

City, University of London Institutional Repository

Citation: Huang, F. & Strigini, L. (2018). Predicting Software Defects Based on Cognitive

Error Theories. Paper presented at the 2018 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), 15-18 Oct 2018, Memphis, USA. doi:
10.1109/issrew.2018.00-16

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/21415/

Link to published version: https://doi.org/10.1109/issrew.2018.00-16

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Predicting Software Defects based on Cognitive Error Theories

Fuqun Huang
Institute of Interdisciplinary Scientists

 Seattle, WA 98105, USA
huangfuqun@insins.org

Lorenzo Strigini
City, University of London
London, EC1V 0HB, UK

strigini@csr.city.ac.uk

Abstract—As the primary cause of software defects, human

error is the key to understanding and perhaps to predicting and
preventing software defects. However, little research has been
done to forecast software defects based on defects’ cognitive
nature. This paper proposes an idea for predicting software
defects by applying the current scientific understanding of
human error mechanisms. This new prediction method is based
on the main causal mechanism underlying software defects: an
error-prone scenario triggers a sequence of human error modes.
Preliminary evidence for supporting this idea is presented.

Keywords—software defect prediction; human errors; cognitive
errors; defect prevention; causal analysis

I. INTRODUCTION
Software defect prediction plays a significant role in

software engineering by forecasting error-prone program
locations and providing guidance for risk control techniques
such as software testing. It seems intuitively true that if we can
accurately predict an adverse event, we can also effectively
prevent it. However, this expectation has not yet been met by
the existing software defect prediction approaches, though
many have been proposed over the last 45 years [1-5].

The predictors used in the existing defect prediction models
can be categorized into three groups: program metrics, testing
metrics, and development process metrics [1]. These predictors
are then related to defect density by various methods, which
have been evolving from simple correlative functions [2] to
multivariate approaches such as regression analysis [3], data
mining [4] and machine learning algorithms [5]. Despite
significant progress in these models, the relations they identify
are about correlation rather than causality. The causal
mechanisms underlying software defects are not examined in
detail. As a result, the current fault prediction models can only
provide outputs like “module A is more likely to contain
defects than module B”; they are unable to predict the exact
location and form of a software defect, which could allow
focused and effective preventive actions.

As the primary cause of software defects, human error is
the key to predicting and preventing software defects.
Programming is a special type of writing, conducted by
programmers [6]; software defects are by nature the
manifestations of cognitive errors of individual software
practitioners and/or of miscommunication between software
practitioners [7, 8]. However, a theory is missing on how
software defects are introduced by cognitive error mechanisms,
and how we can use this theory to predict software defects.

This paper proposes to predict software defects through a
deep understanding of cognitive error mechanisms. While
current prediction methods mostly suggest software modules to

which special attention should be dedicated (especially in
testing, or sometimes in reorganizing design before coding) as
especially defect-prone, the proposal here is for ways to predict
specific kinds of defects at specific steps in programs, and thus
to recommend amendments to specifications, or focused
checks in code inspection, or test cases.

II. COGNITIVE ERROR MODEL OF SOFTWARE DEFECTS
The cognitive error model of software defect describes how

a software defect is caused by human errors (Fig.1). The model
includes the main causal factors that determine a human error
[9]: the nature of the task (including both its content – what is
to be programmed – and its representation – how this is
described to the person who must perform the task), the nature
of the programmer (mainly his/her current available knowledge
base [10]), and human error modes, which are the general
mechanisms governing humans’ erroneous cognitive
performance.

A human error mode is a particular pattern of erroneous
human behavior that recurs across different activities, due to
the cognitive weakness shared by all humans, e.g., applying
"strong-but-now-wrong" rules [9].

To predict an error, the nature of the task and individual
should be analyzed together, because these two factors interact.
For instance, the same task could be easy for one person but
difficult for another person. This integrated feature of a task
and a human individual is modeled by a “scenario”. More
specifically, an error scenario is the set of circumstances under
which an error is committed. A scenario contains not only the
exterior conditions surrounding an individual (e.g. the content
and representation formats of the task), but also the interior
cognitive conditions relevant to individual’s performance, e.g.
his/her knowledge relevant to the performance.

The mechanism underlying a software defect is that the
scenario has triggered a set of human error modes. Some
defects can be caused by a single mechanism, while others may
be introduced by a combination of several mechanisms.

Figure 1. A cognitive error model of software defects

In summary, error mode describes “why” a defect is
introduced; error scenario concerns “when” (under what
circumstances) a defect is introduced; error mechanism
integrates all the aspects of “how” a defect is introduced.

Scenario A
Task (software
requirement)

Representation
forms

Content (e.g.
functionality)

Knowledge base
of the programmer

Scenario B

Human error
mode 1

Trigger

Human error
mode 2

Trigger

Scenario N Human error
mode 3

Trigger

Manifest as

Software defect 1
Location

Form

Manifest as

Software defect 2
Location

Form

Has a
conditions of

Has conditions
of

III. PREDICTING THE EXACT LOCATIONS AND FORMS OF
SOFTWARE DEFECTS

Based on the cognitive error model described above,
software defects can then be predicted through identifying in
the current programming context (e.g., a program
specification) general conditions that are likely to trigger
human error modes--the erroneous patterns that psychologists
have observed to recur across diverse activities [9, 11].

Some suggestive evidence for the potential of this form of
prediction comes from an error reported in [12]. A “post-
completion error” scenario triggered many programmers to
introduce the same defect in the same form at the same
location. "Post-completion error" is an error pattern whereby
one tends to omit a sub-task that should be carried out at the
end of a task but is not a necessary condition for the
achievement of the task's main goal [11]. The general
conditions that trigger a post-completion error are described in
the left side of Figure 2.

Figure 2. Example evidence supporting the proposed defect prediction idea.

A programming task called the “Jiong” problem (described
on the right-hand part of Figure 2) was presented to student
programmers in a programming contest. In its specification, the
experimenter recognized a task feature likely to trigger a “post-
completion error” mode. To complete the “jiong” problem, a
programmer first needed to calculate the structure of a “jiong”
using a recursion or iteration algorithm (mapping to the main
subtask TA.1 on the left side of Fig.2), and then print a blank
line after the word (mapping to TA.2 on the left side of Fig.2).

23 out of 55 (41.8%) programmers committed the error of
“forgetting to print a blank line after each word”, in the same
way as observed by psychologists in other tasks. It is notable
that “printing a blank line” is a very simple sub-task and was
explicitly specified in the requirement; this requirement would
be most unlikely to lead to a defect according to traditional
prediction models; but in fact, more programmers made a
mistake at this program location than at any other locations,
and amazingly in the same way.

This case shows that once a scenario matches the general
conditions that tend to trigger a human error mode, it indeed
appears to provoke programmers to introduce the
corresponding defect, in the form and location expected.
Therefore, it suggests that software defects can be predicted by
identifying the scenarios that tend to trigger human error
modes. This kind of evidence is of course very preliminary. A
comprehensive case study will be presented in our forthcoming
journal article.

IV. DISCUSSIONS AND CONCLUSION
This paper proposed the idea of predicting software defects

based on defects’ cognitive nature. Compared to traditional
prediction models that provide a relative likelihood that a
program module may contain defects, the proposed idea
emphasizes predicting the exact location and form of a possible
defect through identifying scenarios that tend to trigger human
error modes. The preliminary evidence shows that this idea is
achievable.

The proposed approach to prediction can be highly
rewarding in software engineering because if the location and
form of the likely defect are predicted, one can prevent the
defect in a real sense. Huang’s previous study [13] suggests
that systematic instruction on human error is beneficial to
programmers’ ability to prevent defects; however, how to
relate a programmer’s general knowledge of human errors to
his/her task at hand remains a challenge. The proposed method
is a prime candidate for addressing this challenge.

Future studies will be needed to extract more human error
modes, represent the general conditions that tend to trigger
these error modes, and design a practical scenario analysis
method for identifying the features of tasks and programmers
that tend to introduce software defects. Most importantly, the
proposed approach of defect prediction would find its place as
a technique for debugging specifications, and studies will be
needed to show whether it will outperform or enhance the
effectiveness of other methods for specification inspection.

REFERENCES
[1] N. E. Fenton and M. Neil, "A Critique of Software Defect

Prediction Models," IEEE Trans. Software Engineering, vol. 25,
pp. 675-689, 1999.

[2] F. Akiyama, "An Example of Software System Debugging,"
Information Processing, vol. 71, pp. 353-379, 1971.

[3] N. Nagappan and T. Ball, "Use of relative code churn measures to
predict system defect density," in 27th International Conference
on Software Engineering, 2005, pp. 284-292.

[4] T. Menzies, J. Greenwald, and A. Frank, "Data mining static code
attributes to learn defect predictors," Software Engineering, IEEE
Transactions on, vol. 33, pp. 2-13, 2007.

[5] K. O. Elish and M. O. Elish, "Predicting defect-prone software
modules using support vector machines," Journal of Systems and
Software, vol. 81, pp. 649-660, 2008.

[6] G. M. Weinberg, The Psychology of Computer Programming:
VNR Nostrand Reinhold Company, 1971.

[7] F. Détienne, Software design - cognitive aspects. New York, NY,
USA: Springer-Verlag New York, Inc., 2002.

[8] F. Huang, B. Liu, and B. Huang, "A Taxonomy System to Identify
Human Error Causes for Software Defects," in The 18th
international conference on reliability and quality in design,
Boston, USA, 2012, pp. 44-49.

[9] J. Reason, Human Error. Cambridge, UK: Cambridge University
Press, 1990.

[10] F. Huang, B. Liu, and Y. Wang, "Review of Software Psychology
(in Chinese)," Computer Science, vol. 40, pp. 1-7, 2013.

[11] M. D. Byrne and S. Bovair, "A working memory model of a
common procedural error," Cognitive science, vol. 21, pp. 31-61,
1997.

[12] F. Huang, B. Liu, Y. Song, and S. Keyal, "The links between
human error diversity and software diversity: Implications for fault
diversity seeking," Science of Computer Programming, vol. 89,
Part C, pp. 350-373, 2014.

[13] F. Huang and B. Liu, "Software defect prevention based on human
error theories," Chinese Journal of Aeronautics, vol. 30, pp. 1054-
1070, 2017.

Post-Completion Error

SUPPOSE Task A ={ Task A.1, Task A.2} ;

IF <Task A.1 is the main subtask>
 AND
 <Task A.2 is not a necessary condition
 to Task A.1>
 AND

<Task A.2 is the last step of Task A >;

THEN Humans tend to omit Task A.2.

The —Jiong“ programming task
Print a series of the Chinese word
—jiong“ at any nth nested structure
(1≤n≤7), and print a blank line after
each word.
Example output for a group of three
words (n=1, 2, 3, respectively):

＋ḅ ḅ ḅ ḅ ḅ ḅ ḅ ḅ ḅ ḅ ḅ ḅ ḅ ḅ ＋
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ ḷ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ ＋ḅ ḅ ḅ ḅ ḅ ḅ ＋Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ ＋ḅ ḅ ＋Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
＋ḅ ḅ ḅ ＋ḅ ＋ḅ ḅ ＋ḅ ＋ḅ ḅ ḅ ＋

＋ḅ ḅ ḅ ḅ ḅ ḅ ＋
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḷ Ḑ Ḑ ḷ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ ＋ḅ ḅ ＋Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
＋ḅ ＋ḅ ḅ ＋ḅ ＋

＋ḅ ＋
Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḷ Ḑ ḷ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḷ Ḑ ḷ Ḑ Ḑ
Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ ＋ḅ ḅ ḅ ḅ ḅ ḅ ḅ ḅ ḅ ḅ ḅ ḅ ḅ ḅ ＋Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ ＋ḅ ḅ ḅ ḅ ḅ ḅ ＋Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḷ Ḑ Ḑ ḷ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ
Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ ＋ḅ ḅ ＋Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ Ḑ
Ḑ Ḑ
Ḑ Ḑ
＋ḅ ḅ ḅ ḅ ḅ ḅ ḅ ＋ḅ ḅ ḅ ＋ḅ ＋ḅ ḅ ＋ḅ ＋ḅ ḅ ḅ ＋ḅ ḅ ḅ ḅ ḅ ḅ ḅ ＋

√√

√√

√√

