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Abstract—We present a novel scheme for continuous face authenti-
cation using mobile device cameras that addresses the issue of spoof
attacks and attack windows in state-of-the-art approaches. Our scheme
authenticates a user based on extracted facial features. However, unlike
other schemes that periodically re-authenticate a user, our scheme
tracks the authenticated face and only attempts re-authentication when
the authenticated face is lost. This allows our scheme to eliminate attack
windows that exist in schemes authenticating periodically and immedi-
ately recognise impostor usage. We also introduce a robust liveness de-
tection component to our scheme that can detect printed faces and face
videos. We describe how the addition of liveness detection enhances
the robustness of our scheme against spoof attacks, improving on state-
of-the-art approaches that lack this capability. Furthermore, we create
the first dataset of facial videos collected from mobile devices during
different real-world activities (walking, sitting and standing) such that our
results reflect realistic scenarios. Our dataset therefore allows us to give
new insight into the impact of user activity on facial recognition. Our
dataset also includes spoofed facial videos for liveness testing. We use
our dataset alongside two benchmark datasets for our experiments. We
show and discuss how our scheme improves on existing continuous face
authentication approaches and efficiently enhances device security.

Index Terms—continuous authentication, face recognition, face track-
ing, liveness detection, biometrics

1 INTRODUCTION

Mobile devices are one of the most widely used technologies
of our time, requiring users to store private and personal
information to use features and applications. Whilst many
devices incorporate a variety of security mechanisms such as
a PIN, password, or pattern, recent research has shown that
such security mechanisms are susceptible to a variety of forgery
attacks, such as the smudge attack [1]. Additionally, such
mechanisms are intrinsically limited in that they provide only
inconvenient and one-time authentication; the user explicitly
authenticates once for entire device access. These mechanisms
for authentication leave the device vulnerable to attacks if it is
left unlocked by the genuine user.

Recent research in mobile device security has sought to
alleviate the issues with traditional security mechanisms by
proposing continuous authentication (also known as active
authentication) techniques [2]. These techniques typically col-
lect biometric data from the device during use and compares
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the data to a user profile. Collected biometrics are either be-
havioural (e.g.: touch-screen gestures) or physiological (e.g.: fin-
gerprint) [3]. Physiological biometrics often yield better results
because they are not as susceptible to change. For this reason,
facial recognition in continuous authentication schemes is an
active research area.

Using transparently captured faces from mobile devices to
authenticate was first proposed in studies such as [4] and [5].
Since then, however, the quality of cameras and computational
power in devices has made facial recognition more feasible.
Industry also has an interest in mobile face recognition with
Google incorporating Smart Lock1 into Android and Apple
announcing FaceID for iPhone2. These approaches, however,
use facial recognition in a one-time authentication process.

State-of-the-art research into continuous facial authentica-
tion sees schemes proposed that periodically (e.g.: every 30
seconds) capture facial images and authenticate them [6]. Such
schemes leave windows of attack and can be seen as more
periodic than continuous. Conversely, schemes that authenti-
cate each available frame are computationally inefficient. Fur-
thermore, state-of-the-art studies achieve results for robustness
against attacks by testing the system using impostor faces
only [7] and do not account for the possibility of facial spoof
attacks [8]. We also find that such schemes do not account for
variety in user activity during face recognition; a crucial area of
exploration for real-world systems.

The main focus of this paper is producing novel compo-
nents that form a facial authentication scheme that mitigates
spoof attacks, properly continuously authenticates (rather than
periodically) and provides insight into facial recognition in real-
world scenarios. Our approach uses features extracted from
a detected face to verify the liveness. We show the results of
our face recognition approach on faces collected from different
illumination conditions and different activities. We mitigate at-
tack windows and improve efficiency by tracking authenticated
faces rather than re-authenticating in subsequent video frames.
The contributions of this paper are therefore threefold:

• We create a liveness detection component for use in con-
tinuous authentication schemes. It provides mitigation
against 2D spoof attacks using printed faces or videos
played in front of a mobile device camera. We test our
liveness detection on different facial attributes.

1. https://support.google.com/nexus/answer/6093922
2. https://www.apple.com/iphone-x/
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• We present a new facial recognition scheme and experi-
ment with different facial attributes, different attribute
sizes, different classification techniques and different
datasets. Our results uniquely show and explain face
recognition scores during different user activities.

• We propose and show the effectiveness of a tracking
algorithm for ensuring that the face authenticated is the
user currently using the device. We show how this novel
enhancement can efficiently and consistently maintain
security after the user is authenticated.

In Section 2, we briefly summarise the previous work related
to our study. Section 3 presents the general idea for our system
and describes our novel approach to continuous authentication.
Section 4 describes the experiments we performed on our sys-
tem and discusses the results we obtained. Section 5 concludes
our research and Section 6 discusses the future work that can
be derived from our system.

2 RELATED WORK AND MOTIVATION

Research into continuous authentication on mobile devices has
attracted a lot of academic interest recently due to the added
security concerns of devices. Sensors on mobile devices have
led to schemes proposing a variety of biometrics for authen-
tication, including touchscreen gestures [9], keystrokes [10],
accelerometer data [11], location [12], facial features [13] and
combinations of modalities [14].

The concept of face and facial feature authentication on
mobile devices was first demonstrated in several earlier studies.
In [5] the authors present a continuous authentication scheme
on older Nokia N90 mobile devices. They used local binary
patterns (LBP) [15] and skin tones from faces that were detected
using the Viola-Jones detection technique [16]. Authentication
rates of up to 96% were achieved. The researchers in [4] propose
a transparent facial recognition scheme for mobile devices.
They test a variety of different facial recognition algorithms
and show that accuracy is increased when facial orientation
is considered. However, the datasets used in these studies are
limited because they do not consider user activity.

Advances in continuous facial authentication use improved
mobile sensors and computational power to enhance accuracy
and performance. In [6] the authors periodically collect faces
with gyroscope, accelerometer and magnetometer data. They
use the collected sensor data to align the face image to a
neutral pose. The alignment method improved recognition
performance by 6%. Results show that 96% of genuine users
were never locked out during testing and 89% of impostors
were detected within 2 minutes. Though the scheme achieves
good accuracy, it only authenticates once every 30 seconds
and little consideration is given to the potential attack window
that this creates (in which an impostor could use the device).
Furthermore, the dataset they use does not contain faces from
different activities and thus their results lack realism.

Researchers in [13] present the results of different facial
recognition algorithms (e.g.: Eigenfaces and Fisherfaces) on
their own publicly available dataset containing videos of users
collected on mobile devices in different illumination conditions.
The study extracts the eyes, nose and mouth of faces for recog-
nition. Results show that the different illumination conditions
have a detrimental effect on the accuracy. However, the study
does not include liveness detection which leaves it vulnerable
to spoof attacks. Furthermore, the study recommends a data
collection period of 10 seconds, creating a viable attack window.

In [17] the authors present a continuous facial attribute
authentication scheme. Their scheme trains a set of Support

Vector Machine (SVM) [18] classifiers on different facial char-
acteristics (e.g.: moustache) such that they can produce a list
of facial attribute scores for facial recognition. The authors
show that their approach improves on the popular whole-face
LBP method for facial recognition. However, no consideration
is given to spoof attacks or captured faces during different
user activities which reduces the practicality of the scheme.
Additionally, authentication is done for each available frame
which adds continuous requires computational overhead.

The facial part of [19] presents a scheme that uses a gen-
eralized version of multivariate low-rank regression for recog-
nition. The scheme shows how combined individual areas of
the face can achieve better recognition results than whole face
or any one of the facial areas alone. When using all facial
areas, they achieve accuracy results of 95.07%. The scheme,
however, does not address minimizing attack windows or
detecting spoof attacks. In the facial component of the contin-
uous authentication scheme presented in [20], the researchers
capture and authenticate a face when a touch-screen interaction
occurs. Upon capturing a face, the eyes, nose and mouth were
extracted. Histograms of oriented gradients (HOG) [21] were
extracted and classified by 1 to 3 classifiers in a stacked clas-
sification scheme. The facial scheme achieves equal error rates
(EER) as low as 4.76%. As with other related work, however,
consideration was not given to attack windows between face
collection or to the potential of spoof attacks.

Spoof attacks on mobile devices are a popular way to bypass
the security mechanisms. To alleviate facial spoof attacks there
have been investigations into techniques to detect spoofed
faces. In [22] the authors collect a dataset of spoofed faces and
present a mobile spoof detection framework that uses different
intensity channels, different image regions and different feature
descriptors to detect printed faces, videos and 3D masks. In
the spoof detection scheme in [23] the authors collect spoofing
attacks for PC and mobile devices. They propose a face spoofing
detection algorithm based on Image Distortion Analysis (IDA).
They use specular reflection, blurriness, chromatic moment and
colour diversity as features extracted to form the IDA feature
vector. Multiple SVM classifiers are then trained to detect
different types of spoof attacks. However, a liveness detection
component has not yet been proposed for continuous authenti-
cation contexts leaving state-of-the-art schemes vulnerable.

Object tracking is an area of computer vision that has been
used to track faces. In [24] the authors use the Kanade-Lucas-
Tomasi (KLT) to track faces. The authors show that their scheme
can robustly track facial images even in cluttered backgrounds.
In [25] the authors use a commercial eye detector and tracker
in an iris recognition scheme achieving an EER of 11%. The
literature on tracking, however, shows a lack of application on
continuous face authentication schemes on mobile devices.

Based on the related work discussed we have identified
areas that have not yet been explored alongside continuous
facial authentication. Most schemes focus on scheme design
and lack suitable realism or attack mitigation. We identify a
lack of liveness detection within the continuous authentication
context. Furthermore, we identify a lack of facial recognition
components applied to realistic face data collected for different
activities (e.g.: walking). Lastly, we see that there is a lack of
research into truly continuous schemes that track the genuine
user rather than only authenticate periodically.

3 CONTINUOUS FACE AUTHENTICATION

Here, we present our novel continuous facial recognition frame-
work that enhances accuracy and robustness. We describe the
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general concept, our data capture process, the flow and pro-
cessing of data and how the classification setup we construct
allows us to authenticate a face.

3.1 General Idea
This study introduces a novel scheme to continuously au-
thenticate user identity using facial characteristics from mobile
devices. We address a lack of realism and security concerns
identified in previous work. We hypothesize that a novel
continuous authentication scheme addressing these prevalent
issues can yield a more robust system and set a new and
important benchmark within this field.

Our proposed framework continually monitors video cap-
tured via a front-facing mobile device 2D-camera. Monitoring
begins when the user unlocks the device and continues until
the user ends the session by relocking the device. Frames
from the front-facing camera are captured during this process.
Each captured frame is adapted to make facial detection more
effective and efficient (e.g.: normalisation and frame padding).
If the face detection technique identifies a face in the frame, the
framework then fits a facial model with which facial landmarks
can be located. If no face is detected, the frames following
sequentially up-to a specified limit are searched for a face until
the user must explicitly re-authenticate (e.g.: with a PIN or
password).

Once key facial landmarks have been identified they are
extracted from the frame such that liveness detection may be
performed. Features from the facial attributes are extracted and
classified with a classifier trained on features from genuine and
spoofed photos and videos. If the classifier detects the face is
a spoof the user is locked out of the device. Facial attributes
from a detected face with defined landmarks that pass liveness
detection are extracted into separate feature images. Using well-
known image processing techniques, features from each of the
facial attributes are extracted into a feature vector. The feature
vectors for these facial attributes are concatenated to form a
feature vector representing the face. This feature vector can then
be classified against previously collected faces from the genuine
user using distance techniques.

When a face has been successfully authenticated we switch
to tracking mode. The authenticated face is continuously
tracked in subsequent video frames whilst the user uses the
device. During this period, no re-authentication takes place.
Only when the authenticated face being tracked is lost does
our framework initiate immediate re-authentication. The re-
authentication procedure follows the same described process
and begins the facial detection method. This framework is
shown in Figure 1.

3.2 Face Processing
Face Detection. To detect faces in video frames we use the
widely used Viola-Jones [16] algorithm. Whilst other techniques
for face detection exist, e.g.:, we use Viola-Jones due to its
relatively robust and efficient performance, making it compu-
tationally appropriate for mobile devices. We use the algorithm
provided in OpenIMAJ [26], a Java-implemented multimedia
analysis library. We build our scheme utilizing this library such
that the system can be constructed using the Java programming
language and thus making it possible to port the proof-of-
concept to Android devices.

Faces captured from the front facing camera on mobile de-
vices generally take up a significant portion of the frame which
can impede detection. We therefore add padding to the frame
by extending the width and height by continually repeating

Fig. 1: The framework of our proposed continuous facial au-
thentication scheme.

edge pixels (we discuss later the amount of padding applied).
We find padding improves on the amount of faces detected.
Additionally, as in [13], we set the minimum dimensions of
the facial detection window such that redundantly small areas
are not traversed and false positives are not as frequently
recognized as faces. We find a minimum window size of 25%
of the original frame width reduces the false positives and
enhances performance, as in [13].

Face Landmarking. Detected faces need landmarks to be
located such that facial attributes (e.g.: eyes) can be extracted.
To achieve this, we use a popular Constrained Local Model
(CLM) technique [27] provided in the OpenIMAJ library [26].
The CLM technique is passed an area in which a face has
been detected. The CLM technique then fits a non-rigid Point
Distribution Model (PDM) to the detected face. Landmarks
are iteratively optimised within subspaces using mean-shifts
and constrained to PDM shape limitations. The output of the
technique is a facial model in which the landmarks are aligned
to the face that was input. This technique was chosen due to
the accurate performance as well as its open implementation
availability.

Face Tracking. In order to track an authenticated face, we
use template matching performed in the frequency domain
using a fast Fourier transform. For efficiency, we select sub-
image search area, I , of our frame in which it is probable
the face will be located based on the previous frame. We
then scan the search area using template T , the face region
we identified in the previous frame. Each patch of I is
compared with template T using the normalised correlation
coefficient comparison method provided in [26]. A map of
comparison results for each overlap permutation in the image
I is computed by the following equation where w and h
represent the template T width and height respectively and
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x′ = 0...(w − 1) and y′ = 0...(h− 1).

R(x, y) =

∑
x′,y′ (T

′(x′, y′)× I ′(x+ x′, y + y′))√∑
x′,y′ T ′(x′, y′)

2 ×
∑

x′,y′ (x+ x′, y + y′)2
(1)

Given the comparison map for the template T applied to
image I we can identify the most likely location of the face in
the frame as the patch that gives the highest comparison score.
Given this image patch an attempt at recognising facial land-
marks, using the discussed CLM method, can be attempted.

We chose this technique because, despite the limitations
when scale and rotation adjusts, it is relatively fast and effec-
tive. Furthermore, we find that the spatial change of the face
between two video frames does not change enough to impede
our hypothesis that a face can be tracked in mobile device video
for a suitable time period.

Face Liveness Detection. There is a critical requirement
in continuous facial authentication schemes for a capable and
solid system to identify and avoid spoofing threats. In the
authentication process, it is important to distinguish between
genuinely live faces and spoofed faces to eliminate false access
to the device. The attacker can use printed faces and replayed
videos from other devices of the genuine user, both of which
have the same appearance and characteristics as the genuine
face and result in a high false positive rate in systems with-
out liveness detection. These false positive appearances make
the conventional authentication process unreliable. Therefore,
liveness detection (also known as spoofing detection) is an
important factor for continuous facial authentication schemes
on mobile devices [28]. Our focus in this paper is the liveness
detection against 2D face spoof attacks, such as printed photos
and video replays.

We analyse liveness detection using different facial regions
(the entire face, eyes, nose, and mouth regions) and employ
different textual features, namely LBP and HOG descriptors. As
discussed localisation for the face regions is performed using
the Viola-Jones method [16]. The attack set of facial videos
contains genuine live facial video as well as the spoofed videos
of printed faces and videos of faces displayed on device screens
(see Section 4.1 for full dataset descriptions). The detected face
patches from spoofed videos have an identifiable difference in
local features (such as local texture and local histogram infor-
mation) compared to face patches in genuine video images.

It has been widely proven that textural descriptors show
successful outcomes in discriminating between live images and
spoofed images in [29], [22] and [30]. The reflection gener-
ated from spoofing mediums like printed images and images
generated from screens of other devices is different than that
generated from real image faces. Moreover, printed face images
and those generated by others displayed on screen devices
usually contain artefacts and misrepresentation of colour and
contrast degradation, which can be discriminated by textural
descriptors.

As an example of textural description, we describe the
Local Binary Pattern (LBP) technique, in [31] and [32], which
measures surface texture by analysing micro-textural patterns
in the face images. For an image having a gp grey value of a
sampling point in an equally divided rounded neighbourhood
of P sampling points and radius R around point (xc, yc), the
LBPP ,R operator is defined as:

LBPP,R(xc, yc) =

p−1∑
p=0

s(gp − gc)2
p (2)

Where gc resembles the grey level of the centre pixel (xc, yc),
and s(z) is the thresholding step function.

s(z) =

{
1, if z ≥ 0
0, otherwise (3)

LBP provides features that permit higher accuracy for live-
ness detection, which makes it an appropriate candidate for
our liveness detection. Since textural characteristics of the live
face images and attack face images are different, the LBP can
therefore provide distinguishing features.

Our liveness detection method is based on single image
analysis, referred to as a static approach. However, it can still be
applied to a video sequence in the case where each video frame
is analysed separately. The findings in the literature show that
even this method can accomplish good performance with lower
computational time compared to other dynamic systems [28].

Finally, an SVM classifier is learned in the LBP feature space
for liveness detection. For a set of training data D = ((~xi), yi),
where each point is a pair of a vector point (~xi) ∈ Rd and a
class label yi ∈ {−1,+1} corresponding to it, the classification
function f(~x) can be expressed as:

f(~x) = sign(~wT~x+ b) (4)

Here, w and b are parameters of the classification function.
Our experimental results (see Section 4) demonstrate the effec-
tiveness of our liveness classification framework.

Our spoofing detection scenario is shown in Figure 2, where
we assume that a replayed video or a printed face picture is
presented to the authenticating camera (on a mobile device).
The figure shows the landmarking whole face, eyes, nose, and
mouth regions to extract textural features from these areas. The
SVM classifier is used to decide whether these features belong
to a genuine face or an attack face.

Face Warping. After facial landmarks have been fitted to the
face by the CLM technique and the face has been verified as live
we perform face warping. Face warping uses the detected facial
landmarks and uses them to form a warped version of the face
standardized by size and pose. Whilst various complex tech-
niques exist to account for extreme poses, as in [33] and [34],
we find that for faces captured using a front facing mobile
device camera the range of poses is limited due to the user
explicitly looking at the device. The constrained local model is
used to form triangles between the landmark points. In total
109 triangles are formed, each representing a patch of the face.
We use Delaunay triangulation, as in [35], to warp these facial
triangles to a standard pose. The effects of this facial warping
aspect of our framework can be seen in Figure 3. We posit
that this can help faces from different activities be recognised
despite potentially having minor pose variations.

4 EXPERIMENTAL RESULTS

In this section, we perform experiments on the proof-of-concept
components that form our proposed continuous facial authenti-
cation framework. We evaluate the performance and robustness
of our framework and assess facial recognition performance
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Fig. 2: This image shows the process taken to perform a face liveness detection test. In this scenario, the attacker has both a printed
picture of the genuine user and a picture on a mobile device of the genuine user.

Fig. 3: Warped and normalised facial results for faces that have
been detected in the CALF database from sitting (a), standing
(b) and walking (c) activities.

during different user activities and different illumination sce-
narios. We discuss the pre-processing stages, implementation
decisions, evaluation metrics and methodology for each exper-
iment. We discuss and explain the results of each experiment.

4.1 Datasets
CALF (City Activity and Liveness Faces) Dataset. The City
Activity and Liveness Faces Dataset is our dataset we have cre-
ated. We used a free and publicly available background camera
recorder application3 with 20 volunteers. Our dataset is the first
mobile faces dataset to contain data collected from different
activities in which devices may be used. These activities are
(1) sitting, (2) standing and (3) walking. The activities were
chosen to replicate the most common use scenarios for mobile
device users that could cause pose variation and consequently
impact authentication. Our dataset contains video data from
the front-facing camera for each user for these three different
activities. Each activity was repeated 3 times (so that 3-fold

3. https://play.google.com/store/apps/details?
id=com.kimcy929.secretvideorecorder

cross-validation can be performed on same session data) and
lasted more than 1 minute. This results in 9 videos for each par-
ticipant and 180 videos in total. In each session, the participant
was allowed to use the phone freely. We applied no constraints
on the users other than maintaining the session activity.

Using the videos collected from activity sessions we also
produce a dataset for liveness detection. This dataset is com-
prised of two spoof videos for each user. The first video is
collected using a printed screenshot of the users face from the
sitting scenario of the activity videos. The face is printed on
A4 paper and held in front of the front-facing camera of a
device of the same model as previously used and recorded for
30 seconds. The second video is collected using a live video of a
sitting scenario video played on a mobile device screen. One of
the two devices is held in front of the other such that the video
playing on the screen of one device can be recorded using the
front-facing camera of the other. As with the previous spoof
video, this recording lasts 30 seconds.

The CALF dataset was produced using Samsung Galaxy A3
(2016) mobile devices. The front-facing camera on these devices
records 1920×1080px videos at 30 frames per second.

UMDAA (University of Maryland Active Authentication)
Dataset. This dataset was released by the authors of [13] and [7]
and contains touchscreen gestures and face videos. The face
part of the dataset contains the videos of 50 different users
collected from the front-facing camera of the phone. The videos
in this dataset were recorded on an iPhone 5S. The front-
facing camera on this device records 1280×720 at 30 frames per
second. For each user, videos are collected as the user carries
out five tasks. These tasks are (1) enrolment, (2) document, (3)
picture, (4) popup and (5) scrolling. The enrolment task requires
the user to face the device and move their head up and down
to collect pose variations. The remaining four tasks require a
different form of touch interaction. The videos for each task are
collected in 3 different illumination conditions: (1) indoor-light,
(2) low-light, (3) natural-light. This benefits the realism of our
study because different illumination environments would be
expected in real-world scenarios. Our study, therefore, uses 750
face videos from this dataset.

MFSD (MSU Mobile Face Spoofing Database). The MFSD
dataset was used in the spoofing study in [23]. It is one of the
first datasets to include genuine and spoofed faces captured on
a mobile device. The dataset is publicly available and consists
of 280 video clips of photo and video attack attempts on 35
users. Two kinds of cameras were utilized as a part of collecting
this dataset 1) a built-in camera on a MacBook Air and 2) a
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front-facing camera in the Google Nexus 5 Android phone.
Genuine faces were captured using both the MacBook and the
Nexus camera. Spoofing attack videos were produced under
the same conditions as in genuine face capture sessions. The
dataset contains three types of spoof attacks: 1) high-resolution
replay video attacks using an iPad Air screen, using a video
captured on the MacBook and a video captured on the Nexus
device 2) mobile phone replay video attacks using an iPhone
5S screen, using a video captured on the MacBook and a video
captured on the Nexus device 3) printed photo attacks using
an A3 paper with fully-occupied printed photo of the user face,
using a face image captured on the MacBook and a face image
captured on the Nexus device. Examples of real accesses and
attacks from the MFSD database are shown in Figure 4.

4.2 Preprocessing

Regions containing faces or facial features are converted to
greyscale to allow 1-dimensional evaluation of pixel values.
Because of the different illumination conditions in the UMDAA
dataset we perform normalization on the images extracted for
facial recognition. This scales each pixel value between the
highest and the lowest possible value.

4.3 Verification Techniques

We evaluate the face recognition component of our scheme us-
ing three different verifiers that allow us to produce a similarity
score between a testing sample and collection of training sam-
ples. Our verification experiments use techniques that allow for
anomaly detection as in [36] and [10]. We use such techniques
because they require only one class of data unlike conventional
binary verification techniques. We argue that anomaly detection
techniques are more appropriate to biometric authentication
schemes because it is not realistic to have samples from po-
tential impostors in real-world scenarios. Furthermore, such
similarity techniques do not require a considerable collection
of training data or computational power, unlike more complex
machine learning techniques. We use Euclidean distance, Chi-
Squared distance and Cosine similarity (given by Equations 5,
6 and 7, respectively) to compute similarity scores between two
facial feature vectors F1 and F2.

d(F1, F2) =

√√√√ n∑
i=1

(F1i − F2i)
2 (5)

d(F1, F2) =
1

2
×
∑n

i=1

(
(F1i − F2i)

2

F1i + F2i

)
(6)

d(F1, F2) =

∑n
i=1 (F1i × F2i)√∑n

i=1 (F1i
2)×

√∑n
i=1 (F2i

2)
(7)

4.4 Evaluation Metrics

We test the effectiveness of our system by using the following
five common biometric evaluation metrics:

1) False Acceptance Rate (FAR): This is the rate that an
impostor is wrongly classified as the genuine user. The
rate is calculated as in Equation 8.

FAR =
ImpostorSamplesAccepted

NumberofImpostorSamples
(8)

2) False Rejection Rate (FRR): This is the rate that the
genuine user is wrongly classified as an impostor. The
rate is calculated as in Equation 9.

FAR =
GenuineSamplesRejected

NumberofGenuineSamples
(9)

3) True Rejection Rate (TRR): This is the rate that the
impostor user is correctly classified as an impostor. The
rate is calculated as in Equation 10.

TRR =
ImpostorSamplesRejected

NumberofImpostorSamples
(10)

4) True Acceptance Rate (TAR): This is the rate that the
genuine user is correctly accepted as the genuine user.
The rate is calculated as in Equation 11.

TAR =
GenuineSamplesAccepted

NumberofGenuineSamples
(11)

5) Equal Error Rate (EER): The rate at which FAR and
FRR are equal. FAR and FRR sets are usually obtained
as an acceptance threshold is adjusted. FAR and FRR
pairs are correlated such that if one increases the other
decreases. For the FAR and FRR with the smallest
difference, we define EER in Equation 12.

EER =
FAR+ FRR

2
(12)

4.5 Liveness Detection

In order to examine our liveness detection, we considered
both the MSU MFSD dataset [24] and our CALF dataset. As
discussed, both datasets contain various spoofing mediums,
image qualities, and capturing devices which help to evaluate
the liveness detection performance.

While most previous works on liveness detection are based
on analysing the whole image frame of the face images, we
consider only the inclusion of facial attributes (eyes, nose, and
mouth) into our liveness detection method. We do this because
the impostor might use a printed picture or replay a video that
might not cover the whole area of the detected face or camera
frame. Therefore, given a scenario where a spoofed face is
presented to the authentication camera, the distortion features
that allow us to recognise a spoofed face will only appear in
the facial region and not in the surroundings of the facial area.
Because the distortion features in the spoofed face might cover
only a small portion of the testing area and not the whole area it
could affect the performance of liveness detection if the whole
frame is considered. This is particularly an issue if we consider
small facial images such as a passport sized printed picture. For
this reason, we will only consider facial landmarks like eyes,
nose, and mouth in our approach to liveness detection.

Thus, we prepared eight test methods for liveness detection,
namely: (1) LBP with the eyes region, (2) LBP with the nose
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Fig. 4: Examples from MSU MFSD database. In the top row, samples from attack scenarios. In the bottom row, samples from real
access scenarios.

Fig. 5: Extracted textural features from different face regions
including full face, eyes, nose and mouth regions. Images in
(a) represent the original greyscale face regions, (b) shows a
visualisation of LBP features and (c) shows a visualisation of
HOG features.

region, (3) LBP with the mouth region, (4) LBP with the whole
face, (5) HOG with the eyes region, (6) HOG with the nose
region, (7) HOG with the mouth region, and (8) HOG with the
whole face.

The performance of both LBP and HOG features in liveness
detection is studied by first extracting these features from
the different facial regions discussed. Figure 5 depicts those
extracted features from different image regions. The liveness
detection problem is formulated as a classification problem (fol-
lowing the approach in Section 3). SVM classifiers are trained
on the LBP and HOG feature vectors extracted from the datasets
for liveness detection. We use an SVM classifier with a radial
basis function (RBF) kernel and apply a threshold of 0.5 to
decide whether the score of the test image (between 0 and 1)
is attributed to the live or spoofed class. These experiments
use 10-fold cross-validation to verify the results. We compare
the results of the algorithm to the true image labels to produce
accuracy results. In the results we note that the higher the TRR
and TAR the better the performance, and the lower the FRR
and the FAR the better the performance.

Table 1 describes the percentage metrics computed from the
test set utilizing both the MSU and the CALF datasets. We
show the TRR, FAR, TAR and FRR for each textual extraction
method and facial region. We notice that for both datasets the
LBP textual descriptor appears to be superior at identifying
spoofed facial images than the HOG textual descriptor. We find,
for example, the best performing TRRs exceed 98.0% for both
datasets when LBP is used whereas the best TRRs for HOG
approaches only exceed 73.60%.

Moreover, when taking into consideration the need for a
high TRR but also a high TAR we must find a method and facial

region combination that yields a good compromise between
the two metrics. Whilst LBP Eyes perform well in the CALF
dataset they only achieve a TRR of 53.90% in the MSU dataset.
The LBP Nose offers a better compromise with high TRR and
TAR results for both datasets. The best compromise, however,
is observed when LBP Mouth is used. In both datasets the TAR
exceeds 90% (ensuring the genuine user is permitted access),
whilst the TRR results are 91.58% and 77.61% for MSU and
CALF datasets, respectively (ensuring security against spoof
attacks). We find this to be the best compromise between TRR
and TAR in Table 1.

The average elapsed time for all methods on both datasets
has been measured. It is found that the mean time taken
to make a decision is 41.9ms. The time differences between
different attributes and texture extraction methods is minimal
and all combinations perform fast enough to be performed
transparently in our scheme. The results indicate the feasibility
of the proposed solution.

From the results of our experiments we use the mouth
region with LBP textual description features in the liveness
detection component of our scheme due to its high accuracy,
relatively quick classification time and compromise between
TRR and TAR when applied to both datasets.

4.6 Facial Recognition and Scenario Cross-Comparison
In this section, we explore the facial recognition component of
our continuous authentication scheme. We show that our facial
recognition scheme is capable of improving on the accuracy
of state-of-the-art continuous facial authentication methods.
We show the accuracy and efficiency trade-offs of our scheme
through varying different verification techniques and attribute
parameters. We also show the results of cross-session tests for
different faces recorded during scenarios.

We first test different combinations of attributes, feature
types and verification techniques using our scheme on the
UMDAA dataset and our CALF dataset. For each video, we
extract every 10th frame and use the Viola-Jones algorithm
to perform face detection. Where faces are detected within
frames we extract and warp the face to a standardised pose
and appropriate size for feature extraction using facial fiducial
points identified via CLM. From each aligned face, we extract a
sub-image for the left-eye, right-eye, nose and mouth.

Uniform LBP and HOG features are then extracted from
each of the facial attributes. Each LBP cell provides a histogram
of 59 uniform LBP features and each HOG cell provides a
histogram of 9 HOG gradient features. For this experiment, all
facial attributes are resized to 24×24px and 2×2 feature cells
are utilized (variations of these parameters are discussed later).
Features from the cells of a facial attribute are concatenated into
a feature vector. Where applicable, multiple feature vectors are
concatenated into a larger feature vector representing combined
facial attributes. As in [7], for the UMDAA dataset we use the
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MSU Dataset CALF Dataset
Method

and
Facial Attributes

TRR (%) FAR (%) TAR (%) FRR (%) TRR (%) FAR (%) TAR (%) FRR (%) Avg Time
(ms)

LBP Eyes 53.90 46.07 78.71 21.28 98.95 1.05 74.16 25.84 68
LBP Nose 77.58 22.42 90.16 9.84 94.89 5.11 69.97 30.03 50

LBP Mouth 91.58 8.42 93.47 6.53 77.61 22.39 98.51 1.49 24
LBP Whole Face 98.58 1.42 74.08 25.92 80.27 19.73 54.01 45.99 48

HOG Eyes 51.94 48.06 98.49 1.51 45.91 54.09 70.48 29.52 38
HOG Nose 64.33 35.67 79.85 20.15 77.61 22.39 97.01 2.99 17

HOG Mouth 73.60 26.40 62.82 37.18 69.94 30.06 88.08 11.92 71
HOG Whole Face 67.46 32.54 70.77 29.23 39.19 60.81 62.11 37.89 19

TABLE 1: The evaluation metrics for liveness detection when different feature extraction techniques are used on different facial
attributes taken from faces detected in the MSU and CALF datasets.

Enrolment video from each session for training. For the CALF
dataset, we use 3-fold cross validation in which we iteratively
use two videos from a session as the training video and the
remaining one as a testing video. We use 150 facial attribute
feature vectors selected evenly from all sessions of a users data
from the training videos to form a profile. We can then test
samples from all testing sessions to these for similarity using
the verification techniques discussed previously. We use this
number of profile vectors as it was found to yield good results
during initial experimentation.

We show the EER results of this experiment for each dataset
with average times taken to extract facial attributes from an
aligned face and produce a score in Table 2. Our results show
that for both datasets a uniform LBP feature type and the Chi
Square verification technique yield the lowest EER. We find
that for the UMDAA dataset the eyes attribute achieves the
best EER and for the CALF dataset the eyes, nose and mouth
combination yields the lowest EER. These results are to be
expected because the eyes are the most consistently visible
attribute in each face video. The improved performance on our
dataset when nose and mouth attributes are included appears
to be because the face is not as close to the edge of the frame in
our dataset due to a wider camera angle on our mobile devices
and therefore nose and mouth attributes are less likely to be
partial or misrecognised. We observe our CALF dataset yields
lower EERs than the UMDAA dataset. We find the time taken
for each different approach differs negligibly. The majority of
the time is spent detecting and warping the face; the verification
for facial regions takes relatively minimal time.

We follow this experiment by exploring the accuracy and
efficiency compromises for our face recognition approach when
we adjust the pixel dimensions of the facial attributes extracted
from the face image and the number of cells used in feature
extraction. We adjust the size of the facial attributes for sizes
12×12px, 24×24px and 36×36px. We further experiment with
the number of feature cells using 1×1, 2×2, 4×4 and 6×6. For
each parameter variation, we record both the EER and the
time taken to extract features and calculate a score. We use
the facial recognition attributes and verification techniques that
produced the lowest EER for each dataset that we identified
in the previous experiment (e.g.: LBP, Eyes and Chi-Square for
UMDAA). The results of this experiment are shown in Table 3.
We find that as the image size and number of cells increases,
as does the average processing time to extract and authenticate
the features. An attribute size of 24×24px divided into 4×4
feature cells produces the best feature vector for classification
with minimal computational overhead for both datasets. We
note that our lowest EER for the UMDAA dataset of 25.46%
is lower than the 30.00% achieved on the same dataset in the
state-of-the-art scheme in [7].

Next, we evaluate the effectiveness of our face recognition

technique when different illumination and activity sessions
(from UMDAA and CALF datasets, respectively) are cross-
tested. We follow the set-up of previous experiments and use
the techniques that provide the lowest EERs so far. In these tests
we rotate different sessions for training and testing. The results
are presented in Table 4. Results show EERs are low when the
training and test sessions are the same. In the CALF dataset the
EERs for standing and sitting are similar and cross-comparison
of the two activities does not impede the classification more
than ∼4%. However, walking yields higher EERs and does
not perform well in cross-comparison tests. The higher EERs
appear to be due to the additional blur and movement in the
video data. For the UMDAA data we observe that the indoor-
light performs better than low-light and natural-light sessions.
Because of the illumination differences, cross-comparison EERs
are relatively high. Despite our considerations for pose and
illumination in our scheme, we identify there is still need for
improvement in cross-session face authentication.

4.7 Face Tracking
In this experiment, we evaluate the effect and performance of
the novel tracking component of our continuous authentica-
tion scheme. We show and discuss the added robustness and
security that our tracking scheme yields when compared to
other state-of-the-art schemes that inefficiently re-authenticate
for each frame or leave an attack window by continuously re-
authenticating after an elapsed time period.

We first show how tracking an authenticated face can reduce
attack windows that exist in schemes with a time delay between
re-authentication (as exists in [6] and [13]). We run each test
video in real-time and record the time each face was tracked
to illustrate the benefits of tracking. We vary the frame sizes
and padding because we posit that adapting these features may
yield advantageous benefits (e.g.: padding can allow faces close
to or over the frame edge to be tracked better). This experiment
is performed on both UMDAA and CALF datasets. Results
for this experiment are in Table 5. They show that faces can
be tracked for significant periods before re-authentication is
required or triggered; instead of having an insecure time delay
that causes an attack window. In our scheme, when a face
is lost, re-authentication can simply be immediately initiated,
eliminating attack windows. We also collect the time taken track
each face frame compared to the time taken to authenticate
it, shown in Table 6. This allows us to evaluate the enhanced
efficiency of tracking an authenticated face compared to the
process of face detection, feature extraction and authentication
for each frame (as appears in [17] at a rate of 4 frames per
second). In all cases we observe tracking a frame uses less com-
putational time than authenticating a frame. Our observations
also reveal that in all cases additional padding allows the face
to be tracked for greater time periods, verifying our padding
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Method
LBP

(Cosine
Similarity)

LBP
(Chi

Square
Similarity)

LBP
(Euclidean
Similarity)

HOG
(Cosine

Similarity)

HOG
(Chi

Square
Similarity)

HOG
(Euclidean
Similarity)

Facial
Attributes Dataset EER

(%)

Avg
Time
(ms)

EER (%)
Avg
Time
(ms)

EER
(%)

Avg
Time
(ms)

EER
(%)

Avg
Time
(ms)

EER
(%)

Avg
Time
(ms)

EER
(%)

Avg
Time
(ms)

Whole
face

UMDAA 43.36 354.68 30.23 354.68 37.43 354.68 36.31 355.16 28.68 355.16 30.42 355.16
CALF 27.69 357.08 16.70 357.08 25.21 357.08 22.49 357.55 16.92 357.55 18.26 357.55

Eyes, Nose
& Mouth

UMDAA 34.01 354.18 27.90 354.18 32.01 354.18 34.48 354.31 31.24 354.31 32.34 354.31
CALF 23.46 356.58 12.76 356.58 21.81 356.58 17.99 356.71 16.00 356.71 16.45 356.71

Eyes &
Nose

UMDAA 34.26 354.14 25.73 354.14 30.73 354.14 32.07 354.24 27.51 354.24 29.23 354.24
CALF 25.74 356.53 13.90 356.53 23.16 356.53 18.77 356.63 16.12 356.63 16.99 356.63

Eyes &
Mouth

UMDAA 35.31 354.13 27.64 354.13 33.24 354.13 35.96 354.23 32.81 354.23 34.00 354.23
CALF 22.54 356.53 13.93 356.53 21.94 356.53 19.08 356.63 17.26 356.63 17.69 356.63

Mouth
& Nose

UMDAA 37.42 354.08 33.21 354.08 35.74 354.08 37.86 354.15 34.78 354.15 35.61 354.15
CALF 29.90 356.48 15.90 356.48 24.74 356.48 22.08 356.55 19.49 356.55 20.18 356.55

Eyes
only

UMDAA 36.17 354.09 25.63 354.09 32.68 354.09 33.54 354.15 28.41 354.15 30.51 354.15
CALF 26.87 356.49 16.43 356.49 24.53 356.49 22.54 356.55 18.92 356.55 20.29 356.55

Mouth
only

UMDAA 39.03 354.03 36.23 354.03 38.21 354.03 41.86 354.07 39.44 354.07 40.44 354.07
CALF 29.70 356.44 19.93 356.44 25.48 356.44 28.87 356.47 24.02 356.47 24.92 356.47

Nose
only

UMDAA 38.71 354.04 31.74 354.04 34.12 354.04 34.77 354.07 30.13 354.07 31.37 354.07
CALF 34.29 356.44 18.24 356.44 28.39 356.44 23.05 356.47 20.30 356.47 21.31 356.47

TABLE 2: Given a frame the table shows EERs and times taken for each different combination of facial attributes, feature types
and verification techniques.

Number of Feature Cells
1×1 cells 2×2 cells 4×4 cells 6×6 cells

EER
(%)

Avg
Time
(ms)

EER
(%)

Avg
Time
(ms)

EER
(%)

Avg
Time
(ms)

EER
(%)

Avg
Time
(ms)

UMDAA Attribute
Size (px)

12×12 29.65 355.22 26.83 353.69 29.01 353.57 29.93 354.26
24×24 29.20 356.03 25.5 354.00 25.46 354.76 28.08 355.54
36×36 31.62 354.64 27.66 354.47 25.50 355.23 26.58 357.08

CALF Attribute
Size (px)

12×12 16.38 359.06 13.05 356.16 15.16 351.21 17.67 359.05
24×24 17.37 359.26 12.64 356.39 11.68 358.37 13.08 361.45
36×36 19.55 357.62 14.88 356.97 12.08 360.05 12.39 362.78

TABLE 3: The EERs and average times when the number of feature cells and the number of pixels per facial attribute are varied.
This experiment uses the technique for each dataset that achieved the lowest EER in the previous experiment.

Session (UMDAA) EER (%) Session (CALF) EER (%)
1→1 UMDAA 15.81 1→1 CALF 8.55
2→2 UMDAA 24.13 2→2 CALF 8.26
3→3 UMDAA 22.53 3→3 CALF 13.32
1→2 UMDAA 34.92 1→2 CALF 12.37
1→3 UMDAA 28.97 1→3 CALF 23.55
2→1 UMDAA 36.32 2→1 CALF 12.65
2→3 UMDAA 32.34 2→3 CALF 22.68
3→1 UMDAA 33.70 3→1 CALF 16.43
3→2 UMDAA 37.61 3→2 CALF 15.60

TABLE 4: The EERs and average times when different illumi-
nation and activity sessions are compared. For the UMDAA
dataset sessions 1, 2 and 3 correspond to indoor light, low
light and natural light, respectively. For the CALF dataset
sessions 1, 2 and 3 correspond to sitting, standing and walking,
respectively.

expectation. However, we observe that padding does require
greater processing time. We further see that as the padding
increases the smaller sized frames produce higher and more
stable tracking times.

We perform an experiment to demonstrate how the im-
proved processing time for tracking rather than face recognition
can be realised in our scheme. We adjust our face tracking
scheme to track a face in a frame after every n frames as op-
posed to every available frame (as we did before). We hypoth-
esise that this tracking scheme will still be able to effectively
track the face but use less processing time per second. We
note that a value of n is selected with consideration to avoid
creating an attack window. This scheme is compared with a
continual recognition approach that samples and authenticates
every frame. We use the UMDAA and CALF datasets in this

Fig. 6: We show the length of time faces are tracked when we
vary the frame sampling rate. We see a lower sampling rate
per second can enhance tracking time. We note that we find the
UMDAA dataset yields a lesser tracking time due to the videos
being shorter in length.

experiment (set up with the best performing padding and
video sizes in the last experiments). Videos from all sessions
are used. We display the results for the tracking duration
against the frequency of frames sampled per second is varied
in Figure 6. Interestingly, we notice that as the frame frequency
and processing time per second decrease, the tracking duration
increases. On inspection, this appears to be due to the lower
likelihood a frame contains a blur or occlusion that would
stop the tracking process. We also show results for the average
processing time per second to track a face for the different



10

Frame Padding
0% 10% 20% 30%

Mean
Time (s)

Median
Time (s)

Mean
Time (s)

Median
Time (s)

Mean
Time (s)

Median
Time (s)

Mean
Time (s)

Median
Time (s)

UMDAA Frame Size (px)
1280×720 2.13 0.05 3.78 0.13 7.62 0.87 14.28 5.50
960×540 1.73 0.04 2.67 0.04 5.68 0.33 11.19 2.37
480×270 1.40 0.05 3.59 0.05 13.50 17.41 20.36 16.19

CALF Frame Size (px)
1280×720 4.41 0.18 11.18 1.77 25.48 10.04 39.69 33.48
960×540 3.31 0.05 8.46 0.66 19.45 5.06 37.28 28.41
480×270 2.05 0.05 12.47 0.05 38.01 28.05 46.65 47.09

TABLE 5: The mean and median times (in seconds) that faces were tracked in different sized videos from the UMDAA and CALF
datasets when different variations of padding are applied.

Frame Padding
0% 10% 20% 30%

Track
Time (ms)

Auth.
Time (ms)

Track
Time (ms)

Auth.
Time (ms)

Track
Time (ms)

Auth.
Time (ms)

Track
Time (ms)

Auth.
Time (ms)

UMDAA
Frame Size (px)

1280×720 53 441 72 467 85 489 107 528
960×540 38 374 42 392 51 394 54 408
480×270 35 326 35 325 35 325 35 330

CALF
Frame Size (px)

1280×720 54 441 75 478 79 505 96 532
960×540 34 373 37 394 40 400 52 418
480×270 33 335 33 332 33 329 33 332

TABLE 6: The average processing time for each available frame from live video (30FPS) when tracking and recognition are
continuously applied. Results are shown for different frame sizes and different amounts of padding.

Fig. 7: The time taken to process the frames per second. The
figure shows the time taken to track frames for different frame
frequencies compared to a continual face recognition scheme
that authenticates each frame.

number of frames per second in Figure 7. The figure shows that
a face can be tracked with minimal time per second, requiring
only ∼33ms for tracking every 30th frame. We see the time
taken for continual recognition is comparatively inefficient to
tracking. From these results we conclude that tracking a face
less frequently (e.g.: every 30th frame) increases the efficiency
and can improve longevity of authentication.

5 CONCLUSION

In this paper, we have presented a novel continuous face
authentication scheme for mobile devices that incorporates
liveness detection to prevent spoof attacks and face tracking to
prevent attack windows between re-authentication. We trained
SVM classifiers on facial features extracted from genuine and
spoofed images such that we can identify live faces. In our
face recognition component, live faces were warped to a stan-
dardised pose and textual features extracted into a vector
and scored using distance algorithms, improving on previous
works. We used tracking to show that an authenticated face
can be efficiently tracked, removing the need for continual re-
authentication or periodic authentication. Our novel dataset

was used to show differences in face recognition and tracking
when the user performed three different activities.

6 FUTURE WORK

Our future work will focus on further enhancing the framework
by addressing its current limitations. We will firstly investigate
the prospect of enhancing the facial recognition component
of our scheme by implementing state-of-the-art convolutional
neural networks.

Secondly, in the future we will consider colour and texture
information to expand our liveness detection analysis. We will
also expand our liveness detection dataset to include spoofing
attacks using masks or 3D models of the face in order to evalu-
ate the matching performance of our scheme on unconstrained
subjects. Furthermore, we will test this through adapting our
2D-camera based scheme to a 3D-camera based scheme.

We will lastly investigate protocols of dealing with an
absence of a fully detectable face. We will look at developing
partial face recognition approaches for situations where a face
is only partially in the frame.
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