:mod.NumberModifier = {mod=:mod.Lookup.or}

Identification and normalisation of date expressions

Although GATE includes a component for identifying and normalising date values, it does

not identify abbreviated dates as typically occur in clinical notes such as ‘on 8/26’ (i.e.

26 August) or handled relative dates such as ‘on the third post-operative day’ or ‘on the

day before discharge’, a separate component was developed for this purpose, again using

JAPE expressions. For example, for UK dates:
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(

(DAYOFMONTH):day

(DATESEP)

(MONTH):month

(DATESEP)

(YEAR):year

):dt

-->

:dt.Date = {day=:day.Token.string,

month=:month.Token.string, year=:year.Token.string}

For US dates:

(

(MONTH):month

(DATESEP)

(DAYOFMONTH):day

(DATESEP)

(YEAR):year

):dt

where DATESEP = "/" or "-" and the following regular expressions identify month, day

and year expressions:

MONTH = (0?[1-9]) | (1[0-2])

DAYOFMONTH = (0?[1-9]) | (1[0-9]) | (2[0-9]) | (3[0-1])

YEAR = ([1-2][0-9]{3}) | ([0-9]{2})

Shorter date expressions, on their own, are ambiguous (11-12 could represent a value

range, 11 December or 12 November, depending on locale), so patterns for matching these

require a preceding prepositions and fixed locale. For example, to match US mm/yy (e.g.

8/92) or US mm/dd or mm-dd (e.g 09-26):

122



5.2. Methods

("on|in|from|before|after|during")

(

(MONTH):month

(DATESEP)

(YEAR):year

):dt

("on|in|from|before|after|during")

(

(MONTH):month

(DATESEP)

(DAYOFMONTH):day

):dt

For relative dates, such as ‘2 days before admission’:

(

({Duration}):dur

({TemporalRelation})?:rel

({Event}):evt

):dt

-->

:dt.Date-Rel = {rel=:rel.TemporalRelation.type, mod=:dur.Duration.mod,

period=:dur.Duration.period, value=:dur.Duration.value,

interval=:dur.Duration.unit, event=:evt.Event@string}

and for dates relative to a nonspecific event (e.g. ‘three days ago’):
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(

({Duration}):dur

({TemporalRelation}):rel

):dt

-->

:dt.Date-Rel = {rel=:rel.TemporalRelation.type, mod=:dur.Duration.mod,

period=:dur.Duration.period, value=:dur.Duration.value,

interval=:dur.Duration.unit}

In clinical discharge summaries, admission and discharge dates should be explicitly

identified, either in a separate field in the EHR or in a clearly identifiable heading in

the text. The framework’s date handling component stores these dates as document-level

features, to allow normalisation of relative and abbreviated dates. For example, if we

know that the admission date was 2011-12-16 and the discharge date was 2012-01-18, then

short dates such as 12/26 can be normalised to 2011-12-26.

Similarly, given an expression such as ‘three weeks after discharge’, which generates a

Duration concept with value P21D (see above), methods from the Java Calendar class

can be used to generate a date 21 days after 2012-01-18, i.e. 2012-02-08.

Anaphoric date and duration expressions, such as ‘on that date’ and ‘during that time’

are linked back to the most recent, fully specified date or duration earlier in the document.

5.3. Evaluation

5.3.1. Text segmentation and MetaMap integration

The MetaMap integration component and the effect of its various configurations on per-

formance were evaluated against two datasets: the 106kB, 11,000 word recommendations

section of the ESC European Guidelines on Cardiovascular Disease Prevention in Clinical

Practice in UTF-8 XML format, and 890 discharge summary documents in plain ASCII

text format from the 2007 i2b2 corpus[34]. For each dataset, MetaMap was configured to

return only SNOMED CT mappings, and the output of MetaMap’s default text segmen-
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tation – i.e. blank line delimited chunks – was used as the baseline, reference standard and

this was compared against alternative text segmentation approaches: term phrase chunk-

ing (noun-, prepositional-, and adjectival-phrase chunks as described in Section 5.2.2),

sentence chunking, and, for the clinical guidelines, XML element chunking (taking the

contents of the source data’s paragraph, list item and heading elements). For each, preci-

sion, recall and F 1-measure were calculated against the reference standard (see Chapter 4

for details of these evaluation metrics). The output of the verb group predicate patterns

(see Section 5.2.4) were not used as input.

For the clinical guidelines data, tests were run both without and with MetaMap’s

–term_processing option, which treats the input as a single phrase for direct lookup

into the UMLS Metathesaurus, and provides a mechanism for mapping composite phrases

to a single identifier in UMLS.

Discharge summary data was provided in UTF-8 XML format. As the data contained

only a single XML element for the text field, XML element chunking was not used. Doc-

uments varied in size from 30 to over 2000 words.

5.3.2. Events, negation and possibility in clinical notes

The performance of event boundary detection, type (e.g. Treatment, Problem, Occurrence),

polarity (negation: either POS for positive or NEG for negated events), modality (possibility:

either FACTUAL for events determined be true, POSSIBLE for events that may or may not be

true, PROPOSED for planned events), was evaluated against a manually annotated corpus

of 120 discharge summaries provided by i2b2 for their 2012 Natural Language Processing

Challenge on temporal relations10. However, the main goal was evaluation of the negation

module’s performance in terms of polarity and modality assignment. Unannotated test

data was provided by i2b2 in UTF-8 XML format and a Python script provided by the

challenge organisers to evaluate the system output against the manually annotated gold

standard.

10https://www.i2b2.org/NLP/TemporalRelations/Main.php

125



5. Framework for concept and process extraction

5.3.3. Temporal, quantitative and process concepts in clinical notes and

guideline documents

The accuracy of temporal concept boundary detection, type, TimeML value and modifier

was also evaluated against the manually annotated corpus of 120 discharge summaries

provided by i2b2 for their 2012 Natural Language Processing Challenge on temporal rela-

tions. The manual annotations included both fully specified and relative date, durations

and frequency concepts with the normalised TimeML value and modifier stored as features

on each. As the data originate from US healthcare providers, dates were in US format, so

the pattern for identifying UK dates (dd-mm-yyyy) was disabled.

Formative evaluation of the quantitative and process components in the framework was

carried out by visual inspection of the output on a number of clinical guideline documents

and anonymised discharge summaries to confirm that these contextual concepts were being

correctly identified (see Figures 5.6–5.8 in Results).

5.4. Results

5.4.1. Text segmentation and MetaMap integration

Table 5.1 shows the time taken to annotate the guideline following default chunking com-

pared with annotation of individual XML elements, sentences and phrases. Table 5.2

shows recall, precision and F -measure scores for MetaMap annotations produced from

the different lexical units both with and without term processing. The output of the

default-chunked input was used as the reference standard.

Table 5.1.: Clinical guideline processing times for different chunking approaches
Default Element Sentence Phrase

Time (s) w/o term processing 745 208 213 268
Time (s) w/term processing > 105† > 105† > 105† 325
† Process aborted after 3 hours with no output

As shown in Table 5.1, only phrase chunking allowed MetaMap’s term processing to

be used without excessive processing time (for the other chunking methods, processing
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Table 5.2.: Clinical guideline recall/precision for Element, Sentence, Phrase (B) vs default
chunking (A)

Input chunk Match Only A Only B Overlap Rec. Prec. F 1

Element 4122 349 154 9 0.92 0.96 0.94
Sentence 4393 27 13 9 0.99 1.00 0.99
Phrase 4168 128 53 184 0.93 0.95 0.94
Phrase† 3889 224 118 367 0.87 0.89 0.88
† System run with MetaMap –term_processing enabled

was aborted after 3 hours with no output). Term processing did not make a substantial

difference in processing time for phrase chunking, but caused the processing time for

the other chunking approaches to increase dramatically. As show in Table 5.2, sentence

chunking provides the most accurate output (F 1 = 0.99) relative to default chunking,

however term processing is not possible with this method. Phrase chunking with term

processing causes a significant drop in accuracy as quite different mappings are created

than when default chunking is used without this option enabled; the reasons for this is

discussed in Section 5.5.

As shown in Table 5.3, an attempt to process the entire discharge summary corpus using

default and sentence chunking did not complete in a realistic time, and so processing was

aborted after 74 documents had been processed in 6 hours (the reason for this failure is

discussed in Section 5.5). Phrase chunking was also slow, but did complete in 17000

seconds (around 4 1/2 hours) for the 890 documents, generating 173,000 annotations,

which gives an annotation rate of 10 per second.

Table 5.4 shows recall, precision, and F -measure scores for the MetaMap annotations

produced from sentence and phrase chunks for the 74 documents for which processing

completed from the output of all three chunking methods, taking the MetaMap output

of default chunking reference standard as before. As with the clinical guidelines data,

sentence chunking provides the most accurate output relative to default chunking, and

both sentence and phrase chunking perform with similar accuracy on clinical discharge

summaries as with clinical guidelines data (F 1 = 0.99 and 0.94 respectively). For the 74

documents, phrase-chunk processing generated 10,100 annotations in 840 seconds, giving
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an annotation rate of 12 per second.

Table 5.3.: Discharge summary corpus processing times for different chunking approaches
Default Sentence Phrase

Time (s) > 2× 105† > 2× 105† 17,100
† Aborted after 6 hours taken to process <
1/10 of the corpus

Table 5.4.: Discharge summary recall/precision for Sentence and Phrase (B) vs default
chunking (A)

Input chunk Match Only A Only B Overlap Rec. Prec. F 1

Sentence 2691 1 5 17 0.99 0.99 0.99
Phrase 2478 155 34 76 0.91 0.96 0.94

5.4.2. Events, negation and possibility in clinical notes

Table 5.5 shows the document macro-averaged and corpus micro-averaged precision, recall

and F 1-measure scores for system-generated EVENT extents (boundary detection), and

Type (Problem, Test, Treatment, or Occurrence11), Polarity (negative or positive) and

Modality (possibility) F 1-measure scores for feature assignment, for the 120 discharge

documents from the 2012 i2b2 corpus.

As shown in the table, corpus micro-averaged F 1-measure scores for Type, Polarity

and Modality are significantly lower than the document macro-averaged scores as a re-

sult of the different way each is calculated (see Chapter 4). The macro scores show the

average score per document for these features, given system events whose extents match

the gold standard, whereas the micro scores show the average score over the whole corpus,

taking into account false positives and false negatives. In other words, for a given system-

generated EVENT annotation that matches or overlaps a gold-standard EVENT annotation,

the accuracy (as measured by F1) of negation and possibility assignment is 93% and 94%

respectively, whereas these are reduced to 57% and 58% as a result of the number of

false negatives (recall was only 62%, so 38% of all events were missed) and false positives

11a verb group
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(precision was 82%, so 18% of text strings classified as events were falsely identified as

such).

Table 5.5.: Identification of events, negation and possibility: macro- and micro-averaged
metrics over 120 discharge summaries
Method Precision Recall F1 Type Polarity Modality

Macro 0.82 0.63 0.71 0.84 0.93 0.94
Micro 0.82 0.62 0.70 0.51 0.57 0.58

5.4.3. Temporal, quantitative and process concepts in clinical notes and

guideline documents

Figure 5.5 shows example output generated by the temporal expression identification com-

ponent on an anonymised discharge summary from the i2b2 2012 corpus. The pop-up box

(right of the figure) demonstrates how the expression ‘six years ago’ has been identified by

the MatchRelativeDatePost rule (described at the end of Section 5.2.6) and normalised

to 2005-02-08 by subtraction of 6 years from the admission date 2011-02-08 (left of the

figure; NB admission date has been randomised).

Figure 5.5.: Pattern-based identification of temporal expressions

Table 5.6 shows the document macro-averaged and corpus micro-averaged precision,

recall and F 1-measure scores for system-generated TIMEX3 extents (boundary detection),

and Type, Val and Mod F 1-measure scores for feature assignment, for the 120 discharge
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documents from the 2012 i2b2 corpus. The Type represents TIMEX3 type assignment

accuracy (i.e. Duration, Date, Time, or Frequency) . The Val score represents accuracy

of TimeML value calculation. This takes into account unit conversion, e.g. a value of P36H

in the system output will score as a match against a value of P1.5D in the gold-standard

output (provided the concept extents and Type also match). The score for the Mod feature

represents accuracy of the TimeML modifier (NA for specific values, LESS, MORE, APPROX,

START, END and MIDDLE for concepts preceded by an appropriate modifier).

As shown in the table, corpus micro-averaged F 1-measure scores for Type, Val and

Mod are significantly lower than the document macro-averaged scores as discussed above.

These differences provide that, for a given document, the accuracy of type and normalised

value will be 90% and 78%, respectively, for a given temporal annotation identified by the

system that matches the same annotation in the gold standard, whereas over the corpus as

a whole, these accuracies are reduced to 68% and 59%, due to the effect of false negative

and false positive system TIMEX3 extents.

Table 5.6.: Temporal concept identification: macro- and micro-averaged metrics over 120
discharge summaries

Method Precision Recall F1 Type Val Mod

Macro 0.85 0.80 0.81 0.90 0.78 0.88
Micro 0.83 0.77 0.80 0.68 0.59 0.68

Formative evaluation results

Figure 5.6 shows an extract from a discharge summary with temporal, quantitative and

process information that has been identified by the patterns described in Sections 5.2.6

and 5.2.4 highlighted.

Figure 5.7 shows a guideline recommendation identified for the ‘patients with diabetes’

population, with quantitative concepts identified by the patterns described in Section 5.2.6

highlighted.

Figure 5.8 shows a clinical action identified for the ‘patients with established cardiovas-

cular disease’ population, if aspirin is contraindicated.
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Figure 5.6.: Temporal and quantitative concepts identified in an anonymised clinical dis-
charge summary

Date and Duration concepts shown in orange-red. Clinical process information ‘was
admitted to’ and ‘was discharged on’ shown in grey.

Figure 5.7.: Quantitative concepts identified in a clinical guideline
Quantitative concepts shown in green; modifiers shown in light orange. Population

groups shown in light brown.

Figure 5.8.: IF...THEN rule identification in a clinical guideline
Antecedent shown in mauve; disease concepts shown in red; treatment shown in orange;

population group shown in grey.
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5.5. Error analysis and discussion

5.5.1. Text segmentation and MetaMap integration

The clinical discharge summaries contained physical examination and test result informa-

tion in list format without punctuation; the inability of MetaMap to adequately process

such text without syntactic structure is a known problem[10]. However, with phrase

chunking, processing rate decreased only slightly (from 12 per second to 10 per second)

as the number of documents increased fro 74 to 890. This suggests that when processing

by phrase, the time taken will increase roughly linearly with the size of the document,

but seems to be independent of the complexity of the underlying text. For default or

by-sentence processing, however, time taken appears to be dependent on both document

size and complexity.

The reduction in recall and precision (of between 4-9%) of phrase-by-phrase process-

ing on both the clinical guideline and the discharge summaries was largely caused by

verb group predicates that are identified by the VG chunker (see Section 5.2.4) but were

not submitted to MetaMap (only the output of the candidate term phrase chunker was

used for concept mapping, so unattached predicates were discarded). However, these

verb groups contained SNOMED CT mappings, for example, ‘transferred’, ‘evaluated’,

and ‘discharge’, which were picked up from default and sentence chunking. Although

we are interested in these predicates for identifying events and process information, ar-

guably it is not necessary to map these individual process phrases to terminology con-

cepts, so this reduction in accuracy may be acceptable. Alternatively, of course, these

predicates can be added to the set of input annotations to the MetaMap pipeline compo-

nent.

Overall, processing by sentence provided the best trade-off between speed and accuracy.

However, phrase chunking allows rapid term extraction and mapping from input without

syntactical structure, such as bulleted lists, which can require many hours of computation

if processed directly by MetaMap[10]. Also, as shown in Table 5.1, processing by phrase

processing allows the –term_processing option to be used. This is useful as it allows

composite phrases in the guideline to be mapped to their pre-coordinated terms in UMLS,

132



5.5. Error analysis and discussion

rather than to multiple terms requiring post-coordination. Some examples are shown in

Table 5.7.

Table 5.7.: Clinical guideline phrase chunking mappings both without and with (bold)
term processing

Phrase Mappings

self-monitoring of blood glucose Self-monitoring(C0588436); Glucose measurement,
blood(C0392201)
Self-monitoring of blood glucose(C0005803)

quality of life Quality(C0332306); Household composition(C0595998)
Quality of life(C0518214)

management of risk factors Administration(C0001554); History of - risk fac-
tor(C0455624)
Risk management(C0035649)

foot pulses Entire foot(C1281587); Pulse(C0391850)
Pedal pulse(C0232157)

increases in blood pressure Increase(C0442805); Blood pressure finding(C1271104)
Elevated blood pressure(C0497247)

As shown in Table 5.7, term processing produces quite different mappings than when

this option is not used. These differences explain the lower recall and precision when

this option was used (0.87 and 0.89 with term processing vs 0.93 and 0.95 without).

The mappings with term processing seem to provide a single, more useful, mapping for

each composite phrase. ‘Quality of life’ is more usefully mapped to the single, epony-

mous Finding concept, rather than to a ‘Quality’ QualitativeConcept and a ‘Household

composition’ Finding. Similarly, ‘self-monitoring of blood glucose’ is possibly better rep-

resented by the eponymous DiagnosticProcedure than by post-coordinating a generic

TherapeuticOrPreventativeProcedure ‘self-monitoring’ concept and a

LaboratoryProcedure ‘Glucose measurement, blood’ concept. So, although accuracy

against the nominal reference standard output is reduced, in practice, the annotations

may be more clinically useful.
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5.5.2. Event detection, negation and possibility

The low recall in event detection was largely a result of abbreviations in the discharge

summaries (e.g. ‘benzos’, ‘the Rita’), trade names for drugs (‘Klonopin’) not picked up by

the concept recogniser. Reduced precision resulted from identifying generic verb groups

as event occurrences. However, as noted in the Section 5.3, the main goal of this part

of the evaluation was performance of negation and possibility assignment. If we take the

macro scores in order to consider the performance of this component on its own, then the

simple lexical patterns described in Section 5.2.5 appear to have performed well, giving

F1 measures of 0.93 and 0.94 for negation and possibility assignment respectively. This

suggests that, on the evaluation corpus at least, simple patterns, rather than specific, hard-

coded expressions as used by NegEx, perform well – Chapman et al[22] cited precision and

recall of 84.5% and 77.8% for negation detection, giving an F1 measure of 0.81, although

they used a different corpus of discharge summaries than the one used here for evaluation.

A simplification of NegEx based on the presence of negating words within a flexible window

of the target term was also proposed by Koeling et al.[35], although only negating words

preceding the term were considered, whereas here we have used negating expressions both

preceding and following the target term.

Instances where the simple negation detection patterns fail, however, include expressions

such as ‘gram negative bacteria, and ‘she didn’t know why she is HIV positive’. Future work

might look at making the simple patterns a little more sophisticated without having to

create a fully specified list of complete expressions.

5.5.3. Temporal and process concepts

In terms of automatically identifying temporal concepts and formalising them into TimeML

expressions, there has been little previously reported research on evaluation of methods to

achieve this, particularly in the clinical domain. Chang and Manning[36] have recently re-

ported on SUTime, a rule-based system that is part of the Stanford CoreNLP framework12

that uses similar temporal morphemes and composition rules as those presented here as

12http://nlp.stanford.edu/software/corenlp.shtml
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JAPE expressions. They reported precision, recall and F -measure scores of 0.88, 0.96 and

0.92 for extents, and TimeML Type and Value F -measures of 0.96 and 0.82, against a cor-

pus of general newswire texts derived from the TimeBank corpus[37]. Although nominally

superior to the results presented here for the clinical discharge summaries, their evaluation

corpus is not comparable to the corpus of discharge summaries used in this work. Also, it

is not clear whether the authors report micro- or macro-averaged figures.

Also, as previously noted, working with patient notes presents particular difficulties for

NLP applications, such as use of non-standard acronyms and abbreviated expressions.

Although the performance of SUTime has not been formally evaluated against the i2b2

corpus, running the online demo13 of SUTime against a small selection of discharge sum-

maries suggests that it does not recognise abbreviated date expressions such as ‘on 10/19 ’,

abbreviated durations such as ‘15 min’ nor dosage frequency abbreviations such as ‘t.i.d’,

and also annotates Age concepts (e.g. ‘a 48 year old man’) as Duration.

Strötgen and Gertz[38] recently reported on HeidelTime, another rule-based temporal

tagger developed to identify temporal expressions in four different domains: narrative,

colloquial, news, and biomedical. In the biomedical corpus that they created for evaluation,

they reported precision, recall and F -measure scores of 0.95, 0.66 and 0.78 for extents and

TimeML Value F -measure of 0.70. Again, their evaluation corpus is not comparable

to the one used in the present work, although it is at least in the same domain. Unlike

SUTime, HeidelTime is available as a standalone Java component, which should allow it to

be integrated into the framework via the GATE API (in a similar way that the MetaMap

server was integrated, as described in Section 5.2.3). Future work could compare the

performance of HeidelTime against that of the current component on the i2b2 corpus.

To identify the causes of the errors made by the GATE temporal expression component

developed here, 20 documents with the lowest scores in precision, recall or Value F -

measure were selected from the corpus and the discrepancies between the system output

and gold standard analysed. Errors are summarised in Table 5.8, in the examples given,

the left-hand-side expressions are from the gold standard.

13http://nlp.stanford.edu:8080/sutime/process
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Table 5.8.: Analysis of errors in temporal expression identification and formalisation
Error type Examples n

Incorrect relative date
Value calculation

postoperative day number two: 2009-08-26 vs
2009-08-19; hospital day # 1: 1992-09-21 vs
1992-09-22; the Sunday prior to admission:
2016-03-13 vs <null>

50

Missing abbreviated
event date/duration
or other temporal
abbreviation

POD#6; last couple of days; on the 16th; stent
[05-26]Date; day of life #1; through [12-21]Date

38

Missing ‘orphaned’
frequency, duration or
time expressions

[five]Frequency grafts; days #5 and [6]Date; [1]Time
and 5 minutes; [four]Frequency past hospitaliza-
tions;

5

Incorrect type for [ten days]Duration after discharge vs [ten days
after discharge]Date; for [4 days]Duration prior
to discharge vs [4 days prior to discharge]Date;
[5 hours of life]Time vs [5 hours]Duration of life;
[three days ago]Date vs [three days]Duration ago;
[the three days]Duration prior to admission vs the
[three days prior to admission]Date

29

As shown in Table 5.8, incorrect Value calculation of relative dates (n = 50) and

abbreviated event dates and durations (n = 38) form the bulk of the errors identified

in the 20 documents sampled. Problems with relative date value calculation stem from

incorrect identification of the antecedent source date. Such dates are often not explicit in

the document. For example, calculation of the correct value for ‘postoperative day number

two’ requires correct identification both of the surgical event (which may be expressed in

many ways, such as ‘went for surgery’, ‘was transferred to the operating room’ etc), the

date that this event occurred, and then recognition that ‘postoperative’ refers to a time

after this date.

In the present component, calculation of relative date values is limited to dates relative

to the date of admission or discharge in the current component. For example, ‘the next day’

in the absence of a prepositional attachment to an admission or discharge event, will, by
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default, be calculated as the day following admission. However, if the text has ‘pt was sent

to the ICU 20/12/2002. He received a dose of furosemide and was transferred to the ward

the next day.’ then the relative date calculated will be incorrect. One potential solution

would be to simply link relative dates back to the most recently mentioned date. However,

if the most recently mentioned date is a historical episode, such as ‘pt was diagnosed with

CHF in 8/04 ’ then a later mention of ‘the next day’ is more likely to be relative to some

other date or period in the current episode than the immediately preceding, historical

one. Clearly, identification and calculation of relative date values in clinical notes required

more sophisticated handling than linking them to either the fixed dates (admission and

discharge) or the most recently mentioned date – although this is also a weakness shared

by other, general temporal expression parsers such as SUTime[36].

Difficulty distinguishing relative dates from durations was also a common problem (n =

29 in the 20 documents sampled). This was partly a result of inconsistent annotation

in the gold standard: for example, instances of ‘several months ago’ being annotated as

an approximate Date (with features val="2004-06" mod="APPROX") vs ‘three days ago’

being annotated as Duration. There may be some mileage making use of the preceding

preposition to disambiguate the two, e.g. ‘over the three days prior to admission’ would

be a Duration but the same expression without the preceding preposition, ‘three days

prior to admission’, would be a Date.

A less frequently encountered error (n = 5) was the failure to pick up ‘orphaned’ tempo-

ral expressions, i.e. those linked by a conjunction to an earlier or later, more fully specified

expression – for example ‘5’ in ‘day 4 and 5 ’ or a quantification of an event functioning

as the frequency that that event occurred (e.g. ‘five’ in ‘five previous operations’).

In more formally written clinical texts, such as guidelines, the temporal concept iden-

tification component may be more useful than its current performance on discharge sum-

maries suggests, although it has not yet been evaluated against guideline texts. However,

figures 5.6 to 5.8 show how the framework’s temporal, quantitative and process concept

identification components can highlight information that may be useful for identifying

IF...THEN statements[39], clinical goal phrase patterns (see Chapter 2, Section 2.3.4), or
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individual data items required for guideline formalisation (Y. Shahar, personal communica-

tion, 6 July 2011). This may assist in the transformation of guideline statements manually

extracted into semi-formal representation into a fully structured, formal representation[40]

. For example, given the guideline statement:

Doxycycline: 100 mg orally twice a day for 7-9 days.

the pipeline produces the following output in XML format:

<Paragraph>

<Drug>Doxycycline</Drug>:

<Measurement unit="mg" value="100.0" type="weight">100 mg</Measurement>

<Procedure>orally</Procedure>

<Frequency value="2" period="24" unit="H">twice a day</Frequency> for

<Duration mod="APPROX" unit="D"

value-high="9.0" value-low="7.0">7-9 days</Duration>.

</Paragraph>

and this can be transformed using an XSLT transformation to an equivalent statement

in the Asbru formalism:

<plan name="Doxycycline: 100 mg orally twice a day for 7-9 days">

<cyclical_plan>

<frequency value="12" unit="H"/>

</cyclical_plan>

<duration>

<min value="7" unit="D"/>

<max value="9" unit="D"/>

</duration>

</plan>

Similarly, for the guideline statements:
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For patients with proteinuria with at most 1 gram per 24 hours, the blood

pressure should be controlled to below 130/85 mmHg.

For patients with proteinuria in excess of 1 gram per 24 hours, blood pressure

should be controlled to 125/75 mmHg.

the pipeline produces the following XML output:
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<Paragraph>

For patients with

<DiseaseOrSyndrome>proteinuria</DiseaseOrSyndrome>

with at most

<Measurement unit="g" value="1.0" type="weight"

mod="EQUAL_OR_LESS">1 gram</Measurement>

<Frequency period="24" value="1" unit="H">per

<Duration period="1" value="24" unit="H">24 hours</Duration>

</Frequency>,

<Test>the blood pressure</Test>

should be controlled to below

<Measurement unit="mmHg" type="pressure"

mod="LESS_THAN">130/85 mmHg</Measurement>.

</Paragraph>

<Paragraph>

For patients with

<DiseaseOrSyndrome>proteinuria</DiseaseOrSyndrome>

in excess of

<Measurement unit="g" value="1.0" type="weight"

mod="MORE_THAN">1 gram</Measurement>

<Frequency period="24" value="1" unit="H">per

<Duration period="1" value="24" unit="H">24 hours</Duration>

</Frequency>,

<Test>blood pressure</Test>

should be controlled to

<Measurement unit="mmHg" type="pressure">125/75 mmHg</Measurement>.

</Paragraph>

which could similarly be transformed into statements and data item definitions in Asbru
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or other formal guideline modelling formalisms, although mappings and transformation

rules for doing so remains an area for future research (see Chapter 9).

5.6. Summary

In this chapter, a number of core components in the clinical information extraction frame-

work have been developed and evaluated, focusing on the integration of MetaMap with

GATE to identify and classify clinical concepts, and extraction of quantitative and tem-

poral information. As the components purely utilise lexico-syntactic patterns, they do

not require training on different data sets, and the patterns are easy to extend. Parsing,

normalising and reasoning with temporal expressions in free text is a complex area of

research in its own right: we have only touched on it briefly for the purposes of evaluating

the component developed here. Although event, temporal concept and negation detection

were the only framework components quantitatively evaluated against a gold standard

corpus in this chapter, all these components are utilised as an ensemble in Chapter 8 and

evaluated against other gold standard, curated corpora.

For documents containing properly structured text, such as guideline recommendations,

easily parseable into phrases by MetaMap, submitting individual sentences provides the

best tradeoff between speed and accuracy in comparison to attempting to process blank-

line delimited segments (i.e. paragraphs) in one go. However, for large documents, or those

that contain unstructured or complex phrases, pre-processing the document into candidate

term phrases provides a useful method for dramatically reducing the time required by

MetaMap to map the text to UMLS concepts, although annotation accuracy is slightly

reduced.

One limitation of the text segmentation method presented here for identifying candidate

phrases is that it does not provide a way of identifying the potential classification of the

candidate term (step 2 of the Krauthammer & Nenadic 3-step process), leaving this up to

MetaMap. In the following Chapter 6, we consider an alternative, lightweight approach

to clinical concept recognition and classification that leads to significant performance im-

provements over MetaMap both in terms of speed and annotation accuracy.
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6. Simplifying concept identification in

clinical narratives: semantic

decomposition of ontology resources for

creating term recognisers

6.1. Introduction1

In Chapters 2 to 4 we saw how ontologies such as the Foundational Model of Anatomy

(FMA)[2], terminologies such as SNOMED CT, and compendia such as the UMLS that

aim to integrate these resources into a comprehensive vocabulary, have formed the core

knowledge bases for mapping text strings to concepts in the clinical domain. In Chapter

5, we saw how MetaMap (and its now deprecated, standalone version, MMTx) has formed

a key component of many systems for identifying UMLS concepts in unstructured text,

and we evaluated some approaches to improving its performance (in terms of processing

speed and more focused term mapping) when processing large documents or text lack-

ing syntactic structure. These approaches relied on reducing the search space over which

MetaMap needs to consider the possible mappings of individual words in the phrase, and

the complete phrase, to terms in the UMLS. However, apart from some edge cases, the

processing speed improvements were fairly modest (although the process always com-

pleted), as complete noun phrases, prepositional phrases and verb phrases still needed to

be submitted for term identification, semantic type assignment and terminological map-

1Some of the results presented in this chapter have been published in ‘Systematic identification and
correction of spelling errors in the Foundational Model of Anatomy’[1].

143



6. Simplifying clinical concept identification

ping. In this chapter, we describe and evaluate a method for creating efficient concept

recognisers through morpheme-based decomposition of ontologies and a simple grammar

for identifying potential terms.

MetaMap adds value in the form of its comprehensive coverage[3] and additional meta-

data that it adds to the concepts that it identifies, such as the Concept Unique Identifier

(CUI) to enable interoperability, the UMLS semantic type, the canonical name (the UMLS

Preferred Name, so the matched phrase may be a synonym of this), and the individual

resources in which it has located the term. But MetaMap is a fairly heavyweight tool,

requiring 10GB of disk space to install and 4GB RAM to run. If we had a rapid, accurate

method for extracting a term and its semantic type directly from one or more ontologies,

then it would be possible to obtain the CUI and other UMLS metadata directly from the

UMLS Metathesaurus, or, if further mappings are required, from a more focused MetaMap

search.

At the simplest level, this could be achieved by using the ontology as a large gazetteer

– a lookup list. But this is inefficient for a number of reasons:

1. Ontologies can be very large in their native form, for the example, the FMA is over

200MB and comprises over 150,000 terms; SNOMED CT comprises over 315,000

terms.

2. Ontologies may not be complete: how does one identify terms that ‘should’ be in

the ontology?

3. Ontologies may not contain all term synonyms or different lexical variants

A number of solutions have been developed to address these problems. Tools such

as the National Library of Medicine’s Lexical Variant Generation (LVG) tools[4] can be

used to pre-process and normalise text prior to matching it against ontology terms. The

innovative Textpresso ontology[5] addresses the lexical variant problem by including, for

each ontology term, a regular expression that will help identify that term in free text, for

example ‘[Ee]mbryos?’ This approach works well for single word expressions but becomes

144



6.1. Introduction

unwieldy for multi-word expressions as the number of regular expression combinations

increases.

Another approach involves identifying domain-specific features that can be leveraged

to identify potential words that are likely to form domain ontology terms. It has long

been recognised that biomedical and clinical terms are highly compositional, being made

up of well-defined linguistic fragments known as morphemes. A morpheme is the small-

est linguistic unit that has semantic meaning, which may be a word (free morpheme)

or a word fragment (bound morpheme) such as a prefix, root, or suffix. In particular,

biomedical terms are frequently composed of Latin and Greek morphemes. Terms com-

posed of Latin and Greek morphemes are known as neoclassical compounds; the rules

for joining them are known as combining forms. Free neoclassical morphemes include

cephalon, metacarpus; bound morphemes cirrh-, derm- (roots) and -itis, -rrhea (suffixes).

Analysis of neoclassical compounds can help identify and classify unknown terms[6]; for

example disease terms might be identified via suffixes -itis, -osis, or -opathy. The National

Library of Medicine’s SPECIALIST Lexicon[4] includes tools for identifying neoclassical

compounds with a mapping to their English meaning and whether they function as root,

prefix or suffix2, although they are not classified according to semantic type (e.g. whether

they describe a disease state, an anatomical structure, a qualitative concept, a chemical

structure). However, neoclassical combining forms on their own are insufficient for term

identification, providing high precision, but low recall[7].

Alternatively, ontology terms can be ‘learnt’ directly from text, via linguistic patterns, or

graph-based machine-learning techniques[8][9]. Most well-known of the former approaches

are the ‘Hearst patterns’[10]: lexico-syntactic patterns that imply hypernym–hyponym

(class membership or classification) relations between noun phrases. For example:

Bruises, cuts, and other injuries ⇒ bruise is_a injury, cut is_a injury

Diseases such as atherosclerosis ⇒ atherosclerosis is_a disease

Such patterns, as with neoclassical combining forms, identify potential terms with high

precision, but with low recall[11]. The patterns can be augmented via bootstrapping
2http://www.ncbi.nlm.nih.gov/books/NBK9680/
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(where unknown words can be classified by their relation to known terms in a phrase), for

example:

scaphoid, lunate, triquetral and pisiform ...

– if we know that the scaphoid and lunate are bones of the wrist, we can infer that trique-

tral and pisiform are also. Also, ontology properties and relations can be used to infer the

likely classification of a candidate word. For example, if an ontology contains concepts such

as Disease_or_Syndrome and Pharmacologic_Substance, joined by the relation treats

(and its inverse treated_by, i.e. Disease_or_Syndrome treated_by Pharmacologic_-

Substance and Pharmacologic_Substance treats Disease_or_Syndrome), then from the

phrase

vancomycin treatment for MRSA failed

we can potentially infer that vancomycin is_a Pharmacologic_Substance and MRSA

is_a Disease_or_Syndrome.

These approaches have been shown to improve recall, but reduce precision[11], and

in any case, these approaches are more often used to augment existing ontologies or to

build ontologies from scratch, rather than identify concepts in free text using an existing

ontology.

Recently, a tool has been developed to make direct ontology lookup more efficient:

mGrep[12]. mGrep compiles ontology or dictionary terms into a compact, radix trie struc-

ture (see Figure 6.1 for an example). A radix trie allow edges to be labelled with sequences

of characters, rather than a single character as per a regular trie[13]. This is particularly

useful for efficient storage and retrieval of terms that share common prefixes or roots.

This feature makes them a good choice for ontologies rich in neoclassical roots, such as

anatomical and clinical terms. mGrep has been shown to perform with higher precision

but lower recall than MetaMap when identifying anatomical terms against the FMA, gen-

eral concepts from SNOMED-CT, and disease concepts from UMLS[14], with the benefit

of greatly reduced processing time – two orders of magnitude – in comparison to MetaMap.

However, mGrep is noted to have two limitations: 1) it does not generate lexical variants,
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which implies that it can only make exact matches, and 2) it requires both the dictionary

and input text to be pre-processed into a three-column tab-delimited format[14], details of

which do not appear to be documented. Furthermore, semantic type assignment requires

additional pre-processing[15].

Figure 6.1.: Example radix tree representation of words from the Foundational Model of
Anatomy

There is a need, therefore, for a systematic method for creating a concept recogniser

from a given ontology without the overhead of looking up against the entire ontology, while

allowing lexical variation in the input text without requiring it to be preprocessed. In this

chapter, we introduce a method for semantic decomposition and recombination of ontology

resources that addresses this problem. The idea of semantic decomposition of ontologies

is not new, but previous approaches have considered the decomposition of the ontology

logic to create reusable, logically independent modules[16]. Here, we are interested only

in the ontology terms as dictionary entries and their corresponding semantic types, and

decomposing multi-word expressions in the ontology into reusable morphemes that can be
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recombined into candidate terms.

Tong et al.[17] decomposed the Gene Ontology into individual tokens and calculated

the positional entropy of each token via the probability of token t appearing at position p

in a given multi-word ontology term. However, this method was not applied to identifying

potential ontology terms in free text. Still, the idea of morpheme-based term identification

is not new either. As far back as 1994, Ananiadou[18] described a grammar of combination

rules for neoclassical morphemes to recognise potential new terms. Neoclassical roots,

prefixes and suffixes were extracted from immunological texts, and roots were classified

as free (e.g. ‘cyst’), partially bound, either to a suffix or prefix (e.g. ‘cyt-’ or ‘-cyt’), or

requiring binding to a suffix (e.g. ‘oo-’, ‘or-’). Similarly, morphemes were classified as

occurring in both general and term usage (e.g. ‘em-’ in ‘emphasis’ and ‘embolism’) or as

indicative of a potential term only (e.g. ‘leuk’). However, no implementation or evaluation

was provided at the time.

In this chapter, we describe in detail the semantic decomposition and rule-based mor-

pheme recombination process given one or more ontology resources as a source dictionary,

and apply it to identifying and classifying candidate terms in unstructured text. We

demonstrate the approach using two ontologies: the Foundational Model of Anatomy

(FMA)[2] and the Disease Ontology (DO)[19], and evaluate its performance on a small

corpus of patient progress notes, surgery and radiology reports. Finally, the results are

compared with the performance of both MetaMap and direct ontology lookup on the same

corpus.

The FMA and DO were selected as Shah et al.[14] also considered recognition of anatom-

ical and disease concepts when comparing mGrep with MetaMap. More importantly, iden-

tification of anatomical terms are central to the identification of the contexts and locations

of other concepts, for example

• the location of disease, morbidity, or injury

• the location of symptoms, signs and findings

• the location of surgery, pathology and radiology procedures, and administration
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routes of medication

As we shall see in Chapter 8, consideration of these contexts is important when identi-

fying processes of care in the clinical narrative. Finally, applying the process to a second

ontology – in this case the DO – was important in order to see if the semantic decompo-

sition process can be generalised.

6.2. Method

Using ideas from Tong et al.[17] and Müller et al.[5], the method combines semantic de-

composition of multi-word expressions with regular expressions to identify lexical variants.

The method comprises four phases: 1) the token-centric decomposition phase; 2) the qual-

ity assurance phase; 3) the classification phrase; and 3) the recombination phase. This is

described in the following section (see Figure 6.3 for an overview of the first three phases

of the process as applied to the FMA).

6.2.1. Token-centric decomposition

1. Extract term names from the ontology. If the ontology is in the standard OWL

format, this is done by taking the string value of each rdfs:label element, which

can be obtained using regular expressions or via an XPath query. If the ontology

is in a database, then terms can be extracted via the corresponding database query

(SQL or SPARQL depending on the database type).

2. Tokenise each term using whitespace as the token delimiter to generate a line-break

delimited list of tokens.

3. Deduplicate and sort the token list and remove stopwords (determiners, preposi-

tions).

6.2.2. Quality assurance

This phase involves running a biomedical spell-checker on the deduplicated list of tokens

extracted from the ontology terms. In this study, a GATE integration plugin was developed
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in Java using the the National Library of Medicine’s (NLM) SPECIALIST GSpell Spelling

Suggestion Java API. GSpell uses a number of different algorithms to retrieve similar words

to the input word or term from a user-defined dictionary (the NLM Specialist Lexicon

is used by default) and returns the top N candidates based on edit distance from the

input word. The algorithms include Metaphone (a phonetic-based measure that improves

on Soundex), homophones, n-grams, bag-of-words, and a NLM lookup list of common

misspellings.

The plugin was configured to ignore capitalised words, those beginning or ending with a

digit, and those less than 2 characters long. Spelling suggestions outside an edit distance

of 2 were ignored. For words identified as misspelt, the integration plugin stores spelling

correction suggestions as an feature on each word (see Figure 6.2 for an example from FMA

tokens). Each correction was manually reviewed by checking the suggested spelling against

the online MedlinePlus medical dictionary and Google. Variations in US/UK spelling were

ignored. Each misspelt word was then substituted for the corrected, consensus version of

the word in the token list, and misspelt word in the original ontology is updated with the

corrected version.

Figure 6.2.: Spelling error correction of words from the Foundational Model of Anatomy

6.2.3. Lexical and semantic classification

1. Classify each token according to its lexical type (noun, proper noun, adjective)
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2. Lemmatise tokens into morphemes

3. If possible, classify each morpheme according to its semantic subtype from the on-

tology (e.g. part, space, substance)

4. Reduce each set of morphemes by identifying those sharing common roots and suf-

fixes

6.2.4. Semantic recombination

Regular expressions are created over the union of entries (with morphological variants) in

each set of classified morphemes. For example:

ont_nounPatt = ... macula | malleus | mandible | manubri(um|a) | manus ...

ont_adjPatt = ... hepatic | humeral | hyoid | ileal | iliac ...

neoclassicalSuffix = ... ineum | ionis | iores | ioris | iorium | iousus ...

neoclassicalPrefix = ... abdom | acanth |acetabul ...

For free morpheme patterns (whole words), we add word boundary constraints and allow

for plurals:

ont_noun = \b( + ont_nounPatt + )?s\b

ont_adj = \b( + ont_adjPatt + )\b

For bound morpheme patterns, a starting boundary is specified for prefixes, with an

open-ended closing boundary:

ont_prefix = \b( + neoclassicalPrefix + )

For suffixes, a configurable minPrefixLength parameter specifies how many characters

must occur at the start of the word before the suffix:

ont_suffix = \b(\w{minPrefixLength,})( + neoclassicalSuffix + )\b
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Figure 6.3.: Overview of semantic decomposition process as applied to the FMA
Top: Tokenization phase; middle: QA phase; bottom: classification phase.

Recombination patterns are then applied over the regular expressions to identify can-

didate noun phrases and prepositional phrases that generalise the lexical and semantic

structure of the original ontology terms. For example, noun phrases (NP) and prepo-
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sitional phrases (PP) can be constructed in a similar way as described in Chapter 4,

the difference here is that the constituent nouns and adjectives have been selected from

ontology morphemes:

NP = ont_adj{0,5} (ont_suffix | ont_prefix | ont_noun | ont_properNoun){1,5}

PP = NP "of|on" NP

Term = NP | PP

These are generic patterns, independent of the underlying ontology classes. If mor-

phemes have been classified according to semantic subtypes from the ontology – e.g. in

the case of the FMA, body space/junction, body substance, body part/organ component

– domain-aware patterns can be constructed in a similar way (see Figure 6.4)

Figure 6.4.: Example of the semantic decomposition and recombination process applied to
the FMA

NP = Noun phrase; PP = prepositional phrase; IN = preposition; DT = determiner (a,
the, this etc); parentheses, ?, | and {n,m} are standard regex operators.

Text to be processed by the recombination patterns is first tokenised and processed by

a part of speech (POS) tagger – standard information extraction pipeline components as

described in Chapter 5. The recombination patterns are tested by running them against

the original list of ontology terms: if the decomposition process and patterns are complete,

then every term in the ontology should be matched by the patterns.
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6.2.5. Evaluation

The above method was instantiated as a GATE[20] plugin with the recombination patterns

expressed in the Java Annotation Patterns Engine (JAPE) language. The JAPE patterns

generate annotations in the text: marked ranges each corresponding to an ontology term.

In this case, terms matched from FMA morphemes were annotated as AnatomicalSite,

and terms from DO morphemes as DiseaseOrSyndrome. System annotations generated by

the semantic decomposition and recombination patterns were compared against manually

created AnatomicalSite and DiseaseOrSyndrome gold standard annotations provided in

the 163 progress notes, surgical, radiology and pathology reports in the Ontology Develop-

ment and Information Extraction (ODIE) corpus[21]. For each annotation type, precision,

recall and F 1-measure were calculated against the gold standard annotations (see Chapter

4 for details of these performance measures).

We repeated the evaluation, this time using direct ontology lookup (i.e. using each of

the FMA and DO ontologies as very large lookup lists) to create system annotations and

stored the results as a separate annotation set for comparison. Finally, system annotations

were generated with MetaMap and the results again stored in a separate annotation set

(Figure 6.5). As MetaMap has access to the entire UMLS, MetaMap was configured to use

only the relevant ontologies and semantic types for the terms being located, so that like-for-

like performance could be evaluated against the semantic decomposition/recombination

approach. For example, to locate anatomical terms, MetaMap was configured to use only

the FMA and UMLS semantic types for anatomical concepts, using the Anatomy semantic

group assignments from McCray et al.[22]:

-Xy -Q 4 -R FMA -J bpoc,bsoj,blor,bdsy,bdsu,tisu,anst,ffas,cell,cellc,emst

the -Xy parameters reduce the number of spurious annotations by enabling MetaMap’s

word sense disambiguation (WSD) server and reduce the number of candidate mappings;

the -Q 4 parameter allows MetaMap to identify composite terms (i.e. prepositional

phrases) with a maximum length of 4 PPs3. The Disease Ontology has been derived

3As suggested by http://metamap.nlm.nih.gov/MM11_Usage.shtml
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from the UMLS, rather than being one of the terminologies within UMLS. Therefore to

identify disease concepts, MetaMap was configured to identify relevant semantic types

from UMLS, based on the McCray et al.[22] Disorders group assignments:

-Xy -Q 4 -J acab,anab,cgab,comd,emod,neop,mobd,dsyn,patf

Figure 6.5.: Gold standard vs system annotations for anatomical terms separated into
annotation sets for comparison

Top set (unlabeled): System mentions from semantic decomposition/recombination
method; ConceptsAndCoRefs: gold standard annotations; FMA: direct lookup annota-
tions from the Foundational Model of Anatomy; MetaMap: annotations produced by
MetaMap.

The Wilcoxon signed-rank test was performed over matched document pairs to deter-

mine whether there were any significant differences in system performance between the

three approaches evaluated.
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6.3. Results

6.3.1. Foundational Model of Anatomy

Version 3.2.1 of the complete FMA consists of 150,000 terms made up of 850,000 tokens,

of which 4893 are distinct (less than 1% of the total). Semantic decomposition reduced

the set of tokens to 1240 morphemes by separating out common prefixes and suffixes as

described in Section 6.2.3. The quality assurance step identified 43 spelling errors across

97 terms; these are shown in Table 6.1.

Table 6.1.: Quality assurance step: spelling errors in the FMA

Error Correction Example ontology term n

arteryy artery Left lateral basal segmental pulmonary arteryy 1

atery artery Deep palmar branch of ulnar atery 4

atriovenricular atrioventricular Transitional myocyte of atriovenricular node 1

bevis brevis Trunk of flexor digitorum bevis branch of right

medial plantar nerve

3

Commisural Commissural Commisural chorda tendinea of left ventricle 2

Compund Compound Compund tubuloacinar gland 1

densitiy density High densitiy lipoprotein 1

diahpysis diaphysis Anteromedial surface of diahpysis of tibia 1

intermediatel intermediate intermediatel bronchioles 1

intermideiate intermediate Wall of trunk of intermideiate atrial branch of

right coronary artery

2

laminaof lamina of Basal laminaof epithelium of bronchus 1

laybrinth labyrinth Anterior semicircular duct proper of

membranous laybrinth

13

leftt left Leftt middle cerebral arterial trunk 1

luein lutein Cytoplasm of luein cell 1

Continued on next page
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Table 6.1 – continued from previous page

Error Correction Example ontology term n

lympahtic lymphatic Internodal lympahtic vessel 1

Lymphatc Lymphatic Lymphatc chain at root of inferior

pancreaticoduodenal artery

2

medulllary medullary Adrenal medulllary cell 1

membran membrane Left eighth external intercostal membran 3

metatearsal metatarsal Superficial transverse metatearsal ligament 1

middlel middle Cavity of middlel phalanx of left second toe 2

midlle middle Cavity of midlle phalanx of left third toe 2

Muscel Muscle Muscel tissue of crista supraventricularis

volume

1

myleocyte myelocyte Eosinophilic myleocyte 1

myocadium myocardium Myocadium of apical septal zone of right

ventricle

4

nerv nerve Plexus branch of anterior branch of left lateral

femoral cutaneous nerve with left intermediate

femoral cutaneous nerv

1

nferior inferior Set of nferior tributary of tracheobronchial

lymphatic vessels

1

ofleft of left Dura mater of posterior root ofleft fourth sacral

nerve

2

oitc otic Oitc ganglion neuron 2

palpabral palpebral palpabral vein 3

Penduncular Peduncular Penduncular tributary of basal vein 3

pumonary pulmonary pumonary valve anulus 1

qudratus quadratus Trunk of qudratus femoris part of left inferior

gluteal artery

2

Continued on next page
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Table 6.1 – continued from previous page

Error Correction Example ontology term n

regon region Epithelium of regon of epididymis 1

rpoximal proximal Cartilage of rpoximal phalanx of fourth toe 1

semicular semicircular Vein of left semicular duct 4

Subdivisionof Subdivision of Subdivisionof body wall 2

supercilli supercilii corrugator supercilli 6

Suppresor Suppressor Suppresor T lymphocyte 1

tissueof tissue of Connective tissueof serosa of stomach 1

Trunkof Trunk of Trunkof branch of right vagus nerve to

pancreas

1

utricosaccular utriculosaccular utricosaccular duct 9

venrticle ventricle Subdivision of fourth venrticle 4

veterbal vertebral veterbal column 1

Table 6.2 shows the precision, recall and F 1-measure scores, and processing time, for

AnatomicalSite concept identification by the three system runs against the gold standard

annotations, micro-averaged over the 163 documents in the corpus.

Table 6.2.: System performance for identifying AnatomicalSite concepts in the ODIE
corpus

System Precision Recall F1 Time(s)
Semantic decomposition/recombination 0.36 0.90 0.51 21
Direct lookup 0.22 0.73 0.34 10
MetaMap 0.30 0.86 0.44 2239

Calculating the two-tailed Wilcoxon signed-rank test (n=163) over matched document

pairs for per-document precision, recall and F 1-measure (see accompanying CD for data

for each document) showed that the semantic decomposition approach gave significantly

better (p < 0.05) precision and F1-measure than MetaMap, although recall was not signif-

icantly improved (p > 0.05). Against direct ontology lookup, the semantic decomposition
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approach gave significantly better precision, recall and F1-measure (p < 0.01). Processing

time, however, was slower over the corpus (21s vs. 10s), but was two orders of magnitude

faster than MetaMap (21s vs. 2239s).

6.3.2. Disease Ontology

Version 3.1 of the Disease Ontology contains 8610 terms comprised of 26,000 tokens, of

which 5055 are distinct (20% of the total). Semantic decomposition reduced this to 769

morphemes. The quality assurance step identified 19 spelling errors across 19 terms; these

are shown in Table 6.3.

Table 6.3.: Quality assurance step: spelling errors in the Disease Ontology
Error Correction Ontology term
alexithmyia alexithymia alexithmyia
ambylopia amblyopia disuse ambylopia
anle angle primary open anle glaucoma
aquired acquired aquired hemangioma
arcinoma carcinoma breast arcinoma metastatic to the liver
cogenital congenital dominant cogenital severe sensorineural

deafness
contricting constricting congenital contricting bands
cystadencarcinoma cystadenocarcinoma pancreatic colloid cystadencarcinoma
exopthalmos exophthalmos endocrine exopthalmos
hemopoetic hemopoietic hemopoetic tissue disease
ideopathic idiopathic ideopathic interstitial pneumonia
Lffler’s Loeffler’s Loeffler’s (or Löffler’s) endocarditis
medullblastoma medulloblastoma cerebellar medullblastoma
muscoloskeletal musculoskeletal muscoloskeletal system benign neoplasm
nephronopthisis nephronophthisis nephronopthisis
reproductve reproductive female reproductve organ cancer
somatosatinoma somatostatinoma jejunal somatosatinoma
trichthiodystrophy trichothiodystrophy photosensitive trichthiodystrophy
vericose varicose vericose veins

Table 6.4 shows the precision, recall and F 1-measure scores, and processing time, for

DiseaseOrSyndrome concept identification by the three system runs against the gold stan-

dard annotations, micro-averaged over the 163 documents in the corpus.

Two-tailed Wilcoxon signed-rank tests (n=163) over matched document pairs showed

that the semantic decomposition approach gave significantly better (p< 0.01) precision but
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Table 6.4.: System performance for identifying DiseaseOrSyndrome concepts in the ODIE
corpus

System Precision Recall F1 Time(s)
Semantic decomposition/recombination 0.58 0.68 0.62 15
Direct lookup 0.69 0.27 0.39 9
MetaMap 0.46 0.83 0.59 1848

significantly worse (p < 0.01) recall than MetaMap, although overall showed a significant

improvement in F 1-measure (p < 0.05). Against direct ontology lookup, the semantic

decomposition approach showed significantly worse precision (p < 0.01), but significantly

better (p < 0.01) recall and F1-measure (p < 0.01). As with AnatomicalSite identification,

processing time was slower than direct ontology lookup (15s vs. 9s), and again much faster

than MetaMap (15s vs. 1848s).

6.4. Error analysis

6.4.1. Anatomical concepts

Examination of the gold standard concepts that were not picked up by the system run with

the semantic recombination patterns suggested that the main reasons for false negatives

were the annotation of surgical-anatomical concepts such as ‘resection margin’, ‘stoma’

and ‘polyp’ in the gold standard, and the use of abbreviations, all of which were missed

by the system.

Table 6.5 gives some additional examples of these false negatives.

Table 6.5.: Example false negatives: terms missed by semantic recombination patterns
Word or noun phrase
PDA
proximal and distal resection margins
SVC
the right MCA distribution
TM’s

Precision was nominally low for all system runs (0.22–0.36). Inspection of the results

for the semantic recombination pattern system run revealed 1629 false positives, but that
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many of these were in fact valid anatomical terms, and only 197 (12%) were actually

invalid; many valid terms had not been annotated in the gold standard. For example, in

the phrase

Her CT-scan of the neck, chest, abdomen, and pelvis is negative today

only the terms ‘neck’ and ‘abdomen’ had been manually annotated, whereas the system

also identified ‘chest’ and ‘pelvis’. Table 6.6 gives other examples of valid terms picked up

by the system. Adding these terms to the gold standard data would have increased the

precision to 89% – nearly matching the system recall, which suggests that this method

has the potential for providing balanced performance over precision and recall.

Table 6.6.: Nominal false positives that are valid anatomical terms as identified by seman-
tic recombination patterns

Word or noun phrase
angiolymphatic space
dentate line
left nasolabial fold
right posterior eighth rib
right rectus sheath
styloid process of the ulna
the tympanic membranes

Table 6.7 gives examples of noun phrases incorrectly identified by the semantic recom-

bination patterns as AnatomicalSite and that would probably be better classified as

Finding or PathologicFunction.

6.4.2. Disease concepts

As with anatomical terms, the use of abbreviations, and inconsistencies and omissions in

the gold standard data explained some of the false positives and false negatives, although

system precision was generally higher than for the former (0.46–0.69). For example, the

annotation of negated concepts was inconsistent: ‘she denies [cyanosis]DiseaseOrSyndrome’

was annotated, but ‘she denies [coronary artery disease]’ was not. Also, some symptoms

were incorrectly annotated as a disease concept in the gold standard data, and vice versa.

For example ‘mood changes’, and ‘double vision’ were annotated as DiseaseOrSyndrome,
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Table 6.7.: Actual false positives: terms incorrectly identified as AnatomicalSite by se-
mantic recombination patterns

Word or noun phrase
a haploidentical bone marrow
adenomatous epithelium
diverticula
myopathic process
nonspecific bowel
polypoid
sagittal T1
persistent sequelae
petechiae
pruritic areas

as were ‘diagnosis’ and ‘side effects’. The annotation of definite descriptors in the gold

standard for demonstrative coreference (see Chapter 8, for example ‘her condition’, ‘the

disease’) also led to reduced system recall as these were not picked up by the semantic

recombination rules.

6.5. Discussion

The results suggest that the semantic decomposition/recombination approach to identify-

ing ontology terms in unstructured text provides a significant improvement in both overall

accuracy (as measured by F 1-score) and processing time over MetaMap. These findings

are similar to those reported for mGrep[14], but with the advantage that the current ap-

proach will identify lexical variants, places no restrictions on input text format, and assigns

basic semantic type information. Unlike mGrep, we do not store the decomposed ontology

in a radix trie, but as plain text as sets of editable regular expressions. However, there is

no reason why the underlying regular expression engine used to match text against these

expressions should not use a radix trie for efficiency, although here we use the default

java.util.regex library.

Although not directly comparable, Pyysalo et al.[23] performed direct ontology lookup

using the FMA to identify anatomical concepts in a curated corpus of 5000 phrases from

PubMed abstracts, achieving a recall of 67%, similar to our findings with the FMA on
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the ODIE corpus (73% recall), but significantly lower than our semantic recombination

approach (90%). Bashyam[24] used a maximum entropy model with supervised training to

identify anatomical phrases in a hand-selected corpus of 4500 sentences, achieving precision

and recall 97% – superior to our results, but again they cannot be compared directly as

they are on different corpora. The approach presented here requires no supervised training,

which has benefits when used in a pipeline with other components for other information

extraction tasks (see Chapter 8), and has been shown to generalise for two quite different

ontologies.

The method also includes a useful quality assurance step that has found some surprising

errors in a mature ontology such as the FMA, which would be difficult to spot by eye,

given its size. The errors in the FMA and DO have been verified by the ontology authors

and should be absent from future releases (O. Mejino, personal communication 3 Oct 2011;

L. Schriml, personal communication 22 May 2012). This is desirable as, in the case of the

FMA, the errors are replicated in the 2011 AA release of the UMLS and in other linked

data resources that make use of it[1].

In the recombination patterns, the occurrence of an ontology morpheme type is governed

by an ontology-independent Kleene operator (?, [n,m]). To allow more fuzzy matches,

future work could make use of the positional entropy of each morpheme, i.e. the probability

of token t appearing at position p in a given multi-word ontology term, as suggested by

Tong et al[17].

6.6. Summary

This chapter has presented a lightweight approach to finding biomedical and clinical con-

cepts in unstructured clinical notes by semantically decomposing ontologies into mor-

phemes, and recombining these morphemes into candidate terms using lexico-syntactic

patterns. For concept boundary detection and classification, the approach outperforms

MetaMap, the leading open-source biomedical concept recogniser, with the benefit of

greatly increased processing speed and much smaller footprint in terms of computing

resources.
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However, unless they are in the ontology, the method presented here will not iden-

tify abbreviations and acronyms. To address this shortcoming, in the following Chapter

7, we apply a similar pattern-based approach to identifying, annotating and classifying

biomedical abbreviations, and their expansions, in unstructured text.
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7. Identification and expansion of

abbreviations in biomedical and clinical

narratives

7.1. Introduction1

Identification of abbreviations and acronyms, or short forms (SF), for given term defini-

tions, or long forms (LF), is a well researched topic in the biomedical natural language

processing domain (see Torii et al.[2] for a review). Gaudan [3] identifies two types of SF

usages in biomedical text: local short forms, where the defining LF appears with its SF

in the document; and global short forms, where the SF is used in the document without

the defining LF – the reader is assumed to know the meaning of the SF, but this can lead

to problems of ambiguity where a given SF has more than one LF in common (or less

common) usage.

In general, local abbreviations are typically introduced by giving the LF definition im-

mediately before, or immediately after, the first occurrence of the SF, with either the

LF or the SF appearing in parentheses. For example ‘bone mineral density (BMD)’ or

‘EBV (Epstein-Barr virus)’: each form an identifiable SF–LF pair. There are a number

of existing tools for identifying local abbreviations and extracting dictionaries of SF–LF

pairs from them, such as Schwartz & Hearst[4] and Ao & Takagi[5]. Global abbrevia-

tions tend to appear in the uninterrupted flow of the text, for example ‘A CT scan of the

SAS revealed the extent of the bleeding’; the reader is assumed to know that ‘CT’ means
1This chapter has been published in an abbreviated form as ‘BADREX: In situ expansion and coref-

erence of biomedical abbreviations using dynamic regular expressions’[1]
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‘computed tomography’ and ‘SAS’ ‘subarachnoid space’ in this context.

It may also be useful to identify a third type of SF usage: pseudo-global SFs, whereby

both the SF and its LF definition occur in the document, but are used interchangeably and

there is no initial pairing of the two on the first appearance of the SF. However, the reader

may infer the meaning of the SF by the context and presence of one or more occurrences

of the LF. For example:

The patient is a 63 year-old man with carpal tunnel syndrome ... The patient

developed CTS 5 years ago.

A human reader may infer the meaning of ‘CTS’ from the earlier occurrence of ‘carpal

tunnel syndrome’ without requiring any particular domain knowledge. Computationally,

given there may be a number of possible expansions for ‘CTS’, the correct SF–LF pair

could be selected from the dictionary of medical abbreviations based on the occurrence of

the specific LF in the text. Alternatively, the first character of each word in every noun

phrase could be compared against an index of potential SFs (e.g. strings between 2 and

7 characters consisting of upper-case characters and digits) in the document, to match

possible LF expansions. For global SFs, where the LF does not appear at all, approaches

based on the verbs and terms surrounding the SF, UMLS semantic type of each LF, and

the LF’s frequency in the domain at large, can be employed[6][7]. For example, a linguistic

pattern (see Chapter 4) that represents the relationship between disorder, experiencer and

temporal context might be expressed as

[person, disorder_operator, disorder, temporal_concept]

where disorder_operator is some verb phrase associated with descriptions of a disor-

der, such as ‘develops’, ‘suffers from’, ‘diagnosed with’ etc. Mapping the second sentence

in the example above to this pattern suggests that ‘CTS’ is a disorder-type instance:

dictionary entries for ‘CTS’ short forms not classified in the dictionary as disorder types

can thus be discarded from the list of candidate SF–LF pairs.

However, tools such as Schwartz & Hearst[4] and Ao & Takagi[5] simply identify and

extract SF–LF pairs into a separate dictionary file; they do not classify them according to
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their semantic type and they do not provide automatic expansion of short forms within the

text at the point at which they occur in the document. As such, these methods do not solve

the problem of distinguishing local SFs from global or pseudo-global SFs. For example,

in a clinical guideline document, ‘LAD’ might refer to ‘Leukocyte adhesion deficiency’

(disorder); in a patient’s progress notes it might refer to ‘left axis deviation’ (test result).

In the former case, ‘LAD’ will most likely be a local SF, paired with its LF on its first

use; in the latter case, it is likely to be a global or pseudo-global occurrence. There may

also be the case where, in the same document, a short form is redefined from its earlier

usage. So a method is needed that both identifies SF–LF pairs pairs, resolves unpaired

short forms back to their most recent definition (if there is one), or, in the case of no

definition, resolves a short form to its most likely definition from a dictionary.

However, for the purposes of this research, simply resolving a short form to its long

form is not enough; we need to know the semantic type of the LF, and subsequently

located SFs should inherit this classification. For example, given the text ‘WAS (Wiskott-

Aldrich Syndrome)’, if ‘Wiskott-Aldrich Syndrome’ has been annotated with the semantic

type DiseaseOrSyndrome, then ‘WAS’ should automatically be annotated with this type,

as should future ‘WAS’ mentions. Moreover, given a later occurrence of ‘WAS protein

(WASP)’, where ‘WAS protein’ has been annotated with the semantic type

AminoAcidPeptideOrProtein, the ‘WAS’ should also be given the semantic type

DiseaseOrSyndrome and be linked back to the earlier mention of ‘Wiskott-Aldrich Syn-

drome’ (see Figure 7.2). The knowledge about the disease and the associated protein

would then be embedded in later mentions of ‘WASP’. Such an approach may facili-

tate later disambiguation of un-paired abbreviations not possible with dictionary lookup

alone[6].

This linkage between a later term and its earlier antecedent, where both point to the

same external concept, is known as coreference and is dealt with in detail in Chapter 8.

Suffice to say here that in situ expansion of a short form, linking it to its fully expanded

long form, and to later usages of it, turns out to be an important component in resolving

these coreference relationships, particularly in situations of pseudo-global SF usage as
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often found in the patient’s clinical notes.

In this chapter, a method is developed for identifying, expanding and annotating long-

form–short form pairs, and linking subsequent short forms back to their most recent def-

inition in the text. As this chapter is about acronym and abbreviation identification, let

us give this method one of its own: BADREX (Biomedical Abbreviation detection with

Dynamic Regular Expressions). Here, we do not directly address the problem of disam-

biguation of global SFs in the general case, as this is a part of a wider area of research on

abbreviation word-sense disambiguation (WSD) that is covered in detail elsewhere (e.g.

Stevenson et al.[6][7]). However, the semantically typed, in situ local and global SF an-

notations generated by the method described here are used in Chapter 8, in combination

with linguistic patterns as described above, to resolve some of the ambiguities associated

with global and pseudo-global SF usage in patients’ clinical notes.

7.2. Methods

Throughout this chapter, the notation <LF, SF> is used to denote the tuple of the long

form and its corresponding short form. BADREX was implemented in Java as a plugin

for the General Architecture for Text Engineering (GATE) framework[8]. It takes a Set

of sentences from GATE’s sentence splitter, and for each sentence, five processing steps

are performed, where Step 1 is similar to the first stage outlined in Schwartz & Hearst[4]

and Step 2 to the third phase of Ao & Takagi[5]:

1. identification of candidate <LF, SF> pairs;

2. applying discard conditions to <LF, SF> candidates to filter unwanted pairs;

3. identifying the shortest substring in LF that best matches SF given the constraints

of Steps 1 and 2;

4. matching characters in SF against characters in LF;

5. annotating the SF and LF, storing the LF text as feature on SF and vice versa, with

SF inheriting the semantic type of LF.
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In addition, two further, optional, processing steps can be performed:

1. coreference of unpaired SF that match previously found SF;

2. expansion of undefined acronynms/abbreviations via dictionary-based lookup

In Step 1, two patterns are created: the ‘head’ regular expression (regex) identifies a

string that contains {1, maxOuterWords } words followed by a string of {1, maxInnerChars }

characters in parentheses or square brackets, and where the first character of the first group

is an alphanumeric that matches the first character of the second group. The ‘tail’ regex

consists of a similar pattern but where the first character of the last word of the first group

is an alphanumeric that matches the last character of the second group. For each sentence

in the input, if no match is made by the first pattern, then the second pattern may be

executed. The ‘head’ pattern will identify candidate pairs such as:

the behaviour of confluent SV40 transformed rabbit corneal epithelial

cells (tRCEC)
(1)

and the ‘tail’ pattern identifies pairs such as:

with two-dimensional proton nuclear magnetic resonance (2D 1H NMR) (2)

(matching characters underlined). In simplified form, the ‘head’ pattern can be ex-

pressed as:

\b((\w)\W{0,2}(\w+\W?){1,maxOuterWords})\s*

\((\2.{1,maxInnerChars})(\p{Punct}\s*\w+)?\)

and the ‘tail’ pattern as

\b(.{1,maxOuterChars}\b(\w)(\w+\W?))\s*

\((.{1,maxInnerChars}\2(\p{Punct}\s*\w+)?)\)

where maxOuterWords is the value of the user-defined parameter for the maximum

number of words in the long form (default: 10, as per [5]), maxInnerChars is the maximum
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number of characters in the short form (default: 40, i.e. 10 words), andmaxOuterChars =

maxOuterWords× 4.

Usually, the short form will appear in parentheses following the long form, but they may

appear in reverse order. We allow for this by setting the maximum number of characters

as the same by default in both LF and SF. If the matched short form is longer than the

candidate long form text preceding it, the values of LF and SF are swapped, so that SF

always points to the abbreviation/acronym, and LF always to the definition.

In Step 2 we make use of a simplified subset of the discard conditions for short forms

given in Appendix 1 of Ao & Takagi[5]. For example, short forms starting with a preposi-

tion, or starting and ending with a digit, are discarded. These conditions are implemented

as regular expressions loaded from external configuration files, allowing this behaviour to

be easily customised.

In Step 3, dynamically generated regular expressions are used to find the shortest sub-

string of LF following a preposition (if present) and where either the first character matches

the first character of SF, or the first character of the last word matches the last character

of SF, depending on whether the ‘head’ or ‘tail’ pattern was executed in Step 1. In exam-

ple (1) above, ‘the behaviour of confluent SV40 transformed rabbit corneal epithelial cells’

would be shortened to ‘transformed rabbit corneal epithelial cells’.

In Step 4, non-alpha characters are stripped from LF and SF, split LF into a character

array, and iterate over SF to match adjacent characters, in the same order, in the LF array.

If the proportion of matches in relation to the total alpha characters in SF >= threshold

(default: 0.80), then the <LF, SF> pair is accepted and added to a Map of <SF, LF>

key/value pairs.

In Step 5, the accepted pair are converted to inline annotations in the text by making

use of the start() and end() methods of the Java util.regex.Matcher class, adjusted

for term truncation in Step 3 and for the start offset of each sentence. The value of

LF is stored as a feature on SF, and vice versa. If the term definition has already been

annotated with one of a configurable set of known annotations, this annotation is used.

For example, if ‘transformed rabbit corneal epithelial cells’ was previously annotated as
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AnatomicalSite, then ‘tRCEC ’ would also be annotated with this semantic type.

In Step 6, code generates regex Matchers over the Map of pairs populated up to that

point, and these are used to locate and annotate unpaired, candidate short forms in

sentences forward of the point at which the corresponding long form–short pair was first

introduced in the text. The unique identifier of the antecedent LF is also stored as a feature

on the unpaired SF, so that the original definition can easily be located in the text (see

Figure 7.1 for an example from a hypertension guideline).

Figure 7.1.: Example of unpaired abbreviations expanded with term definitions and with
links back to the location identifiers of each definition’s first mention in the
text

For the optional Step 7 a dictionary of medical abbreviations is used to expand unde-

fined short forms not matched by the previous steps. To compile this dictionary, medical
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abbreviations were extracted from Wikipedia2, manually grouped according to their se-

mantic type, and each short form stored as a list item with its corresponding long form.

For example, ‘Pt’ or ‘pt’ would be classified as ‘Person’ and have a long form of ‘patient’,

‘PT’ would be classed as both ‘Person’ and ‘Test’ with a long form of ‘physiotherapist’

and ‘prothrombin time’:

Person list:

...

PCP;term=primary care physician

PMD;term=primary medical doctor

pt;term=patient

Pt;term=patient

PT;term=physiotherapist

...

Test list:

...

PSA;term=prostate-specific antigen

PSP;term=phenylsulphtalein

PT;term=prothrombin time

...

The GATE ANNIE[8] Gazetteer component is used to perform case-sensitive, whole-

word-only matches on the document text against this dictionary, creating configurable an-

notations for each match (e.g. AnatomicalSite, DiseaseOrSyndrome, Procedure, Test)

and to add the long-form text as a feature on each short form as per Step 5. For short

forms with more than one expansion, a number of matches will be made and an annotation

will be created for each. As discussed in the Introduction, disambiguating these to identify

the correct expansion in the current context is not, however, the function of this module

and is performed as a later processing step (see Chapter 8).
2http://en.wikipedia.org/wiki/List_of_medical_abbreviations
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7.3. Evaluation

Performance of BADREX was evaluated against two well-known gold-standard corpora

for testing abbreviation detection algorithm performance: the BioText ‘yeast’ corpus[4]

and the Medstract corpus[9].

The BioText ‘yeast’ data (http://biotext.berkeley.edu/data.html) comprises 1000

MedLine abstracts in a plain text file containing 954 LF–SF pairs annotated with XML-like

tags, for example:

<Long id=1>endoplasmic reticulum</Long> (<Short id=1>ER</Short>)

where the ‘id’ attribute on the <Long> element matches that in the corresponding

<Short> element. Using a standard XML parser, we identified and corrected errors in

malformed ‘id’ attributes and mismatched or malformed <Long> and <Short> tags. For

example, the XML standard requires all attribute values to be enclosed in double quotes,

and that each start tag must be closed by a matching end tag. Correction iterations

continued until the file parsed.

The Medstract corpus (http://www.medstract.org/index.php?f=gold-standard) com-

prises 400 MedLine abstracts in a plain text file, where 414 gold standard LF–SF pairs

have been extracted into a separate text file (http://www.medstract.org/index.php?

f=gold-result: the ‘markables’). We analysed the markables file for offset errors, and

following correction of these, we compared the abstracts file against the markables to

identify any missing pairs.

The precision, recall and F 1-measure performance (see Chapter 4 for details of these

methods) of BADREX were evaluated against the corrected BioText and Medstract cor-

pora, and compared the results alongside those for three published systems (two of which

were also covered in the review by Torii et al.[2]): Schwartz & Hearst[4] (S-H), ALICE[5]

and MBA[10] against the same data. For S-H and ALICE, executable code was available

to evaluate on the corrected corpora; for MBA, code was not available so we report the

Medstract figures provided by Xu et al.[10]

The effect of varying the maxOuterWords, maxInnerChars, and threshold parameters
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against recall, precision and F 1-measure for the larger BioText corpus was also investi-

gated, in order to determine the optimal values for these parameters.

7.4. Results

Figures 7.2 and 7.3 show sample BADREX output in the GATE Developer application

for two abstracts from the evaluation corpora. Figure 7.2 shows semantic type assignment

(DiseaseOrSyndrome and Protein) copied from the long form to subsequent short form

mentions, and coreference and expansion of unpaired short forms. In coreference mode,

short forms occurring within subsequent long forms are also expanded: here, the ‘WAS

protein’ term contains an inner ‘WAS’ abbreviation that has been expanded to ‘Wiskott-

Aldrich syndrome’.

Figure 7.3 shows how BADREX allows for whitespace variations in subsequent mentions

of the earlier-introduced short form.

Figure 7.2.: Visualisation of BADREX output in GATE, showing automatically annotated
and expanded short forms
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Figure 7.3.: Example showing how BADREX’s abbreviation expansion allows for white-
space variations in subsequent mentions of the initially introduced short form

Here, ‘2D1H NMR’ is coreferenced with ‘2D 1H NMR’ and annotated with the original
long form text as a feature

In the BioText corpus, we found 13 incorrectly matching or malformed ‘id’ attributes

and 21 mismatched or malformed <Long> and <Short> tags. The corrected corpus is

available at http://soi.city.ac.uk/ abdy181/software/#badrex

Tables 7.1 and 7.2 shows the results of analysis of the Medstract corpus; against the

Medstract gold standard markables an additional 43 markables were identified as correct

short-form—long-form pairs, and 17 pairs were amended that were judged to have incorrect

spans. The corrected gold standard markables file is available at

http://soi.city.ac.uk/ abdy181/software/#badrex

Evaluation of BADREX performance against both corpora in comparison to that of S-H,

ALICE and MBA are shown in Table 7.3. As the published MBA results were provided

to 2 decimal places, we report all results in this format.

Figure 7.4 shows the effect of varying the maximum number of characters in the short

form (maxInnerChars) for the default maximum long-form word length (maxOuter = 10)
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Table 7.1.: Short-form–long-form pairs missing from the original Medstract gold standard
markables

Short form Long form
hCG human chorionic gonadotrophin
eNOS endothelial type of NO synthase
3beta-HSD II 3beta-hydroxysteroid dehydrogenase type II
tTGase tissue transglutaminase
hMG human menopausal gonadotrophin
IVF ET in vitro fertilization/embryo transfer
hMG human menopausal gonadotrophin
hCG human chorionic gonadotrophin
ds double-stranded
frag fragmentation
3-D 3-dimensional
22K hGH 22 kDa growth hormone
alpha-DB alpha-dystrobrevin
bHLH basic helix-loop-helix
b FGF basic fibroblast growth factor
CI confidence interval
oc Osteosclerosis
topo II topoisomerase II
ALP alkaline phosphatase levels
BMD bone mineral density
CI confidence interval
micro-CT micro-computed tomography
PrE primitive endoderm
hHb1 Human hair keratin basic 1
bp base pair
mtDNA mitochondrial genome
beta 2M beta 2-microglobulin
pb peripheral blood
AT Ataxia teleangiectasia
I.L.S.G. International Lymphoma Study Group
R.E.A.L. Revised European-American Classification of Lymphoid

Neoplasms’
tHcy total homocysteine
iNOS inducible nitric oxide synthase
5-FU 5-fluorouracil
rAAV recombinant adeno-associated virus
oriP origin of latent viral DNA replication
HVJ hemagglutinating virus of Japan
E0’ equilibrium reduction potential
O2- superoxide
eNOS endothelial NO synthase
GlOx glutamate oxidase
beta-END beta endorphin
tRCEC transformed rabbit corneal epithelial cells
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Table 7.2.: Corrected and original, erroneous long forms in the Medstract gold standard
markables

Short form Corrected long form Original long form
RAR RA receptor regulation of tissue transglutam-

inase
IAA indoleacetic acid in the presence of 10(-6) m 3-

indoleacetic acid
EXACCT exonuclease-amplification cou-

pled capture technique
e exonuclease-amplification cou-
pled capture technique

GlyRalpha2 E3A glycine alpha2 exon 3A glycine alpha2 exon 3a (glyral-
pha2 e3a) and gaba(a) exon
gamma

EGFr EGF receptor eration through binding to egf re-
ceptor

VIN vulval intraepithelial neoplasia val intraepithelial neoplasia
SSSS staphylococcal scalded skin syn-

drome
scalded skin syndrome

EBER EBV-encoded small nuclear
RNA

ed ebv-encoded small nuclear rna

HD Hodgkin’s disease 15 with Hodgkin’s disease (HD †

GluR glutamate receptor g chemical selectivity of agonists
for the nmda subtype of glu-
tamate receptor

TUNEL terminal deoxynucleotidyl trans-
ferase mediated deoxyu-ridine
triphosphate biotin nick end la-
belling

ted deoxyuridine triphosphate
biotin nick end labelling

LC/ESI/MS/MS HPLC/electrospray ionization
tandem mass spectrometric

lective hplc/electrospray ioniza-
tion tandem mass spectrometric

CYSP cysteine peptide conformations of the polypep-
tides beta endorphin

ESI/MS electrospray ionization mass
spectrometry

ectrospray ionization mass spec-
trometry

Lid Lidocaine lidated for the quantitation of li-
docaine

DEX-MPS dextran-methylprednisolone suc-
cinate

DEX-MPS) and its degradation
products methylpr †

UV Ultraviolet 60:40 v/v) and ultraviolet (UV)
detection at †

† Incorrect short form

177



7. Abbreviation expansion

Table 7.3.: Evaluation results against corrected gold standard data sets
System Corpus Precision Recall F1
BADREX† Medstract 0.98 0.97 0.97

BioText 0.89 0.86 0.88
S-H Medstract 0.90 0.97 0.93

BioText 0.91 0.79 0.85
ALICE Medstract 0.98 0.94 0.96

BioText 0.92 0.68 0.78
MBA‡ Medstract 0.91 0.88 0.89

BioText - - -
† Coreference mode disabled in BADREX for this evaluation
‡ Results reported by study authors; software unavailable to evaluate on BioText
corpus.

and ratio of characters in the short form that must match, in order, in the long form

(threshold = 0.8). As shown in the Figure, precision, recall and F1-measure converge

(88, 85, 89% respectively) at around maxInnerChars = 40–42 characters. There is no

performance benefit in increasing the size of maxInnerChars beyond 42 characters, but

neither does performance tail off for maxInnerChars values beyond this point.

Figure 7.4.: Effect of varying short-form length for constant long-form length and threshold

Figure 7.5 shows the effect of varying the maximum number of words in the long form

(maxOuter) for the default maximum short-form word length (maxInnerChars = 40) and
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short-form match threshold (threshold = 0.8). As shown in the Figure, precision, recall

and F1-measure are maximal (90, 88, 86% respectively) at around maxOuter = 7 words.

In a similar distribution to that shown in Figure 7.4, there is no performance benefit nor

penalty in increasing the size of maxOuter beyond 20 words.

Figure 7.5.: Effect of varying long-form length for constant short-form length and threshold

Figure 7.6 shows a similar plot to Figure 7.4 but using the provisionally optimised

maxOuter parameter of 7 words and constant threshold of 0.8, giving slightly better

precision, recall and F1-measure of 91, 86 and 88% respectively at maxInnerChars = 42

characters.

Figure 7.7 shows the effect of varying threshold for near-optimal maxInnerChars and

maxOuter values of 40 and 7 respectively. As shown in the figure, precision, recall and F 1-

measure converge at around 87% giving an optimal threshold of 0.65. However, beyond

this point, precision rises a little more steeply than recall falls, so it may be better to use

a slightly higher threshold than 0.65 in order to give preference to higher precision. At

threshold = 0.76, precision, recall and F1-measure are 90, 86 and 88%, which confirms

this.

179



7. Abbreviation expansion

Figure 7.6.: Effect of varying short-form length for maximum 7 word long forms

Figure 7.7.: Effect of varying short-form match threshold for constant short-form and long-
form length
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7.5. Discussion

The goal of this work was to develop a customisable tool for identifying, expanding and

annotating in situ biomedical abbreviations in free text, while matching or exceeding the

performance of existing approaches. As show in Table 7.3, performance on both of the

evaluation corpora is slightly better than the next two best-performing approaches. The

MBA tool was not available for direct evaluation against the corrected corpora: had this

tool been available, it may have shown improved performance than the figures quoted by

the MBA authors against the original corpora.

Running both ‘head’ and ‘tail’ candidate matches, allowing a variable threshold and only

considering alpha characters when matching allows long form–short form pairs such as

‘topoisomerase I (Top1p)’, ‘Phosphatidyl-inositol-3-kinase (PI3K)’ and ‘two-dimensional

polyacrylamide gel electrophoresis (2D-PAGE)’ that are missed by the other approaches,

yet without unduly compromising precision.

Steps 1 and 3 of the approach presented here are similar to the algorithm described in

Schwartz & Hearst[4], which they implemented as a finite-state machine (FSM) with the

constraints hard-coded. However, by using dynamic regular expressions in these steps, we

simplify the creation of the FSM and allow it to be easily parameterised, so that optimal pa-

rameter values for a given corpus can be identified. In this study, default values were used

for these in the comparative evaluation, but by plotting different values for the parameters,

we found that, for the BioText corpus, precision, recall and F1-measure could be optimised

with maximum candidate long-form (maxOuterWords), short-form (maxInnerChars) and

character-match threshold (threshold) values of 7 words, 42 characters, and 0.65–0.76 re-

spectively. In general, iterative regression techniques could be used to find optimal values

for these parameters to maximise precision and/or recall for other corpora.

However, the use of regular expressions, although both simplifying the implementation

and making it more flexible, does have some limitations. For example, the regexes used

here do not currently allow for nested parentheses occurring either in the short form or

long form. Also, the current implementation requires that either the short form or long

form appear in parentheses; pairings where the two are separated by other punctuation,
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Table 7.4.: Example pairings missed by BADREX on the BioText corpus
Pairs
protein phosphatase (PP1(C))
Temperature-sensitive (Ts(-))
mitochondrial actin binding protein(s) (mABP)
pBEVY (bi-directional expression vectors for yeast)
(Suppressors of Arf ts, SAT)
phosducin-like orphan proteins (PhLOP1 and PhLOP2)
(phox) (PX)
p59fyn (Fyn)
chloramphenicol acetyl transferase (CATIII)
poly(A) polymerase (PAP)
upstream activating sequence (UAS(GAL1/10))
TASR (TLS-associated serine-arginine protein)
C-terminal domain (CalphaB)
phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3)
OCT (22-oxa-1alpha,25-dihydroxyvitamin D3)
Ycf1p (yeast cadmium factor or glutathione S-conjugate pump)
Na(+)/H(+) exchanger regulatory factor 2 (NHERF2)
eukaryotic translation initiation factor 2B (eIF2Bepsilon)

such as a comma, will be missed. While both precision and recall were very high on

the Medstract corpus (0.98 and 0.97 respectively), recall in particular was significantly

lower on the larger BioText corpus (0.86). The above-noted limitations in the current

regex implementation was one of the reasons for this reduced recall: examples of pair-

ings missed by BADREX on the BioText corpus are shown in Table 7.4. Some of these

missed pairings will have been picked up by increasing the values of the maxOuterWords

and maxInnerChars parameters (e.g. for ‘phosducin-like orphan proteins (PhLOP1 and

PhLOP2)’. Reducing the threshold parameter would have picked up some other missed

pairs (e.g. ‘pBEVY (bi-directional expression vectors for yeast)’ but this would have been

at the expense of reduced precision elsewhere, as suggested by Figure 7.7. Other causes of

error were spelt-out Greek letters appearing in the short form (e.g. ‘eIF2Bepsilon’) and

capitalised roman numerals (e.g. ‘CATIII ’).
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7.6. Summary

In this chapter, we have demonstrated an approach to identifying term definition–term

abbreviation pairs that uses regular expressions dynamically generated from document

content. This approach yields a modest performance improvement in comparison to previ-

ous approaches. The main benefit, however, is that the code provides in-place annotation,

expansion and coreference in a single processing pass through each document. In addition,

this approach requires no training data; however, via runtime customisation of its input

parameters it can be trained if required so that optimal parameter values can be estimated

for different corpora.

As a result of the research presented in this chapter, a substantial number of errors in

two reference corpora, which have been used to evaluated the performance of a number

published methods for identifying biomedical abbreviations, have been corrected. These

corrected corpora are now available to researchers for use in future evaluation studies.

We have not yet evaluated the coreferencing features of BADREX, nor the annotation

of common medical abbreviations extracted from Wikipedia. Future work will need to

evaluate the contribution of these features as components in the disambiguation of unde-

fined abbreviations, such as typically encountered in a patient’s clinical notes. In Chapter

8, we make use of BADREX as a component in a general coreference resolution system

for clinical narratives in which these features are utilised.
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8. Putting it all together: coreference

resolution for identifying processes of care

and chains of events in clinical narratives

8.1. Introduction1

With the work presented in the previous chapters, we now have a number of the compo-

nents for performing a range of information extraction tasks in the clinical domain, such

as:

• optimal text segmentation for pre-processing input to MetaMap

• identification of quantitative and temporal concepts

• identification and correction of spelling errors

• identification of anatomical and disease concepts

• expansion of biomedical and clinical abbreviations

In this chapter, we discuss contextual features, knowledge resources and lexical pat-

terns for resolving coreference relations in the clinical domain, making use of all the above

components. We apply the clinical knowledge extraction framework to identify corefer-

ence relations in a wide variety of clinical reports, and argue that this is an important

component in addressing the wider problem of identifying processes of care in the clinical

narrative.
1This chapter has been published in an abbreviated form as ‘Lexical patterns, features and knowledge

resources for coreference resolution in clinical notes’[1]
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In linguistics, the relationship of coreference holds when two or more expressions or

mentions (typically noun phrases) refer to the same external entity, independent of the

order of the expressions within the text. The semantic relation between the expressions

is one of identity. This identity relation leads to the assumptions of symmetry (if A is

coreferent with B, then B is coreferent with A) and transitivity (if A is coreferent with

B, and B is coreferent with C, then A is coreferent with C). Coreference can be consid-

ered a specific type of anaphoric relation where a later expression (anaphor) has some

semantic relation to an earlier expression (antecedent) and disambiguation of the anaphor

is dependent on knowledge of the antecedent[2][3]. In a general anaphoric association,

the semantic relation may be of identity, but not necessarily; for example, anaphor and

antecedent may be in a part–whole relationship.

Pronominal coreference considers the resolution of pronouns back to their correct an-

tecedent (e.g. resolving ‘they’ to ‘the clinical team’), while bridging coreference considers

the resolution of definite descriptors (e.g. ‘the procedure’) and semantically equivalent

terms (e.g. synonyms and hypernyms) back to the specific antecedent. Resolution of

bridging coreference may make use of the following features:

• lexical features, such as matching headwords where one term is preceded by one or

more modifiers and the other is unmodified (e.g. resolving ‘the swelling’ to an earlier

mention of ‘the lower extremity swelling’);

• external domain knowledge, such as hypernym relations in resolving ‘the antibiotic’

to an earlier mention of ‘amoxicillin’ and ‘the infection’ to an earlier mention of

‘staph bacteremia’;

• synonym relations, such as resolving ‘shortness of breath’ to ‘dyspnea’.

Relations may be both coreferent and anaphoric, for example ‘initially the patient refused

bronchoscopy but agreed to it later ’, as the anaphor ‘it’ can only be understood in relation

to the antecedent ‘bronchoscopy’, and both ‘it’ and ‘bronchoscopy’ refer to the same,

external concept (a bronchoscopy procedure). With compound terms, the relationships

can be multiple and more complex, for example:
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the patient was admitted with a head wound laceration ... we sutured her

scalp laceration

where there is potentially both an anaphoric and coreferent relationship between ‘her ’

and ‘the patient’ (given the world knowledge that the patient is female), ‘scalp’ is anaphoric

to ‘head’ in a meronym—holonym (part—whole) relationship, and ‘head wound laceration’

and ‘scalp laceration’ are potentially coreferent if they refer to the same injury.

The rule-based heuristics that characterised initial approaches to coreference resolution

have largely been supplanted by a variety of supervised machine learning approaches. In

general, rule-based approaches have been dominated by research on pronominal coreference

on general texts by Lappin, Leass and Mitkov (reviewed in [2]), which typically involve a

backward-looking search from a given pronoun to the best antecedent. Antecedent ranking

rules consider factors such as gender, number, token distance and sentence recency; syntax

such as grammatical role or dependency relation (subject, direct object, indirect object),

person, and position; and discourse models such as centering theory[4] (see Section 8.3.4).

Supervised machine learning approaches have, until recently, been dominated by the

mention-pair model, which treats coreference resolution as a binary classification problem

between pairs of mentions (as in the example above), but has been criticised for consider-

ing each mention in isolation and not the wider contexts in which each mention occurs[5].

More recent models consider the task as a semi-supervised, cluster-ranking problem in

which mentions are grouped into clusters, and then a ranking algorithm, which consid-

ers grammatical, syntactic, semantic and discourse-based contextual features, is used to

classify clusters into those that are coreferential and those that are not[4][5]. However,

despite the move toward machine-learning approaches, the Stanford NLP Group’s state-

of-the-art system for resolving coreference relationships in the general domain is entirely

rule-based[6].

Resolution of ‘it’, ‘this’ and ‘that’ pronouns present particular problems for coreference

resolution, as they are often used redundantly and may not refer to any specific mention

– i.e. they may be used in a pleonastic sense. For example, in the phrase ’It is important

to note that thresholds vary’, both ‘it’ and ‘that’ are pleonastic and do not refer back to
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an earlier, specific mention of a concept. In practice, distinguishing pleonastic references

from anaphoric references is not straightforward. Consider the following, albeit somewhat

contrived, examples:

Patient is taking vancomycin. It has been prescribed to treat the MRSA

infection.

Patient is taking vancomycin. It has proven difficult to treat the MRSA infec-

tion.

In the first example, ‘it’ is anaphoric to ‘vancomycin’ but in the second, ‘it’ is pleonastic,

despite both sentences having very similar structure.

8.2. Relevance to the clinical domain

Resolution of coreference is particularly important in clinical narratives, such as progress

notes and discharge summaries, as it is often required to uncover implicit and contextual

information. For example:

S. Holmes, a 53 year-old male, was seen on 23/06/2012. The patient suffers

from chronic lower back pain. He has been taking Vicoprofen for this since

07/2011, but the medication is not managing his discomfort.

To the human reader, it is clear that the patient’s lower back pain is managed unsuc-

cessfully with Vicoprofen, and both the pain and the Vicoprofen prescription predates his

most recent visit. To infer this information computationally, the following steps need to

be performed:

1. Identify and classify clinical concepts and temporal expressions in the statement(s),

(as described in Chapters 5 and 6)

2. Identify terms with the same classification that are coreferential

3. Identify temporal relations between terms
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For the first step, carrying out part-of-speech tagging, verb-group (VG) chunking and

concept identification, as described in Chapter 5, would identify the following annotations:

[S. Holmes]Person, a [[53 year-old]Age male]Person, [was seen]VG on [23/06/2012]Date.

[The patient]Person [suffers]VG from [chronic lower back pain]Problem.

[He]Pronoun [has been taking]VG [Vicoprofen]Treatment for [this]Pronoun since [07/2011]Date,

but [the medication]Treatment [is not managing]VG [[his]Pronoun discomfort]Problem

However, without a method for resolving ‘he’, ‘his’ back to ‘the patient’ (and ‘the patient’

back to ‘S. Holmes’ and ‘a 53 year-old male’) , ‘this’ and ‘his discomfort’ back to ‘lower

back pain’, and ‘the medication’ back to ‘Vicoprofen’, there is no way that the above rea-

soning can be inferred computationally. Moreover, this example shows the importance of

resolution of complete chains of coreference (‘S. Holmes—53 year-old male—The patient—

he—his’, ‘chronic lower back pain—this—his discomfort’, ‘Vicoprofen—the medication’) to

enable this information to be extracted. The relationships between the coreference chains

can be visualised in the graph shown in Figure 8.1. From this, and using the narrative

schema notation developed by Chambers & Jurafsky[7] for modelling chains of events, a

temporally ordered set of events and roles can be described as shown in Table 8.1.

Figure 8.1.: Graph-based representation of relationships between coreferential chains

In a review of coreference methodologies, Zheng et al.[8] noted that there was a lack

of both manually annotated corpora and automated systems for identifying coreference

within the clinical domain. They concluded that an approach that identifies patterns

specific to clinical texts, combined with adaptation of more general methods, would be
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Table 8.1.: Narrative event chains from the graph of coreference and relations in Fig. 8.1
Date Events Roles
? S suffers from P S = Holmes, 53 year-old male, the patient

↓ P = chronic lower back pain
↓

2011-07-xx S has been taking T T = Vicoprofen
↓

? T is not managing P
↓

2012-06-23 P was seen on

a necessary first step towards a solution. However, existing, general-purpose coreference

tools, such as the BART Coreference Toolkit[9] or the Stanford Deterministic Coreference

Resolution System[6] — even when retrained for the clinical domain — perform poorly on

clinical texts, where recall is particularly low, varying from 0% to 35% [10]. This is perhaps

not surprising, as transcribed clinical notes present particular problems for identification

of co-referring terms, such as:

• The domain knowledge requirement, to identify synonyms where there is no overlap

between mention strings; for example, ‘the patient’s abdomen’ and ‘the patient’s

epigastric area’.

• Exactly matching strings might not corefer: the contexts of the events or clinical

conditions they represent may may be different or affect different experiencers. For

example ‘hypertension’ in ‘There is a family history of [hypertension]Problem’ and

‘the patient’s [hypertension]Problem is being managed with ACE inhibitors’.

• The potential for spelling inconsistencies and errors.

• The use of ambiguous abbreviations without prior definition. For example ‘Pt’ may

abbreviate ‘patient’, but ‘PT’ may abbreviate ‘physiotherapy’ or ‘prothrombin time’.

• Name anonymisation potentially resulting in the same personal name being replaced

with a different string during de-identification, and the anonymised name may not

match the patient’s gender.
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• The potentially wide scope of resolution for personal pronouns. For example, ‘he’

might refer to ‘the patient’ mentioned several sentences or paragraphs previously, as

intervening paragraphs may have discussed, for example, laboratory results.

Until recently there have been few evaluation reports of automated approaches to coref-

erence resolution in clinical texts. Romauch[11] developed a knowledge-based system

using the MetaMap Transfer (MMTx) application and the Unified Medical Language Sys-

tem (UMLS) to resolve definite descriptors in clinical practice guidelines, reporting an

F1-measure of 75.8%. Error analysis revealed inadequate acronym/abbreviation detection

leading to incorrect UMLS mappings made by MMTx (such as abbreviations for clinical

terms being incorrectly identified as gene names) and coreference of terms sharing the same

hypernym (e.g. ‘further surgery’ and ‘incomplete excision’ – although the error here is

more related to linking a possible, future planned event with a previous event) and incom-

plete coreference chains as sources of error. For hospital discharge summaries, He[12] used

a supervised decision-tree classifier with a mention-pair model to resolve coreference chains

of Person, Symptom, Disease, Medication, and Test mentions, and achieved a mean F -

measure of 81.0% (ranging from 95.0% for Medications to 50.6% for Tests). Analysis

revealed incomplete handling of temporal context, lack of knowledge-based handling of

synonym and hypernym relationships, and lack of acronym/abbreviation detection, as the

main factors affecting system recall.

To help address the lack of research into coreference resolution in clinical texts, two man-

ually annotated corpora of clinical anaphoric relations have recently been made available[13]:

the Ontology Development and Information Extraction (ODIE) corpus[14] and the i2b2/VA

corpus[15]. The former consists of de-identified clinical notes and pathology reports from

the Mayo Clinic, and discharge summaries, progress notes, radiology reports, surgical

pathology reports, and progress notes from the University of Pittsburgh Medical Center

(UPMC). The latter consists of de-identified discharge summaries from Partners Health-

Care, Beth Israel Deaconess Medical Center, and UPMC.

The corpora have been divided by Uzuner et al.[13] into a training set of 589 docu-

ments previously annotated for mentions of persons and clinical concepts (Procedure,
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DiseaseOrSyndrome, SignOrSymptom, Reagent, LaboratoryOrTestResult,

OrganOrTissueFunction, and AnatomicalSite in the ODIE corpus; Problem, Treatment

and Test in the i2b2/VA corpus) and a test set of 388 documents. For the training set,

adjudicated ‘ground truth’ coreference chains have been provided in the following format,

in which the concept’s class, and the text string and line/word offset of each coreferent

markable are identified, for example:

c="right hip osteoarthritis" 21:0 21:2||c="advanced osteoarthritis

of his right hip" 49:3 49:8||c="severe osteoarthritis of the right

hip" 51:6 51:11||t="coref Problem"

c="the patient" 22:0 22:1||c="she" 23:0 23:0||c="she" 24:0 24:0||

c="her" 26:0 26:0||c="she" 27:0 27:0||c="she" 29:0 29:0||t="coref Person"

An evaluation script has also been released[16] which compares system output in the

above format to a given reference set of test output. The script measures system perfor-

mance against a number of metrics well-known in the general field of coreference resolu-

tion, including B3[17], MUC[18], CEAF[19] and BLANC[20]. Using these metrics, Zheng

et al.[21] have recently published results for a system that used a variety of supervised

machine learning approaches to resolve coreference in the ODIE corpus. Using a support

vector machine with a radial basis function, they achieved a mean F1-measure (over all

metrics) of 53.1%.

Briefly, these metrics perform complex set-wise comparisons of coreference chains be-

tween the key set and the system output under evaluation. Given that the coreference

relation is one of identity, as noted in Section 8.1, the relation between mentions in a coref-

erence chain must be transitive and symmetric - i.e. if→ denotes the coreference relation,

and A → B and B → C then A → C and C → A. Thus, for the purposes of evaluation,

coreferences chains are treated as unordered sets. So, in a coreference chain of (A, B, C)

in the key (ground truth) set, a system that generates the chain (C, A) should be gain a

partial recall score but should not be penalised on precision. Furthermore, a system that

generates (A, B, E, C) where E is not in the key set should gain a partial precision score
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but should not be penalised on recall. On the other hand, given a key set of (A, B, C,

D), a system that generates split chains of (A, B) and (C, D) might be partially scored

for both recall and precision. Each of the metrics currently in use different algorithms to

attempt to weight these types of scenarios when scoring precision and recall (for a detailed

discussion of how each metric calculates these weights, refer to Cai and Strube[22], and

Zheng et al.[8]). In in doing so, some metrics can give anomalous results in certain edge

cases, as noted below.

There is controversy over which is the most valid metric for evaluating system perfor-

mance, particularly when dealing with coreference of system-generated mentions not in

the key set, leniency in handling split coreference chains, and singletons (mentions with no

coreferents). For example, with the MUC metric, Luo [23] noted that adding all mentions

into a single coreference chain resulted in a recall of 100% and precision of 79% giving

an F1-measure of 88%. Unexpected scores are also given for null system output (i.e. no

coreference relations and no mentions): against the ODIE ground truth set containing

44,000 mentions and 5200 coreference chains, F1-measures of 0.936, 0.5, and 0.686 are

reported by B3, Blanc, and CEAF, respectively, for null system output, whereas a score of

0 in each might reasonably be expected. As a result of these anomalies, some researchers,

e.g. Poon et al.[24], have instead reported pairwise evaluation scores, i.e. evaluation of

correctly marked mention pairs, rather than complete chains, thus ignoring transitivity.

In the following sections, the components of the framework that identify coreference

relations between the types of clinical concepts previously discussed in Chapters 5 and 6

are presented.

8.3. Methods

8.3.1. Preliminary analysis of the training corpora

Given the particular problems of pronominal coreference resolution, as discussed above,

preliminary analysis was carried out on the distribution of pronouns across the complete

set of documents in the training corpora. Additionally, analysis of the distribution of
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Table 8.2.: Distribution of Person and pronoun mentions in the training data ground truth
mentions and coreference chains

All men-
tions

Persona Personal
pronouns

Patienta Patient
personal
pronouns

Other
pronouns

Coreference
chains

35525 19484 10313 14580 8879 1585

Mentions 70623 21127 10421 n.d. n.d. 3862
a All mentions — includes personal pronouns. n.d. = not done - data not available

references to the patient, both directly and via personal pronouns, was performed. Us-

ing regular expressions, coreference chains of Person-type mentions in the training data

containing the words ‘patient’ or ‘pt’ were classified as ‘patient’ references and these were

extracted and quantified. Similarly, personal pronouns across both all generic Person-

type coreference chains and those within ‘patient’-type coreference chains were extracted.

Table 8.2 shows the distribution of ‘patient’ and person pronoun references across both

corpora in the training set. Figure 8.2 shows the overall distribution of all pronouns in

the training set.

Figure 8.2.: Distribution of pronouns in the training set

As shown in Table 8.2, in the training set, of 35525 coreferenced mentions, 19484 (55%)

refer to a Person, and 8879 out of 10313 (86.1%) personal pronoun mentions that appeared
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in a coreference chain refer to the patient. Of all coreferenced Person mentions, 14580

out of 19484 (74.8%) are in a ‘patient’ coreference chain. Examination of the remaining

mentions revealed that they referred to members of the clinical team, to family/significant

others, or to the person receiving the report.

As shown in Figure 8.2, pronoun usage is dominated by third-person singular, nomi-

native or possessive pronouns (he, she, his, her), all of which participate in coreference,

as shown by the equal height of the black bars (overall document frequency) and white

bars (coreference chain frequency). Also notable is the discrepancy between the overall

occurrence of ‘it’, ‘this’ and ‘that’ and their low occurrence in coreference chains, suggest-

ing that their usage in these corpora was predominantly in a pleonastic sense (see Section

8.1).

8.3.2. Architecture overview

The basis of the clinical coreference component of the framework is, as before, a rule-based

pipeline that runs within GATE[25]. Rules were developed using the Java Annotation

Patterns Engine (JAPE) language, and external domain knowledge integration plugins

using Java. JAPE allows pattern matching and evaluation of text annotations using a

regular expression-like syntax. An annotation represents a marked range in the text,

corresponding to some entity or mention, with start and end nodes, a document-unique

identifier, and a set of features (attributes on the annotation). Each node points to a

character offset in the document. One of the benefits of JAPE is that annotations not

specified in the input are ignored for pattern matching purposes, which enables patterns

to be generalised when, for example, intervening punctuation and prepositions are not

significant. The patterns provided in the following sections exemplify this generalisation.

As noted in Section 8.2, ODIE corpus mentions had previously been annotated as

People, Procedure, DiseaseOrSyndrome, SignOrSymptom, Reagent,

LaboratoryOrTestResult, OrganOrTissueFunction, and AnatomicalSite; i2b2/VA cor-

pus mentions as Person, Problem, Treatment and Test. In order to generalise the method

across both corpora, and clinical narratives in general, these classifications were mapped
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to two core types: Person, and the generic superclass ‘Thing’ (i.e. in this case, clini-

cal terms) (see Sections 8.3.8 and 8.3.9). The coreference component combines GATE

ANNIE[26] text segmentation processing resources with custom named-entity annotators

and integration plugins developed by the author to embed clinical domain knowledge and

contextual cues into the text, in order to add semantic features to pronouns, Person and

‘Thing’ mentions so that coreference relations can be computed.

The approach comprises five stages as shown in Fig. 8.3 and described in detail in

Sections 8.3.3–8.3.9 below. In the examples presented, the text delimited by an annotation

is shown in square brackets, the annotation type is shown in subscript in initial caps, and

annotation features in subscript, lower case. JAPE patterns are shown in an abbreviated

form, where token sequences are shown in square brackets, text in curly braces denotes the

annotation name, and feature assignment statements are written as Annotation.feature

= value.

8.3.3. Text segmentation

Standard GATE ANNIE[26] components provide initial shallow parsing and phrase chunk-

ing. Pattern-matching rules were written that split the source documents into sections

and classify each, based on the text of identifiable headings (such as ‘PHYSICAL EX-

AMINATION:’ or ‘LABORATORY DATA:’) or paragraph content. Sections, sentences

or paragraphs identified as being related to family history or historical lab data were then

marked by the system as being potentially excluded from coreference of ‘Thing’ mentions

experienced by the patient in the current treatment episode (see Section 8.3.9).

8.3.4. Overview of coreference resolution approach

Coreference resolution rules follow similar heuristics to the multi-pass sieve recently pre-

sented by Lee et al.[6] for newswire text, but with specific consideration of world and

clinical domain knowledge. While Lee et al. resolve pronouns on a final pass, we resolve

pronominal coreference for each mention class first, and each potential mention-pair is con-

sidered only once, as described below. Furthermore, we address some of the weaknesses
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Mention feature extraction

number (plural, singular)
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Abbreviation expansion

UMLS CUI, semantic type, 
preferred name

Spelling correction
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Figure 8.3.: Coreference architecture
‘Thing’ refers to a non-Person mention such as Treatment, Test, or Problem. Shaded
areas represent components developed for this task; unshaded areas represent generic
GATE components and external knowledge resources.

Source: Gooch & Roudsari[1]

of the traditional mention-pair approach, by making use of the contextual information

surrounding each mention and/or pronoun, and by making use of centering theory to give

preference to coreferents that grammatically agree with forward-looking centres[5].
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Centering theory suggests that, in a coherent discourse, entities and their coreferent

pronouns will occupy the same grammatical position in the sentence or clause – usually

that of the subject where there is a single entity, but also in parallel subject/object pairs

in the case of two or more entities and pronouns, as in:

[Patient]subject suffers from [lower back pain]object.

[He]subject takes [Vicoprofen]indirect_object for [this]object.

Given two or more potential mentions that could be the correct antecedent based on

gender and number, if the pronoun is the subject of its clause, then we select the mention

that is also the subject of its own clause. This requirement is relaxed in the case of a

single Person mention and a single personal pronoun in a clause, or two Person mentions

and two personal pronouns, each of different genders.

We combine centering with the identification of the actors, or protagonists, who inform

the narrative. Protagonist theory[27] suggests that narrative events are centred on one or

more key actors. Coreferring actors share congruent verbs, and distinct sets of verbs are

typically associated with different actor types. Narrative events can therefore be identified

by a common protagonist and associated verbs[27]. By extension, we suggest that a

known set of narrative events (e.g. the admission, assessment, test and treatment process

documented in clinical notes) and associated verbs can be used to identify coreferring

protagonists. This process is described in Sections 8.3.7 and 8.3.8.

Document traversal for generation of coreference chains

Taking the set of all mentions, we create subsets according to mention class, and within

each subset, compare pairs of mentions in document order. For example, the first Treatment

mention will need to be tested against all following Treatmentmentions, the second against

the third, fourth, etc. For a given subset, the maximum number of comparisons that need

to be made, for each mention class, is given by

n−1∑
i=1

(i− 1) = n(n− 1)
2 ≈ O(n2)
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where n is the number of mentions in the class.

However, for efficiency, each input subset is pruned of successful mention pairings dur-

ing traversal, which will reduce the computational overhead of comparing large numbers

of mentions if some of the mentions of each class are coreferential. This is illustrated in

Figure 8.4, which represents a document containing two classes of mention, the selection

of one class of mention and the coreference iteration process. As shown in the figure, when

the candidate antecedent mention pointed to by the outer iterator matches a coreferent

mention pointed to by the inner iterator, the features of the former are cloned to the

latter, the outer iterator points to the coreferent mention, and the inner iterator is incre-

mented to the next mention. Once the inner iterator completes, all coreferent mentions are

pruned and the process repeats until the outer iterator completes. This process reduces

the number of mention-pair tests from 21 (n = 7⇒ n(n− 1)/2 = 21) to 11.

A set of linked lists corresponding to each coreference chain is thus created, where

each mention is assigned a unique identifier and, for each link in the chain, we store the

annotation id of the coreferent on the antecedent (and a back reference from the coreferent

to the antecedent is created, to form a double-linked list). In doing so, the direction of

the coreference relationship is preserved and the links in the chain of narrative events are

made explicit.

Marking these links has the benefit of facilitating in situ evaluation via the GATE

corpus quality assurance toolkit[25], which allows one to specify the feature names whose

values must match between mentions of the same type and at the same position in the

key set and system output. In this case, the coreference identifier is specified as the

matching feature: the value (or null, for singletons) of the coreference identifier on each

mention should therefore agree between the key set and system output. This coreference

identifier functions as a pointer from the antecedent to the anaphor and thus considers

the direction of the coreference relationship between terms. Precision and recall scores are

then calculated as described in Chapter 4. This pairwise, directional measure attempts

to avoid the anomalous results of the transitive metrics described above, although it is

used here solely to give a snapshot evaluation of system performance. We still use the
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Figure 8.4.: Filtering and traversal of mention pairs with pruning
Boxes represent mentions; vertical arrows represent iteration pointers; short horizontal
arrows represent coreference pointers; shading represents mention features. (A) Document
containing 2 classes of mention, differentiated by bold and dashed outlines. (B) Filtering
of mentions of the same class (mentions 1, 2, 5, 7, 9, 10, 12) and start of iteration. (C)
Identification of coreferent mentions 1 and 5. When the mention pointed to by the outer
iterator matches a mention pointed to by the inner iterator, the features of antecedent (1)
are cloned to the coreferent (5) (shown as shading in the figure), and the corefence pair
is created. The antecedent is then pruned (D), and the outer pointer then moves to the
coreferent (5) and the inner iterator increments (7) for the next iteration. (E) Identification
of coreferent mentions 5 and 12 and addition of 12 to the coreference chain. (F) The inner
iterator has completed, which closes the coreference chain, the previous coreference pair
are pruned and the iterators reset. (G) Identification of coreferent mentions 2 and 9 and
creation of a new coreference chain. (H) Antecedent pruning and outer iterator moves
to coreferent. (I) Inner iterator completes, closing previous coreference chain, pruning of
previous coreferent and iterators reset.

Source: Gooch & Roudsari[1]

established metrics for evaluation of complete chains of coreference, as an average over all

metrics should help balance out the strengths and weaknesses of individual measures, and
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moreover this allows architecture-independent comparison with other systems, as discussed

in [13].

Generating the unordered sets of coreference chains required by these metrics is, how-

ever, straightforward: each linked list is traversed in document order, and mentions and

their start and end offsets are serialized to a coreference chain text file as described in Sec-

tion 8.2. Before these coreference chains can be created, however, potentially co-referring

mentions need to be identified. This process is described in detail in the following sections.

8.3.5. Identification of supporting entities, context and features

Determining whether two mentions corefer or not is usually dependent on the context in

which those mentions appear, for example:

[blood pressure]Test of [100/70]Measurement ... [blood pressure]Test of [140/80]Measurement

[Patient]Person has a past medical history of [hypertension]Problem. [Patient’s

mother]Person also has [hypertension]Problem.

The two ‘blood pressure’ Test mentions do not refer to the same external event as they

relate to different measurement events, and the two ‘hypertension’ Problem mentions refer

to conditions experienced by two different people.

Identification of entities and mention features that can be used to support or eliminate

coreference between two mentions is a key task. Following Zheng et al.[8], selection of

features and contextual cues was based on those used by general-purpose coreference

systems, and which could be adapted to clinical texts, such as UMLS semantic type

agreement, abbreviation expansion, plus additional features identified from a sample of

documents from the training corpora.

Table 8.3 shows the supporting entities and features used for each mention class. To

clarify, a supporting entity is a separate annotation identified by the system as providing

information relevant to the context in which the Person or ‘Thing’ mention appears. A

supporting feature is something that is either already intrinsic to the mention itself (such

as the headword of the noun phrase, or whether the word or phrase is singular or plural),
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Table 8.3.: Supporting entities and features to identify mention context
Mention
class

Supporting entity Supporting feature

Person Honorific, FirstName, Surname,
GenderIdentifier,
Age

role (family, patient, clinician)
gender
number

Pronoun VG (verb group), IN (preposition) gender
number
case

Thing Section, Person, Date, Time,
Duration, Number, Measurement,
Frequency, MedicationRoute,
AnatomicalTerm,
SpatialConcept,
TemporalConcept

number
headword
laterality (left, right, bilateral)
normalizedString (abbreviation
expansion, spelling correction,
determiner removal)

UMLS Concept Unique Identi-
fier (CUI), UMLS preferred name,
concept name, semantic type

WordNet synonyms, hypernyms,
holonyms, meronyms

or is the result of storing the text of a nearby supporting entity as a feature on the mention.

For example,

[Mrs Smith]Person, a [79-year-old] inpatient of Ward 1

The text ‘79-year-old’ would be identified as an independent {Age} entity, but that

supports the classification of the separate Person mention (see Section 8.3.7), whereas

the gender of ‘Mrs Smith’ is a supporting feature, being an intrinsic property of the ‘Mrs’

honorific, and would be stored as a feature on the ‘Mrs Smith’ Person mention.

The general entity recognisers developed and described in Chapter 5 were used to iden-

tify supporting entities for context: quantitative and temporal concepts such as such as

number, measurement, date, time, frequency, duration, and age. Anatomical and spa-

tial concepts such as body locations and regions were identified using the anatomical

term annotator developed from semantic decomposition of the Foundational Model of

Anatomy[28] as described in Chapter 6 and which had previously been validated against
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the ODIE corpus (see Results of Chapter 6).

The biomedical abbreviation annotator described in Chapter 7 was used to classify and

expand abbreviations encountered in the text so that the expanded term could be processed

by MetaMap (see below). A JAPE transducer was used to match abbreviations within

mentions of the same class (so, for example, ‘PT’ as the content of a Person mention is

more likely to mean ‘physiotherapist’ or perhaps ‘patient’, rather than ‘prothrombin time’).

MetaMap[29] and the GATE mmserver integration plugin [30] (see Chapter 5) were

used to identify term headwords and to add UMLS CUI and UMLS preferred names for

each UMLS semantic type identified by MetaMap as features on each ‘Thing’ mention.

To reduce the number of features added, we used MetaMap’s –term_processing option

(i.e. each mention is treated as an atomic term for direct lookup against pre-coordinated

entries in the Metathesaurus), only considered SNOMED CT mappings, and took only

the highest-scoring MetaMap mapping group for each mention.

To correct misspellings, the biomedical spelling correction component developed using

the GSpell API [31] (see Chapter 6) was used to provide in situ spelling suggestions for

potentially misspelt terms in the clinical notes. The component adds to input mentions a

feature containing the suggested correct spelling. To avoid false positives, spelling correc-

tion was limited to words longer than 3 characters, within an edit distance of 1, and only

performed on mentions with no MetaMap mapping, and then a MetaMap re-match was

attempted on the spell-corrected string.

A normalised string feature, generated from abbreviation expansion, spelling correction

and removal of leading determiners and pronouns, was stored as the canonical form for

each ‘Thing’ mention (see Figure 8.5). The normalised string plus the mention’s contextual

features were used for the basis of mention-pair comparison (see Section 8.3.9).

To identify general synonyms, hypernyms and holonyms, a component that generates

WordNet [32] annotations for given input mentions was developed. This was used to pass

mention headwords and supporting entities (Table 8.3) to WordNet, and the output stored

as features on the input mention (see Figure 8.6).
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Figure 8.5.: String normalisation and contextual features

Figure 8.6.: Addition of WordNet synonyms and hypernyms

The surrounding context of each mention was identified by taking supporting entities

within three Tokens either side of the mention, or within the mention itself, and storing

this as a feature on the target mention. For example, given this input phrase:

[Culture]Test on blood sample was ... [Culture]Test on urine sample was ...
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we obtain

[Culture]Test on [blood]AnatomicalTerm sample

⇒ MentionTest.anatomical_context = blood

and

[Culture]Test on [urine]AnatomicalTerm sample

⇒ MentionTest.anatomical_context = urine

For

MVA resulted in [3 broken left ribs]Problem and [1 broken right rib]Problem

we obtain

[[3]Number broken [left]SpatialConcept [ribs]AnatomicalTerm]Problem

⇒ MentionProblem.spatial_context = left,

MentionProblem.anatomical_context = rib

and

[[1]Number broken [right]SpatialConcept [rib]AnatomicalTerm]Problem

⇒ MentionProblem.spatial_context = right,

MentionProblem.anatomical_context = rib

8.3.6. Pronoun classification

Using string matching and part-of-speech (POS) tags, we developed a general-purpose

classifier in JAPE to categorise pronouns according to type (anaphoric or pleonastic);

case: nominative (I, he, she); objective (me, him); possessive (my); reflexive (myself );

nominative–possessive (mine, hers); number (singular or plural); class: Person (all per-

sonal pronouns), Thing (it, that, these, those – when not used in as determiners), Location
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(here, there, where); person (first, second, third); and gender. Third-person plural pro-

nouns (they, their, them) are provisionally categorised as PersonOrThing at this stage as

their final assignment (Person or Thing) is context-dependent. The POS tagger was used

to distinguish pronominal use of words such as ‘these’, ‘those’, ‘that’, ‘this’ from their

use as determiners (e.g. ‘wound closed with sutures ... [these]PRP will be removed’ vs.

‘[these]DET sutures’) prior to the above classification.

Only anaphoric pronouns will participate in coreference, so pleonastic ‘it’ and ‘that’

references are identified using a set of general patterns that look for temporal phrases, verb

‘to be’ phrases ending in ‘that’ or ‘whether ’ (e.g. ‘It is unclear whether ...’, ‘it is important

to note that ...’) and modal ‘to be’ phrases ending in an infinitive or a preposition (e.g. ‘It

should be possible for ...’, ‘It may be sensible to consider ...’). JAPE expressions for these

patterns, with accompanying examples in bold for clarity, are shown below (where | ?

and (n, m) denote regular expression occurrence operators):

["It"] {BE} ({Day }|{ Date }|{ Time})

I t i s Tuesday

I t was 10pm

["It"] {VG.type == modal?, BE}

I t i s

I t may be

I t should be

({ADV }(0 ,2) {ADJ })(0 ,3)

somewhat unc l ear

important

p o s s i b l e
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({VG.tense == Inf}? [" whether|if|that "]) | {IN}

whether

to note that

for

where VG = verb group, BE = ‘to be’ verb group form, ADV = adverb, ADJ = adjective,

IN = preposition, Inf = infinitive.

8.3.7. Person and personal pronoun categorization

Coreference systems for general English texts typically make use of gender, number and

grammatical role information to resolve coreference of personal pronouns. A pseudo-

pattern expressing possible pronominal coreference between a person and personal pronoun

within the same sentence or between consecutive sentences might then be written as:

{Mention}Person,gender,number,grammar_role (!{Mention}Person)+

{Mention}Pronoun,gender,number,grammar_role

i.e. ‘match a Person mention followed by a Pronoun mention where there are no inter-

vening Person mentions’, and where Person.gender=Pronoun.gender,

Person.number=Pronoun.number, and Person.grammar_role=Pronoun.grammar_role.

For example:

[[Jane]FirstName,female [Smith]Surname]Person,female,singular,subject has a past history

of [hypertension].

[She]Person,female,singular,subject was admitted on ...

A typical system might also match occurrences of congruent name strings such as

‘Smith’, ‘Jane’, ‘Ms Smith’. However, in anonymized clinical notes, the deidentification

process potentially loses any link between the person’s name and their gender, or between

initial and subsequent mentions. Does ‘XXXX’ annotated as a Person refer to the pa-

tient, and are they male or female? Does Mr XYXY refer to the same person? Additional

classification steps need to be employed to discriminate these cases.
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For example, phrases extracted from the training corpus that identify the gender of the

patient tend to be of the form:

[Patient]Person is a 40-year-old male with [type 2 diabetes]Problem

[XXX]Person is an 80 y/o female admitted on ...

[This]Person is a baby boy born on ...

Which can be generalised to the pattern:

{Mention} {BE}

{Age} {GenderIdentifier} ({VG} | {Mention}Problem)

⇒ Mention.class=Person, Mention.semantic_role = patient,

Mention.gender = GenderIdentifier

From the preliminary analysis (see Section 8.3.1) of the 589 training documents, we

established that the key protagonist in these clinical reports is the patient: 86% of all

personal pronoun mentions referred to the patient, and 75% of all Person mentions also

referred to the patient. The remaining mentions referred to members of the clinical team,

to family/significant others, or to the person receiving the report. Therefore Person and

personal pronoun mentions can be classified according to three main types:

1. patient

2. patient’s family or significant other

3. clinician, which can be subcategorised as:

• author

• attending

• receiver

• referred clinicians (e.g. external teams, social workers etc)

Classification was performed using lexical rules and gazetteers of family relations (wife,

daughter, brother, etc.), clinical roles and honorifics (physician, doctor, nurse, Dr., M.D.,
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etc.) and contextual cues (e.g. section heading content and gender identifiers). Nominal

Person mentions were classified as referring to the patient by default (as the patient is the

key protagonist), unless the context suggested one of the other categories. For example,

verb roots associated with a clinician include ‘consult’, ‘attend’, ‘dictate’, and certain past

participles relate different protagonists, i.e.

{Mention}Person,semantic_role1 ["seen|treated|evaluated|treated ..."]VG

["by"] {Mention}Person,semantic_role2

{Mention}Person,semantic_role1 {BE} ["referred|transferred ..."]VG

["to"] {Mention}Person,semantic_role2

⇒ Mention.semantic_role1 = patient, Mention.semantic_role2 = clinician

and

{Mention}Person,semantic_role ["performed|signed|verified ..."]VG

⇒ Mention.semantic_role = clinician.

Or more generally, using role identifiers:

{Mention}Person,semantic_role {RoleIdentifier}type

⇒ Mention.semantic_role = RoleIdentifier.type

Information on the semantic role of the protagonist is also used to disambiguate Person-

type abbreviations (see Chapter 7). For example:

The [pt]Person was referred to the [PT]Person

Given the above protagonist role identifier patterns, both ‘pt’ and ‘PT’ are classified as

Person, with the former given a ‘patient’ semantic role, the latter a ‘clinician’ role. This

allows the abbreviations to be automatically expanded to ‘patient’ and ‘physiotherapist’,

respectively, from the semantically typed lists of global abbreviations described in Chapter

7.

Personal pronouns were considered as having either global or local scope. By default,

personal pronouns outside quoted speech have global scope. Second-person (you, your)
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and third-person (he, she) singular pronouns are provisionally assigned to the patient if

the pronoun’s gender matches that of the patient. In the absence of gender cues, the

document frequency of male and female pronouns were used to infer the patient’s gender,

given the prior probability (86%) that a personal pronoun refers to the patient. First-

person pronouns (I, we, etc.) are assigned to the report’s author.

Local scope exceptions are then identified as follows:

• A context switch triggered by a possessive pronoun, e.g. ‘his wife ... she’, ‘his

oncologist ... he’. Additionally, the locally scoped pronoun should agree in gender

with that of the new context, if present.

• A context switch triggered by the appearance of a new actor, e.g. ‘the social worker

is Barbara Cole. She can be contacted on ...’ Again, gender features should agree,

if present.

• Role of the report’s receiver: The default protagonist is the patient, so references

to you, your, etc. are assumed to be directed to the patient, unless it is clear that

the recipient is a clinician (e.g. ‘your patient’), in which case, the second-person

pronoun is assigned a clinical role.

8.3.8. Person coreference chain generation

Following the addition of the above-described classification features to Person and pronoun

mentions, pairs of these mentions are traversed in document order and compared according

to the following rules:

1. Strings are normalized by removing leading determiners and pronouns.

2. ‘Who’ pronouns are paired with the immediately preceding Person mention.

3. Pairs of nominal Person—third person-pronominal mentions are coreferenced if their

genders (if present), scope, role/type and number (singular or plural) agree. In

the absence of intervening plural ‘Thing’ mentions, third-person plural pronouns
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provisionally categorised as PersonOrThing were coreferenced with plural Person

mentions with grammatical role agreement.

The features of the antecedent are cloned to the coreferent pronoun, so that the

pronoun is now effectively a nominal Person mention, and the matching process

continues from nominal to pronominal.

4. Person mentions classified as ‘patient’ are coreferenced if the genders agree. Person

mention pairs classified as ‘family’ are coreferenced if the genders agree and the

string values or WordNet synonyms agree (e.g. sister will corefer with sibling).

Other Person mention pairs are coreferenced by evaluating the following, in order:

a) Exactly matching name strings are coreferenced.

b) Mentions with matching first names and surnames, where identifiable, are coref-

erenced.

c) First-person pronouns of global scope are coreferenced and linked to the primary

clinician (usually the report’s author).

d) Approximately matching strings over 4 characters long are coreferenced. Using

the SecondString Java library[33], and following Cohen et al.[34] we take the

mean value of the Jaro-Winkler[35] and Monge-Elkan [36] string comparison

metrics, which returns a value between 0 (no match) and 1 (strong match).

If the result exceeds a tuneable threshold, the two strings are coreferenced.

This step allows de-identified name pairs such as (‘**NAME[AAA, BBB]’,

‘**NAME[AAA]’), and (‘Mr. BBBBB’, ‘BBBB’) to be coreferenced. The

threshold value was set at 0.85 – this was determined empirically by exam-

ining the Jaro-Winkler and Monge-Elkan scores on a small number (65) of

randomly selected coreferent and non-coreferent mention pairs from the train-

ing set; values below 0.85 tended to accept false positives, values above 0.85

tended to reject true positives.

The following example demonstrates this process (square brackets denote the text spans

of entities previously annotated as described in Section 8.3.5):
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[Mr WWWWW] is a [58 y/o] [gentleman] [who] was admitted ... by [Dr FFFF].

... [He] was assessed by [Dr GGGGG] ... [She] has referred [WWW] to [the

orthopedics team]; [he] will be followed up by [them].

Following the feature identification and classification described in Sections 8.3.7 and

8.3.6 above, we have

[MrWWWWW]Person,patient,male,singular is a [58 y/o]Age [gentleman]GenderIdentifier

[who]Person was admitted ... by [Dr FFFF]Person,clinician,singular. ...

[He]Person,patient,male,singular was assessed by [Dr GGGGG]Person,clinician,singular ...

[She]Person,female,singular has referred [WWW]Person,patient,male,singular to [the or-

thopedics team]Person,clinican,plural; [he]Person,patient,male,singular will be followed

up by [them]Person,plural.

After steps 1–4 above, we have

[Mr WWWWW ]Person,patient,male,singular is a [58 y/o]Age [gentleman]GenderIdentifier

[who]Person,patient,male,singular was admitted ... by [Dr FFFF]Person,clinician,singular.

... [He]Person,patient,male,singular was assessed by [Dr GGGGG]Person,clinician,singular

... [She]Person,clinician,female,singular has referred [WWW ]Person,patient,male,singular to

[the orthopedics team]Person,clinican,plural; [he]Person,patient,male,singular will be

followed up by [them]Person,clinician,plural.

where Person coreference chains are indicated via corresponding levels of emphasis: i.e.

italics for the patient chain (MrWWWWW → who → He → WWW → he); underline

for the clinician chain (Dr GGGGG→ She); bold for the clinical team (the orthopedics

team → them); singleton (Dr FFFF).

8.3.9. ‘Thing’ coreference chain generation

Coreference of general clinical terms follows a similar approach as for Person mentions.

Anaphoric pronouns of class ‘Thing’ (see Section 8.3.6) are resolved against the most

recent ‘Thing’ antecedent with the same grammatical role (e.g. subject, object, indirect
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object), followed by the cloning of antecedent features to the anaphor so that the anaphor

is converted to a nominal mention. Third-person plural pronouns provisionally classified

as PersonOrThing (see Section 8.3.6 were coreferenced with plural ‘Thing’ mentions ’(e.g.

‘the sutures ... they will be removed’) with grammatical role agreement in the absence of

intervening plural Person mentions.

Nominal coreference is then attempted for pairs of mentions of the same class, in docu-

ment order. This is more complex than for Person mentions and involves a voting process

based on the number of matching features identified from rules given in the i2b2/VA coref-

erence annotation guidelines[15], and the ODIE anaphoricity annotation guidelines[14]. In

summary, these rules are:

For ‘Thing’ mentions of the same class, consider pairing if:

1. mention synonyms (identified via UMLS or WordNet) refer to the same episode. For

example, ‘chills’ with ‘shivering’ and ‘inflammation’ with ‘swelling’, if other contexts

are equal;

2. a mentions occurs with its hypernym or a metonym (an alias identified via the term’s

preferred name in the UMLS or fromWordNet) and if both refer to the same episode.

For example, ‘staph bacteraemia’ with ‘the [infection]hypernym’, ‘stereotactic biopsy’

with ‘the [procedure]hypernym’, ‘dyspnea’ with ‘[shortness of breath]metonym’, ‘CABG’

with ‘the [revascularization]metonym’;

3. there is a holonym/meronym relation (identified via WordNet) between anatomical

terms within or surrounding mentions;

4. there is agreement between the headwords of mention noun phrases where the an-

tecedent is more specific than the coreferent, where all other contexts are equal. For

example, ‘intermittent right neck [swelling]headword’ with ‘the [swelling]headword’.

Consider eliminating pairing where:

5. spatial concepts within each mention are different. For example, ‘chronic

[bilateral]SpatialConcept lower extremity swelling’ should not be coreferenced with ‘the

[right]SpatialConcept lower extremity swelling’;
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6. the quantitative, temporal or anatomical context around each mention are different.

For example:

‘[2017-06-14 02:06AM]TemporalConcept: WBC – 9.4 ’ vs.

‘[2017-06-13 08:05PM]TemporalConcept: WBC – 9.4 ’

‘blood pressure of [120/80]Measurement’ vs. ‘blood pressure’ of [100/70]Measurement’.

‘simple atheroma in the [aortic root]AnatomicalTerm’ vs. ‘simple atheroma in the [as-

cending aorta]AnatomicalTerm’.

7. Either mention is within a sentence or section of the document related to family

history. Although family history information is important for decision support, as

noted in Section 8.3.5, identical Problem strings with different experiencers are not

in a coreference relationship.

Coreferencing is not attempted if either of the mention pair occurs in an excluded

section (rule 7) or if the contexts do not match (rules 5 and 6). A context match

between mentions is made if there is a direct match between contextual features

on both mentions (see Section 8.3.5) or there is a whole–part relation between the

anatomical contexts of both mentions.

If contexts match, or the antecedent mention has a contextual feature and the po-

tential coreferent does not, then

a) If there is an exact match between normalised strings (see Section 8.3.5), the

coreference is marked and iteration continues with the next mention pair.

b) Otherwise, consider marking a match if one or more of the following are true,

in order of preference:

i. The UMLS CUIs of the head word/phrase in each mention match, or if

there is intersection between sets of head- word CUIs (where there is more

than one), and the spatial contexts (e.g. left, right).

ii. There is intersection between sets of anatomical terms within each mention

and between sets of UMLS semantic types for the headword/phrase.
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iii. The headwords and anatomical contexts match.

iv. There is an approximate string match, as measured by the mean Jaro-

Winkler/Monge-Elkan score within the defined threshold (see Section 8.3.8).

8.3.10. Evaluation methodology

The above-described methods were implemented over five development iterations. For each

iteration, experiments were performed against a weighted (according to the relative size

of each corpus) random selection of 10 records from both training corpora. Performance

was evaluated by analysing the results in situ using the simplified, pairwise coreference

accuracy measure provided by the corpus QA tool within GATE and described in Section

8.3.4. The QA tool allows discrepancies between annotations and features in the training

key set and the development set to be identified for each per-document in the corpus. These

errors were inspected and adjustments to the feature extraction process were made where

errors and their corresponding corrections could be generalised: for example, by making

rules more (or less) specific and adjusting the scope of rules that were commonly misfiring.

As generalisation of the method was one of the key aims, no document-specific changes to

rules were made, although new abbreviations discovered in the training documents were

used to enhance the abbreviation expansion component described in Chapter 7.

System validation against both the complete training set of 589 documents was then

carried out both with the simplified, pairwise measure to give a snapshot of overall per-

formance, and with the full evaluation metrics described in Section 8.3.4, in order to

determine the accuracy of the complete, system-generated coreference chains.

When the 388 test documents became available from the i2b2/VA consortium, a final

evaluation run was performed; this evaluation was also carried out independently in a

recently published study, so that the results could be compared against other systems

using the same metrics[13] Also using this evaluation data, a baseline evaluation system

run of blind coreference was carried out where all mentions of the same class were linked

into a single chain, as per Luo[23]. This run was compared against the contextually

generated output using the Wilcoxon signed-rank test to determine whether the approach
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offers significant improvements over the baseline.

Finally, the system was also evaluated both with and without the use of external domain

knowledge resources (MetaMap, WordNet and GSpell) to assess the degree to which the use

of these resources influenced the results, again compared using the Wilcoxon signed-rank

test over matched document pairs. For ‘Thing’ coreference, in the absence of these exter-

nal resources, only rules that considered UMLS CUI, preferred name, synonym, meronym

and hypernym matching should fail to fire as their input comparison sets would be empty

of these domain knowledge features; all other aspects of the system – pronominal coref-

erence, abbreviation expansion, spatial, temporal, quantitative and anatomical contexts,

headword and approximate string matching – should remain as before. Exclusion of these

external resources should also have a (small) impact on Person coreference as person-type

synonyms (such as sister → sibling) will no longer be identified.

In all cases, micro-averaged precision and recall were calculated (see Chapter 4). In

other words, the ‘All classes’ results are not simply the sum of each of the precision,

recall and F1-measure scores for each class over all documents divided by the number

of classes (which is the macro-average), but are created by summing the true positives,

false positives, false negatives and true negatives over all classes for each document, and

then calculating the precision, recall and F1-measures from these sums. Micro-average

therefore gives the mean precision, recall and F1-measure per document, which is useful in

this case as it provides a measure of confidence in the system performance as a whole when

processing a typical discharge summary or progress report (whereas macro-average would

give a measure of performance for a typical mention class, which is perhaps less useful).

8.4. Results – training data

Summary validation results for the training portion of the i2b2/VA (492 documents) and

ODIE corpora (97 documents) are reported in Tables 8.4 and 8.5 respectively. For each

mention class, micro-average recall, precision and F1-measure scores across the B3, MUC

and CEAF metrics output by the i2b2 coreference evaluation script, and the pairwise

coreference identifier matching metric of the GATE corpus QA toolkit, are shown.
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Table 8.4.: i2b2/VA training corpus coreference evaluation results (492 documents)
Micro-average over i2b2/VA
metrics*

Micro-average over GATE QA
metrics**

Precision Recall F1 Precision Recall F1
All classes 0.905 0.855 0.878 0.923 0.923 0.923

Person 0.886 0.880 0.883 0.917 0.920 0.917
Test 0.848 0.742 0.781 0.920 0.960 0.940

Treatment 0.867 0.775 0.813 0.897 0.927 0.913
Problem 0.862 0.788 0.820 0.870 0.900 0.887

* Unweighted average of MUC, B3 and CEAF scores according to i2b2/VA evaluation
script[16].

** Results for ‘All classes’ account for singleton pronouns and thus differ from the
mean over all classes shown

Table 8.5.: ODIE training corpus coreference evaluation results (97 documents)
Micro-average over i2b2/VA
metrics*

Micro-average over GATE QA
metrics**

Precision Recall F1 Precision Recall F1
All classes 0.771 0.828 0.796 0.765 0.765 0.765

People 0.792 0.802 0.795 0.855 0.855 0.855
Disease 0.687 0.773 0.723 0.690 0.720 0.710

Symptom 0.802 0.782 0.791 0.730 0.760 0.745
Anat. Site 0.666 0.747 0.699 0.570 0.575 0.575

Reagent† 0.352 0.160 0.131 0.00 0.00 0.00
Organ Fn. 0.553 0.620 0.545 0.500 0.550 0.520

Lab. Result 0.798 0.711 0.740 0.800 0.875 0.835
Procedure 0.699 0.785 0.733 0.820 0.890 0.855

* Unweighted average of MUC, B3 and CEAF scores according to i2b2/VA evaluation
script[16].
† null system results: treat italicised scores with caution.
** Results for ‘All classes’ account for singleton pronouns and thus differ from the
mean over all classes shown
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As shown in Table 8.5, in the case of the Reagent class, where the system did not identify

any coreference relationships, the established metrics gave anomalous scores, consistent

with the discussions in Section 8.2, whereas the null output was scored 0 by the pairwise

metric in GATE as expected.

8.5. Results – test data

Tables 8.6 to 8.11 give a detailed breakdown of results by data source, class, and individual

metric for baseline, knowledge-rich and knowledge-light system performance. Table 8.6

shows the micro-averaged precision, recall and F1-measures for system coreference perfor-

mance, with the inclusion of external domain knowledge, for the 322 documents from the

three data centres (Beth Israel, Partners, UPMC) in the i2b2/VA test corpus. Scores for

the B3, MUC and CEAF metrics are shown, along with the average score over the three

metrics.

Table 8.7 shows system results for the i2b2/VA test corpus where external domain

knowledge is not used by the system assist in the identification of coreference relations.

That is, Table 8.7 shows the effects of not adding UMLS or WordNet features to each

mention: rules that match these features between prospective mention pairs will not have

fired.

Table 8.8 shows baseline system results for the i2b2/VA test corpus. This table shows

the effect of blind coreference between mention pairs of the same class linked into a single

chain. That is, all Person mentions are joined into a chain, all Test mentions are joined

into a separate chain, and so on.

Similarly, Tables 8.9 to 8.11 show the same three evaluations: system performance with

domain knowledge (Tables 8.9), system performance without domain knowledge (Tables

8.10), and baseline system performance (Tables 8.11) for the 66 documents from the two

data centres (Mayo Clinic, UPMC) in the ODIE test corpus. As noted in the footnotes to

these tables, the B3 and CEAF metrics gave anomalous scores for the Lab Result class

when scoring system generated coreference chains against null output in the ground truth

chains.

218



8.5. Results – test data

As can be seen in Tables 8.6 to 8.11, performance scores for a given class often varied

greatly between evaluation metrics. This variation is consistent with findings by Cai and

Strube[22]. As noted in Section 8.1, there is disagreement over which is the ‘best’ metric

for evaluating coreference performance, so the mean scores across metrics have been used

as a basis for the comparisons between system runs shown in Tables 8.12 and 8.13.
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Table 8.6.: i2b2/VA test corpus coreference evaluation results, with external knowledge (322 documents)
Metric

B3 MUC CEAF Avg*

Prec Rec F Prec Rec F Prec Rec F Prec Rec F
With external domain knowledge resources (WordNet, MetaMap, GSpell)
Beth Israel
All classes 0.941 0.968 0.954 0.849 0.751 0.797 0.886 0.828 0.856 0.892 0.849 0.869
Person 0.964 0.933 0.948 0.932 0.941 0.937 0.770 0.826 0.797 0.889 0.900 0.894
Test 0.954 0.978 0.966 0.623 0.368 0.463 0.948 0.894 0.920 0.842 0.747 0.783
Treatment 0.909 0.952 0.930 0.778 0.623 0.692 0.858 0.788 0.821 0.848 0.788 0.814
Problem 0.907 0.949 0.928 0.766 0.619 0.685 0.866 0.789 0.826 0.846 0.786 0.813
Partners Healthcare
All classes 0.946 0.970 0.958 0.882 0.805 0.841 0.894 0.837 0.864 0.907 0.871 0.888
Person 0.955 0.896 0.925 0.942 0.960 0.950 0.744 0.815 0.778 0.880 0.890 0.884
Test 0.941 0.97 0.955 0.706 0.444 0.545 0.942 0.888 0.914 0.863 0.767 0.805
Treatment 0.925 0.963 0.944 0.811 0.660 0.728 0.891 0.828 0.858 0.876 0.817 0.843
Problem 0.924 0.960 0.942 0.787 0.634 0.702 0.900 0.823 0.860 0.870 0.806 0.835
University of Pittsburgh Medical Center
All classes 0.942 0.960 0.951 0.858 0.790 0.822 0.873 0.817 0.844 0.891 0.856 0.872
Person 0.913 0.880 0.896 0.919 0.912 0.915 0.718 0.695 0.706 0.850 0.829 0.839
Test 0.934 0.963 0.948 0.671 0.436 0.529 0.932 0.875 0.903 0.846 0.758 0.793
Treatment 0.929 0.937 0.933 0.675 0.626 0.650 0.871 0.842 0.857 0.825 0.802 0.813
Problem 0.921 0.958 0.939 0.774 0.581 0.664 0.899 0.804 0.849 0.865 0.781 0.817
* Unweighted average of MUC, B3 and CEAF scores according to i2b2/VA evaluation script[16].
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Table 8.7.: i2b2/VA test corpus coreference evaluation results, no external knowledge (322 documents)
Metric

B3 MUC CEAF Avg*

Prec Rec F Prec Rec F Prec Rec F Prec Rec F
Without external domain knowledge resources
Beth Israel
All classes 0.966 0.958 0.962 0.798 0.827 0.812 0.868 0.890 0.879 0.877 0.892 0.884
Person 0.965 0.935 0.950 0.934 0.945 0.939 0.773 0.834 0.802 0.891 0.905 0.897
Test 0.968 0.976 0.972 0.538 0.485 0.510 0.945 0.942 0.943 0.817 0.801 0.808
Treatment 0.936 0.940 0.938 0.702 0.681 0.692 0.837 0.846 0.842 0.825 0.822 0.824
Problem 0.952 0.928 0.940 0.619 0.748 0.678 0.825 0.895 0.859 0.799 0.857 0.826
Partners Healthcare
All classes 0.970 0.957 0.963 0.826 0.871 0.848 0.867 0.897 0.882 0.888 0.908 0.898
Person 0.955 0.896 0.925 0.942 0.960 0.951 0.745 0.818 0.780 0.881 0.891 0.885
Test 0.958 0.966 0.962 0.629 0.554 0.589 0.943 0.938 0.941 0.843 0.819 0.831
Treatment 0.948 0.950 0.949 0.718 0.727 0.722 0.861 0.881 0.871 0.842 0.853 0.847
Problem 0.962 0.938 0.950 0.593 0.760 0.666 0.846 0.915 0.879 0.800 0.871 0.832
University of Pittsburgh Medical Center
All classes 0.965 0.951 0.958 0.825 0.844 0.835 0.855 0.869 0.862 0.882 0.888 0.885
Person 0.913 0.881 0.897 0.920 0.913 0.916 0.718 0.698 0.708 0.850 0.831 0.840
Test 0.951 0.960 0.955 0.609 0.530 0.567 0.932 0.922 0.927 0.831 0.804 0.816
Treatment 0.956 0.927 0.941 0.602 0.741 0.665 0.849 0.903 0.875 0.802 0.857 0.827
Problem 0.954 0.943 0.948 0.629 0.677 0.652 0.860 0.878 0.869 0.814 0.833 0.823
* Unweighted average of MUC, B3 and CEAF scores according to i2b2/VA evaluation script[16].
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Table 8.8.: i2b2/VA test corpus coreference evaluation results, baseline (322 documents)
Metric

B3 MUC CEAF Avg*

Prec Rec F Prec Rec F Prec Rec F Prec Rec F
Baseline (blind coreference of mentions of the same class)
Beth Israel
All classes 0.775 0.987 0.868 0.943 0.363 0.524 0.625 0.069 0.124 0.781 0.473 0.505
Person 0.677 0.984 0.802 0.980 0.803 0.883 0.561 0.085 0.147 0.739 0.624 0.611
Test 0.170 0.986 0.290 0.772 0.068 0.125 0.248 0.006 0.011 0.397 0.353 0.142
Treatment 0.490 0.983 0.654 0.931 0.288 0.440 0.352 0.021 0.039 0.591 0.431 0.378
Problem 0.377 0.978 0.544 0.909 0.285 0.433 0.314 0.012 0.023 0.533 0.425 0.333
Partners Healthcare
All classes 0.732 0.987 0.841 0.950 0.414 0.577 0.669 0.095 0.166 0.784 0.499 0.528
Person 0.542 0.990 0.700 0.992 0.855 0.919 0.798 0.131 0.225 0.777 0.659 0.615
Test 0.231 0.972 0.373 0.624 0.069 0.124 0.328 0.017 0.033 0.394 0.353 0.177
Treatment 0.263 0.987 0.415 0.944 0.282 0.434 0.403 0.022 0.042 0.537 0.430 0.297
Problem 0.150 0.979 0.260 0.895 0.252 0.393 0.310 0.012 0.022 0.452 0.414 0.225
University of Pittsburgh Medical Center
All classes 0.692 0.983 0.812 0.944 0.443 0.603 0.627 0.099 0.171 0.754 0.508 0.529
Person 0.422 0.990 0.592 0.992 0.837 0.908 0.728 0.100 0.177 0.714 0.642 0.559
Test 0.213 0.969 0.349 0.647 0.083 0.147 0.339 0.022 0.041 0.400 0.358 0.179
Treatment 0.144 0.973 0.251 0.871 0.252 0.390 0.303 0.019 0.035 0.439 0.415 0.225
Problem 0.094 0.974 0.171 0.861 0.221 0.352 0.251 0.012 0.022 0.402 0.402 0.182
* Unweighted average of MUC, B3 and CEAF scores according to i2b2/VA evaluation script[16].
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Table 8.9.: ODIE test corpus coreference evaluation results, with external knowledge (66 documents)
Metric

B3 MUC CEAF Avg*

Prec Rec F Prec Rec F Prec Rec F Prec Rec F
With domain knowledge (WordNet, MetaMap, GSpell)
Mayo Clinic
All classes 0.931 0.868 0.898 0.737 0.852 0.790 0.616 0.797 0.695 0.761 0.839 0.794
People 0.981 0.755 0.853 0.907 0.976 0.940 0.435 0.773 0.557 0.774 0.835 0.783
Disease 0.894 0.855 0.874 0.478 0.620 0.540 0.614 0.788 0.690 0.662 0.754 0.701
Symptom 0.921 0.947 0.934 0.745 0.623 0.679 0.823 0.791 0.807 0.830 0.787 0.807
Anat. Site 0.922 0.852 0.886 0.430 0.612 0.505 0.546 0.734 0.626 0.633 0.733 0.672
Reagent†‡ – – – – – – – – – – – –
Organ Fn.†‡ – – – – – – – – – – – –
Lab Result†‡ – – – – – – – – – – – –
Procedure 0.937 0.876 0.905 0.469 0.692 0.559 0.745 0.848 0.793 0.717 0.805 0.752
University of Pittsburgh Medical Center
All classes 0.906 0.879 0.892 0.796 0.840 0.817 0.598 0.723 0.654 0.767 0.814 0.788
People 0.885 0.842 0.863 0.894 0.919 0.906 0.447 0.560 0.497 0.742 0.774 0.755
Disease 0.894 0.823 0.857 0.564 0.694 0.622 0.589 0.757 0.662 0.682 0.758 0.714
Symptom 0.914 0.950 0.932 0.742 0.687 0.713 0.874 0.867 0.870 0.843 0.835 0.838
Anat. Site 0.860 0.842 0.851 0.697 0.736 0.716 0.538 0.644 0.586 0.698 0.741 0.718
Reagent†‡ – – – – – – – – – – – –
Organ Fn. 0.750 0.833 0.789 0.000 0.000 0.000 0.528 0.792 0.633 0.426 0.542 0.474
Lab Result‡ 0.881 1.000 0.937 0.000 0.000 0.000 0.923 0.706 0.800 0.601 0.569 0.579
Procedure 0.883 0.762 0.818 0.609 0.778 0.683 0.577 0.797 0.670 0.690 0.779 0.724
* Unweighted average of MUC, B3 and CEAF scores according to i2b2/VA evaluation script[16].
† 0 system results;
‡ 0 ground truth results; treat scores with caution.223
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Table 8.10.: ODIE test corpus coreference evaluation results, no external knowledge (66 documents)

Metric
B3 MUC CEAF Avg*

Prec Rec F Prec Rec F Prec Rec F Prec Rec F
Without external domain knowledge resources
Mayo Clinic
All classes 0.954 0.852 0.900 0.692 0.881 0.775 0.582 0.810 0.677 0.743 0.848 0.784
People 0.981 0.755 0.853 0.907 0.976 0.940 0.435 0.773 0.557 0.774 0.835 0.783
Disease 0.926 0.843 0.883 0.389 0.656 0.488 0.584 0.803 0.676 0.633 0.767 0.682
Symptom 0.949 0.917 0.933 0.569 0.690 0.624 0.753 0.841 0.795 0.757 0.816 0.784
Anat. Site 0.940 0.836 0.885 0.347 0.594 0.438 0.505 0.738 0.600 0.597 0.723 0.641
Reagent†‡ – – – – – – – – – – – –
Organ Fn.†‡ – – – – – – – – – – – –
Lab Result†‡ – – – – – – – – – – – –
Procedure 0.948 0.858 0.901 0.346 0.692 0.461 0.695 0.859 0.768 0.663 0.803 0.710
University of Pittsburgh Medical Center
All classes 0.930 0.854 0.890 0.748 0.864 0.801 0.546 0.751 0.633 0.741 0.823 0.775
People 0.885 0.842 0.863 0.894 0.919 0.906 0.447 0.560 0.497 0.742 0.774 0.755
Disease 0.925 0.777 0.845 0.444 0.756 0.559 0.517 0.802 0.629 0.629 0.778 0.678
Symptom 0.935 0.931 0.933 0.565 0.729 0.636 0.781 0.892 0.833 0.760 0.851 0.801
Anat. Site 0.904 0.808 0.853 0.591 0.765 0.667 0.474 0.704 0.566 0.656 0.759 0.695
Reagent†‡ – – – – – – – – – – – –
Organ Fn. 0.750 0.833 0.789 0.000 0.000 0.000 0.528 0.792 0.633 0.426 0.542 0.474
Lab Result‡ 0.881 1.000 0.937 0.000 0.000 0.000 0.923 0.706 0.800 0.601 0.569 0.579
Procedure 0.901 0.721 0.801 0.493 0.791 0.607 0.505 0.807 0.621 0.633 0.773 0.676
* Unweighted average of MUC, B3 and CEAF scores according to i2b2/VA evaluation script[16].
† 0 system results;
‡ 0 ground truth results; treat scores with caution.
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Table 8.11.: ODIE test corpus coreference evaluation results, baseline (66 documents)
Metric

B3 MUC CEAF Avg*

Prec Rec F Prec Rec F Prec Rec F Prec Rec F
Baseline (blind coreference of mentions of the same class)
Mayo Clinic
All categories 0.737 0.941 0.827 0.911 0.646 0.756 0.581 0.273 0.372 0.743 0.620 0.652
People 0.779 0.959 0.860 0.987 0.940 0.963 0.796 0.374 0.509 0.854 0.758 0.777
Disease 0.702 0.929 0.800 0.732 0.424 0.537 0.551 0.239 0.333 0.662 0.531 0.557
Symptom 0.604 0.974 0.746 0.843 0.326 0.470 0.591 0.156 0.247 0.679 0.485 0.488
Anat. Site 0.670 0.960 0.789 0.909 0.498 0.643 0.656 0.256 0.369 0.745 0.571 0.600
Reagent†‡ – – – – – – – – – – – –
Organ Fn.†‡ – – – – – – – – – – – –
Lab Result‡ 0.625 1.000 0.769 0.000 0.000 0.000 0.833 0.833 0.833 0.486 0.611 0.534
Procedure 0.634 0.917 0.750 0.679 0.371 0.480 0.644 0.251 0.361 0.652 0.513 0.530
University of Pittsburgh Medical Center
All categories 0.772 0.929 0.843 0.887 0.685 0.773 0.488 0.267 0.345 0.716 0.627 0.654
People 0.823 0.891 0.856 0.929 0.845 0.885 0.398 0.262 0.316 0.717 0.666 0.686
Disease 0.669 0.892 0.765 0.752 0.513 0.610 0.457 0.193 0.271 0.626 0.533 0.549
Symptom 0.575 0.968 0.721 0.839 0.325 0.468 0.610 0.123 0.205 0.675 0.472 0.465
Anat. Site 0.678 0.931 0.785 0.894 0.654 0.755 0.567 0.254 0.351 0.713 0.613 0.630
Reagent†‡ – – – – – – – – – – – –
Organ Fn. 0.736 0.889 0.805 0.500 0.333 0.400 0.583 0.583 0.583 0.606 0.602 0.596
Lab Result‡ 0.464 1.000 0.634 0.000 0.000 0.000 0.594 0.210 0.310 0.353 0.403 0.315
Procedure 0.730 0.873 0.795 0.797 0.640 0.710 0.711 0.384 0.499 0.746 0.632 0.668
* Unweighted average of MUC, B3 and CEAF scores according to i2b2/VA evaluation script[16].
† 0 system results;
‡ 0 ground truth results; treat scores with caution.225
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Tables 8.12 and 8.13 show the results of Wilcoxon signed-rank tests across matched

pairs between system and control, where control was 1) system without external domain

knowledge resources and 2) baseline of blind coreference of mentions of the same class.

Two-tailed tests were performed as no prior assumptions were made on which approach

would be an improvement over the other; W is the sum of the signed ranks: a positive

value indicates improved system results over the control, a negative value indicates lower

system results than the control.

As shown in Table 8.12, on the i2b2/VA corpus the system performed significantly better

than the baseline (p < 0.01) in terms of precision, recall and F1-measure. The use of the

external knowledge bases led to a significant increase in precision (p < 0.01) but with

significantly reduced recall (p < 0.01) – the reduction in which outweighed the increase

in precision and led to a significant decrease in overall performance as recorded in the

reduction in F1-measure.

Similarly, as shown in Table 8.13, for the ODIE corpus, in terms of F1-measure the

system performed significantly better than the baseline (p < 0.05), although precision in

comparison to the baseline was not significantly improved (p > 0.05). As with the i2b2

corpus, the use of external domain knowledge significantly increased precision (p < 0.01)

but with borderline-significantly reduced recall (p = 0.05). The effect of the slight recall

reduction was not so great as to outweigh the effect of increased precision; overall, and in

contrast to the i2b2 corpus, domain knowledge led to significantly increased F1-measure

performance (p < 0.01) for the ODIE corpus.

Table 8.12.: Two-tailed Wilcoxon signed-rank tests for system performance over baseline
and with or without domain knowledge, i2b2/VA corpus (322 documents, 15
classes)

Wilcoxon W,n1 = n2 =
15, two-tailed

Precision Recall F1

With external domain
knowledge vs. baseline

W = 120, p < 0.01 W = 120, p < 0.01 W = 120, p < 0.01

With external domain
knowledge vs. without

W = 99, p < 0.01 W = −120, p < 0.01 W = −113, p < 0.01
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8.5. Results – test data

Table 8.13.: Two-tailed Wilcoxon signed-rank tests for system performance over baseline
and with or without domain knowledge, ODIE corpus (66 documents, 18
classes)

Wilcoxon W,n1 = n2 =
18, two-tailed

Precision Recall F1

With external domain
knowledge vs. baseline

W = 6, p = 0.865 W = 88, p < 0.01 W = 78, p < 0.05

With external domain
knowledge vs. without

W = 55, p < 0.01 W = −39, p = 0.05 W = 55, p < 0.01

8.5.1. Coreference chain lengths

In the ground truth test data, the number of mentions, chains, mean and maximum

coreference chain lengths were 3002, 419, 5.7 and 90 for the ODIE corpus; and 43,867,

5277, 4.3 and 122 for the i2b2/VA corpus. The mean number of true mentions, chains and

coreference relations per document were 45.5, 6.4 and 36.2 for the ODIE corpus, and 136.3,

16.4 and 70.5 for the i2b2/VA corpus. Selecting a mention at random, and assuming all

mentions have an equal chance of participating in coreference, the likelihood that a given

mention will appear in a coreference chain can be estimated as

pc = Nchains ∗ µc/Nmentions

where Nchains is the total number of true chains in the ground truth data, µc is the mean

chain length and Nmentions the total number of true mentions. For the ODIE corpus, this

gives pc ≈ 0.8, for the i2b2/VA corpus pc ≈ 0.5.

Coreference chain length varied widely between document type: discharge and progress

reports from both corpora had higher mean (5.42) and maximum chain length (106) than

radiology, surgery and pathology reports (mean 3.61, maximum 18).

8.5.2. Pronoun distribution

As shown in Figure 8.7, the distribution of pronouns in the test set was similar to that of the

training set (see Section 8.3.1): third person singular personal pronouns dominated (black

bars in Figure 8.7), and the majority of these also participated in coreference (white bars
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in Figure 8.7), whereas the majority of ‘this’, ‘that’ and ‘it’ pronouns did not – probably

because their use was largely pleonastic (as discussed in Section 8.1, or as determiners. As

shown in Figure 8.7, while there was generally close agreement between the ground truth

and system in terms of which pronouns participated in a coreference chain, the system

over-generated ‘this’ coreferences and under-generated ‘they’ coreferences.

Figure 8.7.: Distribution of pronouns in the test set

8.6. Error analysis and discussion

Overall performance on both the training and test data was in close agreement (79.6%

vs. 79.1% for the ODIE corpus; 87.8% vs. 87.6% for the i2b2/VA corpus), which suggests

that the rules for feature extraction and coreference resolution were not over-fitted to
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the training set. Comparison of the system output (with domain knowledge) against the

ground truth suggested four categories of discrepancy:

1. Errors of commission or omission: For Person mentions, these resulted from incor-

rect categorisation by the system. For other classes, errors occurred where contextual

cues had been incorrectly identified, or where the string similarity metrics had re-

ported a false match or lack of match. Spurious pronominal coreferences occurred

where pleonastic ‘it’ and ‘that’ pronouns had been incorrectly classified as anaphoric.

2. Split coreference chains: coreference relations were correct, but were reported across

2 or more chains, when a single chain should have been reported.

3. Concatenated coreference chains: the coreference chain was partially correct, but

contained mentions incorrectly coreferenced with other chained concepts that should

have appeared in a separate chain.

4. Deterministic behaviour : Unlike machine learning approaches, deterministic rules

cannot model inconsistencies in the ground truth data. In 28 of the 46 Beth Israel

records in which the attending physician was annotated, the ‘Attending’ heading

and physician name following were coreferenced. In the remaining 18, they were

not. There were other inconsistencies in the coreferencing of names with their clin-

ical role in both corpora. However, our deterministic rules did not allow for such

inconsistencies, and always coreferenced physician names with their clinical role.

In the following sections, we discuss these factors in more detail by examining the dif-

ferences in system output when using external domain knowledge resources versus system

output without domain knowledge, in comparison to the ground truth data.

8.6.1. Effects of domain knowledge

As noted in Tables 8.12 and 8.13, the use of domain knowledge led to a surprising drop

in overall system performance when processing the i2b2/VA data (which consists solely

of discharge summaries and progress notes), whereas with the ODIE data (which consists
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8. Coreference resolution in clinical narratives

largely of surgical, pathology and radiology reports) domain knowledge did improve system

performance as expected. To investigate the effects of domain knowledge on coreference

resolution in more detail, a random sample of 10 documents from each corpus was taken

and the differences between the system coreference chain output (see Section 8.1) with

domain knowledge vs. without were identified using the diff utility. These differences

were compared against the ground truth data. The results of this analysis are summarised

in Table 8.14.

Table 8.14.: Analysis of impact of domain knowledge resources

Report type Domain knowledge effects Comparison with ground

truth

i2b2/VA corpus

Progress Adds ‘pulmonary hypertension’

to ‘pulmonary fibrosis’ chain

Absent

New chain ‘bilateral small pleu-

ral effusions’ → ‘small bilateral

effusion’

Absent; different contexts: first

relates to a lung finding, the

second preceded by ‘heart ap-

pears enlarged’

Discharge Adds ‘back pain’ → ‘chronic

pain’ → ‘pain’ to ‘chronic back

pain’ chain and concatenates

‘breakthrough pain’ chain into

this chain

Present but ‘breakthrough pain’

is in a separate chain

Discharge Adds ‘hcv cirrhosis’ to ‘hep C

cirrhosis’ chain

Present

Adds ‘hepatic encephalopathy’

to ‘encephalopathy’ chain

Present

Continued on next page
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Table 8.14 – continued from previous page

Report type Domain knowledge effects Comparison with ground

truth

Adds ‘increased lethargy’ to

‘lethargy’ chain

Present

Adds ‘worsening confusion’ to

‘confusion’ chain

Present

Adds ‘any pain’ to ‘any abdom-

inal pain’ chain

Absent, but system may be cor-

rect: both relate to patient’s

later denial of pain following

admission for abd. pain

New chain ‘5 cores of varices’

→ ‘massive peri splenic varices’

Present, but also has

‘esophageal varices’

New chain ‘hypertension’ →

‘severe portal hypertension’

Absent; but system could be

correct: first is from patient’s

history, second is ultrasound

finding on admission

Discharge New chain ‘some fullness in the

suprapatellar pouch’ → ‘calcifi-

cation densities in the suprap-

atellar bursa region’

Absent; but system may be cor-

rect: first is presenting condi-

tion, second is MRI confirma-

tion

New chain ‘right knee aspira-

tions’ → ‘the right knee exami-

nation’

Absent; former is historical pro-

cedure, latter is procedure in

current admission

Progress New chain ‘repair ’ → ‘his SMA

repair ’

Present

Discharge New chain ‘epigastric pain’ →

‘abd pain’

Absent; but system may be cor-

rect as contexts are the same

Continued on next page
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Table 8.14 – continued from previous page

Report type Domain knowledge effects Comparison with ground

truth

Discharge New chains ‘an l4 decompres-

sive lumbar laminectomy’→ ‘l4

decompressive lumbar laminec-

tomy’; and ‘surgical interven-

tion’ → ‘all surgery’

Present

New chain ‘neuroimaging stud-

ies’ → ‘the studies’

Absent; but system is correct:

clear definite descriptor

New chain ‘symptoms’ → ‘any

worsening symptoms’

Absent; but system may be cor-

rect: the context implies that

the second mention refers to the

former, admission symptoms

Adds ‘worsening low back pain’

to ‘pain’ chain

Present

Adds ‘any discoloration around

the incision line’ to ‘incision

line’ chain

Absent; but context suggests

system may be correct

Discharge New chain ‘hypertension’ →

‘mild secondary pulmonary ar-

terial hypertension’

Absent, but system probably

correct: first is discharge diag-

nosis in summary section, sec-

ond is finding leading to the

summary diagnosis

New chain ‘increasing dyspnea’

→ ‘any symptoms of short-

ness of breath’ → ‘shortness of

breath’

Absent, but system may be cor-

rect: first is admitting symp-

tom, latter are patient’s later

denial of these symptoms

Continued on next page
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Table 8.14 – continued from previous page

Report type Domain knowledge effects Comparison with ground

truth

New chain ‘the transesophageal

echo images’ → ‘post-closure

images’

Absent; former is pre-closure,

latter is post-closure

New chain ‘tamponade’ → ‘ob-

vious intracardiac shunting’

Absent; but system is possibly

correct, or at least useful, as

tamponade may be a complica-

tion of shunting

New chain ‘the sheath’ → ‘the

sheaths’

Present

Adds ‘a 22 - mm amplatzer

atrial septal defect occluder ’ →

‘an 8 - mm atrial septal defect

occluder ’ → ‘a 26 - mm am-

platzer atrial septal device oc-

cluder ’ → ‘occluder device in

the atrial septum’ to ‘asd clo-

sure’ procedure chain

Present, but in separate chain

(device and procedure should

not be coreferenced)

Adds ‘significant left to right

flow’ to ‘prominent left to right

shunting’ chain

Present

Adds ‘a left to right shunt at the

atrial level’ to ‘residual shunt’

chain

Absent, should be in ‘promi-

nent left to right shunting’

chain

Continued on next page
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Table 8.14 – continued from previous page

Report type Domain knowledge effects Comparison with ground

truth

Adds ‘the 22 - mm device’ →

‘the smaller device’ → ‘the clo-

sure device’ to the ‘both devices’

chain

Absent; should be in separate

chain

Adds ’‘chest pressure’ → ‘chest

discomfort’ → ‘sudden pain at

that site’ to ‘chest pain’ chain

Absent; prospective symptoms

(‘please report if you have ... ’)

Adds ‘a repeat MRI ’ to the ‘an

MRI ’ chain

Present, but should have been

attached to ‘a cardiac MRI ’

chain

Discharge New chain ‘chest x-ray’→ ‘ct of

chest’

Absent

Adds ‘the patient’s left back

pain’ → ‘the back pain’ to ‘left

back pain’ chain

Present

Adds ‘multiple bilateral pul-

monary nodules’ → ‘disease re-

currence’ to ‘COPD’ chain

Absent; first mention is in sep-

arate chain

Discharge Adds ‘enlarged ovary’ → ‘a full

right ovary’→ ‘ovarian cancer ’

to ‘ovarian mass’ chain

Absent; but system may be par-

tially correct although last 2

mentions may belong in sepa-

rate chain

Adds ‘several years urinary in-

continence’ to ‘incontinence’

chain

Present

Continued on next page

234



8.6. Error analysis and discussion

Table 8.14 – continued from previous page

Report type Domain knowledge effects Comparison with ground

truth

Adds ‘the procedure’ to ‘birch

procedure’ chain

Absent; not clear to which pro-

cedure the latter refers

Adds ‘jackson-pratt drain place-

ment’ to ‘suprapubic bladder

catheter placement’ chain

Absent

New chain ‘abdominal pain’ →

‘pain’

Absent; former refers to histor-

ical event

New chain ‘the pelvic examina-

tion’ → ‘the rectovaginal exam-

ination’

Absent

ODIE corpus

Progress New chain ‘possibly dysarthria’

→ ‘mild dysarthria’

Present, but also has ‘a thick

tongue’ at start of chain

New chain ‘anxiety attack’ →

‘TIA’

Absent; TIA expanded to ‘tran-

sient ischaemic attack’ leading

to erroneous headword match

Progress Adds ‘the humerus’ → ‘a larger

humeral head’ to ‘humeral head’

chain

Present; but as part of a larger

chain that includes ‘glenoid car-

tilage’ → ‘the shoulder ’ → ‘ro-

tator cuff ’, whereas system has

these in separate chains

Adds ‘the cartilage of the

glenoid’ to ‘the glenoid’ chain

Present, but should be in the

above, longer chain

Adds ‘surgical treatment’ to

‘surgery’ chain

Present

Continued on next page
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Table 8.14 – continued from previous page

Report type Domain knowledge effects Comparison with ground

truth

Adds ‘two surgical procedures’

→ ‘half a dozen surgical proce-

dures’ to ‘surgery’ chain

Absent; these refer to previous

procedures, not ones in current

care episode

New chain ‘pain’ → ‘left shoul-

der pain’ → ‘significant pain in

the shoulder ’

Present, but also has ‘discom-

fort’ mention missed by system

chain

Progress Adds ‘mild chest tightness’ →

‘this chest pain’ to ‘chest dis-

comfort’ chain

Present, but also has ‘the tight-

ness’ and ‘a tightness’ missed

by system chain

Adds ‘disrupted snoring’ to

‘snoring’ chain

Present

Adds ‘coronary artery disease’

to ‘gastroesophageal reflux’

chain

Absent

Adds new chain ‘post-prandial

angina’ → ‘angina’

Present

Adds new chain ‘allergic rhini-

tis’ → ‘vasomotor rhinitis’

Absent; not strictly coreferen-

tial although may be useful to

link them

Radiology Adds new chain ‘xray knee’ →

‘radiographs of the left knee’

Present

Adds ‘bilaterial knees’ → ‘both

knees’ to ‘the left knee’ chain

Present

Continued on next page
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Table 8.14 – continued from previous page

Report type Domain knowledge effects Comparison with ground

truth

Adds ‘right knee’ to ‘the left

knee’ chain

Absent; system cascading error

resulting from addition of ‘both

knees’ to this chain

Pathology Adds new chain ‘the closest re-

section margin’ → ‘the mucosal

resection margins’

Present

Surgical-pathology Adds ‘polyp’ → ‘ascending

colon polyp’ to ‘colon polyp’

chain

Present

Removes ‘colon polyp ascend-

ing’ from ‘colon polyp’ chain

Present, has ‘colon polyp as-

cending’ missing from system

chain

Surgical-pathology Adds ‘8 cc of cloudy yellow

pleural fluid’ to ‘pleural fluid’

chain

Present

Adds ‘hypocellular fluid’→ ‘8cc

cloudy yellow fluid’ to ‘pleural

fluid’ chain

Absent; in separate chain, but

system may be correct here

Pathology Adds new chain ‘sigmoid colon’

→ ‘colon, sigmoid’

Present, but also has ‘the near-

est resection margin’ → ‘mus-

cularis’ → ‘Surgical margins’

missing from system chain

Adds new chain ‘the overly-

ing subserosal adipose tissue’→

‘subserosal’

Absent; overlapping annotation

error

Continued on next page
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Table 8.14 – continued from previous page

Report type Domain knowledge effects Comparison with ground

truth

Radiology Adds ‘an unenhanced ct of the

chest, abdomen and pelvis’ to

‘ct abdomen’ chain

Present, but also has ‘this non-

contrast CT examination’ miss-

ing from system chain

Adds new chain ‘a mild to mod-

erate size left-sided pneumotho-

rax’ → ‘mild to moderate sized

left-sided pneumothorax’

Present

Adds new chain ‘the collecting

system of both kidneys’ → ‘the

bilateral collecting systems’

Present

Pathology Adds new chain ‘ascending

mass’ → ‘right rectus sheath

mass’→ ‘a 2 x 1.5 x 1 cm mass’

Present, but ‘ascending mass’ is

in separate chain

Adds new chain ‘infiltrating

grade 3 (of 4) adenocarcinoma’

→ ‘invasive grade 3 (of 4) mu-

cinous adenocarcinoma’

Absent, may refer to different

masses

Adds new chain ‘splenic flexure

polyp’ → ‘hyperplastic polyp’

Present

Adds new chain ‘soft tissue’ →

‘fibrous tissue’

Absent, latter refers to a hep-

atic module

As expected, and as shown in Table 8.14, domain knowledge had no effect on pronominal

coreference, only on nominal coreference. That is, domain knowledge did not lead to the

addition or removal of any mention–pronoun coreference pairs to the coreference chains in
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any of the documents sampled.

In the 10 documents sampled from the i2b2/VA corpus, we can see from Table 8.14 that,

in comparison to system output without domain knowledge, domain knowledge added 24

new chains, or additions to existing chains, that were absent from the ground truth.

However, domain knowledge added only 15 new chains, or additions to existing chains,

that were also present in ground truth. In contrast, in the 10 documents sampled from

the ODIE corpus, domain knowledge added only 9 new chains, or additions to existing

chains, that were absent from the ground truth, but added 20 new chains, or additions to

existing chains, that were also present in the ground truth.

These results initially suggest that domain knowledge generally adds more incorrect

than correct coreference relations to discharge summaries and progress reports, but adds

more correct than incorrect relations to surgical, pathology and radiology reports. Why

might this be the case? As noted in the third column of the table, in the 24 false-

positives generated by inclusion of domain knowledge in the i2b2/VA discharge/progress

reports, at least 10 were most likely valid coreference relations. Overall, in the discharge

summaries/progress reports, domain knowledge had a variety of somewhat confounding

effects: picking up valid relationships that may or may not be present in the ground truth,

sometimes leading to previously valid chains being joined by invalid chains, or splitting

longer chains; and adding invalid relationships due to context not being adequately identi-

fied. However, in the ODIE surgical-pathology/radiology reports, the addition of domain

knowledge seemed to have a more consistent effect: a much greater proportion of the new

chains and relationships added by the inclusion of domain knowledge matched the ground

truth data, and most of the false positives (7 out of the 9) appeared, on inspection, to be

valid false positives.

Discharge and progress notes documents were typically much longer than the lab reports,

so perhaps it is not surprising that potentially valid relations were missed during manual

annotation of these longer documents. Also the relationships identified in the discharge

summaries by the manual annotators are generally quite straightforward, whereas in the

lab reports they are more complex, often using more specialist language than discharge and
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progress notes, thus requiring external knowledge resources to resolve relations between

terms. So domain knowledge helps with the latter, but tends to confound the former.

That said, the knowledge sources used – WordNet, UMLS/MetaMap, GSpell – were

still insufficient to resolve some relations in these reports, although, arguably, some of

the relations identified in the ground truth data as coreferential were not strictly so. For

example, the ability to coreference carcinoma mentions that are linked to the formation of

a mass, such as ‘adenocarcinoma’ with ‘exophytic mass’, or pairing histological studies such

as ‘chemical stains’ with ‘MLH1 ’. Similarly, in the discharge summaries/progress reports,

the external domain knowledge sources were unable to resolve synonyms and metonyms

such as ‘confusion ... delirium’; ‘ecchymosis ... hematoma’; ‘carcinoma ... tumor ’; ‘unable

to ambulate ... bed bound’; ‘pins and needles from the knees ... neuropathic type pain’.

The limitations of these standard domain knowledge sources, despite their size and general

comprehensiveness (see Chapter 6), in resolving these relations were noted by He[12], and

the lack of improvement on system performance from the inclusion of external domain

knowledge resources is consistent with previous studies on concept extraction from clinical

notes[37].

Nevertheless, with or without the external domain resources, the system performs sig-

nificantly better over the baseline overall. However, one reason for the lack of significant

precision improvements over the baseline for the ODIE corpus may be explained by the

difference in make up of the two data sets. In the ground truth ODIE data, around 80%

of all mentions are in a coreference chain, but a typical ODIE document contains only

about 6 such chains. So a baseline coreference of simply chaining, in each document, all

mentions of the same class, has a reasonable chance that the selections made will be rea-

sonably precise (mean F1 over the Mayo and Pittsburgh data = 65%). However, for the

i2b2/VA data, only ≈ 50% of mentions are in a coreference chain, yet there are on average

about 16 chains per document, so the baseline method should perform less well (mean F1

over the Beth Israel, Partners and Pittsburgh data = 52%).

For the system output, individual errors will have a greater impact on overall accuracy

in documents with fewer anaphoric relations than in those with many relations. This
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was typically the case with the ODIE corpus (on average 36.2 relations per document vs.

70.5 for the i2b2/VA corpus), which also had a higher mean chain length (5.7 vs. 4.3).

These may partially explain the overall weaker ODIE results in comparison to those for

the i2b2/VA corpus, although further work is needed to analyse performance in relation

to coreference chain length in more detail. In addition, it has been suggested that some

coreference evaluation metrics favour longer coreference chains[8].

In terms of individual mention classes, the system performed well at coreferencing

Person mentions across all document types. Arguably, correct and precise identifica-

tion of coreferential personal pronouns and name strings is more important in this context

than for other mention types, where the goal might be to flag potentially linked events for

review by clinicians as to the precise nature of the relationship. As noted in Table 8.14, it

may be useful to link test, procedure and symptom/disorder events that are not strictly

coreferential (but still relate to the same experiencer, i.e. the patient) in an event chain;

for example, linking previous surgical procedures to a current surgical procedure for the

same condition.

Overall, the results suggest that this approach developed here provides greatly increased

coreference resolution performance in comparison to that reported for general-purpose

tools (where F1 ranges from 0% to 35%)[10]. In evaluating the performance of these

tools[6][9], Hinote et al.[10] used the same corpora and coreference-specific evaluation

metrics as our system, so the comparison is a reasonable one.

With some qualifications, the approach presented here also appears to offer an im-

provement over a number of previously reported clinical coreference systems[11][12][8].

Romauch[11] used a corpus of clinical guideline documents and did not detail the evalua-

tion metrics used, so results may not be directly comparable. He[12] used a small corpus

of 47 discharge summaries that may be similar to those in the i2b2/VA corpus, and re-

ported scores from the B3 and MUC metrics used in the current study, so comparison

with the current results seems reasonable. Zheng et al.[8] reported results on a subset of

the ODIE corpus used here and used the same evaluation metrics. However, their system

performed end-to-end identification and coreference of clinical terms, whereas our system
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(as with [10][11][12]) performs coreference only on existing mentions. Zheng et al. esti-

mated that errors in term recognition accounted for 20% of system errors; it may be that

extending this system to provide end-to-end evaluation would lead to a similar reduction

in performance.

System results were submitted to the 2011 i2b2/VA Natural Language Processing Chal-

lenge for Clinical Records[13], where it ranked overall 7th out of 28 submissions to the

‘coreference only’ tracks. Precision against the i2b2/VA corpus was equal to that of the

top-performing systems; for a full comparison, see Uzuner et al.[13]2. Had system results

without domain knowledge for the i2b2/VA corpus been submitted, the ranking would

have been in the top 5. But more importantly, perhaps, this system appears to perform at

least as well as human annotators — results for the ODIE corpus are comparable to the

mean inter-annotator agreement (IAA) across the Mayo and UPMC datasets reported[14]

of 75.4%, compared to 79.2% for this system. For the i2b2/VA corpus, a mean IAA

across the Beth Israel, Partners Healthcare and UPMC datasets of 73.8% was reported

(Appendix II of Uzuner et al.[13]) compared to 87.5% for this system.

This system does not impose a limit on the distance between coreferents. In contrast,

Zheng et al.[8] imposed a 10 sentence window, as a sample of the training data suggested

that a larger limit led to an unacceptable reduction in precision. However, they found

that this limit was the most frequent source of recall error, as coreference relations can

often span large distances, for example, between the History of Present Illness and Final

Diagnosis sections at opposite ends of the document. Therefore, further work could involve

examining the effect of varying the distance limit between mentions on the precision and

recall of our system.

The acyclic, forward linked-list approach to coreference chain generation ensures that

a given mention only participates in a single coreference chain. By cloning antecedent

features to the anaphor and the use of a double-linked list, the narrative direction of the

relationship is preserved, while all transitive coreference relationships can be extracted by

traversing the linked list.

2Results presented in this chapter for the ODIE corpus differ from those reported in [13] as system
output errors identified after submission have since been fixed

242



8.7. From coreference resolution to identifying processes of care

Although the results suggest that the patterns demonstrated here are reasonably gen-

eralizable across the 977 documents that came from a wide variety of sources, counter-

examples can doubtless be found. Further work should investigate performance on clinical

notes from other healthcare centre to determine the generalisability of this approach.

8.7. From coreference resolution to identifying processes of care

By way of a recap of the example given in Section 8.3.8, the extract below shows the

annotations generated by the system, where the prepositions and verb groups identified

by the ANNIE VG Chunker (see Chapter 5 and Figure 8.3) are highlighted in bold:

[MrWWWWW]Person,patient,male,singular [is]VG a [58 y/o]Age [gentleman]GenderIdentifier

[who]Person,patient,male,singular [was admitted]VG ... by [Dr FFFF]Person,clinician,singular.

... [He]Person,patient,male,singular [was assessed]VG by [Dr GGGGG]Person,clinician,singular

... [She]Person,clinician,female,singular [has referred]VG [WWW]Person,patient,male,singular

to [the orthopedics team]Person,clinican,plural; [he]Person,patient,male,singular [will be

followed]VG up by [them]Person,clinician,plural.

From this, the system generates the following Person coreference chains:

P: (Mr WWWWW → who → He → WWW → he);

C1: (Dr GGGGG → She);

C2: (the orthopedics team → them);

C3: the singleton (Dr FFFF).

where each protagonist has the following properties:

patient(P)

male(P)

age(P, 58)

clinician(C1)

clinician(C2)
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female(C2)

clinician(C3)

where P = ‘Mr WWWWW’, C1 = ‘Dr FFFF’, C2 = ‘Dr GGGGG’, C3 = ‘the orthopedic

team’. In combination with the verb phrases and prepositional phrases attached to each

protagonist, these coreference chains allow us to generate the following, ordered narrative

chains:

admitted(C1, P)

assessed(C2, P)

referred(C2, P)

follow_up(C3, P)

From this, we can create a narrative schema, along the lines proposed by Chambers and

Jurafsky[7], as shown in Figure 8.8.

Figure 8.8.: Narrative schema for the text in Section 8.3.8
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Obviously this is a simple example; in the general case, determining the correct en-

tities to which to attach predicates (verb groups, prepositional phrases) is not straight-

forward and is difficult to generalise. However, such a schema could provide a useful,

visual summary of the processes of care described in a patient’s clinical notes. Cham-

bers and Jurafsky[7] derived schema for narrative event chains from newswire text using

unsupervised clustering techniques. In this work, we have used lexical patterns and ex-

ternal domain knowledge resources to generate coreference chains that follow the order of

the narrative. Future work could investigate combining this work with the unsupervised

learning of Chambers and Jurafsky to generate complete narrative schema from clinical

texts.

8.8. Summary

The recent review by Zheng et al.[8] called on research into the portability of general

coreference resolution methods to the clinical domain. We have combined these methods

with additional patterns to address weaknesses in the general approaches when applied

to clinical notes, namely integration of external domain knowledge, dealing with name

deidentification/anonymisation, spelling errors and inconsistencies, use of abbreviations,

and wide scope of pronominal resolution.

This approach augments generic methods (based on headword and pronoun-matching

rules using gender, role, number and recency agreement) with specific approaches for

clinical narratives: report section segmentation; abbreviation expansion; consideration of

clinical relationships such as family history, quantitative, spatial, temporal, and anatomical

contexts, and consideration of protagonists and their associated actions. Perhaps most

importantly, we found that identifying synonym and hypernym relations via inclusion of

external domain knowledge is most useful when processing lab reports, but is less useful in

discharge summaries, where more straightforward pronoun resolution and context-sensitive

string matching seem to be sufficient.

In the following chapter, we discuss the findings of the research presented in this and the

preceding chapters, and review the aims and objectives stated in Chapter 1. The research
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findings are discussed in terms of contributions to knowledge, limitations, and relation to

other recent research in this area. Finally, we discuss options for future research.
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9.1. Introduction

In the previous chapter (Chapter 8), a text processing pipeline for resolving pronominal

and nominal coreference relations in a wide variety of clinical notes was developed and

evaluated. The pipeline integrated the components developed and evaluated in Chapters

5–7, which were used for identifying the temporal, spatial and anatomical contexts of

terms. Chapter 8 also described new components for pronoun classification, protagonist

identification (patient, clinician, family relation), synonym matching (via WordNet), and

coreference chain generation.

In this final chapter, we discuss the findings of the previous chapters in a wider context.

One common thread that links the results for all the modules in the framework is that,

with the exception of the method developed in Chapter 4 for identifying ontology terms,

they generally performed with higher precision (0.77–0.98) than recall (0.62–0.97). This is

consistent with other pattern generalisations, such as the Hearst patterns for identifying

hypernym–hyponym relationships (see Chapter 6), although the patterns presented here

still also perform with generally good recall. Achieving high precision in preference to recall

may be desirable, as fewer pieces of correct information may be preferable to provision

of larger amounts of information, through which the clinician needs to sift to discard

the information not relevant. In the component developed for abbreviation expansion (see

Chapter 7), a method for adjusting precision and recall dynamically was provided, so these

trade-offs could be balanced. Parasuraman and Manzey[1] suggest that the cutoff value

for the reliability (precision) of an automated system is around 70%: below this, the need

to correct the information provided by the system outweighs the benefits of automation.
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9.2. Review of aims, objectives, hypotheses and contributions to

knowledge

At the start of this thesis, the stated the aim was to build on existing methods for au-

tomated identification and classification of clinical concepts and processes of care from

heterogenous clinical texts, in order to facilitate the knowledge formalisation process for

process-oriented clinical decision support systems. We have partially met this aim. A

number of lexico-syntactic patterns and external knowledge integration components have

been developed, and have been evaluated on clinical discharge summaries and progress

notes, lab reports, MedLine abstracts, and clinical guideline documents. New techniques

and tools for text segmentation (Chapter 5), concept identification and classification via

semantic decomposition of ontologies (Chapter 6) and expansion and coreference of ab-

breviations (Chapter 7) have been developed and evaluated, and have been shown to

offer improved performance over previous methods and systems. Recently, a number of

these components have now been adopted as core modules within the suite of tools within

GATE that provide support for biomedical text processing1. Since the work in Chapter

5 was completed, some of the ideas proposed in that chapter have been incorporated into

the 2012 version of MetaMap. A –composite_phrases option has been introduced that

identifies prepositional phrases of a user-defined length, and attempts to match these to

precoordinated terms in the UMLS.

In building on existing work on concept identification and classification, a small amount

of new work has been presented on word sense disambiguation (Chapters 7 and 8) and

identification of negation and possibility (Chapter 5), but comprehensive coverage of these

topics would need to be the subject of more in-depth, future research.

In terms of applying the techniques and tools to extracting knowledge from clinical

guidelines to facilitate the knowledge formalisation process, only a formative evaluation

and illustrative examples have been achieved (see Chapter 5). This is an area that would

benefit from further development and evaluation against existing models derived from

specific clinical guidelines, although apart from the models developed for the Protocure

1http://gate.ac.uk/sale/tao/splitch16.html#sec:domain-creole:biomed
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project2 or for the OpenClinical Guideline Modelling Methods Comparison3, the avail-

ability of such corpora appear to be lacking. In the current work, the clinical guideline

documents from the BMJ and NICE (see Chapter 4) were largely used as a training corpus

from which to develop the phrase chunking patterns described in Chapter 5, prior to the

availability of the clinical records from i2b2 on which the majority of this work has been

evaluated.

In terms of identifying processes of care, a method for resolving coreference relations in

clinical notes, and of generating coreference chains using progressively pruned linked lists,

has been developed and evaluated (Chapter 8). We have shown how the approach provides

a means to extract linked narrative events from clinical notes, although, as with the clin-

ical guideline knowledge extraction, only illustrative examples have been demonstrated.

However, in terms of coreference performance, the results have been independently evalu-

ated, and performance exceeds that of general purpose tools, and is close to that of other

recently reported, state-of-the art systems[2]. We have also demonstrated how incorpo-

ration of external knowledge resources improves coreference resolution performance for

lab reports, but not for discharge summaries or progress notes. The difference in domain

knowledge requirements between processing pathology reports and discharge summaries

was also recently discussed by Rink et al.[3]; however, here we have quantified the effect.

9.2.1. Review of objectives

Chapter 2 provided an overview of knowledge representation for process-oriented clinical

decision support systems (Objective #1). It did not go into detail about specific for-

malisms, for this, the reader is recommended to read reviews by Isern[4], Mulyar[5] and

others, relevant chapters in Greenes[6], and formalism-specific syntax documentation (e.g.

[7]).

Chapter 3 reviewed the current challenges in implementing process-oriented clinical sys-

tems and developed a conceptual implementation framework (Objectives #2 and #3). The

framework showed how a clinical process model consists of a medical knowledge represen-

2http://www.protocure.org/old/resources-publications.html#ref-protocols
3http://www.openclinical.org/gmmcomparison.html
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tation comprising clinical concepts and process knowledge mapped to EHR data items,

combined with a localised knowledge representation comprising organisational workflow,

local goals and temporal constraints. It used a novel methodology (thematic analysis and

principle component analysis) to extract and relate themes from a large body of literature.

However, the method and proposed model has not yet been validated by other researchers.

Chapter 3 also identified that, despite advances in clinical workflow, guideline and path-

way modelling and architectures, a core knowledge acquisition problem remains, in terms

of extracting and formalising the structured knowledge items required by these models,

both from guidelines and the free text of the EHR. Chapters 4 and 5 identified that the

proposed framework would sit in the upper left-hand corner of the conceptual model de-

veloped in Chapter 3 (Figure 3.5 on page 76). That is, the part of the model that utilises

the integration of ontologies and pattern templates to identify and map concepts and

processes (Objective #3). The framework also sits within the information quality axis in

the DeLone–McClean[8] (D&M) model for information systems evaluation (see Chapter

4).

Chapters 4 and 5 identified that, despite advances in supervised machine learning tech-

niques, there was still scope for development of explicit, lexico-syntactic patterns and rules

for the creation of general-purpose, interoperable clinical information extraction compo-

nents, which can be configured into pipelines for a range of tasks without requiring ‘glue

code’. These chapters identified current research challenges of clinical, quantitative, tempo-

ral and process concept identification and formalisation, spelling correction, abbreviation

expansion, negation and coreference resolution (Objective #4):

Chapters 5, 6, 7 and 8 described the development of framework components that ad-

dressed the challenges listed above, and evaluated their performance against a number

of publicly available, ‘gold standard’ research corpora (Objective #5). However, in these

chapters we have provided only a technical evaluation of performance in terms of precision

and recall against corpora manually annotated by domain experts. Further evaluation

would need to see the framework integrated with an existing system and appraised by

clinicians in terms of overall utility for real-world tasks. Some suggestions are given in
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Section 9.3 below.

Overall then, within the scope set out in Chapter 1, the research objectives have been

met for the corpora of clinical notes and MedLine abstracts used in the evaluation. How-

ever, further work remains in terms of evaluation against clinical guideline data.

9.2.2. Review of research hypotheses

In Chapter 1 two research hypotheses were stated: 1) that complex information extraction

tasks could be assembled from self-contained components; and 2) that these components

could be created from external knowledge sources, lexico-syntactic patterns and regular

expressions. For the second hypothesis, Chapter 6 has described in detail and evaluated a

method using regular expressions over domain ontology lexemes to create concept recognis-

ers; Chapters 5 and 8 have provided numerous examples of lexico-syntactic patterns; and

Chapter 7 has also demonstrated the use of regular expressions for abbreviation expansion.

For the first hypothesis, while some of the individual tasks addressed in Chapters 5–6

might be considered quite basic and fundamental, Chapter 8 suggests that the task of

coreference resolution and narrative chain creation is quite complex. Moreover, Chapter

8 demonstrates how these individual, basic components can be assembled in a pipeline

process to address this more complex task. One limitation of pipeline processes, however,

where the output of one component is used as the input to another component, is that

errors can propagate through the system. For example, if all components make use of the

output of a part-of-speech tagger, then errors made by the tagger may result in a later

contextual feature being missed, leading to term or relation misclassification. In Table

8.14 of Chapter 8, we noted an instance where domain knowledge, added earlier in the

pipeline, led to an erroneous addition to a coreference chain, which led to other mentions

being incorrectly added to the tail of the chain.

As noted in Chapter 4, the use of lexico-syntactic patterns and regular expressions over

morphemes is not a new idea. The contribution to knowledge here is the development of

expressions that generalise over clinical guidelines and patient notes, and the implementa-

tion of these patterns in the JAPE formalism. A limitation, however, of this approach for
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identifying and classifying actual or potential ontology terms is that it does not provide

the concept identifiers (e.g UMLS CUI) of the terms recognised, only the general classifi-

cation. Lookup of the candidate terms against the UMLS using some best-match method

would still be required to map the candidate term to a concept in the Metathesaurus.

If the evaluation results presented in these chapters can be considered satisfactory – and

the performance comparison with existing tools and recent work suggests that this might

be a fair assessment – then these research hypotheses, within the scope of this thesis, have

been confirmed. As noted earlier, however, what is important is the clinical utility of

information extracted by a system, rather than how closely a system can match withheld

test data. In the quantitative evaluation of each the framework components, analysing

the discrepancies between system output and the ‘gold standard’ annotations revealed,

perhaps surprisingly, a variety of errors and inconsistencies in these corpora (see error

analyses and discussions in Chapters 6, 7 and 8).

Similarly, errors were identified in one of the core components of the UMLS, the Foun-

dational Model of Anatomy (see Chapter 6). Although the number of errors were small

in comparison to the size of the ontology (≈ 0.1%), each error is also replicated in the

UMLS, either resulting in concepts that can only be identified via the incorrect spelling,

or duplicate concepts with different UMLS identifiers[9]. Hopefully, these errors will be

corrected in future releases of the FMA and UMLS.

These findings do raise questions about the validity of comparing the performance of

different systems against these (and other) corpora. If the corpora themselves contain

errors, even if only a few percent of the total, then simply chasing higher precision and

recall scores by attempting to match the manual annotations as closely as possible –

including their inconsistencies and omissions – may be a questionable exercise. In what

way is a system that more closely matches such a corpus, by a few percent in comparison to

a previous system, ‘better’ than that previous system? Conversely, can a system evaluated

against the corrected version of the corpus be directly compared against one evaluated

against the earlier, inconsistent version?

As noted in Chapter 8, one of the benefits of the deterministic, pattern-based approach
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used in this research is that it allows such errors and inconsistencies in the evaluation

corpora to be identified. Ultimately, though, systems that identify concepts and relations

in clinical texts need to be evaluated in terms of their utility in assisting in clinical decision

making. It is likely to be more important that a system identifies terms or relationships

of potential interest or relevance to the clinician, than whether it has classified a text

string as Disease rather than Symptom, or classified a relationship between two phrases

as coreferential rather than historic–current or part–whole. In the following section, we

discuss possible avenues for future research to address these points.

9.3. Further work

In this work, we have tackled the problem of extracting, from free text, processes of care

that unfold over time by addressing constituent problems of identifying clinical events,

their protagonists, temporal contexts and coreferential relations. In our system’s internal

representation of coreference chains, the direction of the relationship and the ordering of

mentions is preserved. However, by definition, the coreference relationship is an identity

relationship: it is transitive and symmetric, and the metrics for evaluating coreference

performance, as used in the evaluation here, make use of this assumption. Moreover, the

identity relationship implies temporal independence, i.e. identity at any time. In strict

coreference, the ordering of the terms in the text – and thus the ordering of mentions

in each chain and the order of the coreference chains themselves – is unimportant. This

assumption has led to recent developments of semi-supervised, clustering methods for

coreference resolution.

However, we have argued that, in clinical notes, the direction of the coreference relation-

ship and the ordering of coreference chains may be important for identifying the chains

of clinical reasoning, even if the events in the narrative are not described in chronological

order. By making the relationship directional, in A → B → C we allow the possibility

that A may be directly coreferential to C but may need to be mediated by B; that is,

A→ C may not hold at any time, but only when A→ B. For example, from a pathology

report in the ODIE evaluation corpus:
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[Invasive adenocarcinoma, grade 3 (of 4)]A, forming [a 3 cm mass]B. [The

tumor]C invades into and through the muscularis propria

terms A, B and C (‘Invasive adenocarcinoma, grade 3 (of 4)’, ‘a 3 cm mass’, the tumor)

have been marked as coreferent. But the carcinoma leads to the formation of the mass, not

vice versa: the A→ B relation is not symmetric as the two are not strictly interchangeable.

Equally, the A → C relationship (‘Invasive adenocarcinoma’ → ‘the tumor ’) is mediated

by knowledge of the A→ B relation.

In another example

The patient is [unable to ambulate]A ... The patient is [bed bound]B ...

terms A and B were marked as coreferent, but B arises as a result of A; there is an

implicit directional relationship rather than an identity relationship. These examples may

seem like splitting hairs, but, as we have argued in Chapter 8, the ordering provides

information about the clinical reasoning process, so it makes sense to preserve it.

Similarly, noting an injury on admission as ‘the patient’s head wound laceration’ with

later discussions about ‘her scalp laceration’ – both expressions refer to the same gen-

eral injury finding, but the latter is more specific, and occurs later in the narrative, so

the implication is that investigation of the general injury led to the more specific find-

ing. Maintaining the ordering and direction of the relationship in the system’s internal

representation preserves this reasoning process. Manning[10] argued that it has been dif-

ficult to obtain value from coreference resolution in real-world applications. It may be

that ignoring the direction of the narrative, and modelling coreference relations as bags of

equivalent terms, might be one reason for this.

We have argued that preserving this narrative order is important for using the corefer-

ence relations to generate narrative event chains. Future work should combine this with

the work done on temporal concept and relation identification to extract temporally or-

dered, rather than narratively ordered, processes of care. In fact, such work is one of

the tasks in the i2b2 2012 NLP Shared Task4, of which some of the work described in

4https://www.i2b2.org/NLP/TemporalRelations/Call.php
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Chapter 5 was part. This future work could make use of the temporal dependency struc-

tures described recently by Kolomiyets et al.[11], to identify TimeML TLINK relations (see

Chapter 5). As noted in Chapters 5 and 8, in terms of parsing and formalising temporal

expressions and relations in free text, more work is needed on more identifying the tempo-

ral context of events, linking of relative dates back to correct event antecedent date, and

better distinguishing of historical events from those in the current episode. One approach

might be to store all events and their dates as tuples, for example ‘transferred to ICU on

06/23/2012 ’ → (transfer, ICU, 06/23/2012).

Since the recent availability of libraries such as SUTime[12] and HeidelTime[13], the

need to develop and maintain a temporal expression parser for the framework developed

in this thesis (Chapter 5) is probably now unnecessary. It may be better to integrate

an external library such as HeidelTime into the framework than attempt to replicate it,

although as noted in Chapter 5, the output of such libraries may not be optimal for clinical

text and may still require post-processing.

In this work, we have provided only a technical evaluation of the framework developed.

Integration of the framework within a larger system would require a more comprehensive

evaluation involving other axes of the DeLone–McLean evaluation model (see Chapter 4)

such as user satisfaction, individual and organisational impact. Kaplan [14] noted that in

addition to consideration of the effect of a system on clinical and organisational perfor-

mance, the concept of individual and organisational ‘fit’ (loosely corresponding to D&M’s

axis of ‘user satisfaction’) needs to be considered. ‘Fit’ can be considered according to var-

ious axes: such as local clinical workflow (see Chapters 2 and 3), or differing cultural values

and goals between the developer and clinician. For example, identification of opportuni-

ties for decision support might represent, at two extremes, either an interesting computer

science problem or a potential undermining of the art of clinical practice[14]. The concept

of ‘fit’ might also be considered as part of the organisational change management process

that forms part of the conceptual model developed in Chapter 3.

Although the concept dates back to the work of Chu et al.[15], recent tools that visualise

care processes as interactive ‘care maps’, such as the Map of Medicine[16] and NICE
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Pathways, may provide one approach to achieving organisational and clinical ‘fit’, possibly

with a low barrier to entry in terms of delivering process knowledge from clinical guidelines

direct to the clinician at the point of care. However, such visual information would need

to be linked to patient data in some way. One of Sittig et al.’s ‘grand challenges’[17] (see

Chapter 1) was the need to provide ‘at a glance’ summaries of patient data. Potentially,

the tools developed here could be extended in future work to provide visual summaries of

temporally ordered care processes and events in the patient record.

Similarly, further research might consider how to extend the framework presented here

to extract Map of Medicine-style visual algorithms or flowcharts directly from the text of

clinical guidelines, although perhaps this may be too ambitious given that decision points

and sequential vs parallel processes are usually implicit rather than explicitly represented

in the guideline text[18]. However, previous research suggests that such higher-level, pro-

cess information can be extracted with a level of precision (0.87)[19] that exceeds the

Parasuraman and Manzey threshold (see Section 9.1).

Identifying fine-grained treatment information in guidelines would need to account for

underspecified statements (underlined in the following examples), such as

‘Avoid the use of highly intensive management strategies’

or

‘initiate appropriate interventions’

and qualitative terms that need to be mapped to numeric values or ranges, such as

‘The moderate use of alcohol may increase HDL-cholesterol’

or

‘If blood pressure remains uncontrolled on adequate doses of three drugs’

While automated quantification and formalisation of such statements is probably un-

realistic, there would be a role for NLP techniques to at least identify and classify these

vague statements, either using a machine-learning or pattern based approach, perhaps in
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a similar way to the detection of uncertainty via the presence of ‘hedging’ terms[20]. As

we suggest in Chapter 5, the tools developed here have the potential to help automate

the process of translating semi-structured or well-specified guideline statements to a more

formalised representation.

Potentially, then, future work might make use of the components developed here to

generate annotated clinical guideline text and historical patient notes for use as a CDSS

knowledge base, following the work recently described by Wagholikar et al.[21]. In that

study, the free text of Papanicolaou (Pap) reports was analysed by an NLP system to

identify mentions of glandular epithelial cell abnormalities and squamous cell carcinoma

findings. This was used to generate patient-specific cervical cancer screening recommen-

dations. In a set of 74 test cases, 66 of the system recommendations matched those of

a physician; on review, 7 of the discrepancies were deemed to be the result of physician

error[21].

Alternatively, the tools and techniques developed here can be used for research purposes.

The South London and Maudsley Hospital’s (SLaM) Biomedical Research Centre (BRC)

are currently using the GATE framework within their Case Register Interactive Search

(CRIS) tool[22]. They have developed a number of information extraction rules using the

JAPE formalism, as used in this work, to extract smoking status, Mini Mental State Exam

results, and drug dosages, in order to identify potential participants in clinical trials. Their

focus is on favouring higher precision over recall[22], as with the work presented here.

Applying information extraction and natural language processing techniques to the free

text of clinical notes is not the only way of extracting process information from the pa-

tient record. Process mining[23] makes use of the time-stamped activity logs of workflow

systems (or any system that logs user, time, and activity performed, such as an EHR)

to extract common patterns of system interactions and their temporal relations, which

can be used to generate a process map of sequential, parallel and branching activities (see

Chapter 2). Process mining has recently been applied to EHR data to extract processes

of care as recorded by the EHR for comparison with a defined care pathway[24][25], al-

though some researchers have found the models produced by process mining algorithms
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did not reflect clinical reality[26]. At present, no studies have combined IE/NLP on the

unstructured text of clinical notes with process mining of EHR event logs, and this would

be an interesting area for future research.

9.4. Conclusion

A conceptual model for the implementation of process-oriented health information systems

has been developed. Such systems make use of a knowledge base derived from workflow

models and clinical guidelines, and are integrated with an electronic health record via

mapping of concepts to shared domain resources such as ontologies. The task of formalising

and mapping knowledge items in guidelines and the EHR can be done manually, or it can

be assisted with information extraction tools. However, the majority of clinical guideline

information remains in text form, and much of the useful clinical information residing in

the EHR is in the free text fields of progress notes and lab reports. Natural language

processing techniques provide a means to add structure to these unstructured clinical

texts.

Lexico-syntactic patterns, features, and domain knowledge resources for a tackling va-

riety of information extraction tasks in the clinical domain have been developed and eval-

uated. Although a number of methods and software artefacts have been developed in this

research, the main focus has been on identification and classification of clinical terms, and

resolution of coreferential and anaphoric relations in clinical text. Generation of corefer-

ence chains provides a means to extract linked narrative events and processes of care from

patient notes. We have shown that coreference performance in discharge summaries and

progress notes is largely dependent on correct identification of protagonist chains (patient,

clinician, family relation), pronominal resolution, and string matching that takes account

of experiencer, temporal, spatial, and anatomical context; whereas for lab reports external

domain knowledge is additionally required.

Where available, results have been compared against existing systems for solving these

tasks and have been found to improve on them, or approach the performance of recently

reported, state-of-the-art systems. The software artefacts have been made available as
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open-source components within the General Architecture for Text Engineering framework.
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A. Principal component analysis matrix

association scores

The table below shows final set of the 25 challenge theme variables derived from thematic

analysis of papers reviewed in Chapter 3. As discussed in that chapter, the association

between themes was explored using the Galaxy and Matrix views within the RefViz soft-

ware. RefViz identified 10 clusters within the groupings of 5 themes assigned to each

of the 108 papers. The weight of each theme within each cluster indicates the strength

of association between the theme and the cluster, on a scale from -1 (strongest negative

association) through 0 (no association) to +1 (strongest positive association). .
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Table A.1.: RefViz Matrix view showing weighting of variables in each cluster

Cluster ID

Variable 1 2 3 4 5 6 7 8 9 10

Clinical implementation -0.13 0.38 -0.13 -0.25 0.43 -0.25 0 0.33 -0.17 0.04

Clinician attitude 0 0 0 0 0 0 0 0.67 0 -0.04

Complexity -0.07 -0.13 0 0.75 -0.14 0 -0.13 0 0.08 0

Data mapping -0.27 0 0.09 -0.25 -0.29 -0.25 0.38 -0.33 -0.25 0.21

Discrepancy 0.07 0 -0.04 0 0.14 0 0 0 -0.08 0.04

Exception handling 0.13 0 -0.04 0 0 0.25 0 0 0 -0.04

Execution -0.13 0.75 -0.09 0.5 -0.14 0 0.13 0 0 -0.13

Expressivity 0 0 0 1 -0.14 0 0.13 0 -0.08 -0.08

Flexibility and adaptability 0.4 -0.13 -0.04 0 -0.14 0 0 0 -0.08 -0.04

Goal modelling -0.07 0 -0.04 0 0 0.75 0.13 0 -0.08 0

Guideline translation -0.27 -0.25 0.74 -0.25 -0.14 -0.25 -0.13 -0.33 0.08 -0.25

Information/rule extraction -0.07 0 0.09 0 0 0 -0.13 0 0 0

Localisation -0.13 0.38 0.17 -0.25 -0.14 -0.25 0 0 0 -0.08

Maintenance -0.13 -0.13 -0.04 0 0.14 0 0.13 0 0.33 -0.08

Continued on next page
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Table A.1 – continued from previous page

Cluster ID

Variable 1 2 3 4 5 6 7 8 9 10

Model validation -0.13 -0.13 -0.13 0 -0.14 0 0.5 0 0.58 -0.13

Model verification -0.13 -0.13 -0.13 -0.25 -0.14 0 0.38 0 0.75 -0.17

Organisational change -0.07 0 0 0 0.29 0 -0.13 0.67 -0.08 -0.04

Organisational modelling 0.73 0 -0.13 -0.25 -0.14 -0.25 -0.13 0 -0.17 -0.08

Process modelling 0.47 0 0.09 -0.5 -0.43 -0.5 -0.25 -0.33 -0.5 0.33

Reporting, querying and visualisation -0.07 -0.13 -0.09 0 0.29 0 0 0 -0.08 0.08

Separation of concerns -0.07 0 -0.04 0 0 0.25 0.13 0 -0.08 0.13

System architecture -0.07 -0.13 -0.09 0 -0.14 0 -0.13 0 -0.08 0.25

Temporal abstraction -0.13 0.13 -0.09 0.5 -0.14 0.75 0.13 0 -0.08 -0.04

Tooling -0.2 0 0.04 -0.25 0.43 -0.25 -0.25 -0.33 -0.08 0.17

UI and usability -0.13 -0.13 -0.09 0 0.57 0 -0.13 0 0 0.13
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B. Notes on system architectures and

prototype implementations

The table below provides summary details of the 54 system architecture and prototype

implementation studies identified in systematic review of Chapter 3.
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Table B.1.: System architectures and prototype implementations

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Tierney

(1995)[1]

Guideline-based or-

der entry recommen-

dations for heart fail-

ure

Standalone desk-

top application

Networked mi-

crocomputer

workstations

No Yes Tight coupling

(hardcoded into

patient record

system)

Electronic or-

der entry forms

with automated

guideline recom-

mendations

Block structured,

procedural logic

rules

Barnes

(1995)[2]

Architecture for

guideline recommen-

dations system

Loosely coupled

client-server, Web

CGI interface,

C++ libraries

Hardware

independent

No No Low-level C++

interfaces (no

structured text

data exchange)

Guideline knowl-

edge base, guide-

line explainers,

Web interface

Object model

Fox (1997)[3] Guideline-based de-

cision support sys-

tem

Standalone desk-

top application;

PROforma CIG

model

PC No No Graphical GL

editor, knowledge

base, enactment

engine

Formal task-

network model

(PROforma)

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Chu (1998)[4] Prototype electronic

care pathway; guide-

line visualisation; vi-

sual process map

Standalone desk-

top application

PC No No Activity-on-node

visualisation

forerunner of

Map of Medicine;

does not provide

decision support

Visualisation and

recording: order-

ing and charting

layer, outcomes

pathway layer,

intervention layer

General task-

network model

Henry

(1998)[5]

Guideline-based pa-

tient notes templates

for an existing EHR

Document tem-

plates for com-

mercial EHR

system

PC (Windows) No Yes Template man-

ager within

WAVE EPR

system

Block structured,

procedural logic

rules

Miller

(1999)[6]

Tool for rule-based

guideline verification

to identify incom-

plete rule sets

Standalone desk-

top application

(Hypercard)

Mac No No Primarily pro-

vides guideline

verification

Rule and con-

straint builder

Block structured,

procedural logic

rules

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Bindels

(2000)[7]

Guideline-based test

ordering system

Standalone desk-

top application

(Delphi)

PC (Windows) No No Delphi system

with guidelines

presented in

HTML window

Graphical guide-

line editor, knowl-

edge base, CDSS

reminder/alerts,

order entry

Block structured,

procedural logic

rules

Miller

(2000)[8]

Guideline-based im-

munisation forecast-

ing and recommen-

dation system

Callable MUMPS

module, remote

Web CGI module

Hardware-

independent

No Yes C/C++ callable

module

Block structured,

procedural logic

rules

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Quaglini

(2000)[9]

System architecture

for guideline-based,

clinical workflow sys-

tem for acute is-

chemic stroke

Oracle Work-

flow engine,

client-server Web

application

Not given Yes No Graphical guide-

line editor,

patient-flow sim-

ulator, guideline

knowledge base,

organisational

ontology, work-

flow management

system, pro-

cess monitor,

alert/reminder

notifier

Formal workflow

model; formal

task-network

model (GUIDE)

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Quaglini

(2000)[10]

Computerised guide-

line for pressure ul-

cer prevention

Client-server,

tightly coupled

EHR integration,

Java

Not given No Yes Provides lists

of daily tasks,

not real-time

workflow deci-

sion support.

tightly coupled

(EPR needed

modification)

Graphical guide-

line editor, guide-

line inference en-

gine, terminology

server

Formal task-

network model

(GUIDE)

Dadam

(2000)[11]

Architecture for a

computerised clinical

workflow system

Distributed,

multi-server ar-

chitecture, Java,

workflow API

Hardware

independent

Yes No Loose coupling

via communica-

tion and service

layers

Graphical pro-

cess modelling

tool, organisation

modelling tool,

workflow client,

workflow server

(execution layer,

service layer, data

access layer)

General workflow

model; Block

structured, pro-

cedural logic

rules

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Chu (2001)[12] Implementation

of a computerised

clinical pathway

management system

Standalone desk-

top application

PC/Windows No No* *Not clear from

the system de-

scription. Plans

to extend proto-

type into a multi-

user, networked

application

Order entry

system; docu-

mentation and

information man-

agement system;

clinical pathway

progress trending

and monitoring;

pathway variance

alerts

Not specified

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

de Clercq

(2001)[13]

Various decision

support systems cus-

tomised for different

settings

Plug-in architec-

ture; Web appli-

cation

PC (Windows) No Yes EPR integration

not explained,

other than use

of ‘standard

communication

protocols’

Knowledge editor

(acquisition tool),

domain ontol-

ogy (classes),

method library

(functions, opera-

tions), guideline

library, com-

piled knowledge

base, datasource

manager (EPR

data), event mon-

itor, execution

scheduler, action

manager (re-

minders, alerts,

emails)

Formal task-

network model

(GASTON)

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Mikulich

(2001)[14]

Guideline-based

emergency depart-

ment electronic

charting system

Standalone appli-

cation

PC No No Rule-based expert

system modules

Block structured,

procedural logic

rules

Miller

(2001)[15]

Test case generator

tool for guideline-

based rule sets

Standalone ap-

plication (Lisp,

GLIF)

Not given No No Primarily pro-

vides guideline

verification

Rule and con-

straint builder

Formal task-

network model

(GLIF)

Terenziani

(2001)[16]

Architecture for

guideline representa-

tion and execution

Modular, Web

application, Java,

Oracle

Hardware-

independent

No No Tight coupling,

DB-centric.

Guideline veri-

fication/consis-

tency checking,

temporal con-

straint checks

Graphical guide-

line encoding

tool, guideline

execution engine

General task-

network model

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Panzarasa

(2002)[17]

Guideline-based

workflow man-

agement system

(‘careflow’) for

stroke rehabilitation

Three-tier, agent-

based, Oracle

workflow engine

Not given Yes Yes Tight coupling,

database-centric

Organisational

ontology, activ-

ity management

layer, data man-

agement layer,

communication

layer

General task-

network model;

general workflow

model

Malamateniou

(2003)[18]

Intranet-based,

inter-organisational

workflow manage-

ment system for

radiological proce-

dures

Distributed,

multi-site Web-

based workflow

application; SOA,

Web services,

SOAP/HTTP,

IBM’s MQ Series

Workflow, Oracle,

Java

Distributed

local appli-

cation, Web

and database

servers

Yes Yes Describes organi-

sational workflow

- clinical decision

support not ap-

parent

Local and global

authorisation

server, cen-

tralised workflow

management

system server,

distributed ap-

plication servers,

VMR

General workflow

model; document

model

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Maviglia

(2003)[19]

Guideline-based de-

cision support sys-

tem for chronic dis-

eases

Not given Not given No Yes Not clear if

Web-based,

client-server

Graphical guide-

line editor, guide-

line knowledge

base, infer-

ence/execution

engine, Notifier,

Event monitor,

messaging, EHR

Formal task-

network model

(GLIF)

Poulymenopoulou

(2003)[20]

Intranet-based,

inter-organisational

workflow manage-

ment system for

emergency depart-

ment

Distributed,

multi-site Web-

based workflow

application; SOA,

Web services,

SOAP/HTTP,

Oracle, IBM’s

MQ Series Work-

flow, Java

Distributed

local appli-

cation, Web

and database

servers

Yes Yes Local and global

authorisation

server, cen-

tralised workflow

management

system server,

distributed ap-

plication servers,

VMR

General workflow

model

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Barretto

(2003)[21]

Architecture for

guideline-based de-

cision support and

workflow in chronic

disease management

Java, SOA,

Web services,

SOAP/HTTP,

commercial mid-

dleware

Hardware

independent

Yes Yes Loose coupling

via SOA

Graphical work-

flow editor,

workflow en-

gine, guideline

knowledge base

(GLIF), guide-

line execution

engine, messag-

ing/notification

middleware

Formal task-

network model

(GLIF)

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Shahar

(2004)[22]

Electronic guideline

library

Modular, dis-

tributed, client-

server Web appli-

cation, Microsoft

SQL Server

Windows

Server

No Yes Web-based graph-

ical guideline

editor/encod-

ing tool, Web-

based guideline

search, guideline

knowledge base,

Web-based vo-

cabulary server,

permission-

s/authorisation

manager, guide-

line interpreter,

task-specific rea-

soner, medical

knowledge base,

data visualisation

tool

Formal task-

network model

(Asbru)

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Wang

(2004)[23]

Execution engine for

guidelines encoded in

GLIF3 format

Modular, three-

tier loosely cou-

pled client-server,

Java

Hardware-

independent

No Yes* *EHR interface

available, but

semantics need to

be locally defined

and implemented

Guideline exe-

cution engine,

messaging/com-

munication layer,

execution tracing

system

Formal task-

network model

(GLIF)

Anand

(2004)[24]

Guideline-based

decision support

system for pediatric

clinic

C#/.NET, Perl,

Microsoft SQL

Server, tightly

coupled client-

server

Windows

(2003) server,

integrated

printer and

scanner

No* Yes *workflow process

hardcoded into

system. Provides

paper output

Arden MLM

knowledge base,

data dictio-

nary, patient

data store, Ar-

den MLM rule

processor, HL7

interface to EHR,

printing/scanning

module

Block structured,

procedural logic

rules (Arden)

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Ciccarese

(2004)[25]

Architecture for

distributed guideline

management system

Java, SOA,

Web services,

SOAP/HTTP

Hardware

independent

Yes Yes Separation of con-

cerns; loose cou-

pling

VMR, graphical

guideline edi-

tor/formalizer;

guideline repos-

itory; inference

engine; reporting

system

General workflow

model; Formal

task-network

model (GUIDE)

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Ciccarese

(2005)[26]

Integrated guideline

management and

workflow manage-

ment system

Java Web service

application; SOA,

Web services,

SOAP/HTTP

Hardware

independent

Yes Yes Separation of con-

cerns; loose cou-

pling

Graphical guide-

line editor,

knowledge base

(central and

localised guide-

line templates),

guideline enact-

ment engine,

messaging and

integration inter-

face, reporting,

VMR

Formal workflow

model; Formal

task-network

model (GUIDE)

Colombet

(2005)[27]

Web-based decision

support system for

preventive medicine

PHP/Javascript

Web application,

Visio, Excel

Not given No No No consideration

of temporal con-

straints

Graphical guide-

line editor, knowl-

edge base, execu-

tion engine

Block structured,

procedural logic

rules

Continued on next page
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Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Michalowski

(2005)[28]

Mobile, guideline-

based decision

support system for

emergency triage

Extended, tightly

coupled client-

server, thick

client (local

database, ES

shell)

Mobile de-

vice, wireless

network

No* Yes *hardcoded work-

flow in the triage

process. Fits clin-

ical workflow via

point-of-care ac-

cess

Domain ontology,

knowledge base,

ES shell (solver,

executor), HL7

communication

layer, inter-

face engine,

client-server

synchronisation

subsystem

Block structured,

procedural logic

rules

Continued on next page
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Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Seroussi

(2005)[29]

Guideline-based de-

cision support for hy-

pertension manage-

ment

Standalone

Web applica-

tion (interactive

guideline decision

tree browser)

Hardware-

independent

No No Doesn’t provide

automated deci-

sion support, just

allows clinician

to navigate de-

cision tree and

input values for

parameters

Guideline knowl-

edge base, guide-

line visualisation

browser

Block structured,

procedural logic

rules

Aigner

(2006)[30]

User-interface proto-

type for guideline vi-

sualisation

MVC, Java, stan-

dalone desktop

application

Not given No No Provides tempo-

ral ‘lifeline’ view

of clinical process

Graph visualizer

(JGraph), view

manager, event

monitor

Formal task-

network model

(Asbru)

Continued on next page
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Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Burkle

(2006)[31]

Prototype workflow

model of clinical

pathway for lumbar

nerve root compres-

sion syndrome

Adonis work-

flow engine, web

browser, Orbis

EPR

Hospital-wide

network of

2000 worksta-

tions

Yes Yes* *Complete path-

way not imple-

mented (only pre-

admission phase

and discharge)

Visual workflow

editor, applica-

tion for diagnosis

of LNRCS, appli-

cation for activity

task checklist

generation, re-

port generation

General workflow

model

Hayward-

Rowse

(2006)[32]

Conversion of paper

care pathway doc-

umentation to elec-

tronic forms

Microsoft Access;

standalone desk-

top application

PC/Windows No No No decision sup-

port or workflow,

simply an elec-

tronic representa-

tion of existing

paper forms

Care plan, risk

assessment, pa-

tient medication

record, manually

created alerts

Not specified

Continued on next page
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Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Panzarasa

(2006)[33]

Guideline-based

workflow man-

agement system

(‘careflow’) for

stroke rehabilitation

Oracle Work-

flow engine,

middleware,

tightly coupled,

database-centric

Not given Yes Yes Tight coupling,

database-centric

Middleware EPR-

workflow integra-

tion layer, event

monitor

General task-

network model;

general workflow

model

Vesely

(2006)[34]

Automated

guideline-based

reminder system

Standalone in-

teractive GLIF

browser

Hardware-

independent

No No* *EHR integration

described in gen-

eral terms but not

implemented

Graphical guide-

line decision tree

browser, guideline

execution

Formal task-

network model

(GLIF)

Continued on next page
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Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Wakamiya

(2006)[35]

Electronic manage-

ment system for

paper-based clinical

pathways

Tightly coupled

client-server,

desktop client ap-

plication, Visual

C++, Filemaker,

Excel

Windows NT

server and

Windows XP

client termi-

nals of an

order entry

system in

100BASE-

T/10BASE-T

Ethernet

network

No No Patient reg-

istration, CP

administration,

CP task checklist

editor, variance

recording

Not specified

Kaiser

(2007)[36]

Automated guideline

formalisation appli-

cation

Java, standalone

desktop applica-

tion

Not given No No Unclear how

automated for-

malisation can

capture implicit

knowledge

Information ex-

traction pipeline

for template

generation

Formal task-

network model

(Asbru)

Continued on next page
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Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Lenz

(2007)[37]

Guideline-based

electronic clinical

pathway

CASE tool

for generat-

ing document-

based modules

for commer-

cial EHR system

(Orbis R©/OpenMedical)

PC (Windows) Yes* Yes *Not full work-

flow application,

but ’workflow en-

abled forms’.

Graphical form

generator and

process flow tool,

HL7 compliant

interface engine

General workflow

model

Leonardi

(2007)[38]

Diabetes manage-

ment workflow

system

YAWL, agent-

based, Web-

service applica-

tion

Not given Yes No* Organisational

ontology, ser-

viceflow, Virtual

Healthcare Or-

ganisation (like

VMR but or-

ganisation side);

contract, tight

coupling. *Not

clear

Communication

layer, service

layer, organi-

sational units

(workflow) layer,

contract (what,

when, who) layer

Formal workflow

model (YAWL)

Continued on next page
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Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Young

(2007)[39]

Guideline-based de-

cision support sys-

tem

Modular, dis-

tributed, loosely

coupled client-

server Web

application, SOA,

Web services

Not given No Yes Loose coupling

via Web service

interfaces

Patient data

access server,

guideline library

server (see Shahar

(2004))

Formal task-

network model

(Asbru)

Sartipi

(2007)[40]

Decision support

architecture for

Canada Infoway

service bus

SOA, enterprise

service bus, HL7

CDA

Not given No* No* *Not yet imple-

mented: concep-

tual architecture

Guideline-based

workflow service,

data mining ser-

vice, healthcare

network visuali-

sation service,

General workflow

model

Continued on next page
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Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Verlaenen

(2007)[41]

A decision support

architecture for clin-

ical workflow, path-

ways and guidelines

Client-server,

Java Swing client,

JBoss server,

MySQL/Hiber-

nate database,

Drools and jRules

rules engine;

PROforma CIG

model

Hardware

independent

Yes No* * Via VMR and

locally defined

EHR-VMR map-

pings, but only

workflow execu-

tion implemented

here

Graphical work-

flow editor, VMR,

clinical knowl-

edge base, event

monitor, work-

flow manager,

execution envi-

ronment, system

integration layer

Formal task-

network model

(PROforma)

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Alexandrou

(2008)[42]

A semantic workflow

management system

to support the dy-

namic adaptation of

clinical pathways

OWL ontology,

SWRL, Java,

Jess rules engine,

ActiveBPEL

workflow

Hardware

independent

Yes No Semantic layer

(knowledge base,

SWRL rule base),

adaptation layer

(rule engine,

clinical pathway

creation and

update manager),

clinical pathway

layer (process

repository, work-

flow engine)

Semantic Web

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Casteleiro

(2008)[43]

Simulation frame-

work for generating

guideline recommen-

dations from online

clinical data

Web service ap-

plication; SOA,

Web services,

OWL-S, SWRL

Hardware-

independent

No No Separation of con-

cerns; loose cou-

pling, HL7 RIM

and CDA. Tem-

poral constraints

not considered.

Patient identi-

fication service,

clinical infor-

mation service,

guideline rec-

ommendation

service

Semantic Web

Dang

(2008)[44]

Web based health-

care workflow appli-

cation

Web service ap-

plication; SOA,

Web services,

OWL-S, WSDL-S

Hardware-

independent

Yes No* *Not explicitly

mentioned.

Knowledge editor

(Protege), knowl-

edge base (Jena),

Wf engine, ser-

vice composer,

task manager,

Semantic Web;

general workflow

model

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Goud

(2008)[45]

Active (infobutton)

guideline-based deci-

sion support system

for cardiac rehabil-

itation, integrated

with EHR

Tightly coupled

client-server

Not given No Yes Tightly coupled Knowledge base,

execution engine,

CDSS communi-

cation layer

Formal task-

network model

(GASTON)

Patkar

(2008)[46]

Implementation of

breast cancer triple

assessment care

pathway

Standalone Web

application,

PROforma CIG

model

Not given No No Graphical work-

flow editor and

guideline editing

toolkit, guideline

knowledge base,

execution engine

Formal task-

network model

(PROforma)

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Seyfang

(2008)[47]

Guideline execution

engine for high-

frequency clinical

domains

Not given Not given No No* *Simulated ex-

ecution traces

presented; only

the interpreter

has been devel-

oped so far

Guideline com-

piler, execution

manager, exe-

cution tracing

component

Formal task-

network model

(Asbru)

Continued on next page292



Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Allart

(2009)[48]

ICU real-time bed-

side monitoring sys-

tem integrated with

medical sensors

Integrated, dis-

tributed hard-

ware/software

solution; mod-

ular (storage,

acquisition,

computation,

display); tightly

coupled client-

server; Web-

based (HTTP);

thick client

Dedicated, se-

cured network;

distributed

data clusters;

biomedical

sensor equip-

ment; desktop

PCs

No Yes Bespoke architec-

ture; tight cou-

pling

Knowledge base,

messaging/-

communication,

modules layer:

event monitoring,

hardware inte-

gration (drivers),

computing/infer-

ence, display and

visualisation

Formal task-

network model

(Think! network)

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Argüello

(2009)[49]

Simulation frame-

work for generating

guideline recommen-

dations from online

clinical data

Web service ap-

plication; SOA,

Web services,

OWL-S, SWRL

Hardware-

independent

No No Separation of con-

cerns; loose cou-

pling, HL7 RIM

and CDA

HL7 CDA patient

data repository,

guideline OWL

knowledge base,

SWRL rule base,

reasoning engine,

execution tracing

system

Semantic Web

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Laleci

(2009)[50]

SAPHIRE guideline

execution, bedside

monitoring and

alerting prototype

integrated with

medical sensors

Web service ap-

plication; SOA,

Web services,

OWL-S; IHE

XDS

Biomedical

sensor equip-

ment inte-

grated with

software

Yes Yes VMR, HL7

CDA. ’IHE XDS

exposes the

semantics of clin-

ical documents

through docu-

ment metadata’,

separations of

concerns - WF in-

tegration handled

by OWL-S

IHE XDS Repos-

itory, UDDI

service registry,

alerting/reminder

system

Formal task-

network model

(GLIF); Semantic

Web

Peleg

(2009)[51]

Guideline-based de-

cision support sys-

tem for diabetic foot

care

Standalone client

(Java), GLEE

(guideline execu-

tion engine for

GLIF)

Hardware-

independent

No Yes Guideline knowl-

edge base, guide-

line execution en-

gine, user inter-

face

Formal task-

network model

(GLIF)

Continued on next page
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Table B.1 – continued from previous page

Publication Purpose Software archi-

tecture

Hardware

architecture

Wf

sup-

port

EHR

integra-

tion

Notes Components Model type

Daniyal

(2009)[52]

Web-based care

pathway for prostate

cancer management

Finite state ma-

chine (FSM)

workflow Web ap-

plication; OWL

ontology

Hardware

independent

Yes No Pathway as a

high-level process

map

Care pathway

knowledge base,

care pathway

execution engine

Semantic Web

Eccher

(2009)[53]

Architecture for a

guideline-based deci-

sion support system

for cancer care

Web application,

SOA, Web ser-

vices

Hardware

independent

No Yes Not yet imple-

mented, concep-

tual architecture,

loosely coupled

EPR/VMR map-

ping layer, guide-

line knowledge

base, guideline

interpreter,

Formal task-

network model

(Asbru)

Tschopp

(2009)[54]

CPOE and clinical

pathway system

jBPM workflow,

service-based

components, Java

Hardware

independent

Yes Yes* *Appears to be

closely coupled

to in-house EHR.

Unclear if Web-

based or bespoke

client

Message-driven

middleware

General workflow

model
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C. Examples of gold standard, ‘ground

truth’ labelled data sets

The unlabelled data sets that formed the input to the information extraction pipeline, and

the manually annotated versions (of the same documents) against which the outputs of

the pipeline were evaluated, are provided by the corpus creators in a variety of formats.

Agreement on a standard format – at least in the clinical domain – seems to be some way

off. As a result, in many cases, each format required an import routine to be written to be

able to import the data into the framework. As described in Chapters 4 to 8, the labels

and their character offsets were imported into a separate annotation set against which

the system-generated labels from the plain text input could be evaluated using GATE’s

corpus quality assurance component. Withheld test data from the i2b2 challenges (see

Chapters 5 and 8) were provided as unlabelled, plain-text data; the output of the pipeline

was evaluated against the labelled data using scripts provided by i2b2.

Examples of each of the corpora used are provided in the following sections.

C.1. Data set for concept identification (Chapter 5)

In the ODIE and i2b2 data sets, plain-text discharge summaries and laboratory reports

are provided along with a separate ‘concepts’ file detailing each concept text boundary,

the corresponding line and word offsets in the plain text file, and the concept label name,

as follows:

c="fibroadenoma" 3:73 3:73||t="diseaseorsyndrome"

c="the procedure" 4:13 4:14||t="procedure"
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C. Examples of gold standard, ‘ground truth’ labelled data sets

c="stereotactic biopsy" 12:3 12:4||t="procedure"

c="benign breast parenchyma" 5:16 5:18||t="anatomicalsite"

c="stereotactic biopsy" 3:61 3:62||t="procedure"

c="breast malignancy" 3:65 3:66||t="diseaseorsyndrome"

c="mrs. jjjjjj" 3:53 3:54||t="people"

c="repeat left breast mammogram" 3:91 3:94||t="procedure"

c="she" 4:10 4:10||t="people"

c="breast stereotactic biopsy" 3:17 3:19||t="procedure"

c="six-month left breast mammogram" 6:2 6:5||t="procedure"

c="skin" 3:38 3:38||t="anatomicalsite"

c="i" 3:79 3:79||t="people"

c="skin" 5:20 5:20||t="anatomicalsite"

c="pain" 4:78 4:78||t="signorsymptom"

c="i" 4:52 4:52||t="people"

c="mrs. jjjjjj" 3:2 3:3||t="people"

c="i" 3:0 3:0||t="people"

c="clinical breast exam" 6:7 6:9||t="procedure"

c="the radiology department" 4:29 4:31||t="people"

c="microcalcifications" 5:26 5:26||t="diseaseorsyndrome"

c="her" 4:68 4:68||t="people"

c="microcalcifications" 3:44 3:44||t="diseaseorsyndrome"

c="the stereotactic biopsy" 3:10 3:12||t="procedure"

c="mrs. jjjjjj" 4:56 4:57||t="people"

c="benign breast parenchyma" 3:34 3:36||t="anatomicalsite"

c="the patient" 3:13 3:14||t="people"

c="painful" 4:17 4:17||t="signorsymptom"

c="mrs. jjjjjj" 3:82 3:83||t="people"

c="which" 3:74 3:74||t="none"

c="that appointment" 3:102 3:103||t="other"
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C.1. Data set for concept identification (Chapter 5)

c="skin" 12:20 12:20||t="anatomicalsite"

c="i" 4:65 4:65||t="people"

c="i" 3:50 3:50||t="people"

c="stereotactic biopsy" 5:3 5:4||t="procedure"

c="clinical breast examination" 3:96 3:98||t="procedure"

c="the stereotactic biopsy" 4:6 4:8||t="procedure"

c="we" 3:99 3:99||t="people"

c="she" 4:19 4:19||t="people"

c="benign breast parenchyma" 12:16 12:18||t="anatomicalsite"

c="mrs. jjjjjj" 4:0 4:1||t="people"

c="i" 4:24 4:24||t="people"

c="the biopsy" 3:68 3:69||t="procedure"

c="her" 3:105 3:105||t="people"

c="she" 3:85 3:85||t="people"

c="we" 4:38 4:38||t="people"

c="microcalcifications" 12:26 12:26||t="diseaseorsyndrome"

As shown in the example above, the string ‘benign breast parenchyma’ occurring on line

5, words 16-18 of the plain-text report should be annotated by the system as AnatomicalSite

to count as a match with the ground-truth concepts (where a word is determined in the

plain-text input as a character string delimited by non-word character such as white space

or punctuation). Below is the (anonymised) plain-text document that accompanies this

concept file.

I telephoned Mrs. JJJJJJ today to deliver the results of the stereotactic biopsy.

The patient underwent left breast stereotactic biopsy at the 3 o’clock and

9 o’clock position. The pathology report demonstrates fragments of benign

breast parenchyma and skin showing features of a fibroadenoma. Microcal-

cifications were present in the specimen. I have reassured Mrs. JJJJJJ that

there was no evidence on stereotactic biopsy of a breast malignancy. Rather,

the biopsy is consistent with fibroadenoma, which is a benign process. I have
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C. Examples of gold standard, ‘ground truth’ labelled data sets

advised Mrs. JJJJJJ that she should return in six-months for repeat left breast

mammogram and clinical breast examination. We will schedule that appoint-

ment for her. Mrs. JJJJJJ was quite upset about the stereotactic biopsy

procedure. She reports that the procedure was extremely painful and she was

given minimal anesthesia. I will discuss this with the radiology department to

see if there is anything we can do in the future to minimize the pain associated

with this procedure. I have also provided Mrs. JJJJJJ with a prescription for

Percocet, 10 tablets. I have advised her to take 1-2 tablets every six hours

as-needed for pain. #1 Left breast stereotactic biopsy at the 3 o’clock and

9 o’clock position demonstrating fragments of benign breast parenchyma and

skin showing features of a fibroadenoma. Microcalcifications were present in

the specimen. #2 Advised six-month left breast mammogram and clinical

breast exam

C.2. Data set for identification and expansion of abbreviations

(Chapter 7)

As described in Chapter 7, the BioText ‘yeast’ corpus consisted of a plain text file of 1000

MedLine abstracts, in which abbreviations and their expansions are delimited by <Short>

and <Long> tags, respectively. Matching id attribute values connect long form–short form

pairs, as shown in the extract below.

The <Long id="120">yeast cadmium factor</Long> (<Short id="120">Ycf1p</Short>)

is a vacuolar <Long id="121">ATP binding cassette</Long>

(<Short id="121">ABC</Short>) transporter required for heavy metal

and drug detoxification. Cluster analysis shows that Ycf1p is strongly

related to the human <Long id="122">multidrug-associated protein</Long>

(<Short id="122">MRP1</Short>) and cystic fibrosis transmembrane

conductance regulator and therefore may serve as an excellent

model for the study of eukaryotic ABC transporter structure

300



C.3. Data set for event and temporal relation identification (Chapter 5)

and function. ...

Thirteen intragenic second-site suppressors were identified for

the D777N mutation which affects the invariant Asp residue in

the Walker B motif of the <Long id="123">first nucleotide binding

domain</Long> (<Short id="123">NBD1</Short>). Two of the suppressor

mutations (V543I and F565L) are located in the <Long id="124">

first transmembrane domain</Long> (<Short id="124">TMD1</Short>),

nine (A1003V, A1021T, A1021V, N1027D, Q1107R, G1207D, G1207S, S1212L,

and W1225C) are found within TMD2, one (S674L) is in NBD1, and

another one (R1415G) is in NBD2, indicating either physical proximity

or functional interactions between NBD1 and the other three domains.

C.3. Data set for event and temporal relation identification

(Chapter 5)

In contrast to the multiple input files for each report provided by the developers of the

concept and coreference identification corpora (see Section C.1 above and Section C.4

below), a single input file for each report was provided for the event and temporal relation

identification task. Here, the EVENT and TIMEX3 tags point to concept boundary start and

end character offsets, label (via the type attribute), and label feature values for modality,

polarity, normalised value and modifier.

<ClinicalNarrativeTemporalAnnotation>

<TEXT><![CDATA[

Admission Date :

02/19/1993

Discharge Date :

02/25/1993

HISTORY OF PRESENT ILLNESS :
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C. Examples of gold standard, ‘ground truth’ labelled data sets

This is an 72-year-old who presented with postmenopausal spotting and had

an endometrial biopsy which was read at the Etearal Etsystems/

Hospital as showing grade I adenocarcinoma .

Accordingly she presents for operative therapy at this time .

HOSPITAL COURSE :

The patient was brought to the Operating Room on 2-19-91 where she had an

exploratory laparotomy , TAH / BSO , and omental biopsy .

She had a normal abdominal exploration of a small uterus with superficial in-

vasion on gross examination , normal ovaries .

Washings were sent .

A subfascial J-P was left .

The patient did well postoperatively and had a regular diet by the third post-

operative day .

Subfascia drain was discontinued .

The patient &apos;s postoperative Hct was 34 .

]]></TEXT>

<TAGS>

<EVENT id="E0" start="1" end="10" text="Admission" modality="FACTUAL"

polarity="POS" type="OCCURRENCE" />

<EVENT id="E2" start="113" end="122" text="presented" modality="FACTUAL"

polarity="POS" type="OCCURRENCE" />

<EVENT id="E3" start="128" end="151" text="postmenopausal spotting"

modality="FACTUAL" polarity="POS" type="PROBLEM" />

<EVENT id="E4" start="160" end="181" text="an endometrial biopsy" modal-

ity="FACTUAL" polarity="POS" type="TEST" />

<EVENT id="E5" start="192" end="196" text="read" modality="FACTUAL"

polarity="POS" type="EVIDENTIAL" />

<EVENT id="E6" start="200" end="231" text="the Etearal Etsystems/ Hos-

pital" modality="FACTUAL" polarity="POS" type="CLINICAL_DEPT" />
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C.3. Data set for event and temporal relation identification (Chapter 5)

<EVENT id="E7" start="235" end="242" text="showing" modality="FACTUAL"

polarity="POS" type="EVIDENTIAL" />

<EVENT id="E8" start="243" end="265" text="grade I adenocarcinoma" modal-

ity="FACTUAL" polarity="POS" type="PROBLEM" />

<EVENT id="E9" start="284" end="292" text="presents" modality="FACTUAL"

polarity="POS" type="OCCURRENCE" />

<EVENT id="E1" start="29" end="38" text="Discharge" modality="FACTUAL"

polarity="POS" type="OCCURRENCE" />

<EVENT id="E10" start="297" end="314" text="operative therapy" modal-

ity="FACTUAL" polarity="POS" type="TREATMENT" />

<EVENT id="E11" start="375" end="393" text="the Operating Room" modal-

ity="FACTUAL" polarity="POS" type="CLINICAL_DEPT" />

<EVENT id="E12" start="419" end="444" text="an exploratory laparotomy"

modality="FACTUAL" polarity="POS" type="TEST" />

<EVENT id="E13" start="447" end="456" text="TAH / BSO" modality="FACTUAL"

polarity="POS" type="TREATMENT" />

<EVENT id="E14" start="463" end="477" text="omental biopsy" modality="FACTUAL"

polarity="POS" type="TEST" />

<EVENT id="E15" start="488" end="518" text="a normal abdominal explo-

ration" modality="FACTUAL" polarity="POS" type="TEST" />

<EVENT id="E25" start="497" end="518" text="abdominal exploration" modal-

ity="FACTUAL" polarity="POS" type="TEST" />

<EVENT id="E17" start="542" end="562" text="superficial invasion" modal-

ity="FACTUAL" polarity="POS" type="TEST" />

<EVENT id="E16" start="566" end="583" text="gross examination" modal-

ity="FACTUAL" polarity="POS" type="TEST" />

<EVENT id="E18" start="603" end="611" text="Washings" modality="FACTUAL"

polarity="POS" type="TEST" />

<EVENT id="E19" start="617" end="621" text="sent" modality="FACTUAL"
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C. Examples of gold standard, ‘ground truth’ labelled data sets

polarity="POS" type="OCCURRENCE" />

<EVENT id="E20" start="624" end="640" text="A subfascial J-P" modal-

ity="FACTUAL" polarity="POS" type="TREATMENT" />

<EVENT id="E21" start="668" end="672" text="well" modality="FACTUAL"

polarity="POS" type="OCCURRENCE" />

<EVENT id="E22" start="697" end="711" text="a regular diet" modality="FACTUAL"

polarity="POS" type="OCCURRENCE" />

<EVENT id="E23" start="745" end="760" text="Subfascia drain" modal-

ity="FACTUAL" polarity="POS" type="TREATMENT" />

<EVENT id="E24" start="814" end="817" text="Hct" modality="FACTUAL"

polarity="POS" type="TEST" />

<TIMEX3 id="T0" start="18" end="28" text="02/19/1991" type="DATE"

val="1991-02-19" mod="NA" />

<TIMEX3 id="T2" start="318" end="327" text="this time" type="DATE"

val="1991-02-19" mod="NA" />

<TIMEX3 id="T3" start="397" end="404" text="2-19-91" type="DATE" val="1991-

02-19" mod="NA" />

<TIMEX3 id="T1" start="46" end="56" text="02/25/1991" type="DATE"

val="1991-02-25" mod="NA" />

<TIMEX3 id="T4" start="715" end="742" text="the third postoperative day"

type="DATE" val="1997-02-22" mod="NA" />

</TAGS>

</ClinicalNarrativeTemporalAnnotation>

C.4. Data set for coreference resolution (Chapter 8)

Chains of co-referring terms from the concept boundary and classification ground-truth

data (see Section C.1) were provided as a separate file for each clinical report. The ‘chains’

file for the example report and concepts file given in Section C.1 is shown in the extract
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C.4. Data set for coreference resolution (Chapter 8)

below.

c="I" 3:0 3:0||c="I" 3:50 3:50||c="I" 3:79 3:79||c="I" 4:24 4:24

||c="the radiology department" 4:29 4:31||c="we" 4:38 4:38

||c="we" 4:38 4:38||c="I" 4:52 4:52||c="I" 4:65 4:65||t="coref people"

c="painful" 4:17 4:17||c="pain" 4:78 4:78||t="coref signorsymptom"

c="repeat left breast mammogram" 3:91 3:94

||c="clinical breast examination" 3:96 3:98

||c="that appointment" 3:102 3:103

||c="six-month left breast mammogram" 6:2 6:5

||c="clinical breast exam" 6:7 6:9

||t="coref procedure"

c="skin" 3:38 3:38||c="skin" 5:20 5:20||c="skin" 12:20 12:20

||t="coref anatomicalsite"

c="Mrs. JJJJJJ" 3:2 3:3||c="The patient" 3:13 3:14

||c="Mrs. JJJJJJ" 3:53 3:54

||c="Mrs. JJJJJJ" 3:82 3:83||c="she" 3:85 3:85

||c="her" 3:105 3:105

||c="Mrs. JJJJJJ" 4:0 4:1||c="She" 4:10 4:10||c="she" 4:19 4:19

||c="Mrs. JJJJJJ" 4:56 4:57||c="her" 4:68 4:68||t="coref people"

c="fibroadenoma" 3:73 3:73||c="which" 3:74 3:74

||t="coref diseaseorsyndrome"

c="Microcalcifications" 3:44 3:44||c="Microcalcifications" 5:26 5:26

||c="Microcalcifications" 12:26 12:26||t="coref diseaseorsyndrome"

c="the stereotactic biopsy" 3:10 3:12

||c="breast stereotactic biopsy" 3:17 3:19

||c="stereotactic biopsy" 3:61 3:62||c="the biopsy" 3:68 3:69

||c="the stereotactic biopsy" 4:6 4:8||c="the procedure" 4:13 4:14

||c="stereotactic biopsy" 5:3 5:4

||c="stereotactic biopsy" 12:3 12:4||t="coref procedure"
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C. Examples of gold standard, ‘ground truth’ labelled data sets

c="benign breast parenchyma" 3:34 3:36

||c="benign breast parenchyma" 5:16 5:18

||c="benign breast parenchyma" 12:16 12:18||t="coref anatomicalsite"

As shown in this extract, concepts of ‘repeat left breast mammogram’, ‘clinical breast

examination’, ‘that appointment’, ‘six-month left breast mammogram’ and ‘clinical breast

exam’, occurring at the corresponding line/word offsets in the plain text of the report,

were considered by the human annotators to refer to the same Procedure event, so the

system output should aim to match this.
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