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Reliability Prediction of a Software Product Using TestingData from other Products or Execution EnvironmentsDeVa Project Technical Report 10Bev Littlewood and David WrightCity UniversityNorthampton Square, London EC1V 0HB2nd December 1996AbstractFor safety-critical systems, the required reliability (or safety) is often extremely high. Assessing thesystem, to gain con�dence that the requirement has been achieved, is correspondingly hard, particularlywhen the system depends critically upon extensive software. In practice, such an assessment is often carriedout rather informally, taking account of many di�erent types of evidence|experience of previous, similarsystems; evidence of the e�cacy of the development process; testing; expert judgement, etc. Ideally, theassessment would allow all such evidence to be combined into a �nal numerical measure of reliability in ascienti�cally rigorous way. In this paper we address one part of this problem: we present a means wherebyour con�dence in a new product can be augmented beyond what we would believe merely from testing thatproduct, by using evidence of the high dependability in operation of previous products. The model wepropose could equally be applied to increase our con�dence that a product will operate reliably in a novelenvironment, using evidence of its past behaviour in previous environments. We present some illustrativenumerical results that seem to suggest that such experience from previous products or environments, evenwhere very high operational dependability has been achieved, can only modestly improve our con�dencein the reliability of a new product or of an existing product when transferred to a new environment.1 IntroductionCritical systems are coming to depend more and more upon the correct functioning of softwareto ensure their safe operation. At the same time, the size and complexity of these softwaresubsystems is increasing as designers take advantage of the extensive functionality that softwaremakes possible|functionality that sometimes enhances di�erent aspects of safety.There are important unresolved questions concerning how one might go about designing suchsystems so that they will be su�ciently safe in operation. In this paper, however, we shall concen-trate upon the di�cult problems of evaluation that they pose. In particular, we shall be concernedwith the problem of how to measure the reliability of such a software system when that reliabilityis likely to be very high.In several recent papers di�erent authors have pointed out some of the basic di�culties here,[2, 7, 9]. They show that, if we are only going to use the evidence obtained from operationaltesting of the software, we shall only be able to make quite modest claims for its reliability. Forexample, Littlewood and Strigini show that even in the most favourable situation of all, that of asystem that has not failed during x hours of statistically representative operational testing, subjectto reasonably plausible assumptions, we can draw only the weak conclusion that there is a 50:50chance that it will survive failure-free for the same time x in the future.1



The limitations here seem intrinsic: they arise from the relative paucity of evidence (whencompared with the stringency of the reliability level that needs to be demonstrated) and will notbe ameliorated signi�cantly by better statistical models. To make a very strong claim|that aparticular system is ultra-reliable|needs a great deal of evidence. If that evidence comprises onlyobservation of failure-free behaviour, then the length of time over which such behaviour is observedneeds to be very great. To assure the reliability goals of certain proposed and existing systems,for example the 10�9 probability of failure per hour for the `y-by-wire' computer systems in civilaircraft [11, 10], would clearly require the systems to be observed and show no failures for lengthsof time that are many orders of magnitude greater than is practicable.Faced with these limitations to what can be claimed from merely observing the system inoperation, it has been suggested that we should instead base our evaluations upon all the dis-parate kinds of evidence that are available. This seems to be the way in which some safety-criticalsoftware-based systems are currently assessed, although it must be said that the process of combin-ing evidence here is somewhat informal and does not generally provide a quantitative assessment[5]. The di�erent kinds of potential evidence include, in addition to the operational data discussedabove, evidence of the e�cacy of the development methods utilised, experience in building similarsystems in the past, competence of the development team, architectural details of the design, etc.Most of these other sources of evidence about the dependability of a system will involve a certainamount of engineering judgement in the evaluator, which might itself introduce further uncertaintyand potentiality for error. In addition, there are serious unresolved di�culties in combining suchdisparate evidence in order to make a single evaluation of the overall dependability and thus tomake a judgement of acceptability.In this paper we shall consider only a small part of this problem. We shall treat in detailthe situation where we wish to augment the evidence that can be gained from the operationaltesting of a particular product within a particular environment by also taking into account thedata on success/failure sequences either of other products or of the current product executingunder operational conditions which di�er from the present conditions. Thus these other failuredata sets may be records of the success (or not) in building and operating `similar' products in thepast. Alternatively, they may originate as records of execution of the current product in di�erentenvironments. An important special case, of course, is the one where there is unreserved goodnews from these previous data sets|i.e. where there have been no failures in any of the data setsup till the present time.It should be emphasised that the goal in all this work is to obtain a quanti�cation of thereliability of a product within an operating environment. The model that is proposed in thenext sections, therefore, requires us to make certain assumptions about the failure process, andabout how we represent our beliefs about certain model parameters. We acknowledge that theseassumptions can be questioned, and are certainly very di�cult to validate. However, we believethat they are reasonably plausible. More importantly, our main aim is to demonstrate that thiskind of evidence can only improve our con�dence in the reliability of a product quite modestly.Thus, we would regard a critique of our results on the grounds that they are not su�cientlyconservative as being in the spirit of our own aims; suggestions, on the other hand, that theassumptions here can be modi�ed in order to arrive at much higher con�dence in product reliabilitywe would regard with suspicion. It seems to us that, particularly in the case of safety-criticalapplications, it is safest to adopt a conservative view of the informativeness of evidence unlessthere are scienti�cally valid reasons to believe the contrary.The model contained here may be applicable either to the data sets arising from a number ofdi�erent software products, or from a single software product executing in a number of di�erentoperational environments. The `indi�erence' assumption discussed below is all that is required ineither case. Thus we can think of our `experimental unit' as a particular product operating ina particular environment. From each such hproduct; environmenti unit, we observe operationaldata. Since we have chosen to work in terms of discrete time|a sequence of discrete demands onthe software, each resulting in a sequence of successes and failures|the operational data arisingfrom each hproduct; environmenti unit is a binary sequence. We are interested in using datafrom a family of such units to improve our ability to forecast a particular one of them, i.e. a2



particular one of the binary success-failure sequences. Here, we make what we see as the simplestassumption which allows this kind of learning from one sequence to another: An assumptionof prior indi�erence between the members of our family of operational success-failure sequences.For example, we assume that we are without prior1 beliefs of any kind which would cause usto identify some particular pair A and B of testing data sequences about which we could say `Iexpect that sequence A will show greater reliability than sequence B'. Our model says that suchbeliefs about comparisons of reliabilities between di�erent sequences will emerge only after webegin to examine the numerical values of the failure-counts which those sequences contain. Withthis understanding of our meaning, we refer in what follows to a set of success-failure sequencesabout which we feel this indi�erence as a family of `similar' sequences (emanating from a familyof `similar' hproduct; environmenti pairs). So in our usage here the `similarity' of the success-failure sequences within a family is nothing more than a prior statistical indi�erence betweenthese sequences. Of course, this idea might elsewhere be extended by means of an ordering ofthe distinct sequences and some kind of process model for, say, increasing reliability expectationsfrom one hproduct; environmenti to the next. But our indi�erence assumption is simpler, whilstallowing us to explore mathematically the learning which might take place from one sequenceto the next and, we believe, being a plausible model in some circumstances. In particular, eventhis simple model well illustrates the importance of prior belief|about the statistical relationshipbetween these failure-success sequences|for any conclusions we might wish to draw from data onother products or operating environments.In the next section a doubly stochastic Bayesian model of the failures (if any) of a familyof `similar' software success-failure sequences is constructed. The intention is to augment therelatively meagre evidence that can realistically be gained from testing of a particular productin a single environment. We can now take account also of the success (or not) in conductingsimilar operational trials in the past. The analytical results which follow in Section 3 lead to anexamination of an important special case in Section 4. Section 4 explores the conclusions whichcan legitimately be drawn from observation of a number of sequences all of which contain no failureup till the present time. We examine this no-past-failure case in some detail, and, after a briefenumeration in Section 5 of some practical questions whose answers our model might be used toexplore, we proceed in Section 6, to obtain some algebraic and numerical results for a few examplecases of our general model. In discussing these special cases which arise from introducing speci�cparametric distributional assumptions, we concentrate mainly on the no-failures case introducedin Section 4. Some considerations about the di�culties of choosing a measure of reliability arementioned in Section 7. Our main conclusions are summarised in Section 8. The appendicescontain some of the mathematical details required for the main part of the report, including,in Appendix C our procedure for calculating very high order non-central moments of the Betadistribution which we used for the numerical work of Section 6.2.2 Modelling ApproachWe wish to use evidence we have obtained from building and operating previous products, or fromprevious operational use (in di�erent environments) of our current product, in order to try to im-prove the accuracy of the predictions that we can make about the reliability either of an entirelynovel product or a previously used product which now operates in a novel environment. To dothis we must take account of two kinds of uncertainty. In the �rst place, there will be uncertaintyconcerning the actual reliabilities that were achieved by these earlier hproduct; environmenti ap-plications. Even in those cases where there is extensive operating experience, we shall never knowthe true reliability of a given product in a given environment and will have to use an estimatebased upon the �nite amount of operational data collected during its use within the environmentconcerned. In those situations where we are dealing with products that are likely to be very reli-able in their intended environments, we shall probably only see a small number (or even none atall) of failures even in quite extensive periods of operation. The second source of uncertainty will1prior to observing the success-failure data itself 3



concern the statistical `similarity' to one another of the success-failure sequences that have beenobserved in the past and the `similarity' of the one under study to these past sequences. Clearlyit will be misleading (and give optimistic results) if we simply assume these earlier sequences, andthe present one, are `exactly similar' in the sense that they all arise from exactly the same truereliability [6].In what follows, we shall assume that the true per-demand probabilities of failure of the di�erentsequences, past and present, can be assumed to be realisations of independent and identicallydistributed random variables.This assumption, although an idealisation, captures the essentials of what we mean by `sim-ilarity'. Thus, it means that the actual reliabilities of the di�erent sequences will be di�erent,as is clearly the case in reality. We would not expect the reliabilities of, say, two versions of asoftware-based telephone switch to be identical, even though we might be prepared to agree thatthe problems posed, and the quality of the processes deployed in their solution, and the operationalenvironments in which they are situated were similar. The notion of `similarity' in the eye of anobserver here seems to be equivalent to a kind of `indi�erence'. You might agree that two di�erentsuccess-failure sequences were similar for the purposes of the current exercise if you were indi�erentbetween them in reliability terms: if you were asked to predict which of two hproduct; environmentipairs A and B would show the best reliability, you would have no preference. This is representedby their probabilities of failure per single demand being identically distributed random variables:any probability statements you would make about the reliabilities of demand sequences A and Bwould be identical. The important point here is that this interpretation of `similarity' in terms ofindi�erence does not mean that you believe that the two sequences will show identical reliabilities- indeed you will know that the actual reliabilities of the sequences will di�er. The two sourcesof uncertainty here are both important. However, it is the nature of the uncertainty concerning`how similar' the sequences actually are that will be most di�cult to estimate in practice, sincethis requires us to see as many di�erent sequences as possible. That is, we would require oper-ational data on a large number of hproduct; environmenti pairs between any two of which, priorto inspection of actual failure data, we felt indi�erent. But in practice, it is far more likely thatwe have large quantities of testing information about a few hproduct; environmenti combinationsthan it is that we have information on many such testing sequences.Consider �rst the failure process of a single software success-failure sequence A. Assumea Bernoulli trials process model of the failures of this hproduct; environmenti in a sequence of`demands' with neither debugging, maintenance, nor signi�cant variation in the `stressfulness' ofthe software's operational environment. An example might be the installed software protectionsystem of a nuclear reactor, where demands could be assumed to be su�ciently separated intime as to be treated as independent. For exibility of expression we will use A to refer toboth the hproduct; environmenti pair and the `sequence' of successes and failures on successivedemands on this software in this environment. Then strictly, `sequence' means the exact probabilitylaw2 governing the sequence, rather than the realised boolean values of the sequence. With thisunderstanding, we can refer to A sometimes as a `pair', at other times as a sequence, and evenas a single number p which we have an interest in estimating as accurately as possible. Thus, inthe �rst n trials of sequence A, let R be the random number of failures occurring and p be theprobability of failure on demand. Then the distribution of R for �xed n and p is binomial:R n; p � �nr�pr (1� p)n�r (1)Now think of p as unknown and construct a Bayesian model by assuming that p is a realisation ofa random variable P having a parametric distributionP � � fp(pj�)with parameter �, possibly a vector. Here we can think of the shape of this distribution fp(pj�) forP as a representation of the general reliabilities of sequences in a particular family of2by assumption in our model a Bernoulli trials process completely speci�ed by a single numerical parameter p4



hproduct; environmenti pairs, perhaps representing the di�erent failure histories of a single productexecuting in multiple environments. Alternatively this family might consist of the failure historiesof a number of `similar' products produced by a single development team, using a common devel-opment method, and for similar applications. For example, a family of data sequences known tohave highly variable reliability levels would correspond to a distribution fp(pj�) with a large vari-ance, whereas, for another family of sequences, an expected high `average' reliability �gure wouldcorrespond to a small mean for fp(pj�). If we fully understood the true variation in reliabilities ofthe sequences in each of these two success-failure sequence families then we could describe the twofamilies by specifying two di�erent P -distributions having the required characteristics, and indexthese P -distributions with two di�erent �-values, �1 and �2, say. More generally, our parameterspace S, say, for �, could be said to represent a set of di�erent conceivable reliability characteristicseach of which potentially characterises a di�erent family of hproduct; environmenti pairs. Thatis, given su�cient data on the reliability variation amongst the sequences of a particular family, avalue of � (and hence a particular distribution fp(pj�)) could in principle be assigned as descriptiveof that variation. In this way, we have de�ned a model in which � can be thought of as a parametercharacterising a family of hproduct; environmenti pairs. For a hproduct; environmenti chosen atrandom from those of a particular family (i.e. particular �) and observed for the �rst n demands,it follows that (R;P ) has joint distribution3(R;P ) n; � � �nr�pr (1� p)n�r fp(pj�); (2)given n and �. Integrating (2) over p gives the conditional distribution of R given n and � asRjn; � � �nr�Z 10 pr (1� p)n�r fp(pj�) dp (3)or, expressed in terms of moments of fp(�j�) (a form which will repeatedly be found in resultslater), R n; � � �nr�E�P r(1� P )n�rj�� : (4)Note from (3) that mixing over p using this �xed �, not surprisingly, has the e�ect that thedistribution for the number of failures which will be seen during a given sequence of demandsis now more dispersed than a corresponding binomial distribution. We can quantify this e�ectprecisely by verifying that from the distribution (3) we have meanE(R n; �) = nE(P �)where E(P �) = Z 10 pfp(pj�) dp ;and Var(R n; �) = nE(P �) (1 �E(P �)) + n(n� 1)Var(P �) :In this sum, the left-hand term is the variance of a binomial distribution with the same maximumn and mean nE(P �). As one might expect, the right-hand `excess' term depends on the varianceVar(P �) = Z 10 (p �E(P �))2fp(pj�) dpof the mixing distribution fp( � j�).3Notice that we keep to the usual notational convention of upper case for a random variable and lower case fora numerical value obtained as a particular realisation. 5



If we observe that R = r failures actually occur during n demands, then we can condition onthis data by normalising (2) to give the updated distributionP r; n; � � pr (1� p)n�r fp(pj�)R 10 pr (1� p)n�r fp(pj�) dp (5)of the probability of failure on demand for this program, given �, n and the observation r.The last three equations describe properties of a general mixture of Bernoulli trials processes[3, pp213-4,217], where fp(�j�) is the mixing distribution. Note that although exchangeability4 ofthe original Bernoulli trials process has not been lost by mixing the processes, the property thatnon-intersecting sections of the process are independently distributed does not hold in general forthe resulting mixed process. In fact the number R0 of failures in a subsequent set of n0 demandsfrom the same sequence now has an updated distribution obtainable from (5) asR0 r; n; n0; � � �n0r0�R 10 pr+r0 (1� p)n+n0�r�r0 fp(pj�) dpR 10 pr (1� p)n�r fp(pj�) dp ; (6)= �n0r0�E�P r+r0(1 � P )n+n0�r�r0 ��E(P r(1� P )n�r �)given n, r.The distributions which we have considered up till this point are parameterised by �. Under ourchosen model, (6) is not a predictive distribution of future failures given past failure behaviour sinceit depends on the unknown value of the parameter �. This deliberate �-dependence is intended totake account of the practical fact that we are unable with any con�dence to accurately state thedistribution fp( � j�) of failure probabilities of the hproduct; environmenti pair within our family.This inability is captured in the model as our uncertainty about the hproduct; environmenti-familyparameter �. This parameter uncertainty has yet to be expressed and incorporated into the picture.We now adopt a Bayesian approach to handling this dimension of the problem by supposing aprior distribution � � Prior�(�) ;with support set � 2 S. If we plan to observe and predict reliability only of a single softwarehproduct; environmenti, this extension actually adds very little, if anything, useful to the modelas so far described, since, by integrating over �, the model is reduced to a degenerate (jSj = 1)case of the assumptions described earlier. (Simply replace fp(pj�) by R�2S fp(pj�)Prior�(�) d�in the distributions above.) However, the idea of a prior distribution for � becomes a usefulconcept if we wish to address the problem of learning about a distribution of software reliabilitiesby observing multiple sequences of software failure behaviour from a single family hAii, say, ofhproduct; environmenti pairs. We can then represent a conservative5 version of a process conceptfor their reliabilities, from one hproduct; environmenti to the next, by modelling these sequencesas individual failure processes of the Bernoulli-trials kind discussed above but with di�erent pi,and an assumption that each of these pi arises independently given � for some unknown, commonparameter value � characterising the entire family of hproduct; environmenti pairs. We are thenable to learn from observation of the early data sequences about the likely behaviour of anothersequence through the medium of our improving knowledge of their common parameter �.Thus � and p now play distinct roles in terms of the model concepts: Whereas each pi stillcaptures a property of a single software testing sequence, � now represents a common unknown4The property that any permutation of a portion of the boolean (success-failure) sequence has the same proba-bility as the unpermuted sequence. Equivalently, we can say that the probability of a precise sequence of successesand failures during a speci�ed interval of discrete time (say from the 10th to the 20th demand, inclusive) can beexpressed as a function of the number , only, of successes during that interval.5 in the sense that we refrain from making any stronger assumption of any kind of systematic development ofreliability from one sequence to the next. For example, we do not assume an increasing trend in reliabilities ofdi�erent sequences in the family 6



characteristic of the whole family of such sequences. To obtain the value of � would be to capturethe reliability-relevant characteristic which these software pairs hproduct; environmenti all have incommon. For this multi-sequence model, there is now a real purpose behind including separatedistributional assumptions for �rstly �, and secondly pi given �. Below, we do not in fact assumethat � can ever be known6. However, we assume that we hold probabilistic prior beliefs about �(i.e. beliefs about the possible distributions fp(�j�) of reliabilities of sequences belonging to thefamily hAii). Then, any observation of failure behaviour of any subset of the sequence hAiican be regarded as information about � which we will use in order to learn about � by theusual Bayesian learning mechanisms. Thus the second stage of our doubly stochastic model isto represent our prior beliefs about a subjective random variable � of which the true value �for our particular family of sequences is a single unknown realisation. Figure 1 depicts theseconditional dependence relationships diagramatically. This popular DAG (directed acyclic graph)representation of conditional independence assumptions is equivalent to the assertion that the jointdistribution of all the nodes is equal to the product of the conditional distributions of each nodeconditioned on the values of its parents. Actually, we have tended to condition on the values hniiki=1throughout our probabilistic analysis so that the ni-nodes can be thought of as degenerate, constantrandom variables. Note that we have used a notation for our mixtures and marginal distributions�����
����Pk����nk����Rk ������BBBNBBB ���������P2����n2����R2 ������BBBNBBB ����� ����P3����n3����R3 ������BBBNBBB ���������P1����n1����R1 ������BBBNBBB �����

�������= ������������� ������ AAAAAAUAAAAAQQQQQQQQQQsQQQQQQQQ. .. . .. . . .. . .. .. .. . ...
Figure 1: Diagram of the dependencies of the modelwhich assumes that both the distributions fp, for P given �, and the prior distribution, Prior� for�, are continuous. The cases where either or both of these distributions are discrete are also ofinterest and correspond to the replacement of integrals by sums, or, alternatively, to the use ofthe Dirac delta function in specifying de�nitions for our densities fp and Prior�.Before proceeding to consider in x6 speci�c distributional assumptions appropriate for the6Loosely, we can say that in order to know the value of � characterising a family hAii of executing softwareproducts hproduct; environmenti, we would require a very large amount of operational failure data on each of avery large number of sequences belonging to that family. We could then accurately describe from empirical datathe shape of the distribution fp( � j�) 7



i.i.d. Pi given �, and for the hproduct; environmenti family parameter � itself, we obtain, in thefollowing sections, a few consequences of these model assumptions in the general case. Observe�rstly that, conditionally given � and hniiki=1, our independence assumption for the hPii tells usthat the �rst k terms of our hRii sequence are jointly distributedhRiiki=1 (hniiki=1 ; �) � kYi=1�niri�Z 10 pri (1� p)ni�ri fp(pj�) dp : (7)Once we are in possession of data in the form of observed failure behaviour of these k softwareproducts executing in their k environments (i.e., ri failures out of ni trials for each sequence Ai)then we can regard (7) as the likelihood function L��; hni; riiki=1� of the parameter � given thisfailure data. L��; hni; riiki=1� is a product involving constant7 combinatorial terms together withmoments of the parametric distribution fp(�j�)hRiiki=1 (hniiki=1 ; �) � kYi=1�niri�E�P ri(1� P )ni�ri �� : (8)We �nd, not surprisingly, in the following sections that, using this Bayesian model, our relia-bility predictions turn out to depend heavily on our prior beliefs, and not only on the empiricalreliability data hriiki=1 which is later observed. We have expressed the shape of these beliefsformally by our selection of the distributions hffp( � j�); �2Sg;Prior�i comprising our model forthe failure probabilities hPii of our family hAii of sequences of Bernoulli trials. There are sev-eral ways of understanding the entity hffp( � j�); �2Sg;Prior�i less formally, which may help withthe selection of appropriate distributions in the case of a particular family hAii. To begin with,hffp( � j�); �2Sg;Prior�i should contain at least1. Our best guess, prior to observation, of the family average reliability level of the hAii,i.e. the average reliability towards which our beliefs would hypothetically converge if we could ac-quire arbitrarily large amounts of data from each of arbitrarilymany distinct hproduct; environmentipairs which were representative of this family. But hffp( � j�); �2Sg;Prior�i is much more thana complicated way of expressing a guess at the family average reliability. We emphasise that itcontains at least two other dimensions of expressed prior belief, each of which should be veri-�ed against intuition, and against any available objective prior knowledge, if this model is to beapplied. hffp( � j�); �2Sg;Prior�i also contains2. Our prior beliefs about the shape of the distribution of true reliabilities (as distributed aroundthe average value assessed in 1.) of this hAii family. How consistent will the reliabilitiesgoverning success and failure in the testing sequences Ai of our family eventually be foundto be?Lastly, but of no lesser signi�cance in terms of the reliability predictions emanating from ourapproach, we recall that the entity hffp( � j�); �2Sg;Prior�i incorporates a Bayesian subjectiveparameter distribution Prior�. Through this, the construction hffp( � j�); �2Sg;Prior�i pays dueregard to our stated measure of3. Our con�dence (or lack of it) in own our ability to produce accurate a priori guesses at 1. and 2.How con�dent are we that both of these initial assessments are close to the truths that wouldultimately be discovered given unlimited data from an unlimited number of representativeboolean valued sequences Ai?This third component of prior belief is a classic Bayesian subjective prior distribution describingour uncertainty about a model feature which in this case is e�ectively an entire continuous prob-ability distribution on the unit interval, and whose unknown true value characterises our wholefamily of hproduct; environmenti pairs. This is perhaps also the component whose e�ects on thesubsequent analysis are the most easy to overlook|or at least whose e�ects in our analysis can be7 i.e. not depending on � 8



the most di�cult to follow intuitively. To simplify for the sake of illustration, suppose we make� a one-dimensional real quantity (so that S � R), and suppose that we happen to have used aparameterisation of our family of fp( � j�) distributions that orders these distributions accordingto their means. Then, holding this parameterisation ffp( � j�); �2Sg �xed, the act of choosing arelatively more dispersed distribution Prior� will correspond to a statement of relatively lowercon�dence in our ability to accurately guess the value of the family average of reliabilities (item1. above). Similarly, if we adopt, say, the coe�cient of variation of the unknown true distribu-tion from which the Pi are drawn as a numerical representation of an important attribute of theshape (item 2. above) of this distribution of failure probabilities Pi around this mean value, andif we assume, again for simplicity, that our chosen �-parameterisation now orders the distribu-tions fp( � j�) instead according to their coe�cients of variation rather than their means, then thechoice of a relatively more dispersed Prior� will represent our relatively lower con�dence in ourability to assess, a priori, the true amount of consistency amongst the di�erent reliabilities of themembers of our family hAii. So in the case of such a parameterisation we could ask ourselveswhether we already possess a thorough understanding of reliability variability within this kindof hproduct; environmenti family. If so, then a highly concentrated Prior� distribution would bean appropriate choice. If instead we considered within-family reliability variation between the Aito be rather di�cult to assess, without spending some time accumulating an operational historyof a number of sequences from the family concerned, then we should choose a larger spread forPrior� : and by so doing admit a greater variety of distributions fp( � j�) on the unit interval whichcould each plausibly represent the true nature of the variation of failure probabilities between thesequences of our family.Of course, we do not have to use the exact 3 items de�ned above in order to informally de-compose the structure hffp( � j�); �2Sg;Prior�i of our prior belief into a number of salient featureswhose e�ects will transmit themselves through the mathematical analysis of this model. The im-portant point is that we must be aware of the profound implications|for the reliability predictionsobtained in the following sections|that each one of these components of our prior belief modelhas. To summarise the last paragraph, the model introduced in this paper proposes a formalrepresentation of prior beliefs about a family of hproduct; environmenti pairs between which weare initially indi�erent. This representation hffp( � j�); �2Sg;Prior�i is expressive enough to allowus|in fact it requires us|to state with precision how much we know (and often the extent towhich we are in fact ignorant) about the average level and the distribution of the achieved reliabil-ities of the members of this family. Given an available amount hk; n1; n2; : : : ; nki of testing data,we go on in the following sections to show how this model of prior belief, combines with empiricaltesting data hr1; r2; : : : ; rki to yield predictions of future reliability of an individual success-failuresequence within the family. An important question running through the analysis of this model isthe amount of improvement in our ability to assess high reliabilities that is achieved by incorporat-ing data on other sequences within the family. It is of interest to examine formally the dependenceof the answer to this question on the strength of our prior beliefs|particularly our prior beliefsabout reliability consistency|concerning the family hAii.3 Bayesian Updating of Distributions and Moments in theGeneral CaseTo implement the Bayesian learning about � given observation of hriiki=1 we need to calculate theposterior distribution of � � hni; riiki=1 � cL��; hni; rii�Prior�(�)9



where c is a function of hri; niiki=1 not involving �, i.e.� hni; riiki=1 � " kYi=1Z 10 pri (1� p)ni�ri fp(pj�) dp#Prior�(�)Z�2S" kYi=1 Z 10 pri (1� p)ni�ri fp(pj�) dp#Prior�(�) d� (9)Equation (9) draws the focus of attention away from failure probabilities Pi of sequences Ai bythe integrations over p. But it is now of great practical interest to know an up-to-date distribu-tion for P given what has been observed (in order to make predictions about a particular newhproduct; environmenti, for example). Then our learning could be expressed directly in termsof the changing nature of the current uncertainty about a failure probability of some particularsequence. At this stage it is instructive to distinguish three di�erent circumstances under whichwe will have learned, in di�erent ways, about one of the failure probabilities, say Pk. These threedi�erent circumstances will each result in an up-to-date Bayesian posterior distribution for thisfailure probability, which may be compared with the prior marginal distribution of PkPk � Z�2Sfp(pkj�)Prior�(�) d� ; (10)which represents our initial state of uncertainty concerning the reliability of any given sequence,Ak, prior to any observation either of that or of any other hproduct; environmenti pair's be-haviour. At this point of no observation, (10) is the mixing distribution associated with ourmixture-of-Bernoulli-trials model for future failure of Ak. This comparison of (10) with sub-sequent updated Pk-distributions determines the nature and limits of what we can learn fromobserved failure behaviour alone, be it of a single sequence or of a number of sequences from aparticular hproduct; environmenti family.Firstly the most trivial case|observing only the past failure behaviour of the speci�chproduct; environmenti pair of interest|has e�ectively already been covered by (5). SubstitutingR�2S fp(pj�)Prior�(�) d� for fp(pj�) in (5) gives a conditional distributionPk nk; rk � prkk (1� pk)nk�rk Z�2Sfp(pkj�)Prior�(�) d�Z�2SZ 10 prk (1� p)nk�rk fp(pj�) dpPrior�(�) d� (11)for Pk given nk and rk. Note that we will continually assume, as we have done in the denominatorhere, that the families of densities chosen are such that changes of the order of integration arelegitimate.Secondly replacing k by k�1 in (9) and then substituting this distribution in place of Prior�(�)in (10) (or, alternatively, directly substituting nk = rk = 0 in (13) below) gives the distributionPk hni; riik�1i=1 � Z�2Sfp(pkj�)"k�1Yi=1 Z 10 pri (1� p)ni�ri fp(pj�) dp#Prior�(�) d�Z�2S"k�1Yi=1 Z 10 pri (1� p)ni�ri fp(pj�) dp#Prior�(�) d� (12)of Pk given observation of the failure behaviour hni; riik�1i=1 only of other sequences hAiik�1i=1 .10



Thirdly, replacing k by k�1 in (9) and then substituting this distribution in place of Prior�(�)in (11) gives the distributionPk hni; riiki=1 � prkk (1� pk)nk�rk Z�2Sfp(pkj�)"k�1Yi=1 Z 10 pri (1� p)ni�ri fp(pj�) dp#Prior�(�) d�Z�2S" kYi=1Z 10 pri (1� p)ni�ri fp(pj�) dp#Prior�(�) d� (13)for Pk given observation both of the failure behaviour hnk; rki of the sequence Ak itself and alsothe failures hni; riik�1i=1 of other sequences hAiik�1i=1 .We remark here that the e�ects of observation respectively of past and of the present softwarehproduct; environmenti pair's failure behaviour on our beliefs about the present pair's per-demandfailure probability Pk appear to obey a simple multiplicative property. Comparing the numeratorsof the four di�erent probability densities of Pk given by equations (10{13) we see that these arein common proportions to each other8. The denominators appear to spoil these relationships, butthe denominators are only normalising constants, i.e. they do not depend on Pk. We can use thisfact to express the property more concisely in terms of the e�ect of the di�erent observations onthe extent to which we favour one value, say p0k, of Pk over another, say p00k . If, in this way, wecompare the values of the densities at this arbitrary pair of Pk values, we see thatpdf�p0k hni; riiki=1�pdf�p00k hni; riiki=1� � pdf (p0k)pdf (p00k) = pdf (p0k nk; rk)pdf (p00k nk; rk) � pdf�p0k hni; riik�1i=1 �pdf�p00k hni; riik�1i=1 � (14)provided, of course, that p00k is not a point of zero density for any of these four densities. Equation(14) perhaps becomes more intuitively meaningful if converted to the formpdf�p0k hni; riiki=1�pdf�p00k hni; riiki=1�,pdf (p0k)pdf (p00k) = �pdf (p0k nk; rk)pdf (p00k nk; rk)�pdf (p0k)pdf (p00k)��8<:pdf�p0k hni; riik�1i=1 �pdf�p00k hni; riik�1i=1 �,pdf (p0k)pdf (p00k)9=; :(15)In practical terms this says that observation of both the present and previous sequences changesthe `odds of Pk = p0k vs. Pk = p00k ' by a factor which is the product of the corresponding changes inodds resulting from observing, respectively, only the present sequence, or only previous sequences9 .The same property is alternatively captured by the formulaPk hni; riiki=1 � pdf (pkjnk; rk) � pdf�pk hni; riik�1i=1 ��pdf (pk)R 10 pdf (pkjnk; rk) � pdf�pk hni; riik�1i=1 ��pdf (pk) dpk (16)(de�ning this density to be zero wherever pdf (pk) is zero).On closer examination the model property captured by (14) and (15) is found to be merelyan instance of a quite general result in Bayesian statistical modelling which applies wherever theconstruction of a probability model makes two observables, Y1 and Y2, conditionally independentgiven the value of some model parameter �. Then if we ask the question: `How do the Bayesianupdated distributions of � for the three possible cases relative to observation or non-observationof Y1 and Y2 compare with the prior distribution of �?', we obtain an answer of the above form.Our model is clearly of this kind for � = pk, Y1 = hRiik�1i=1 , and Y2 = Rk. Note that no similar8The algebraic product, as functions of Pk , of the `most informed' (13) and the `least informed' (10) is equal tothe product of the other two (11) and (12) arising from the intermediate levels of information9Of course, it is likely that for some pairs 
p0k; p00k� the two terms in curly braces may not be on the same sideof unity, so that, for such pairs, when both sources of data are observed, a kind of cancellation will occur betweenthe tendency of each kind of data separately to cause us to prefer p0k over p00k , or vice versa.11



proportionate relationship holds when we consider updated reliability predictions, rather thanupdated distributions of the per demand failure probability Pk of the current sequence Ak. Below,on p14, we compare the e�ects of these same four `states of observation' on explicit reliabilitypredictions (equations (29{32)). Nor is it possible to further factorise the right-most term inequations (14,15) since under our model we do not have the required conditional independence,given the value of Pk for the current observation sequence Ak, of observations on distinct previousAi, i < k.We remark that the approach used to obtain (13) is not limited to providing us with the updatedunivariate distribution of a single sequence's failure probability. The updated joint distribution ofsay hPk�1; Pki can be obtained from a bivariate form of the arguments. Since (11) and (12) areactually just special cases of (13) for certain of the ni set equal to zero, we will not go through theextension to the bivariate case separately for each of the three observation cases distinguished in(11-13). In the general case where the observations take the form hni; riiki=1, which includes thethree cases previously distinguished, we obtain an updated joint distribution(Pk�1; Pk) hni; riiki=1 �prk�1k�1 (1�pk�1)nk�1�rk�1prkk (1�pk)nk�rkZ�2Sfp(pk�1 j�)fp(pkj�)[Qk�2i=1 R 10pri (1�p)ni�rifp(pj�)dp]Prior�(�)d�Z�2S[Qki=1 R 10 pri (1�p)ni�ri fp(pj�)dp]Prior�(�)d� (17)from which we can, if we wish, investigate the sign and magnitude of any correlation betweenPk�1 and Pk (or powers of these) conditional on the observed data. For higher dimensional jointposterior distributions of the hPii, (17) extends in the way you would expect, to give for thek-dimensional joint distributionhPiiki=1 hni; riiki=1 � n kYi=1 prii (1� pi)ni�rioZ�2Sh kYi=1 fp(pij�)iPrior�(�) d�Z�2Sh kYi=1 Z 10 pri (1� p)ni�ri fp(pj�) dpiPrior�(�) d�We will not pursue this investigation further in this paper and will concentrate on the updateddistribution of the univariate Pk, and its consequences for reliability predictions of the singlesequence Ak given the various combinations of observations discussed above.Depending on the choice of the distribution family ffp(�j�); � 2 Sg and of the distributionPrior�, we may anticipate some analytic and computational di�culties in obtaining these updateddistributions for Pk. However, we can perhaps more easily obtain expressions for the e�ect of thelearning on the moments of the distribution of Pk. In fact the moments of these three alternativeupdated Pk-distributions (which will play the role of mixing distribution in Bayesian reliabilityprediction for Ak) are important since any probability prediction of future failures of Ak is equiv-alent to the expectation, with respect to one of these updated Pk-distributions, of the equivalentprediction conditioned on Pk; and the latter conditional probability will generally involve positiveinteger powers of Pk. (See e.g. (1).) This follows because our model assumptions tell us that thethree quantities past failure behaviour of Ak, future failure behaviour of Ak, failure behaviour ofother sequences are conditionally independent given Pk. For example, the predictive probabilityof R=r failures in n further demands on Ak is obtained by substituting the appropriate one of(11), (12), or (13) for fp(pj�) in (3).More generally if:{1. the term observations refers to some partial or complete joint observation of past failurebehaviours of Ak and of other sequences Ai; and2. the term future failure behaviour of Ak refers to some pre-speci�ed event concerning thepattern of future failure of sequence Ak; 12



then we haveP(future failure behaviour of Ak observations) =E� P(future failure behaviour ofAk Pk) observations � (18)where, on the right-hand side, the value of the inner probability will be a function of Pk (calculatedas for an ordinary Bernoulli trials process) and where the outer expectation is calculated withrespect to the updated distribution of Pk given `observations', which distribution will be one ofequations (11), (12), and (13) when `observations' is of one of the three speci�c kinds we havediscussed explicitly.For an alternative perspective on the same predictions we remark that we are not obliged tothink of them in terms of the updated distributions (11{13) of Pk. We can instead use the doublystochastic structure of our model and its two layers of conditional independence10 assumptions toshow that a prediction of the form (18) will in fact assume a ratio form which can be understooddirectly in terms of two layers of nesting of probabilities and expectations with respect to our initialmodel distributions. In fact, our independence assumptions tell us that whenever `observations'is of such a `product' form that we can decompose it into Vki=1(past behaviour of Ai) (i.e. if it isactually a conjunction of separate events concerning each Ai in isolation) then (18) can be shownto be equivalent to the formulaP(future failure behaviour of Ak observations)= E�P(future and past failure behaviour ofAk �)Qk�1i=1 P(past failure behaviour ofAi �)�E�Qki=1P(past failure behaviour ofAi �)�= E�E�P(future f. b. of Ak Pk)P(past f. b. of Ak Pk) ��Qk�1i=1E�P(past f. b. of Ai Pi) ���E�Qki=1E�P(past f. b. of Ai Pi) ��� (19)where this last form is a prediction expressed as a ratio directly in terms of the distributions usedto construct the model. In both numerator and denominator the inner probabilities are calculatedas for a Bernoulli trials process, the inner expectations are obtained using the distribution fp( � j�),and the outer expectations are taken with respect to our prior distribution Prior�.Before making any observations, Pk has a marginal distribution whose mth non-central momentis given by E(Pmk ) = Z�2S Z 10 pmfp(pj�) dpPrior�(�) d� = Z�2S E(Pmk �) Prior�(�) d� (20)This moment of Pk is updated, by our three distinguished observation assumptions, to give ex-pressions for the moments of the distributions (11), (12), and (13) which take the general formof ratios of expectations with respect to Prior� of multinomials in the moments of fp (which mo-ments are of course functions of �). This is a consequence of the fact that (11), (12), and (13)are simple linear transforms of this �-parameterised p.d.f. of our assumed conditional distributionfor Pk given �. (Or it can also be explained as a particular case of (19).) Speci�cally, taking thethree observation cases in the same order as earlier, the mth updated non-central moment of Pk isE(Pmk nk; rk) = Z�2SE�Pm+rk (1� P )nk�rk �� Prior�(�) d�Z�2SE�P rk (1� P )nk�rk �� Prior�(�) d� ; (21)10of hPii given � for the sequence family, and of success/failure on separate demands given Pi for a particularsequence Ai 13



or E�Pmk hni; riik�1i=1 � = Z�2SE(Pmj�)"k�1Yi=1 E�P ri (1� P )ni�ri ��# Prior�(�) d�Z�2S"k�1Yi=1 E�P ri (1� P )ni�ri ��#Prior�(�) d� ; (22)or E�Pmk hni; riiki=1� =Z�2SE�Pm+rk (1� P )nk�rk ��"k�1Yi=1 E�P ri (1� P )ni�ri ��# Prior�(�) d�Z�2S" kYi=1E�P ri (1� P )ni�ri ��#Prior�(�) d� ; (23)respectively, under the three di�erent assumptions: observation of Ak only; observation only ofother sequences hAiik�1i=1 ; or observation of all of hAiiki=1. Note that here the left hand sides are up-dated expectations conditioned on observed data: The right-hand sides are ratios of unconditionalexpectations taken with respect to the original, prior �-distribution Prior�. The random variableswhose unconditional expectations form these ratios are `binomial-like' expressions in the momentsof the distribution fp(�j�), which, being deterministic functions of �, inherit their distributionsfrom our chosen Prior� distribution. To emphasise this role played by these moments of Pk given�, and at the same time to shorten equations (20{23) slightly, if we de�ne�r;s(�) = Z 10 pr(1� p)sfp(pj�) dp; (24)then we can write E(Pmk ) = E(�m;0) (25)E(Pmk nk; rk) = E(�m+rk ;nk�rk )E(�rk ;nk�rk ) ; (26)E�Pmk hni; riik�1i=1 � = E �m;0 k�1Yi=1 �ri;ni�ri!E k�1Yi=1 �ri;ni�ri! ; (27)E�Pmk hni; riiki=1� = E �m+rk ;nk�rk k�1Yi=1 �ri;ni�ri!E kYi=1�ri ;ni�ri! : (28)Equations (18) and (19) tell us that up-to-date reliability predictions may be similarly expressedas ratios of expectations of moments of fp(�j�). Firstly, given no observation data at all, we haveP(rkjnk) = �nkrk�E(�rk;nk�rk ) (29)and, once having observed (only) that Rk = rk, if r0k is the number of failures predicted in afurther n0k demands on sequence Ak,P(r0k n0k; nk; rk) = �n0kr0k�E��rk+r0k;nk+n0k�rk�r0k�E(�rk;nk�rk) ; (30)14



For our other two observation assumptions we can writeP�rk nk; hni; riik�1i=1 � = �nkrk�E kYi=1�ri;ni�ri!E k�1Yi=1 �ri;ni�ri! ; (31)P�r0k n0k; hni; riiki=1� = �n0kr0k�E �rk+r0k;nk+n0k�rk�r0k k�1Yi=1 �ri ;ni�ri!E kYi=1�ri;ni�ri! : (32)(Note that the updated Pk-moments (25{28) are merely a special case of this prediction : theprobability that the next m demands result in a string of m successive system failures.) Inequation (29{32), the expectations occurring within the right-hand sides are taken with respectto the prior Prior�. So the conditioning observations are present in the right-hand expressionsonly through the speci�cation of which moment-terms �r;s(�) comprise the products whose priorexpectation is to be taken. Indeed, it may be useful to think of the distribution fp(�j�), given a �value, as represented by an in�nite, 2-dimensional matrix of its moments �r;s(�). Then our choiceof Prior� can be viewed as a distribution over these matrices. Our future reliability predictionswill be expressed as product-expectations (over �) of certain elements from these matrices, wherethese elements are selected from the matrix at positions determined by the values of the failurecounts we have observed in the past and by the precise future failure-count value whose predictiveprobability we wish to obtain.4 An Upper Bound on Reliability Prediction : The Case ofNo Observed FailuresConsider the special case in which no failures at all have been observed|neither failures of thehproduct; environmenti pair for which we speci�cally wish to predict reliability, nor failures of otherpairs hproduct; environmenti within the same family. This case may have importance as an upperlimit for the reliability levels which can be objectively measured in a given amount of observationtime purely from observation of failure behaviour of sequences within the family. Specialising theequations above to this case is simply a matter of substituting the observation hrii = h0i. If wesimilarly specialise the form of our predictions by considering the Bayesian predictive probabilityof a further period of failure-free operation, we �nd that these predictions can be expressed inrather a simple form as ratios of expectations of products of the non-central moments11 of 1�P ,with P coming from the distribution fp(�j�). So, conclusions about the best reliability levelspotentially measurable using this model can be thought of as dependent exclusively12 on ourdecision about what may be considered realistic assumptions for our subjective prior distributionof the moment-vectorh�0;1; �0;2; �0;3; : : :i = 
E(1�P �) ;E�(1�P )2 �� ;E�(1�P )3 �� ; : : :� (33)of the hproduct; environmenti family.Assuming that we do begin by believing that our family is highly reliable (to be more exact,that any individual hproduct; environmenti pair within the family is highly likely to be highly11 i.e. moments of the probability of successful completion of an individual demand12As far as reliability prediction is concerned, the signi�cance of our speci�cation and parameterisationffp(�j�) ; �2Sg of a collection of possible P -distributions, and the signi�cance of our choice of prior Prior� over thiscollection, is contained entirely in the resulting distribution of the moment-vector (33).15



reliable), then the conditional distribution of P given � will be concentrated very close to 0 (forall except, perhaps, some values of the family parameter � which we consider to be very unlikely,i.e. that are assigned small probability (density) values Prior�(�) by our prior for �). Suppose aparticular fp( � j�), i.e. a particular value of the parameter �, were highly reliable. This � mightcorrespond to say a particularly good design process, or perhaps a single product which is successfulin achieving high operating reliability in a number of di�erent operating environments. Then the�rst few at least of these moments �0;i ought to be very close to 1. But it now appears that itis the relative amounts by which we, at the outset, stochastically believe the higher moments areless than 1, and certain kinds of correlations in our beliefs about these moments (as functionsof �) which determines how much our con�dence in failure-free operation for Ak should growwhen we observe failure-free operation of other sequences hAiik�1i=1 . To understand precisely thesense in which the last statement is true substitute hrii = h0i and r0k = 0 in equations (29-32).This yields three expressions for the reliability function, i.e. the Bayesian predictive probabilitythat the next m demands on Ak will be failure-free, given previous observation of failure-freeexecution of respectively: Ak only; hAiik�1i=1 ; or, lastly, all of hAiiki=1. These three alternativepredictive probabilities of future consecutive successful demands on Ak should be compared withthe unconditional E((1�P )m) = E(�0;m) ; (34)the probability that the next m demands on Ak will be failure-free given no conditioning obser-vation of either Ak or any other sequences. Indeed it is the comparison of (29) with (31), andthe comparison of (30) with (32) which indicate the impact of evidence from other sequenceson our beliefs about the probability of failure-free operation, or reliability function, of sequenceAk. In each case, the admission of evidence from sequences hAiik�1i=1 introduces a common factorQk�1i=1 �0;ni into the arguments of the unconditional E-operators in both the numerator and thedenominator.5 Some Questions About Model ImplicationsSome particular questions of interest are:{� How does our con�dence in Ak behave as a function of the number of previous sequences,when these have all been observed to contain no failures for an equal number ni = n ofdemands?� For a �xed number k�1 of previous sequences, observed for �xed periods, how much doesone failure in one sequence spoil things as far as our con�dence in sequence Ak is concerned?Then, how much does one failure in each of two of these sequences a�ect our conclusions?And so on, for 1; 2; 3; : : : out of the k�1 previous sequences exhibiting one failure each, andthe rest no failures?� Is it best, given a �xed number, in total, of demands on previous hproduct; environmentipairs, to know that fewer hproduct; environmenti pairs have shown failure-free operation overa larger number of demands each, or that a larger number of such pairs have each workedperfectly over a relatively small number of demands each? How important is this distinction,in terms of its e�ect on the size of the amount by which our con�dence in Ak is improved byobservation of the previous sequences?� Where there have been some previous failures, and again keeping the total number of previousdemands constant, do we prefer to hear that those failures have been concentrated amongst asmall number, or even a single, previous sequence, or is it less depressing news for the currenthproduct; environmenti pair if we �nd that the previous sequences all showed a similar levelof unreliability? (It seems obvious that, if we are especially interested in the reliability of thecurrent sequence Ak, then, given the choice, we should in general prefer observed failures tohave been found in previous sequences, i.e. to be failures associated with software productsor environments other than the current one.)16



� Which, if any, of the answers to the above four groups of questions holds quite generally forall possible parametric distribution families ffp(�j�) ; �2Sg, and for all possible prior beliefsPrior�? Does a preference for, say, all failures to have occurred in a single previous sequence,rather than for the same total number of failures to have been distributed between severalprevious sequences, depend on speci�c characteristics of our assumed prior distributions?� Extending further such consideration of the inuence of our choice of Prior�, we might evenask, the family ffp(�j�) ; �2Sg being assumed speci�ed, about variation in the quantities ofinterest over the space of all priors Prior�, and, in particular, ask various, probably math-ematically non-trivial, questions about extrema here. In practice Prior� ought ideally tocapture genuine prior belief. However, given that the conclusions from this model are likelyto be highly dependent on the shape of our prior belief, it is important to try to gain ageneral understanding of more precisely how, and to what extent, various di�erent distribu-tions Prior� will e�ect our conclusions. What are the extremes, in both the sense of extremefavourability and extreme unfavourability to high current reliability predictions, of the priorbeliefs we might hold? Are the mathematical extremes here at all plausible in practice? Canwe introduce geometric constraints on the shape of the prior distribution, such as unimodal-ity, or continuous density function, or upper and lower limits on the values of Pi admitted ashaving positive probability, and how do such constraints e�ect the answers to our questionsabout extrema?There are several other similar questions that can be asked, given our general model structure.We plan to address some of these issues in more detail in our on-going work. The next sectioncontains some tentative results relating to some of these questions in the context of some simpleinstantiations of our general model.Generally, in terms of the basic model structure of this paper, there is of course an addedcomplication to these questions: It may well turn out that the questions as we have just listedthem are insu�ciently precise. What precisely does `high current reliability' mean in the lastbullet point above? It might transpire that the answers will depend on speci�cally how we chooseto quantify the reliability of the present hproduct; environmenti pair. For example, in terms ofthe updated distribution (13) of Pk, or in terms of the associated13 reliability function. Andin each of these two cases, how do we compare two functions? Two alternative Ak-reliabilityfunctions resulting from di�erent observed behaviours of previous sequences might cross at futuredemand m=104, for example. That is to say, the previous-sequence observations which give thegreater con�dence in the current sequence's long-term reliability may give lower con�dence inits short-term reliability. In such a case, the set of previous-sequence observations which wewould prefer to see would depend on factors such as our predicted operational lifetime of thehproduct; environmenti pair Ak.6 Examples of Particular Choices of Prior Distributions forP given �, and for �We shall retain throughout what follows our original assumptions that each sequence Ai consti-tutes a Bernoulli trials failure process with unknown parameter Pi, and that the hPii sequenceis i.i.d. conditionally given an unknown sequence-family characterising parameter �. To generateparticular cases of our model we are then left with the tasks of choosing the distribution familyffp(�j�); �2Sg and the single prior distribution Prior� over this family. To begin with, we willinvestigate a simple two-point distribution fp(�j�) in x6.1. Though clearly a simpli�cation, thismodel instantiation can be argued to have some practical relevance to attempts to certify `ultra-high reliability hproduct; environmentis' as well as illustrating in a simple way the structure of ourgeneral model.13using equation (18) 17



6.1 Two-point fp, with � interpreted as mass at �xed points of support,one of which is p=0Suppose P � has a two-point distribution with � equal to the probability14 assigned to p = 0. Sowe assume P(Pi = 0 �) = � ; P(Pi = � �) = 1� � :Thus we assume that, for each sequence Ai in the family, � is the probability that Pi = 0. Forexample, we could imagine a formal veri�cation technique is applied to each software product andthat this technique fails|to deliver a perfect (p = 0) hproduct; environmenti|with an unknownprobability 1� �. When this happens, we assume that the resulting program failure probability isknown; for example � = 10�5 might be used, if these are high-integrity products. This assumptionof a single known value for p whenever p 6= 0 would perhaps better be relaxed by allowing adistribution for p, but it simpli�es the application of our general model, retains su�cient exibilityto provide a useful illustration of the model, and could perhaps be justi�ed on the grounds ofconservatism by assuming a worst case value � for the non-zero p. We can now apply our previousresults to the analysis of this model. Though now containing a discrete distribution component,the model can if desired be obtained directly from the results of sections 2{3 by de�ning thecommon density of each of the Pi in terms of Dirac delta functions15P � � fp(pj�) = � �(p) + (1� �) �(p� �); (35)say, where 0 < � < 1 is �xed.The likelihood of � given periods hniiki=1 of observation of k sequences (c.f. equation (7)) isthenL(� ; hni; riiki=1) = Y1�i�k�niri� � Y1�i�k;ri>0 �ri (1� �)ni�ri (1 � �) � Y1�i�k;ri=0 f(1� �)ni (1� �) + �gTo within a factor which does not depend on � we can write this asL(� ; hni; riiki=1) / Lk(�) = Y1�i�k;ri>0 (1 � �) � Y1�i�k;ri=0 f(1� �)ni(1� �) + �g6.1.1 1st Case: General Prior�It follows that the posterior distribution of � given this data is now� hni; riiki=1 � Lk(�)Prior�(�)R�2S Lk(�)Prior�(�) d�In fact, since the parameter � has a direct interpretation here as a probability, we must haveS � [0; 1], and we can assume without loss of generality that Prior� is extended in such a way thatS = [0; 1]. We shall assume this has been done for the remainder of this section. If there has beena failure in the observed part of the current sequence (i.e. if rk > 0), then the updated posteriordistribution of Pk given our observation is trivially just Pk = � with certainty. In this case, futurereliability prediction is simply that of a Bernoulli trials failure process with parameter �. In the14Contrast with the also interesting case where � de�nes the position of the points of support of fp|Or perhapsfurther generalisations where the positions and masses of two points of support for P are represented by a two orthree dimensional �.15Provided we agree either to slightly extend our usual range 0 � p � 1 of integration with respect to p, or tomodify the usual de�nition of the �-functions so that R 10 �(p)dp and R 10 �(p� 1) dp should evaluate to 1 rather than12 18



interesting case where the current sequence Ak has so far exhibited no failure we have16P�Pk = 0 hni; riik�1i=1 ; nk; rk=0� = R 10 �Lk�1(�)Prior�(�) d�R 10 f(1� �)nk (1� �) + �gLk�1(�)Prior�(�) d� ;P�Pk = � hni; riik�1i=1 ; nk; rk=0� = R 10 (1� �)nk (1� �)Lk�1(�)Prior�(�) d�R 10 f(1� �)nk (1� �) + �gLk�1(�)Prior�(�) d� :Equation (18) tells us that this pair of probabilities may now be substituted in the followingequation to obtain a reliability prediction for sequence AkP�No failure in next m demands hni; riik�1i=1 ; nk; rk=0� =P�Pk = 0 hni; riik�1i=1 ; nk; rk=0�+P�Pk = � hni; riik�1i=1 ; nk; rk=0� (1� �)m (36)This is equivalent to the rk = r0k = 0, n0k = m case of equation (32), where for this model structurewe have �r;s = � (1 � �)s(1� �) + 1; if r = 0,�r(1� �)s(1� �); if r > 0. (37)Expressing the up-to-date distribution of Pk slightly more concisely using the `odds' form men-tioned in equations (14) and (15), we can compare it with the odds obtained from observation ofonly the present or only previous sequences. Cancelling some constants from the likelihood termLk(�) which occurs in both the numerator and the denominator, we �nd thatP�Pk = 0 hniiki=1 ; hriiki=1= h0i�P�Pk = � hniiki=1 ; hriiki=1= h0i� = (1 + yk)yk R 10 Qk�1i=1(� + yi) �Prior�(�) d�R 10 Qk�1i=1(� + yi) (1� �)Prior�(�) d� (38)P�Pk = 0 hniik�1i=1 ; hriik�1i=1 = h0i�P�Pk = � hniik�1i=1 ; hriik�1i=1 = h0i� = R 10 Qk�1i=1(� + yi) �Prior�(�) d�R 10 Qk�1i=1(� + yi) (1� �)Prior�(�) d� (39)P(Pk = 0 nk; rk=0)P(Pk = � nk; rk=0) = (1 + yk)yk P(Pk = 0)P(Pk = �) ; (40)where the second term on the right-hand side of (40) is just the prior odds that Pk = 0 (beforeany portion of any sequence has been observed) and where we introduce the notationyi = 1(1� �)�ni � 1 ; i = 1 : : :k : (41)Note that for this two-point model with � assumed known, improving reliability estimates of thecurrent sequence translate directly into an improving up-to-date probability of currenthproduct; environmenti perfection. This can be simply expressed in terms of the odds valuesgiven by equations (38){(40). If the prior odds of Ak-perfection is denoted o, and if equations(39) and (40) represent, respectively, improvements on this by factors of R, achieved by means ofprevious Ai-observation, and R0, by means of direct observation of hproduct; environmenti pairAk, then we will have a prior Ak-perfection probability of �1 + 1o ��1 = R 10 �Prior�(�) d�, improvingto posterior Ak-perfection probabilities of �1 + 1R0o ��1, �1 + 1Ro��1, and, �1 + 1RR0o��1, respec-tively, under the three di�erent observation scenarios of equations (11{13). Clearly, it is the factorR which is of particular interest since it represents the advantage to be gained from incorporatingdata on the previous Ai. There is a need to understand the way that this factor is determined bythe combined e�ect of observations and of our prior distribution Prior�.16This formula holds also for k = 1 if we put L0(�) = 119



If failures in some previous sequences A1 : : : ;Ak�1 have been observed then this is handled(irrespective of how many of these failures there were for each Ai which was seen to fail atleast once) by replacing the corresponding factors (� + yi) by (1 � �) in both the numerator anddenominator of equations (38) and (39). The expression in terms of yi here brings to light aninteresting limiting case yi ! 1eni� � 1 (42)which is likely to be a good approximation to reality for pairs hproduct; environmenti which arevery reliable, and which is obtained by letting � ! 0 and ni !1 (for those Ai which have beenobserved not to fail) whilst holding ni� constant for each of these sequences. In this limiting case,the updated distribution of Pk comes to depend only on the products ni�, and not other thanvia these products on the values of ni and �. Some idea of closeness to this limiting case can beobtained, in terms of the value of �, from the crude bounds1e ni�1�� � 1 < yi < 1eni� � 1 (43)which are respectively obtained by applying the two well known inequalities�1 + xn�n < ex ; n > 0; x > 0 and �1� xn��n > ex ; 0 < x < n: (44)For an interpretation of yi we can say that yi is a kind of inverse measure of the informativenessto us of our no-failures observation on sequence Ai. Precisely, yi is the odds of observing whathas been observed (i.e. no failures) of sequence Ai, under the assumption that its true failureprobability is Pi=�. So ri=0 with a yi which is close to zero means that we have observedsomething about sequence Ai which would be extremely unlikely under the assumption Pi=�.Conversely, ri=0 with a very large yi means that, even if we somehow knew for certain17 thatPi=�, we would still be virtually certain not to observe any failures of Ai in the ni trials we havecarried out. Equations (38{40) con�rm that there is virtually no e�ect on our beliefs about Pk,arising from the observation that ri=0, if the value of yi is very large : In terms of inferences aboutPk, large yi makes the the observation ri=0 almost equivalent to no observation of sequence Ai(i.e. almost equivalent to ni=0)18.We developed our model of xx2{3 in a very general setting fromwhich these two-point fp resultsare a very special case. However, even for this simple model instantiation, several interesting andnon-trivial questions can be asked about how much extra con�dence in a current sequence Akcan be gained from the observation that previous pairs hproduct; environmenti have performedwell. The information that previous products have been observed to perform perfectly in theirassigned environments over �nite observation periods hniik�1i=1 is a special case of obvious interestfor reasons stated earlier.By concentrating �rst on this simple two-point case of our general model, we can avoid imme-diately having to grapple with many of the complications concerning alternative quanti�cations ofreliability. For this two point model, it is e�ectively true to say that high reliability of the presenthproduct; environmenti Ak is unarguably equivalent to a large value of the updated probabilityP�Pk=0 hni; riiki=1�. So in the case of this 2-point model there does exist a single number whichcan be said to represent the current Ak reliability prediction. Thus we can unambiguously orderthe reliability predictions which would result from two di�erent sets of past failure observations.For instance, (36) shows us that, with a �xed numerical value for � speci�ed by the model, we willnot experience the complication of two reliability functions, produced by di�erent past-sequencebehaviours, which cross at some number m of demands into the future. We proceed to examinesome of the questions of x5 for this simple model.17the worst possible belief we can hold about Ai , however much observing we do, under this two-point model18For a logically consistent de�nition of yi in the vacuous ni=0 case, we might use yi=1 on the understandingthat we can then simply cancel from equations (38{40) all the in�nite factors involving yi20



Firstly, we can easily see from (40) that observation of failure-free operation in sequence Ak,itself, will improve the odds that this sequence has Pk=0. The odds in favour of Pk=0 increaseby a factor 1+ 1=yk, or (1��)�nk . (We note that this factor is not inuenced by our prior beliefsabout �.) This remains true, and by an identical proportion (see comments on p11), irrespective ofwhether observation of previous sequences has occurred, and irrespective of what failure behaviourwas observed for those sequences. Intuitively we might expect that observing perfect failure-freebehaviour in previous sequences should improve the odds that Pk=0 in a similar sort of consistentway, if not to the same extent. To con�rm such an e�ect, and to investigate its magnitude weneed to look at the ratioR = P�Pk=0 hniiki=1 ; hriiki=1= h0i�P�Pk=� hniiki=1 ; hriiki=1= h0i�,P(Pk=0 nk; rk=0)P(Pk=� nk; rk=0) =Z 10 k�1Yi=1(� + yi) �Prior�(�) d�Z 10 k�1Yi=1(� + yi) (1� �)Prior�(�) d� �� Z 10 �Prior�(�) d�Z 10 (1� �)Prior�(�) d�To do this we will �rst introduce some slightly more concise versions of our existing notation andmake some de�nitions. De�nel(�) = k�1Yi=1(� + yi) ; �1 = P(Pk=0) = Z 10 �Prior�(�) d� ; and �2 = l�1�Z 10 l(�)Prior�(�) d��:Note that we know from the convexity of l, using Jensen's inequality, and from l's monotonicity,that, for any Prior�, we must have 0 � �1 � �2 � 1. In fact we will have strict inequalities hereexcept in some degenerate cases such as yi=1, or where Prior� is a single point mass. With thisnotation it can be shown that the ratio representing our improvement of odds simpli�es as followsR = Z 10 l(�)�Prior�(�) d�Z 10 l(�)(1 � �)Prior�(�) d� 1� �1�1 = 1 + Z 10 l(�)�Prior�(�) d� � l(�2)�1�1 Z 10 l(�)(1 � �)Prior�(�) d� (45)where here the numerator and denominator of the ratio on the right-hand side are both positiveand, together through this term, express the `amount of bene�t' obtained from observing the non-failure in the previous sequences. We know that the numerator of this ratio (i.e. of the amount bywhich the ratio R of the odds exceeds 1) on the right-hand side of (45) is non-negative becauseit expresses the covariance19 of the random variables � and l(�) : A random variable cannotbe negatively correlated with any variable obtained by applying to it a non-decreasing function.In fact we can express this numerator as an integral of a non-negative function, in either of twoslightly di�erent waysZ 10 l(�)�Prior�(�) d� � l(�2)�1 = Z 10 �� � �1��l(�) � l(�1)�Prior�(�) d�= Z 10 �� � �2��l(�) � l(�2)�Prior�(�) d� : (46)It is clear from (45) that the improvement in the odds that Pk=0 which results from the previoussequence observations can be thought of as the result of three interacting inuences: the originalodds (prior to observation of either this or any other sequence) captured in terms of the value of19deriving from our assumed prior distribution Prior�21



�1; the actual detailed description of the observation of previous sequences (both their number,and what is observed of each), which we can think of as being summarised by the function l(�)20;and, going beyond the simple expectation �1, the exact shape Prior� of our prior beliefs about �. Interms �rstly of the previous sequence observations, we can see that l(�)=constant, correspondingto a large yi value for each sequence observed, is equivalent to a lack of useful information observedfrom the previous sequences. At the opposite extreme, the function l(�) = �k�1 is the upper boundon the proportionate variability of l over the unit interval. This represents an upper bound onthe improvement of our beliefs about a kth sequence that can arise from observation of periods ofperfect operation of the k�1 previous sequences.Now, looking instead at the inuence on R of the form of Prior�, we see that, for whatever setof past-sequence observations, (45) will have approximately the value 1 in the case where Prior�approaches the distribution of a degenerate, constant, random variable. I.e. if we are already moreor less certain before observation commences, that � � �1, then one sequence will have little totell us about another. At the other extreme of the form of Prior� for the same �xed mean �1, itseems that high levels of variation or spread in our prior subjective �-distribution will have theopposite e�ect, magnifying to its limits the signi�cance for sequence Ak of what we have observedfrom previous sequences. For a particular function l(�), these limits are �nite, and so we mightinvestigate them further. But we do this as a way of obtaining a slack upper bound on how muchprevious sequences could ever tell us (within the two-point fp model of this section) rather thanbecause we believe the extreme of Prior�-variance is likely to be a realistic model of a person's trueprior beliefs about reliability variation within the family of software hproduct; environmenti pairs.For �xed mean �1 the most extreme spread in prior beliefs about � is given by the distributionPrior� which consists of two point masses: �1 at �=1 and 1 � �1 at �=0. It is easy to see thatthis Prior�21, when substituted in the left-hand side of (45) gives the Pk=0 odds-increase ofR = l(1)l(0) = k�1Yi=1 1 + yiyi = (1� �)�fPk�1i=1 nig : (47)In considering the inuence of the shape of Prior� on the usefulness of previous sequenceobservations, a point worth making about the form of the obtainable odds-improvement (45) isthe following. If we consider the set of probability distributions Prior� on the unit interval havingsome common �xed mean �1, and if we hold �xed the previous-sequence observations (i.e. specifysome �xed function l(�)), then, as we vary Prior� within this set (which, mathematically, is aconvex set in a suitable vector space of real measures), we will �nd that the extrema of (45) mustbe attained somewhere on the boundary of this set of distributions. This is because R, regardedas a function of the distribution Prior�, has a monotonicity property along `straight lines' in theset of candidate Prior� distributions : When Prior� is a mixture22, say,Prior�(�) = �p1(�) + (1� �)p2(�) ; 0 < � < 1 ; (48)of two probability distributions on the unit interval, having a common mean �1, but di�erentvalues, say R(p1) < R(p2), of the ratio (45), then the value R(Prior�) of (45) corresponding tothe mixture will satisfy R(p1) < R(Prior�) < R(p2). This in turn follows from the fact thatthe numerator23 and denominator of (45) are both non-negative-valued linear functionals of theprobability distribution Prior�24. This kind of reasoning can be used to con�rm that (47) is indeed20although, as we have already mentioned, it is the vector of products ni�, or to be more exact, in the casewhere � is not very small, of yi values de�ned by (41), which contains the signi�cant part of the previoushproduct; environmenti pairs' inuence on our beliefs here, i.e. � as well as the ni determine l21strictly speaking a weighted sum of two Dirac delta functions, but note footnote 15 on p1822the argument extends easily to more general mixtures than the discrete mixture of just two distributions usedhere23use either the left-hand side of (45), or the right-hand side of (45) with the �rst form of the right-hand side of(46) used as the numerator24essentially we are using the identity �a+(1��)A�b+(1��)B = �ab +(1��)AB (a convex combination) for any pair of ratiosab and AB of positive numbers, where � = �b�b+(1��)B . 22



the maximum possible value of R for a �xed observation function l and mean �1 (and in fact, aswe see in (47), that the value of this maximum is actually the same for all 0 < �1 < 1). The valuein (47) tends (using the same reasoning as for (43)) to a limit exp �Pk�1i=1 ni�� as � ! 0 keepingeach of the the product terms ni� in the exponent constant. In addition to this limiting value, wealso have, for �nite ni, an upper bound exp �Pk�1i=1 ni �1�� � by the same reasoning as that used toproduced (43).It is di�cult to imagine how a two-point Prior�, such as that required above to attain themaximum (47) e�ect of past sequences, could possibly arise in practice as a realistic model ofsubjective prior belief. Some further, more realistic restriction on the set of admissible shapesof the Prior� distributions which have some particular mean �1 is probably worth exploring. Forexample the question of how big (45) can become (for some �xed �1 and l) when we require thatthe prior distribution Prior� should be unimodal looks a more interesting one from a practicalpoint of view, if, unfortunately, more di�cult mathematically to solve.6.1.2 2nd Case: Parametric Restriction of Prior� to Beta FamilyConsider a further model specialisation in the form of the assumption that Prior� is a Betadistribution25. This assumption is convenient for numerical reasons since it allows us to expandout the �-polynomials in (38) and integrate analytically, term by term, usingZ 10 �m(1� �)m0Prior�(�) d� = �(a +m; b+m0)�(a; b) (49)= a(a+ b) a+ 1(a+ b+ 1) : : : a +m � 1(a+ b+m � 1) b(a + b+m) b + 1(a + b+m+ 1) : : : b+m0 � 1(a+ b+m +m0 � 1)Hence problems of optimisation (of say the ratio (45)) within this parametric restriction of thechoice of prior beliefs Prior� become scalar optimisation problems with respect to the two inde-pendent variables a and b, rather than mathematically more di�cult optimisations in which theindependent variable is a `point' lying in a convex set of general probability measures (containedwithin a larger vector space of general measures on the unit interval).Note also that the Beta Prior� assumption contains, as the limiting cases a; b ! 0 with a=bconstant, the largest-variance26, 2-point Prior� distribution of a given mean, as mentioned above,and also contains, as the cases a; b ! 1 with a=b constant, the degenerate Prior� under whichthere is no possibility to learn about Pk from observation of other Ai, i = 1 : : :k�1.It is of interest27 to �x the prior probability P(Pk=0) and to examine how variation of theparameters a; b of the Beta distribution for �, subject to such a constraint, a�ects the amountthat can be learned from previous sequences. In fact, �xing this prior probability is equivalentsimply to �xing the ratio a=b, i.e. the prior odds, say o, that Pk=0. If we reparameterise the Betadistribution in terms of this odds o and the parameter b, then, as we have just said, for �xed o, thegreatest (or least) possibility, as measured by the ratio R of equation (45), for learning about thecurrent hproduct; environmenti pair from perfect behaviour of all observed previous Ai, 1 � i < k,corresponds to the extreme limiting case b ! 0 (or b ! 1). In fact, for this model, we canverify that, as we might expect, in this situation where all previous sequences have shown perfectbehaviour over their �xed observation periods, R is a monotonic non-increasing function of b. SeeAppendix A for the details of this proof. This R(b)-monotonicity provides us some information,at least in the Beta case, about what happens as we vary the shape of the distribution Prior�, for�xed mean �1 (i.e. �xed o given by o = �1=(1��1)), between the two extreme cases of the constant(zero variance) prior distribution corresponding to R = 1 at one extreme, and the other extreme of25Not to be confused with the assumption, in the example of the next sub-section, that � is ha; bi the parameter-pair of a Beta distribution, where that Beta distribution is our fp-distribution for Pi given �.26the coe�cient of variation of the Beta(a;b) distribution is pb=fa(a+ b+ 1)g27because this will provide an upper bound on `how much' a given amount of previous-sequence data can tell us,under this model : not because we wish to suggest that such an optimisation is a valid method of `eliciting' theshape of genuine Bayesian prior beliefs, nor even that this bound will be close to approachable in a genuine analysisof real systems 23



the maximal-variance, 2-point distribution with mass only at �=0; 1 corresponding to the largestpossible value ofR, given by (47). Fixing o = a=b and varying b for our Beta Prior� is equivalent tomoving along the line b = oa in the ha; bi-plane. In this plane of Beta distribution parameters, it isprecisely the points inside the unit square (i.e. the pairs ha; biwith min(a; b) < 1) which correspondto bimodal Beta distributions. The Beta distributions corresponding to the outside or boundary ofthis square (those for which min(a; b) � 1) are unimodal Beta distributions. Hence, in the case ofa Beta Prior�, we can conclude that, moving back from in�nity (the degenerate constant � = oo+1prior) along the line b = a=o towards the origin gives a steadily increasing variance of Prior�, andsimultaneously an increasing value of R, with both the maximal variance, and the maximal R,which can arise from a unimodal Beta prior, being attained on the boundary of the square atha; bi = 
1; 1o�, if o � 1, or at ha; bi = ho; 1i, if o � 1. Expressions for the accompanying R valuesare obtained by substituting Prior�(�) / (1� �)o�1�1 and Prior�(�) / �o�1 in the formula (45). Ifthis movement towards the origin of the ha; bi-plane is continued inside the unit square, then, asthe origin is approached, increasingly extreme forms of bimodality in the prior for � result in thevariance of Prior� approaching a maximum value of o�(o + 1)2, and R approaching the extremelimiting case of (47). This latter extreme case has the rather absurd interpretation of all sequencesbeing known to have the same Pi value in advance of observation, but with uncertainty somehowpersisting (despite such a strong belief in uniformity of failure rates) as to whether the actual valueof this universal failure probability is 0 or �. It seems that this smaller Rmax arising from therestriction to unimodal priors might be a more realistic upper bound on the attainable size of theimprovement R. However, we have not answered the general question under a unimodal Prior�of how large R can be for given �xed observations periods throughout which the k�1 previoussequences have all been failure-free. We do not know how much greater we might be able to makeR if we experiment with unimodal Prior� outside the Beta family. Mathematically this appearsto be a di�cult constrained optimisation problem.We can also use the analytic tractability gained by this Beta restriction on Prior� to investigatethe question28 of how the shape of our prior beliefs a�ect the preferred allocation of a �xed numberof demands between a number of past hproduct; environmenti pairs Ai, i=1,2,. . . ,k-1. The algebrais a bit awkward, but even with this Beta family assumption for Prior�, and while limitingourselvesto the more tractable cases of small k, we are still able to establish the following result: Our priorbeliefs about the hproduct; environmenti perfection probability � = P(Pi=0 �) are of su�cientimportance that the answer to the question posed in the third bullet point at the beginning of x5may be `No', `Yes', or something more complicated, depending on the combined e�ects of the shapePrior� of our prior beliefs and the total amount N (or Z, see below) of past product data we haveavailable. This establishes a principle that there are qualitative, as well as quantitative, questionsconcerning what our model says about the inuence of observations of past hproduct; environmentipairs which cannot be answered until we have described the shape of our prior uncertainty aboutreliability variation between the hproduct; environmenti pairs of our family hAii. Suppose we havea total number N of demands to distribute between k�1 previous hproduct; environmenti pairsA1;A2; : : :Ak�1 and that our objective is to increase our con�dence in the reliability ofAk as muchas possible. To simplify the notation slightly, we work in terms of Z = N (� log(1 � �)), whichwe might choose to think of as a quanti�cation of the total amount of past-sequence observation`adjusted' for the di�culty of our task of discriminating between Pk=0 and Pk=�. (Clearly, thecloser � is to zero, the more di�cult it becomes to discriminate, by means of data, between the twopossibilities Pk=0 and Pk=�.) We can describe our allocation of this past data between the k�1previous sequences by means of a vector h�1; �2; : : : ; �k�1i, with 0 � �i � 1, �1+�2+ : : :+�k�1 = 1where �i = ni=N .Taking �rst the simplest case of just two previous sequences, i.e. k = 3, equation (45) (using28The third bullet point at the beginning of x5 24



(39) and (41)) can be writtenR = ba � Z 10 �e�1Z� + (1� �)� �e�2Z� + (1� �)� �a(1� �)b�1 d�Z 10 �e�1Z� + (1� �)� �e�2Z� + (1� �)� �a�1(1� �)b d� (50)Expanding the products of square-bracketed terms and using (49), this reduces toR = (a + 2)(a+ 1)e(�1+�2)Z + (a+ 1)b �e�1Z + e�2Z�+ (b + 1)b(a+ 1)ae(�1+�2)Z + a(b+ 1) (e�1Z + e�2Z) + (b+ 2)(b+ 1) (51)Remembering that �1 + �2 = 1 and taking ���1 � 12�� as our measure of unevenness of allocation ofthe N (or Z) past observations between A1 and A2, we �nd thatR = (a + 2)(a+ 1)eZ + 2(a + 1)beZ2 cosh�(�1 � 12)Z� + (b+ 1)b(a + 1)aeZ + 2a(b+ 1)eZ2 cosh�(�1 � 12 )Z� + (b+ 2)(b+ 1)= a+ 1b+ 124 ba + (a+ b+ 2)�eZ � b(b+1)a(a+1)�(a+ 1)aeZ + 2a(b+ 1)eZ2 cosh�(�1 � 12)Z� + (b+ 2)(b+ 1)35 (52)and it is apparent that R is a monotonic function of ���1 � 12 �� with boundsR1 = (a+ 1)eZ + baeZ + b+ 1 ; achieved at �1 = 0; 1 (53)R2 = (a+ 2)(a+ 1)eZ + 2(a+ 1)beZ2 + (b+ 1)b(a+ 1)aeZ + 2a(b+ 1)eZ2 + (b+ 2)(b+ 1) ; achieved at �1 = 12 (54)We showed earlier that, irrespective of how much direct observation of A3 has been done, R isthe factor by which the odds that A3 is perfect are improved by the past sequence (in this caseA1 and A2) observation. Thus we conclude, for this simple k = 3 case, that� If our prior beliefs for � are Beta(a; b) with b(b+1)a(a+1) = eZ , then our posterior probabilitythat P3=0 is una�ected by changes in allocation of a �xed total amount Z of past sequenceobservation between A1 and A2. In this case, the observation of A1 and A2 improves ourodds that A3 is perfect by a �xed factor R = (a+1)ba(b+1) .� If our prior beliefs are Beta(a; b) with b(b+1)a(a+1) > eZ then our posterior probability that P3=0is a strictly increasing function of ���1 � 12�� (i.e. we prefer our previous observations to havebeen allocated as unevenly as possible between the two previous sequences A1 and A2). Inthis case we have R2 � R � R1 as we vary �i. If all of these previous observations areconcentrated on only one past Ai, then the maximum possible improvement R of odds thatP3=0 is attained as R=R1.� If our prior beliefs are Beta(a; b) with b(b+1)a(a+1) < eZ then our posterior probability that P3=0is a strictly decreasing function of ���1 � 12�� (i.e. we prefer our previous observations to havebeen allocated as evenly as possible between the two previous sequences). Here we haveR1 � R � R2 as we vary �i. If these previous observations are exactly evenly allocatedbetween A1 and A2, then the maximum possible improvement R of odds that P3=0 isattained as R=R2. (Of course this is only possible to do exactly when N is even.)So, in general, we have shown that, supposing N and � to be given (so that Z is �xed) then we can-not answer the question about whether a person prefers the observation of previoushproduct; environmenti pairs to be allocated evenly between those previous Ai without �rst clari-fying the shape of that person's prior beliefs about the unknown perfection probability parameter25



�. However we can draw a few conclusions of a more general nature for this k=3 case. Supposethat the person's prior probability that a randomly selected Ai is perfect E(�) has been stated,and we know that their Prior� is in the Beta family. Then the ratio a=b is determined, and so, ifE(�) > 12 , i.e. if a > b, it must be true for any value of Z thatb(b+ 1)a(a+ 1) < 1 < eZgiving a preference for even allocation of observations between A1 and A2, whatever the exactvalues of a and b. Similarly it can be shown that if 12 � E(�) > (1 + eZ2 )�1 then the samepreference will be found; whereas if E(�) < (1 + eZ )�1 then the converse must apply and we willprefer the past observations to be concentrated as much as possible on a single Ai. In terms ofthe stated prior expectation for �, the remaining possibility < (1 + eZ)�1 < E(�) < (1 + eZ2 )�1corresponds to the situation in which the preference may be for or against even distribution ofpast observations between A1 and A2, depending on the exact values of the parameters a; b andthe value of Z. These conclusions follow easily, with the restriction to a Beta Prior�, from thefacts that b(b+1)a(a+1) will lie between ab and a2b2 for all a > 0, b > 0, and that the prior expectation isde�ned in terms of the Beta parameters by E(�) = (1 + ba )�1.We can, without too much di�culty, gain some understanding of what happens when we areconsidering the e�ects of the allocation of a �xed amount of observations between three previoussequences A1;A2;A3, i.e. in the case k=4. We take the Euclidean distance (which is proportionalto the sample standard deviation of f�1; �2; �3g)r =q��1 � 13�2 + ��2 � 13�2 + ��3 � 13�2 =q�21 + �22 + �23 � 13between the points h�1; �2; �3i and 
13 ; 13 ; 13� as a measure of how unevenly the past observationsare distributed between the three available previous hproduct; environmenti pairs A1;A2;A3. Themaximum allowable value of r is clearly (1 � 13)2 + (13 )2 + (13)2 = q23 . Equation (45), with theBeta(a; b) Prior�, now expands toR= (a+3)(a+2)(a+1)eZ+(a+2)(a+1)beZ(e��1Z+e��2Z+e��3Z)+(a+1)(b+1)b(e�1Z+e�2Z+e�3Z)+(b+2)(b+1)b(a+2)(a+1)aeZ+(a+1)a(b+1)eZ(e��1Z+e��2Z+e��3Z)+a(b+2)(b+1)(e�1Z+e�2Z+e�3Z)+(b+3)(b+2)(b+1) =(a+3)(a+2)(a+1)eZ+(a+2)(a+1)be2Z3 �e(13��1)Z+e(13��2)Z+e(13��3)Z�+(a+1)(b+1)beZ3�e(�1� 13)Z+e(�2� 13)Z+e(�3� 13)Z�+(b+2)(b+1)b(a+2)(a+1)aeZ+(a+1)a(b+1)e2Z3 �e(13��1)Z+e(13��2)Z+e(13��3)Z�+a(b+2)(b+1)eZ3�e(�1� 13)Z+e(�2� 13)Z+e(�3� 13)Z�+(b+3)(b+2)(b+1)(55)Note, for a; b �xed, and �xed h�ii, we have a limiting case, representing an upper bound on R,of limZ!1R = (a + j)=a, where j is the number of the �i that are non-zero. This limiting casecorresponds to conclusive information that j of A1;A2;A3 are perfect, accompanied by a completeabsence of operational observation on the other 3�j previous hproduct; environmenti pairs. Theexpression (55) is more di�cult to analyse as a function of h�1; �2; �3i (with �1+�2+�3 = 1) thanits one-dimensional counterpart (52) because of R's dependence on the direction as well as themodulus r of the 3-vector 
�i�13� of di�erences from the uniformallocation of observations betweenthe previous three sequences A1, A2, A3. However, as a �rst approach to understanding somethingof the behaviour of this expression we can try replacing both numerator and denominator29 bylow order Taylor expansions in the �i. For some argument values, such as Z su�ciently small30,and the Beta parameters a and b lying within certain ranges, this results in an approximate formfor R in a case where both the numerator and denominator depend much more on the modulusof 
�1 � 13 ; �2 � 13 ; �2� 13� than they do on its direction. In fact, we are able in each case (i.e.29We note that the denominator is obtained from the numerator by replacing a; b by a� 1; b+1 so the reasoningonly has to be done once.30Z will tend of necessity to be small for small � (which we hope � should be for highly reliable systems) sinceit becomes infeasible to carry out the very large number of demands then necessary to make Z larger26



for both numerator and denominator) to contain the inuence of the direction of this vectorentirely within a remainder term which is negligible under these conditions on the parameters.Furthermore, in each case, this dependence on r can be approximated by a non-negative quadraticwhose minimum is at r=0. This approximation, though somewhat simplistic and consequentlyrestricted in terms of the range of parameter values for which it is accurate, is su�cient to guide usin the identi�cation of some examples, analogous to the alternatives found in the k=3 case above,where the uniform allocation of observations to previous sequences, is either a global minimum, ora global maximum of R, as desired. However, for this k=4 case, we can also show that for certainvalues a; b; Z, the two remainder terms which, only, are the terms inuenced by the direction aswell as the modulus r of the deviation 
�1 � 13 ; �2� 13 ; �2 � 13� from uniformity may become largerand acquire a signi�cant role in determining R's behaviour. In some of these cases, in contrast towhat we found above for the k=3 situation, the uniform allocation �i = 13 , i = 1; 2; 3, may turnout to be neither the global minimum nor the global maximum point of R.Taking the two �i-dependent summands in the numerator obtained above, it is shown inAppendix B that if we de�ne � = 12 log� b+ 1a+ 2�� Z6 (56)then a Taylor expansion of degree 2 at the point 
13 ; 13 ; 13� in �i, i = 1; 2; 3 (still assumed con�nedto the plane �1+�2+�3 = 1), with remainder term, gives us(a+ 2)(a+ 1)be 2Z3 3Xi=1 e( 13��i)Z + (a+ 1)(b+ 1)beZ3 3Xi=1 e(�i�13 )Z= eZ2 (a+ 1)bp(a+ 2)(b+ 1)�n6 cosh(�) + cosh(�)Z2r2 + Z33 3Xi=1 ��i � 13�3 sinh��+ u��i � 13�Z�ofor some value 0 < u < 1 (u probably varies with a; b; Z and the �i but is constrained to the unitinterval). Of the terms inside the curly brackets, the �nal, remainder term is the only term thatdepends on the allocation proportions �i in a way not con�ned purely to a dependence on theirmodulus r. Hence, this term and a corresponding term (with di�erent u) in the analogous Taylorexpansion of the denominator of R are the two which when small enough to ignore, lead to a muchsimpli�ed behaviour of R. Note that this approximation (obtained by disregarding the remainderterm) is best thought of as a quadratic in r|not rZ|because the coe�cients are functions of Z,but not of r. We will not look in detail31 at the general conditions a�ecting the size of the tworemainder terms as proportions respectively of the numerator and denominator of R. We merelyclarify the situation a little by remarking that we can expandZ33 3Xi=1 ��i � 13�3 sinh ��+ u��i � 13�Z� =Z33 n sinh(�) 3Xi=1 ��i � 13�3 cosh�u��i � 13�Z� + cosh(�) 3Xi=1 ��i � 13�3 sinh�u��i � 13�Z�o ;that the three di�erent arguments of the hyperbolic function in each sum all fall in an intervalof length less than Z, and that, simply by virtue of the constraints �i � 0, P3i=1 �i = 1 we canobtain by elementary calculus the constraints� 136 � max�� r3p6 ; �19+r22 � � 3Xi=1 ��i � 13�3 � r3p6 � 29 :31Lengthier analyses are possible, such a transformation of 
�i� 13� to polar coordinates (r; �) allowing a furtherexpansion of both the numerator and the denominator of R into double series, each of whose terms is of the formaijrif cossin g(j�) where � is an angle describing the direction of the vector 
�i� 13 � in the plane P3i=1 �i = 1 (i.e.using a Fourier series expansion in terms of �). 27



Thus, we have reduced R to an expression of the formR � K � 1 +C1r21 +C2r2 ; with K;C1; C2 > 0, and 0 � r �q23 (57)where hK;C1; C2i can be thought of as a transform of the parameters ha; b; Zi of our model, butwith the caveat that this approximation (57) is accurate (enough to serve as a useful model ofthe behaviour of the of the more complicated function R of (55)) only within some subdomain|de�ned by the requirement that the two neglected remainder terms should be su�ciently small|ofthe set of all possible values a; b; Z > 0. Then it is straightforward to conclude that if we holda; b; Z �xed at some point within this subdomain, and vary the allocation vector h�ii, we will �ndR to be a monotonic function of r with r=0 being the global maximum, or minimum, respectively,as C1 < C2 or C1 > C2.We have plotted R as a function of h�1; �2; �3i below for four di�erent example values ofha; b; Zi. Note that in each case it is the exact value (55) which is plotted. The approximation(57) was merely used as a guide to obtaining values of a; b; Z which achieve the three alternativegeneral forms which R seems to display in this k=4 case, classi�ed here as: decreasing from maxat r=0 with approximate rotational symmetry32; increasing from min at r=0 with approximaterotational symmetry; and a third, catch-all category of `other' more complex general behaviour.If r is small and the parameters ha; b; Zi are within the right range, e.g. Z, �(a; b; Z) and�(a�1; b+1; Z) are not too large, then we have seen from (57) that R will be approximatelyan increasing function of r if C1 > C2, and a decreasing function if C1 < C2. Figure 2 showstwo graphs illustrating this case. In these graphs, the base is the equilateral triangular surface:
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1.549Left plot : ha; b; Zi = h5; 0:25; 2i; Right plot : ha; b; Zi = h0:25; 5; 2iFigure 2: Plots of R vs. �1+�2+�3=1�1; �2; �3 > 0, �1+�2+�3 = 1. The vertical axis is the gain R of (55) obtained from observingthat the three previous hproduct; environmenti pairs have not failed. In the left plot we havehC1; C2i = h:03; :16i. In the right hC1; C2i = h:38; :13i.Figure 3 shows examples where the situation is more complex with the remainder terms be-ginning to play a signi�cant role so that we lose our approximate rotational symmetry of the plot.The left hand plot illustrates a case where the situation of even allocation among three previoushproduct; environmenti pairs is intermediate (in terms of how much extra con�dence it buys us inthe current Ak) to the cases of the same number of previous demands being either concentratedon a single previous hproduct; environmenti pair, or being evenly allocated between two previouspairs. The right hand plot in Figure 3 is included to make the point that we are not suggestingthat such odd behaviour of R will necessarily occur everywhere outside the domain of accuracyof our approximation (57). Here, the remainder terms are large but we still do have relatively32 i.e. approximately circular contours 28



5.24

4.55 2.00

3.18

Left plot : ha; b; Zi = h0:25; 20; 5:3i; Right plot : ha; b; Zi = h1; 20; 10iFigure 3: Plots of R vs. �1+�2+�3=1uncomplicated behaviour in the sense that there is a global maximum at h�ii = 
13 ; 13 ; 13�, with Ra decreasing function of r.It is worth underlining that it is often the interaction between prior beliefs and amount of pasthproduct; environmenti data that determines which of the cases illustrated in these plots applies;rather than either one of these things alone. These �ndings about the e�ects of the shape of a BetaPrior� on the preference for an even or an uneven allocation of previous sequence observationsbetween 2 or 3 previous sequences raise two interesting questions which in this paper we have notexplored:{� What, if anything, can we say generally about the preferred allocation among larger numbersk�1 of previous sequences?� To what extent are the precise results we found here arbitrary, accidental consequences ofthe fact that we happen to have restricted our priors to the Beta family? Perhaps some ofthese results are in fact particular cases of e�ects that could be stated in a framework ofmore general geometric constraints on the Prior� distribution without the need to constrainPrior� to a particular parametric family?6.2 Use of a Beta family for fpThe Beta-family of distributionsfp(pj�) = pa�1(1� p)b�1�(a; b) ; � = ha; bi ; a; b > 0is conjugate to both the binomial and the negative binomial (including geometric) distributionsand also provides a unique representation33 of each possible34 hmean,standard deviationi pair fora random variable P con�ned to the interval [0; 1]. If we use this as our fp distribution family,we obtain a mixed process for the failures in each single sequence for which the probability of rfailures in n demands is given by equation (4) to beR n; a; b � �nr��(r + a; n� r + b)�(a; b) ;obtained by integrating over p the joint distribution of equation (2) which would be(R;P ) n; a; b � �nr�pr+a�1 (1� p)n�r+b�1�(a; b)33provided that limiting cases of the Beta parameters a; b are included34 i.e., all pairs in the closed half disk fh�; �i ; �; � � 0^ (�� 12 )2 + �2 � 14g29



in this case.The likelihood (8) resulting from observation of k products operating in k allocated environ-ments is hRiiki=1 (hniiki=1 ; a; b) � kYi=1�niri��(a + ri; b+ ni � ri)�(a; b)with Lk(a; b) = kYi=1 �(a + ri; b+ ni � ri)�(a; b)as an expression proportional to the likelihood of ha; bi.Having decided to investigate the Beta fp, the choice of Prior� over S, the positive quadrant35,remains problematic. In real life there would be an `expert' from whom we would wish to elicit thedistribution that truly reects his/her a priori belief. This is not an easy task in such a complexmodel, and the expert may �nd it di�cult to represent his/her beliefs in a distribution for ha; bi. Away out of this di�culty is to assume that the expert is `ignorant', and use that prior distributionwhich represents ignorance. Even this is a non-trivial task. As an example we consider the simplecase of distributions uniform on some �nite rectangle with sides parallel to the a and b axes,Prior�(a; b) = � 1(a2�a1)(b2�b1) ; if a1 < a < a2, b1 < b < b20; elsewhere.Firstly we can examine characteristics of the prior distribution (10) for Pk implied by thesemodel assumptions, Pk � Z a2a1 Z b2b1 pa�1(1� p)b�1�(a; b) db da(a2 � a1)(b2 � b1) :The �rst and second non-central moments of P a; b are aa+b and a(a+1)(a+b)(a+b+1) . These may be inte-grated analytically with respect to our ignorance Prior�(a; b) (�rst expanding in partial fractionswith respect to b in the case of the second moment) to give the �rst two cases of equation (20).But the centrally important e�ect of our model is to represent the e�ect of observed failure be-haviour on both the distribution of Pk, and perhaps even more of interest, the reliability function,or probability of a future period of failure-free behaviour of a given length. The prior reliabilityfunction is given from equations (24) and (29) byP(Xk > n) = E(�0;n) = Z a2a1 Z b2b1 �(a; b+ n)�(a; b) db da(a2 � a1)(b2 � b1)= Z a2a1 Z b2b1 b(b+ 1) : : : (b + n� 1)(a+ b)(a + b+ 1) : : : (a+ b+ n� 1) db da(a2 � a1)(b2 � b1) ;where the �rst failure of Ak occurs on the Xthk demand.Now to explore the e�ects of learning from observation we examine the realisations underthese particular distributional assumptions of: �rstly the posterior distributions for Pk givenby equations (11{13); and secondly the predictions of Xk, the time to next failure of Ak usingequations (30{32)36. In the most general case of arbitrary periods of observation of some �nitenumber of previous sequences, each of the probabilities entailed by these questions takes the formof the ratio of a pair of integrals (over the chosen rectangle in the (a; b)-plane), where the integrandsin the numerator and denominator are each equal to some product of terms of the form�r;n�r(a; b) = E�P r(1� P )n�r a; b� = Z 10 pr(1� p)n�r pa�1(1� p)b�1�(a; b) dp = �(a + r; b+ n� r)�(a; b)35possibly extended to include points representing a; b ! 1 with a=b constant, and a; b ! 0 with a=b constant,to include the all the limiting cases of the Beta family36|given that we choose to concentrate on the no-failures case, for reasons of its interest as an upper bound onassurable reliabilities. In the case where past failures have been observed, we simply use the obvious analogues of(30{32), derived similarly from (11{13) and (18) 30



= a(a+ 1) : : : (a+ r � 1)b(b+ 1) : : : (b+ n� r � 1)(a+ b)(a + b+ 1) : : : : : : : : : : : : : : : (a + b+ n� 1)In practice, since this kind of inference is most likely to be called for in dealing with very highreliability systems, the values ni of n used with these sequences are likely to be rather large, andthe values of r are likely to be small, and ideally zero. So some very large products will be involvedin the above term. We found that from the numerical point of view, both the asymptotic form ofthe log-gamma function, and also the Euler-Maclaurin series for sums of formn�1Xj=0 log�1� yx+ j� ; where 0 < y < xwere useful in approximating and bounding the integrals of these terms for large n. (See Ap-pendix C for details.) For the sake of illustrating the algebraic form of the formulas, however,we give examples of the predictions of our model for hypothetical cases in which a very smallnumber of observations have been seen. Suppose we wish to predict the probability that A4 willfail r times in its next 6 demands. In the absence of any knowledge of the past we obtain thedistributionR � �6r�Z a2a1 Z b2b1 a(a + 1) : : : (a+ r � 1)b(b+ 1) : : : (b+ 5� r)(a+ b)(a+ b+ 1) : : : : : : : : : : : : : : : (a+ b+ 5) db da(a2 � a1)(b2 � b1)If we are now informed that A4 has in fact failed in the past 2 times out of 4, then our posteriordistribution of P4 is P4 � p24(1� p4)2 R a2a1 R b2b1 pa�14 (1�p4)b�1�(a;b) db da(a2�a1)(b2�b1)R a2a1 R b2b1 a(a+1)b(b+1)(a+b)(a+b+1)(a+b+2)(a+b+3) db da(a2�a1)(b2�b1)and our updated distribution for the number of failures in the next 6 demands on A4 isR � �6r�R a2a1 R b2b1 a(a+1):::(a+r+1)b(b+1):::(b+7�r)(a+b)(a+b+1):::::::::::::::(a+b+9) db da(a2�a1)(b2�b1)R a2a1 R b2b1 a(a+1)b(b+1)(a+b)(a+b+1)(a+b+2)(a+b+3) db da(a2�a1)(b2�b1)If we retract the information about the past 2 out of 4 failures of A4 (i.e., suppose it has notbeen seen), and instead suppose that pairs A1, A2, and A3, have been observed to fail 0 times outof 2, 2 times out of 3 and 1 time out of 4, respectively, then our posterior distribution of P4 isP4 � R a2a1 R b2b1 pa�14 (1�p4 )b�1�(a;b) ( b(b+1)(a+b)(a+b+1) )( a(a+1)b(a+b)(a+b+1)(a+b+2) )( ab(b+1)(b+2)(a+b)(a+b+1)(a+b+2)(a+b+3) ) db da(a2�a1)(b2�b1)R a2a1 R b2b1 ( b(b+1)(a+b)(a+b+1) )( a(a+1)b(a+b)(a+b+1)(a+b+2) )( ab(b+1)(b+2)(a+b)(a+b+1)(a+b+2)(a+b+3) ) db da(a2�a1)(b2�b1)Now, the updated distribution for R in the next 6 demands on A4 isR � �6r��R a2a1 R b2b1 ( a(a+1):::(a+r�1)b(b+1):::(b+5�r)(a+b)(a+b+1):::::::::::::::(a+b+5) )( b(b+1)(a+b)(a+b+1) )( a(a+1)b(a+b)(a+b+1)(a+b+2) )( ab(b+1)(b+2)(a+b)(a+b+1)(a+b+2)(a+b+3) ) db da(a2�a1)(b2�b1)R a2a1 R b2b1 ( b(b+1)(a+b)(a+b+1) )( a(a+1)b(a+b)(a+b+1)(a+b+2) )( ab(b+1)(b+2)(a+b)(a+b+1)(a+b+2)(a+b+3) ) db da(a2�a1)(b2�b1)If this information about A1, A2, and A3 is supplemented by the knowledge that A4 has failed2 times out of 4 in the past, then the two corresponding updated distributions areP4 �R a2a1 R b2b1 pa+14 (1�p4 )b+1�(a;b) ( b(b+1)(a+b)(a+b+1) )( a(a+1)b(a+b)(a+b+1)(a+b+2) )( ab(b+1)(b+2)(a+b)(a+b+1)(a+b+2)(a+b+3) ) db da(a2�a1)(b2�b1)R a2a1 R b2b1 ( a(a+1)b(b+1)(a+b)(a+b+1)(a+b+2)(a+b+3) )( b(b+1)(a+b)(a+b+1) )( a(a+1)b(a+b)(a+b+1)(a+b+2) )( ab(b+1)(b+2)(a+b)(a+b+1)(a+b+2)(a+b+3) ) db da(a2�a1)(b2�b1)31



andR � �6r��R a2a1 R b2b1 ( a(a+1):::(a+r+1)b(b+1):::(b+7�r)(a+b)(a+b+1):::::::::::::::(a+b+9) )( b(b+1)(a+b)(a+b+1) )( a(a+1)b(a+b)(a+b+1)(a+b+2) )( ab(b+1)(b+2)(a+b)(a+b+1)(a+b+2)(a+b+3) ) db da(a2�a1)(b2�b1)R a2a1 R b2b1 ( a(a+1)b(b+1)(a+b)(a+b+1)(a+b+2)(a+b+3) )( b(b+1)(a+b)(a+b+1) )( a(a+1)b(a+b)(a+b+1)(a+b+2) )( ab(b+1)(b+2)(a+b)(a+b+1)(a+b+2)(a+b+3) ) db da(a2�a1)(b2�b1)The above example is intended to provide an illustration of the general form of the results forthis Beta fp( � ja; b) case with prior Prior� uniform on a rectangle. Table 1 shows some results thatare more representative of what we might see when dealing with real safety-critical systems. Theseillustrative numerical results are based upon the observation of three previous sequences, each fora period of 107 demands without a single failure. In Table 1 we can see how various di�erentRegion of Uniform Prior Given no Data Given no failure ofthishproduct; envir.i Given no failure ofprevious 3hproduct; envir.is Given failure neitherof this nor of previous3 hproduct; envir.isa1 a2 b1 b2 E(P4) R(107) E(P4) R(107) E(P4) R(107) E(P4) R(107)0 1 1 2 .2384 .6229E -1 .3966E -1 .9585 .1388E -1 .7498 .1047E -1 .98930 1 1 10 .1037 .6828E -1 .1577E -1 .9547 .5398E -2 .7499 .4062E -2 .98830 1 1 100 .2077E -1 .8048E -1 .3020E -2 .9469 .1019E -2 .7500 .7655E -3 .98620 1 1 1000 .3207E -2 .9877E -1 .4636E -3 .9355 .1556E -3 .7500 .1168E -3 .98310 2 1 2 .3692 .3114E -1 .3966E -1 .9585 .1388E -1 .7498 .1047E -1 .98930 2 1 10 .1781 .3414E -1 .1578E -1 .9547 .5398E -2 .7499 .4062E -2 .98830 2 1 100 .3833E -1 .4024E -1 .3020E -2 .9469 .1019E -2 .7500 .7655E -3 .98620 2 1 1000 .6091E -2 .4939E -1 .4637E -3 .9355 .1556E -3 .7500 .1168E -3 .9831.01 .0101 10 10.1 .9990E -3 .8700 .9990E -3 .9931 .9990E -3 .8700 .9990E -3 .99310 b=999 1 1000 .5002E -3 .1824 .2056E -3 .9401 .9494E -4 .7545 .7593E -4 .98320 b=99999 1 1000 .5000E -5 .9689 .4947E -5 .9977 .4843E -5 .9703 .4791E -5 .99780 b=9999999 1 1000 .5000E -7 .99968 .4999E -7 .999977 .4998E -7 .99968 .4998E -7 .999977.XXXXE-n means 0.XXXX� 10�nTable 1: E�ect on Reliability Predictions of Observation of Non-Failure of Previoushproduct; environmenti pairsassumptions for Prior� a�ect the strength of the inferences concerning a fourth sequence in thesame family which can be drawn from this sort of evidence of high reliability of three previous,similar hproduct; environmenti pairs.All the results in the Table involve assuming uniform distributions over di�erent regions of theha; bi{space. We have excluded values of b smaller than one, since these entail Beta distributionswith in�nite density at 1; but we have allowed values of a smaller than one, since in�nite densityat the origin seems plausible. The region in the positive quadrant where a and b are both largecan also be ruled out, since any point here corresponds to a Beta distribution with very smallvariance|i.e. it implies that di�erent sequences will have essentially identical probabilities offailure upon demand, which runs counter to the spirit of this whole exercise.The �rst nine rows of the Table involve several rectangles of the kind described above. Theninth row shows a small rectangle, e�ectively approximating to a known point value for ha; bi.Rows 10 to 12 show thin `wedges' adjacent to the b-axis. The informal reasoning here is that itmay be reasonable to believe a priori that the mean E(P a; b) of the distribution of probabilityof failure on demand does not exceed a certain value 0 � E(P a; b) � M < 1, say, and this isequivalent to the restriction to ab � M1�M . We used M = 10�3, 10�5, and 10�7. Once again, allpoints in the wedge are given equal weight.In the Table we show how `the reliability' of a hproduct; environmenti pair A4 is a�ected bythe type of evidence that could be available. For brevity here we have chosen to present themean of the distribution of P4, and the reliability function evaluated at 107 demands (i.e. theprobability of surviving this number of demands), in each of the four cases: given no data; givenonly evidence of failure-free operation of this sequence; given only evidence of failure-free workingof earlier sequences; and given both these latter items of evidence.The most interesting and important results concern the di�erent predictions of future opera-tional behaviour, expressed as the probability R(107) of surviving 107 further demands without32



failure: the information from the perfect working of previous sequences makes only a modestcontribution to our con�dence in the current sequence when compared with actual evidence offailure-free working during that sequence itself (compare columns 8 and 10). Thus when we onlyhave evidence from the previous Ai, 1 � i � 3, although this is of extensive perfect working foreach, it only allows us to claim, in the case of the rectangular priors, about 0.75 probability ofsimilarly extensive perfect working (i.e. surviving 107 demands) for the new sequence37 .The evidence from previous perfect working during the same sequence, however, is more in-formative. It allows us to be much more con�dent that this product will work perfectly in thisenvironment in the future: the probability of it surviving 107 demands, given that it has alreadysurvived 107 demands, exceeds 0.9 in all cases.On the other hand, the small increase in con�dence that comes from experience of previ-ous sequences may be useful in the case of safety-critical systems, especially as it is likely tocome with little or no cost to developers. Thus, in the �rst row of the Table, the a priori be-lief of the 107 demand survival is .062, this increases to .96 after we have actually seen thehproduct; environmenti survive 107 demands, and to .99 when we are told, in addition, that threeother hproduct; environmenti pairs have also survived 107 demands. Putting it another way, thisevidence of survival in previous sequences has reduced the chance of a failure in the next 107demands by a factor of 4 (from .04 to .01) compared with the result based only on the evidencefrom operational experience of this sequence.We have shown the columns for the means of the various distributions for P4 mainly as awarning that these can be misleading if used to represent `the reliability' of the pair A4. Thus themean probability of failure on demand can be quite large (0.24 in the �rst line prior distribution),but still the chance of surviving 107 demands may be non-negligible (0.063 in this case). Theinformal reason is that the distribution is such that the mean is not a good summary statistic,and in particular cannot be used in a geometric distribution to approximate to the more complexmodel that applies here.In fact, decreasing values of E(P4) do not necessarily imply increasing chance of surviving 107demands, as might naively be expected: see, for example, columns 7 and 8 of rows 1 to 4. Imaginethat we have two experts, let us call them James and Peter, represented by two di�erent priordistributions (rows of the Table), who observe the system to survive for 107 demands. They arethen asked to tell us how reliable the system is. If the question is posed as `what is the meanof P4?', then James is more optimistic than Peter; if, however, the question is posed as `what isthe chance of surviving a further 107 demands', Peter is more optimistic than James. Such (onlyapparent) paradoxes underline the importance of using the right formulation for our purposeswhen we ask questions about the reliability of a system.7 Some General Remarks about Expressing ReliabilityIt is common to speak loosely of system reliability using terms such as: `a 10 to the minus 5 system';or `a system with MTTF38 107'. Here the units implied would typically be failures/demandand demands, respectively39. Whilst it is of course possible to give a precise meaning to theseterms, some care is required in comparing predictive distributions and rates based on a relativelysophisticated Bayesian model such as the one discussed here. We have taken the decision to extendan originally Bernoulli Trials process model with simple geometrically distributed time-to-failuredistributions by including explicitly within the mathematics a probabilistic representation of ourown subjective uncertainty about each Bernoulli trials parameter Pi. One of the consequences ofthis decision is that our subjective uncertainty about the Pi may never now remain static, so longas some form of observation is allowed to take place. Hence, as has been apparent in the formulae37We conjecture that some limiting result may be indicated here : perhaps the probability that sequence Ak willsurvive its �rst X demands, given that k�1 previous sequences have done so, tends to (k� 1)=k as X !1.38mean-time-to-next-failure39or perhaps, in the continuous time case, failures/hour and hours, but we continue to concentrate for simplicityon the discrete demand-count time metric. 33



derived above (e.g. (30{32)), our predictive distributions of time to next failure are no longerrestricted to the geometric family. Then if we retain the notion of geometric time to failure as apsychological standard of comparison, we must be careful when we speak of `a 10 to the minus 5system' to be clear whether we intend `a system whose probability of failure on the next demand isidentical to that of a geometric random variable with parameter 10�5'; or `a system whose MTTFis that of a geometric random variable with parameter 10�5'; or perhaps `a system whose median(or, say, upper 99.9 percentile) is that of a geometric random variable with parameter 10�5'; etc.It follows from (18) that the Bayesian predictive distribution of the process of future failures ofa particular sequence, based on our model, will always take the form of a mixture of Bernoulli trialsprocess distributions. Such mixture processes are exchangeable. (Conversely [3, p217] states thatthere are no other exchangeable, boolean valued, in�nite random sequences than those obtainedby mixing Bernoulli trials processes.) A few properties of these mixture processes were givenearlier in equations (3{6), with fp(�j�) playing the role of mixing distribution in these equations.Since these mixed processes form a more general class than the class of Bernoulli trials processesused as a model for each Ak given its parameter pk, the theoretical possibility is introduced thatit may also require some care to compare two di�erent predictions which may emanate from ourmodel (i.e. resulting from two di�erent hypothetical �ndings from observation). How do we stateunambiguously that one observation scheme gives rise to a prediction of `higher program reliability'than another? If we were dealing with pure Bernoulli trials process predictions, then we would beable to say, for two predictions with parameters (i.e., per-demand failure probabilities) say �1 and�2, with �1 < �2, that prediction 1 predicts `higher reliability' than prediction 2 in every possiblesense: mean time to failure, median time to failure, failure rate, reliability function, etc. On theother hand for many exchangeable process predictions such as will be produced by a Bayesiananalysis of our model, the mean time to failure does not exist (is in�nite). Also we may well �ndthat the median time to failure of prediction 1 may be greater than the median for prediction2, whilst the order of say the 75%-iles could be reversed, i.e. the reliability functions obtainedfrom two di�erent observation schemes, such as two of equations (30{32), as functions of n, couldconceivably intersect so that prediction 1 asserts better short term reliability than prediction 2but the comparison might turn out to be reversed for longer term reliability predictions.We might choose to compare predictions based on di�erent observation assumptions in terms oftheir instantaneous `reliability' measure, given (for the observation scenarios we have consideredexplicitly) by the n = 1 case of expressions (30{ 29). However, in doing so we should bear inmind that such a measure does not necessarily tell us which prediction has the highest up-to-date`mission survival probability' for a mission of a given length n 6= 1. It may be possible to overcomesome of these di�culties by suitable restrictions upon the mathematical forms of Prior� and fp,but these would need to be `obviously reasonable' in their own right. Clearly it would be wrongfor example to force an unreasonable (i.e. not believed) prior upon a human expert.8 Conclusions and Future WorkA major motivation for research of this kind is to make the process of assessing safety-criticalsystems more open to analysis. Currently, particularly in those cases where complex software isinvolved, such assessments have a high degree of informality and rely a great deal upon expertjudgement. Whilst this process is usually carried out responsibly, and with great rigour, it isdi�cult for an outsider to analyse how the �nal judgement has been reached, and much has tobe taken on trust. Since there is some evidence of experts being unduly optimistic about theirjudgemental abilities [4], simply checking their honesty is insu�cient. What is needed is a moreformalmeans of argumentation, where the assumptions and reasoning processes are visible and canbe questioned. This new model treats a small part of this problem by providing a representation,and means of composition, of two important types of evidence that are commonly used to makeclaims for the reliability of a software product operating in a particular environment: evidencefrom testing of the hproduct; environmenti pair itself and evidence from previous experience of`similar' pairs. 34



Whilst we make no great claims for the realism of the example we have used, it does indicate theway in which a formalmodel of this kind could be used to question whether an optimistic conclusiondrawn from past experience might be ill-founded. Essentially, if you were to claim that great trustcould be placed in a particular system because of past experience of other environments or systems,you would have to justify this by trying to claim that your prior distribution is reasonable withinthe model. It is clear that some of the examples of prior distributions we have used could be saidto be `unreasonable' in the sense that they represent beliefs about the reliability, prior to seeingany evidence, that are very strong.The particular numerical examples used here are meant only to be illustrative. Clearly furtherwork is needed to identify classes of `plausible' prior distributions, even for the case in which theexpert professes `complete prior ignorance'. For example, in section 6.1.2 or section 6.2, ratherthan addressing the raw ha; bi parameters, it may be easier for the subject to think in terms ofa reparameterisation - the mean and coe�cient of variation are possibilities. Another area offuture work concerns the further exploration of the impact of di�erent kinds of evidence upon theconclusions. For example, in our examples here we concentrated most of our attention on whatis in many respects the most interesting case : that of complete perfection of operation of theprevious sequences. This is the best news that it is possible to have, but it would be interestingto look more carefully at some cases where there have been failures in the earlier sequences.The possibility that conclusions about the reliability of a system can be highly dependentupon the precise way in which they are formulated is somewhat surprising and needs furtherinvestigation. However, the results here support those obtained in a di�erent context, concerningstopping rules for software testing [8].Finally, all this modelling depends upon the reasonableness of notions of statistical `similarity'between di�erent demand sequences. In this we are merely making more formal the extremelyinformal claims that experts make when they argue that the failure behaviour of one demandsequence can be used as a means of inferring the likely behaviour of another. Justi�cation of suchassumptions of similarity in particular cases is, of course, outside the direct scope of our studies|presumably it will come, in the case of software, from knowledge of the application domain (theproblems being solved were similar), the development process (the methods used were similar),the design teams (they were the same or of comparable competence), etc. However, we believethat our model can be used to provide a curb on the enthusiasm of experts: speci�cally, the useof `similarity' arguments to make stronger claims than would be warranted via the model shouldbe treated with suspicion.AcknowledgementThis work was supported by the ESPRIT DeVa project 20072, the DTI/EPSRC Safety CriticalSystems Research Programme's DATUM Project. An early part of this work has appeared inthe proceedings of the SAFECOMP 95 conference. The work has bene�ted considerably fromnumerous critical comments and suggested improvements by colleagues working on these projectsand colleagues at the Centre for Software Reliability.
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AppendicesA Proof that the Best Attainable Improvement R of theOdds that Pk=0 which is Obtained by Incorporation ofPrevious Demand-Sequence Data is, for Fixed Prior �-Mean, an Increasing Function of Our Prior Variance of�This proof concerns the inuence of the spread of our prior distribution for � on the improvementin P(Pk=0) which results from taking account of �xed observations of non-failure of previoussequences. See p23 for a more complete statement of the context. We will show this resultspeci�cally for the two-point P -distribution of x6.1 where, under our further restriction of x6.1.2to a Beta assumption for Prior�, the result translates into the property that R of equation (45)is a decreasing function of the Beta parameter b, for o = a=b �xed. So we work in terms of thereparameterised beta Prior�Prior�(�) = �ob�1(1� �)b�1�(ob; b) ; �11� �1 = o (see p21). (58)Questions remain about the precise form and extent of any generalisations of the monotonicityresult beyond this case. On expanding the polynomial l(�) =Pk�1i=0 ci�i, the left-hand side of (45)becomes R = Pk�1i=0 ci�(ob + i + 1; b)oPk�1i=0 ci�(ob + i; b+ 1) : (59)Since we are assuming that the k�1 previous products have all performed perfectly in theirrespective environments over the numbers of trials observed for each, l(�) remains de�ned ason p21 so the coe�cients hcii are all non-negative. Now, holding the odds parameter o constantand di�erentiating R with respect to b, we can verify a non-increasing function R(b) for all b > 0as follows.@R@b =(k�1Xi=0 ci [o (ob+i+1) +  (b) � (o+1) (ob+b+i+1)] �(ob+i+1; b) k�1Xj=0 cj�(ob+j; b+1)� k�1Xj=0 cj�(ob+j+1; b) k�1Xi=0 ci [o (ob+i) +  (b+1)� (o+1) (ob+b+i+1)]�(ob+i; b+1)) (60),o(k�1Xi=0 ci�(ob+i; b+1))2where  is the digamma function (put r = 0 in (78)) and where we have used the relations@�@a(a; b) = �(a; b)[ (a)�  (a + b)]; @�@b(a; b) = �(a; b)[ (b) �  (a + b)] : (61)The two double sums of the numerator of (60) can be expanded out and their corresponding termssubtracted to express the numerator as a single double sum of the formNumerator = k�1Xi=0 k�1Xj=0 tijcicj= k�1Xi=0 tiic2i + k�1Xi=1Xj<i(tij + tji)cicj : (62)36



We proceed to show that neither of the summands in the second form (62) can be greater than 0.In examining the terms of (62) it simpli�es matters to �rst extract from tij a positive factorsij = b(ob+ b+ i)(ob + b + j)�(ob + i; b)�(ob + j; b) = �(ob + i)�(ob + j)�(b + 1)�(b)�(ob+ b+ i+ 1)�(ob+ b+ j + 1) (63)which is symmetric in i; j. It can then be shown by selecting the relevant terms from the numeratorof (60) and using the recurrence formula  (z +1) =  (z)+ 1=z that tii=sii = �i=b � 0. To do thesame for the o�-diagonal sums of pairs of terms from (62) is slightly more cumbersome. Selectingthe relevant terms from (60) and simplifying in a similar way, we are left with (assuming withoutloss of generality that i > j � 0)tij + tjisij = (i�j)no� (ob+i) �  (ob+j)� � (o+1)� (ob+b+i+1)�  (ob+b+j+1)�o� i+jb (64)The problem here is the curly-bracketed term:  is monotonic increasing and the fact that o+1 > osuggests that this term might be negative, �nishing our task rather easily. But perhaps the ratio(o + 1)=o is insu�ciently large to compensate for the fact that the function  is concave. Toverify that the whole expression (64) cannot be positive we manipulate it as follows, beginning byexpanding the two  -di�erencestij + tjisij = (i � j) i�1Xh=j� oob+ h� o+ 1(o+ 1)b+ h+ 1�� i+ jb= (i � j) iXh=j� oob+ h� o+ 1(o+ 1)b+ h�+ (i � j)� o+ 1(o+ 1)b+ j� oob+ i�� i+ jb= (i � j) iXh=j �h(ob + h)�(o + 1)b+ h� � (i + j)o(o + 1)b2 + ij(i + j + 2b+ 4ob)b(ob + i)�(o + 1)b+ j� � 0We can therefore �nally conclude that @R@b � 0, making R a monotonic non-increasing functionof b > 0 for o = a=b �xed. Examining the reasoning above, we see that R will almost always bea strictly decreasing function of b, the exceptional cases occurring only when we consider a fewspecial or limiting conditions on the number k�1 of previous sequences, the beta parameters o; b,and the possibility of zero values for the coe�cients hcii in the expansion of the polynomial l(�).For R(b) to be constant over some b-interval would require all terms in the sum (62) to be zeroinside that interval.B Taylor Expansion of Numerator of Improvement R inOdds of Ak-Perfection that Results From Observation ofhA1; : : : ;Ak�1iWe wish to expand the two middle terms of the numerator of (55) on p26 as a Taylor series inpowers of h�1; �2; �3i, at the point 
13 ; 13 ; 13�. Our expansion is required to hold only within theplain �1+�2+�3 = 1. It is clear from the development on p27 that what it remains to do, is toshow that the Taylor expansion for the termt =ra+ 2b+ 1 eZ6 3Xi=1 e( 13��i)Z +r b+ 1a+ 2e�Z6 3Xi=1 e(�i� 13 )Z (65)is given by the seriess = 6 cosh(�) + cosh(�)Z2r2 + Z33 3Xi=1 ��i � 13�3 sinh��+ u��i � 13�Z� (66)37



By (56) we can write t as t = e�� 3Xi=1 e( 13��i)Z + e� 3Xi=1 e(�i� 13 )Z (67)= 2 3Xi=1 cosh��+ ��i � 13�Z� (68)= F (Z); say: (69)We can now use a Taylor expansion for the function FF (Z) = F (0) + F 0(0)Z + F 00(0)Z22 + F (3)(uZ)Z36 ; where 0<u<1with F (n)(Z) = ( 2P3i=1(�i � 13 )n cosh[�+ ��i � 13�Z� ; n = 0; 2; 4; : : :2P3i=1(�i � 13 )n sinh[�+ ��i � 13�Z� ; n = 1; 3; 5; : : :to deduce the result that t = s for some 0<u<1 (with u depending on a; b; Z and h�ii). The �rstorder term is zero because P3i=1(�i�13 ) = �P3i=1 �i�� 1 = 0C Numerical Approximation to Very High Order Non-CentralMoments of the Beta DistributionWe require for the purpose of plotting and numerical integration in x6.2 to have an e�cientalgorithm for calculating the expectation of (1�P )n for large n when P is distributed with a betadistribution with parameters a; b. Thus we require an algorithm to calculate40�0;n(a; b) = �(a; b + n)�(a; b)= �(b+ n) �(a+ b)�(b) �(a + b+ n)= b(b+ 1) : : : (b+ n� 1)(a + b)(a+ b+ 1) : : : (a+ b+ n� 1) :Problems with overow, long computation times, and loss of precision due to subtraction of verysimilar numbers were experienced when attempting to compute using standard beta, gamma andlog-gamma library functions in the obvious ways directly from the forms above. To avoid theseproblems some bounds are obtained below by directly working with the speci�c function �0;n(a; b).Firstly, we note that log (�0;n(a; b)) = n�1Xi=0 log�1� aa+ b + i�so we can apply the `integral test' approximation to sums of any strictly decreasing function fZ n0 f(t) dt < n�1Xi=0 f(i) < f(0) � f(n) + Z n0 f(t) dt ;40Although, for our purposes we are only interested in integer n, we note in passing that moments of non-integerorder are perfectly well de�ned and that for the beta distribution we have the curious symmetry �0;n(a; b) =�0;a(n; b), apparent from the Gamma-function representation here.38



where f(t) = � log�1� aa+b+t�, to give the interesting boundsF [t 7! (t� 1) log(t)] < log (�0;n(a; b)) < F [t 7! t log(t)] (70)where F (or, strictly, Fa;b;n) is the linear functional given byF [g] = �g(a + b+ n) + g(b+ n) + g(a+ b)� g(b) ; for functions g ,i.e., intuitively, F applies to its scalar function argument a di�erence operator the `spacing' ofwhose di�erences is speci�ed by a and n and the `location' of application of which is speci�ed byb. Note that, when F 's argument g can be di�erentiated twice, the identityF [g] = � Z a0 Z n0 g00(t1 + t2 + b) dt2 dt1 (71)will sometimes be used in what follows to demonstrate monotonicity of expressions which involveF . Since we are interested in cases where n (and sometimes b also) are large compared to a, thereare likely to be subtraction problems with numerical accuracy in calculating the bounds in (70)and some other bounds and approximations which also turn out to be de�ned by the applicationof F to some function. These can be solved by rearrangement and perhaps also Taylor seriesapproximations. E.g. for the upper bound, if n is much larger than a we can use�(a+ b+ n) log(a+ b+ n) + (b+ n) log(b+ n) + (a+ b) log(a+ b)� b log(b) =�a log(a + b+ n)� (b+ n) log�a+ b+ nb+ n �+ (a+ b) log(a+ b)� b log(b)|unless b is also much larger than a, in which case�(a+ b+ n) log(a+ b+ n) + (b+ n) log(b + n) + (a+ b) log(a+ b)� b log(b) =�a log� a+ ba+ b+ n�+b ��12 �ab�2 + 13 �ab�3 � : : :�� (b+ n)"�12 � ab+ n�2 + 13 � ab+ n�3 � : : :#should produce an accurate answer. Once these rather minor subtraction problems have beentackled, the resulting bounds41(b+ n)(b+n�1)(a+ b)(a+b�1)b(b�1)(a+ b+ n)(a+b+n�1) < �0;n(a; b) < (b + n)(b+n)(a+ b)(a+b)bb(a+ b+ n)(a+b+n) (72)on �0;n(a; b) can be used for many values of n and ranges of ha; bi to produce quite tight boundson the reliability predictions discussed in x6.2. These bounds are themselves in the ratio1 + anb(a+ b+ n)so that, for example, when a is small compared to b, we know that these bounds are at leastcorrespondingly accurate approximations to �0;n(a; b). Returning to our application in x6.2, it isworth remarking that such values of a and b give very plausible distributions for P to characterisea family of hproduct; environmenti pairs designed for very high reliability.But, for those values, e.g. when ba is small, where these bounds are not known to give sat-isfactory accuracy, we can use the more general42 and tighter bounds obtained using the Euler-Maclaurin summation formula, as follows.41but note the improvement to the upper bound mentioned later on p4142 in that they are useful over a wider region of ha; b;ni39



Abramowitz and Stegun [1, p257] give bounds on the remainder Sr(t) of the asymptotic ex-pansion of the log-gamma functionlog(�(t)) = (t� 12 ) log(t)� t+ 12 log(2�) + rXk=1 B2k2k(2k� 1) 1t2k�1 + Sr(t) : (73)Here, B0; B1; B2; : : : are the Bernoulli numbers 1;�12 ; 16 ; : : : , see [1, pp804{10]. Note that if theterms in negative powers of t here, and the remainder term Sr(t) are all neglected, and theremaining part of the right-hand side of (73) is then substituted in the de�nition of log (�0;n(a; b)),we obtain the approximation F [t 7! (t� 12 ) log(t)], where we have used the same linear functionalnotation F introduced above. It is straightforward to show43 that this asymptotic approximationto log (�0;n(a; b)) lies between the two `integration test' bounds obtained above. If, in place of(73), we consider instead the slightly easier problem of asymptotic approximation to di�erenceof two values of the log-gamma function at arguments separated by an integer44, then we canobtain information about the corresponding remainder term directly from the Euler-Maclaurinsummation formula45 [12, pp478{82]n�1Xi=0 f(i) = Z n0 f(t)dt + f(0)2 � f(n)2 + rXk=1 B2k(2k)! �f (2k�1)(n) � f (2k�1)(0)� +Qr (74)where46 Qr = Z 10 B2r+1(t)(2r + 1)! n�1Xi=0 f (2r+1)(i + t)dt (75)which holds for any function f possessing the appropriate derivatives. (74) and (75) can beobtained from the integral form of the remainder terms for the ordinary Taylor series calculatedfor f and also for its derivatives using unit displacement from the series expansion point. (See [12]for details.) Applying this formula to the functions f(x) = log(b + x) and f(x) = log(a + b+ x)and subtracting yields the formulalog (�0;n(a; b)) =F [t 7! (t� 12) log(t)]+ rXk=1 B2k2k(2k � 1)  � 1(a + b+ n)2k�1 + 1(b+ n)2k�1 + 1(a+ b)2k�1 � 1b2k�1! (76)+Rrwith remainderRr = Z 10 B2r+1(t)(2r + 1)! h� (2r)(t+ a+ b+ n) +  (2r)(t + b+ n) +  (2r)(t+ a+ b) �  (2r)(t+ b)i dt :(77)In this remainder term, B2r+1(t) is the Bernoulli polynomial [1, 804{6], and (2r)(t) = d2r+1d t2r+1 log(�(t)) (78)43either directly by subtraction, or by using (71) with g(t) = (t+ c) log(t), g00(t) = 1t � ct2 , monotonic decreasingin c44This integer is the order of the (1� P )-moment. Does the E-M series which results (i.e. equations (76) and(77)) also hold exactly for non-integer n? For our purposes, this does not matter.45Note that we do not use the E-M formula as given in [1, p806] since this contains errors.46There are some alternative forms for the remainder in the Euler-Maclaurin summation formula. Note that,unlike some others which require r � 1, the form Qr of remainder used here continues to be correct for r = 0(provided that the `empty sum' convention thatP0k=1 � = 0 is used in (74)).40



is the polygamma function [1, pp258{60]. The term in the integrand in square brackets is actuallya shorthand, based on the basic polygamma recurrence relation m(t+ n) =  m(t) + (�1)mm!� 1tm+1 + : : :+ 1(t+ n� 1)m+1� ;for the expanded form (in which it was derived, as (75)).The partial sum in (76) is a sum of alternating terms, since, for each term, the bracketed partF [t 7! t�(2k�1)] is negative, and the even Bernoulli numbers (excluding B0) are known to alternatein sign. We can show that, as one might hope to �nd, the sequence of remainder terms hRri of theapproximation also alternates. To see this notice �rstly that the square-bracketed term, �(t), say,in (77) is a positive decreasing function of t. This fact is a consequence of putting g =  (2r) in (71)(and replacing b by b + t), since then we have g00 =  (2r+2) and the even polygamma functions47are known to be increasing (and negative) on the positive real axis. Alternatively, we obtain thesame conclusion by leaving �(t) in its original expanded form and rearranging the terms to give�(t) = (2r)! n�1Xi=0 � 1(t+ b+ i)2r+1 � 1(t+ a + b+ i)2r+1� ;which is positive decreasing in t by the convexity of the inverse power function. The secondrequirement to deduce that hRri alternates in sign is the well-known property of the odd Bernoullipolynomials. [1, pp804{5] tells us that B2r+1(t) has a zero at t = 12 , has sign (�1)r+1 on theinterval 0 < t < 12 and satis�es the identity B2r+1(1 � t) = �B2r+1(t). Putting the above factstogether we can deduce that the integrand in (77) has sign (�1)r+1 on the interval 0 < t < 12 ,sign (�1)r on 12 < t < 1 and conclude that(�1)r+1Rr = Z 10 (�1)r+1B2r+1(t)(2r + 1)! �(t) dt> Z 120 (�1)r+1B2r+1(t)(2r + 1)! �(12) dt+ Z 112 (�1)r+1B2r+1(t)(2r + 1)! �(12) dt= �(12) Z 10 (�1)r+1B2r+1(t)(2r + 1)! dt= 0Thus Rr has sign (�1)r+1 and we can conclude that we have obtained boundsF [t 7! (t� 12 ) log(t)]+ 2s+1Xk=1 B2k2k(2k � 1)  � 1(a+ b+ n)2k�1 + 1(b+ n)2k�1 + 1(a+ b)2k�1 � 1b2k�1!< log (�0;n(a; b))< F [t 7! (t � 12 ) log(t)]+ 2sXk=1 B2k2k(2k � 1)  � 1(a+ b+ n)2k�1 + 1(b+ n)2k�1 + 1(a+ b)2k�1 � 1b2k�1! ;for s = 0; 1; 2; : : : : (79)Note that the s = 0 case tells us that, in fact, F [t 7! (t � 12 ) log(t)] is a strict upper bound forlog (�0;n(a; b)). This enables a simple improvement to the right-hand side of (72).Since we have now shown the sequence R0; R1; R2 : : : to be alternating in sign, we have imme-diatelyjRrj < jRr �Rr+1j47meaning the functions (78) with r � 1 41



= ����� B2r+2(2r + 2)(2r + 1)  � 1(a+ b+ n)2r+1 + 1(b+ n)2r+�1 + 1(a+ b)2r+1 � 1b2r+1!�����= (�1)rB2r+2(2r + 2)(2r + 1)  1(a+ b+ n)2r+1 � 1(b+ n)2r+�1 � 1(a+ b)2r+1 + 1b2r+1!< (�1)rB2r+2(2r + 2)(2r + 1) � 1b2r+1 � 1(a+ b)2r+1� < (�1)rB2r+2(2r + 2)(2r + 1)b2r+1 (80)as a crude bound on the error of our approximation, so that, summarising our �ndings about theremainder term, we can say that0 < (�1)r+1Rr < (�1)rB2r+2(2r + 2)(2r + 1)b2r+1 : (81)In the numerical results presented in x6.2, we chose to work with r = 3 and r = 4 to giveus our lower and upper bounds (respectively) on �0;n(a; b). With these numbers of terms in theseries, (81) becomes � 11188b9 < R4 < 0 < R3 < 11680b7 (82)Two further problems remained to be addressed in order to implement an algorithm. The�rst problem is that of the size of the error bounds when b is small. Although for high reliabilitysoftware families we would probably not expect an asymptote in the distribution of P (a; b) atP = 1, we might nevertheless in our prior distribution for ha; bi wish to assign a very smallquantity of probability to such values. For this reason we prefer to use a numerical algorithm for�0;n(a; b) which is able to cope well with values of b close to or even less than 1. Fortunately,there is a relatively painless solution to this requirement. Examination of the remainder term(77) leads one to conclude that for small b the remainder is largely accounted for by the Euler-Maclaurin series' comparative inability to approximate the �rst few terms of the original seriesPn�1i=0 (log(b + i) � log(a + b + i)). This suggests removing these few terms from the sum, sayremove the �rst j terms.log(�0;n(a; b)) =  j�1Xi=0 log(b + i) � log(a+ b+ i)! + log(�0;n�j(a; b+ j))Then these removed terms can be calculated directly, and the Euler-Maclaurin approximationused only for the later part of the sum which is equal to log(�0;n�j(a; b+ j)). For j large enoughso that we have b+ j greater than about 5 or 6, the new Euler-Maclaurin remainder will be verysmall. To be precise, for b+j > 5 as we in fact used in x6.2, we have from (82) an Euler-Maclaurinremainder satisfying �4:310�10�10 < R4 < 0 < R3 < 7:619�10�9 :Using this approach we avoided ever having to use the expansion (76) with any value of b � 5.The second of the two problems mentioned is purely computational and has to do with theavoidance of a loss of precision on subtraction of very similar numbers, which could occur in severalplaces due to the multiple occurrences of di�erences of the form F , and to the fact that a, b andn may di�er by quite large orders of magnitude. Our approach to avoiding such problems for theF [t 7! (t� 12) log(t)] term in (76) is to write it asF [t 7! (t�12 ) log(t)] = �a log�a+ b+ na+ b �+�b� 12� log�a + bb ���b+ n� 12� log�a+ b + nb+ n �except when b � 100a in which case we note that the second and third of these three terms willbegin to become very similar. (They are both asymptotic to a as ab ! 0.) Therefore, under thiscondition we replace each by a Taylor series approximation with a subtracted to giveF [t 7! (t� 12) log(t)] = �a log�a+ b+ na+ b �+ h�a; ab�� h�a; ab+ n�42
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