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RATIONALITY OF BLOCKS OF QUASI-SIMPLE FINITE

GROUPS

NIAMH FARRELL AND RADHA KESSAR

Abstract. Let ` be a prime number. We show that the Morita Frobenius
number of an `-block of a quasi-simple finite group is at most 4 and that the

strong Frobenius number is at most 4|D|2!, where D denotes a defect group of

the block. We deduce that a basic algebra of any block of the group algebra of
a quasi-simple finite group over an algebraically closed field of characteristic `

is defined over a field with `a elements for some a ≤ 4. We derive consequences

for Donovan’s conjecture. In particular, we show that Donovan’s conjecture
holds for `-blocks of special linear groups.

1. Introduction and Main Results

Let ` be a prime number and let (K,O, k) be an `-modular system with k ∼= F`
such that O is absolutely unramified. The following is the main result of this paper
(see Section 2 for notation and definitions).

Theorem 1.1. Let G be a quasi-simple finite group and let B be a block algebra of
OG. Let D be a defect group of B.

(i) The Morita Frobenius numbers of B and of k ⊗O B are at most 4.
(ii) The strong Frobenius number of B is at most 4|D|2!.

In many cases in the above theorem we show that the Morita Frobenius number
of B is in fact equal to 1 (see Theorem 8.1), and in no case do we show that the
number is greater than 1. We note that there are examples of blocks of `-solvable
groups with Morita Frobenius number equal to 2 [2]. In [19], the first author
calculated the Morita Frobenius numbers of k ⊗O B for several families of blocks
B of quasi-simple finite groups. The main outstanding case, which we treat in the
current paper, was that of non-unipotent blocks of quasi-simple finite groups of Lie
type in non-describing characteristic.

The motivation for Theorem 1.1 comes from Donovan’s conjecture whose state-
ment we recall.

Conjecture 1.2 (Donovan’s Conjecture [1, Conjecture M]). Let D be a finite `-
group. There are finitely many Morita equivalence classes of blocks of finite group
algebras over k with defect groups isomorphic to D.

A weaker version of Donovan’s conjecture states that the entries of the Cartan
matrices of blocks with defect groups isomorphic to D are bounded by some function
which depends only on |D|. The gap between the weak and strong forms is precisely
a rationality question. This was first observed by Hiss [26] and the theme was
developed in [28, Theorem 1.4].
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2 NIAMH FARRELL AND RADHA KESSAR

Conjecture 1.3 (Rationality Conjecture [28, Conjecture 1.3]). The Morita Frobe-
nius numbers of blocks of finite group algebras over k with defect groups isomorphic
to D are bounded by a function which depends only on |D|.

All three conjectures are open at present. The first part of Theorem 1.1 shows
that the Rationality conjecture holds for blocks of quasi-simple finite groups.

In [27, Theorem 8.6] it was shown that blocks of finite special linear groups
satisfy the weak Donovan conjecture. Combining this result with the first part
of Theorem 1.1 we obtain Donovan’s conjecture for blocks of finite special linear
groups. This result first appeared in [20, Theorem C].

Theorem 1.4. Let D be a finite `-group. There are finitely many Morita equiva-
lence classes of blocks of group algebras over k of finite special linear groups with
defect groups isomorphic to D.

Motivation for the second part of Theorem 1.1 comes from a recent reduction of
Donovan’s conjecture for blocks with abelian defect, proved by Eaton and Livesey
[16].

Theorem 1.5. [16, Theorem 1.4] Suppose that there exist functions ε, γ : N → N
such that for all block algebras B of group algebras over O of quasi-simple finite
groups with abelian defect groups of order `d, the strong Frobenius number of B
is bounded by ε(d) and all Cartan invariants of k ⊗O B are at most γ(d). Then
Donovan’s conjecture holds for blocks with abelian defect groups.

The second part of Theorem 1.1 in combination with the above reduction result
shows that in order to prove Donovan’s conjecture for blocks with abelian defect
groups, it remains to show that the weak Donovan conjecture holds for blocks of
quasi-simple finite groups with abelian defect groups. Note that unlike Theorem
1.5, the hypothesis of [16, Theorem 1.4] does not stipulate that O is absolutely
unramified. We also note that Eaton, Eisele and Livesey recently strengthened the
conclusion of Theorem 1.5 to apply to the version of Donovan’s conjecture dealing
with Morita equivalence classes of blocks of finite group algebras over O [14].

Recall that a finite dimensional k-algebra A is said to be defined over a subfield
F of k if there exists an F -algebra A0 such that A ∼= k ⊗F A0. The first part of
Theorem 1.1 may be recast as the following rationality statement.

Theorem 1.6. Let A be a basic algebra of a block algebra of kG where G is a
quasi-simple finite group. Then A is defined over F`a for some a ≤ 4.

We begin in Section 2 by recalling some preliminaries including background re-
sults on rationality and covering and dominating blocks. Section 3 studies the effect
of `-adic field automorphisms on characters of finite reductive groups in character-
istic different from `. In Section 4 we refine the results of the previous section to
the setting of the key reduction theorem of Bonnafé-Dat-Rouquier [5, Section 7].
Theorems 4.4 and 4.5 are then used to prove almost all of the results for blocks of
the finite groups of Lie type in non-defining characteristic in Section 5; the remain-
ing cases in type E8 are dealt with on an ad hoc basis in Section 5.1. Sections 6
and 7 cover the case of defining characteristic, Ree and Suzuki groups, alternating
and sporadic groups and exceptional covering groups. The proofs of Theorem 1.1,
Theorem 1.4 and Theorem 1.6 are given in Section 8.

Acknowledgements. We thank Marc Cabanes and François Digne for their
help in clearing up a point in the proof of Lemma 3.1. We also thank Gunter Malle
and the referee for their careful reading and corrections.
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2. Preliminaries

2.1. Twists through ring automorphisms. Let R be a commutative ring with
identity and let ϕ : R→ R be a ring automorphism. For anR-module V , the ϕ-twist
V ϕ of V is the R-module which equals V as group and where scalar multiplication
is given by λ · v = ϕ−1(λ)v, for λ ∈ R, v ∈ V . Denote by R-Mod the category of
R-modules and by ϕ : R-Mod → R-Mod the functor which sends an object V to
V ϕ and is the identity on morphisms. Then ϕ is an additive equivalence.

For A an R-algebra, we denote by Aϕ the R-algebra which is equal to Aϕ as an
R-module and to A as a ring. The functor ϕ : R-Mod → R-Mod extends to an
additive equivalence ϕ : A-Mod→ A-Mod. However, the R-algebras A and Aϕ are
not necessarily Morita equivalent. This gives rise to several invariants, all of which
can be thought of as a measure of the rationality of A with respect to ϕ.

Definition 2.1. Let R be a commutative unital ring and ϕ : R→ R an automor-
phism. Let A be an R-algebra.

• The Morita Frobenius number mf (A) of A with respect to ϕ is the least
positive integer m (possibly infinity) such that Aϕ

m

and A are Morita
equivalent as R-algebras.

• The Frobenius number f(A) of A with respect to ϕ is the least positive
integer m (possibly infinity) such that Aϕ

m

and A are isomorphic as R-
algebras.

• Let R ⊆ R′ be an inclusion of unital commutative rings and let ϕ′ : R′ → R′

be a ring automorphism extending ϕ. The strong Frobenius number sf (A)
of A with respect to ϕ and ϕ′ is the least positive integer m (possibly
infinity) such that there is an R-linear isomorphism τ : A→ Aϕ

m

such that
the equivalence of module categories induced by τ ′ : R′⊗RA→ R′⊗RAϕ

m

,
the unique R′-linear extension of τ , sends any simple R′⊗RA-module V to
V ϕ
′m

.

It is immediate from the definitions that for any ϕ and ϕ′, mf (A) ≤ f(A) ≤
sf(A). The use of “Frobenius” in the terminology goes back to [2] where Morita
Frobenius and Frobenius numbers were defined for finite dimensional algebras over
fields of positive characteristic with ϕ the standard Frobenius isomorphism (see the
following subsections). The concept of strong Frobenius numbers is due to Eaton
and Livesey [17]; the related concept of ϕ-equivalence appeared in [11].

For finite group algebras and their direct factors, ϕ-twists have another conve-
nient interpretation. For ϕ and R as above we denote by ϕ : RG → RG the ring
automorphism which sends an element

∑
g∈G αgg of RG to

∑
g∈G ϕ(αg)g. Then

ϕ−1 : RG → (RG)ϕ is an isomorphism of R-algebras. Further, for any central
idempotent b of RG, ϕ(b) is a central idempotent of RG and ϕ−1 restricts to an
R-linear isomorphism RGϕ(b) ∼= (RGb)ϕ.

For any function χ : G → R we denote by ϕχ : G → R the function defined by
ϕχ(g) = ϕ(χ(g)), g ∈ G.

2.2. `-modular systems and Frobenius maps. Throughout this paper ` de-
notes a prime number. Let (K,O, k) be an `-modular system with k ∼= F` such
that O is absolutely unramified, i.e., J(O) = `O (see [39, Chapters 1,2] for gener-
alities on complete discrete valuation rings).

Let σ : k → k be the Frobenius automorphism defined by λ 7→ λ`, λ ∈ k. Recall
that by the structure theory of complete discrete valuation rings there is a unique
automorphism

σ̂ : O → O
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lifting the Frobenius automorphism σ of k. The map σ̂ extends uniquely to an
automorphism of K. Let K̄ be a fixed algebraic closure of K. Since all `′-roots of
unity in K̄ belong to K, if τ : K̄ → K̄ is any automorphism of K̄ extending σ̂ then
τ(ζ) = ζ` for every `′-root of unity in K̄. The following fact is well-known, we give
a proof for the convenience of the reader.

Lemma 2.2. There exists a field automorphism τ : K̄ → K̄ extending σ̂ such that
τ(ζ) = ζ for every root of unity ζ in K̄ of `-power order.

Proof. Let ζ ∈ K̄ be a root of unity of `-power order. We claim that there is
a unique extension τ : K[ζ] → K[ζ] of σ̂ such that τ(ζ) = ζ. Indeed, let τ :
K[ζ] → K[ζ] be any extension of σ̂ and suppose that τ(ζ) = ζi. Since O is
unramified, Gal(K[ζ]/K) ∼= Aut(〈ζ〉) (see for instance [29, Lemma 3.3]). Thus
there exists η ∈ Gal(K[ζ]/K) such that η(ζ) = ζi. Replacing τ with η−1τ results
in an automorphism which extends σ̂ and sends ζ to itself. The uniqueness assertion
is obvious and the claim follows. Now let K0 ⊂ K̄ be the union of all subfields of
the form K[ζ], where ζ is a root of unity of `-power order. Then by a standard
Zorn’s Lemma argument we have that there is an extension τ : K0 → K0 of σ̂ such
that τ(ζ) = ζ for any root of unity of `-power order in K0 and hence in K̄. Now
any extension of τ to K̄ has the desired property. �

Henceforth, we fix an extension

σ̂ : K̄ → K̄

of σ̂ to K̄ such that σ̂(ζ) = ζ for every root of unity ζ in K̄ of `-power order.

2.3. Blocks of finite groups and Frobenius numbers. Let G be a finite group.
By a block of OG (respectively a block of kG) we mean a primitive idempotent
in Z(OG) (respectively Z(kG)). Recall that the canonical quotient map O → k
extends to a surjective ring homomorphism

π : OG→ kG

and π induces a bijection between the set of blocks of OG and the set of blocks of
kG. Where there is no ambiguity, we will use the term block or `-block of G to
refer to either a block of OG or of kG.

We denote by Irr(G) the set of irreducible K̄-valued characters of G and for
χ ∈ Irr(G), let eχ denote the central primitive idempotent of K̄G corresponding to
χ. For b a block of OG, the set of characters belonging to b or π(b) is defined to be

Irr(b) = Irr(π(b)) = {χ ∈ Irr(G) | beχ = eχ}.

Lemma 2.3 ([19, Lemma 2.2]). Let G be a finite group and let b a block of OG.
Then π(σ̂(b)) = σ(π(b)) and Irr(σ̂(b)) = {σ̂χ | χ ∈ Irr(b)}.

We restate the definitions of the previous subsection by making use of the identi-
fication of the twist of a block algebra with another block of the same group algebra.
The relevant ring automorphisms are σ and σ̂. Note that when we say that two
block algebras OGb and ONc are Morita equivalent (or isomorphic), we mean as
O-algebras and similarly over k.

Definition 2.4. Let b be a block of OG and let OGb and kGπ(b) = k⊗O OGb be
the corresponding block algebras.

• The Morita Frobenius number of kGπ(b), mf (kGπ(b)), is the minimal pos-
itive integer m such that kGπ(b) is Morita equivalent to kGσm(π(b)).

• The Morita Frobenius number of OGb, mf (OGb), is the minimal positive
integer m such that OGb is Morita equivalent to OGσ̂m(b).
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• The Frobenius number of kGπ(b), f (kGπ(b)), is the minimal positive integer
m such that kGπ(b) ∼= kGσm(π(b)).

• The Frobenius number of OGb, f (OGb), is the minimal positive integer m
such that OGb ∼= OGσ̂m(b).

• The strong Frobenius number of OGb, sf (OGb), is the minimal positive
integer m such that there exists an O-algebra isomorphism from OGb to
OGσ̂m(b) which, when extended to an isomorphism K̄Gb → K̄Gσ̂m(b),
induces a bijection on characters given by χ 7→ σ̂m

χ, for all χ ∈ Irr(b).

The first and third definition above are equivalent to the definitions in the pre-
vious subsection with R = k, ϕ = σ and A = kGπ(b). The second and fourth
are equivalent to the definitions in the previous subsection with R = O, ϕ = σ̂
and A = OGb. The fifth definition corresponds to the definition in the previous
subsection with R = O, R′ = K̄, ϕ = ϕ′ = σ̂, and A = OGb. Note that the isomor-
phism type of a simple K̄G-module is determined by its character and that if χ is
the character of the simple K̄G-module V , then σ̂m

χ is the character of V σ̂
m

when

regarded as a K̄G-module via pull back through the map σ̂m
−1

: (K̄G)σ̂
m → K̄G.

Since OG has only finitely many blocks, f (OGb) is finite for any block b. The
first part of the following proposition shows that the same is true for the other
numbers.

Proposition 2.5. Let G and N be finite groups. Let b be a block of OG and let c
be a block of ON .

(i) mf (kGπ(b)) ≤ mf (OGb) ≤ f (OGb) ≤ sf (OGb) ≤ |D|2! f (OGb).
(ii) If OGb and ONc are Morita equivalent, then mf (OGb) = mf (ONc). If

kGπ(b) and kNπ(c) are Morita equivalent, then mf (kGπ(b)) = mf (kNπ(c)).
(iii) If OGb and ONc are Morita equivalent, then sf (OGb) = sf (ONc).

Proof. The first two inequalities in part (i) follow directly from the definitions and
the last two inequalities are [16, Proposition 2.3 (i)]. If M is an OGb⊗O (ONc)op-
module, then M σ̂m

is an (OGb)σ̂m ⊗O ((ONc)op)σ̂m ∼= (OGb ⊗O (ONc)op)σ̂m

-
module and M induces a Morita equivalence between OGb and ONc if and only if
M σ̂m

induces a Morita equivalence between (OGb)σ̂m

and (ONc)σ̂m

. This proves
part (ii) over O. The proof over k is identical. Part (iii) is [16, Proposition 2.3
(ii)]. �

We will make repeated use of the following result of Linckelmann [32, Theorem
1 and Proposition 2].

Proposition 2.6. Let G be a finite group and let b be a block of OG. If the defect
groups of OGb are cyclic, or if ` = 2 and the defect groups of OGb are Klein four
groups, then sf (OGb) = 1.

2.4. Morita Frobenius numbers and basic algebras of blocks of kG.

Lemma 2.7 ([28, Lemma 2.1]). Let A be a finite dimensional k-algebra. Then A
is defined over F`m if and only if A ∼= Aσ

m

.

Two finite dimensional k-algebras are Morita equivalent if and only if their basic
algebras are isomorphic (see [31, Section 4.9] for generalities on basic algebras).
If A0 is a basic algebra of a finite dimensional k-algebra A, then Aσ

m

0 is a basic
algebra of Aσ

m

. We thus obtain the following.

Lemma 2.8. Let A be a finite dimensional k-algebra. The Morita Frobenius num-
ber of A is the least positive integer m such that the basic algebras of A are defined
over F`m .



6 NIAMH FARRELL AND RADHA KESSAR

2.5. Covering and dominating blocks. For χ ∈ Irr(G) we let b(χ) denote the
block of OG containing χ. If N C G then for any θ ∈ Irr(N) and any χ ∈ Irr(G)
we use the following notation for the set of irreducible characters of G covering θ,
and the set of irreducible characters of N covered by χ, respectively.

Irr(G | θ) = {ψ ∈ Irr(G) : θ is an irreducible constituent of ψN}
Irr(N |χ) = {ψ ∈ Irr(N) : ψ is an irreducible constituent of χN}

Lemma 2.9. Suppose N C G are finite groups such that G/N is abelian and let
θ ∈ Irr(N). Then for any pair of characters χ1, χ2 ∈ Irr(G | θ), there exists a linear
character η ∈ Irr(G/N) such that χ2 = χ1η. Moreover, OGb(χ1) ∼= OGb(χ2) as
O-algebras.

Proof. The first part follows from [13, Lemma 13.21]. To show the second part, let
η ∈ Irr(G/N) such that χ2 = χ1η, and let η′ denote the `′-part of η. Then η′ takes
values in O× and the map given by∑

g∈G
αgg 7→

∑
g∈G

αggη
(
g−1

)
,
∑
g∈G

αgg ∈ OG

is an O-algebra automorphism of OG which restricts to an isomorphism between
OGb(χ1) and OGb(χ1η

′). Since η and η′ agree on `′ elements of G,

b(χ2) = b(χ1η) = b(χ1η
′)

proving the second assertion. �

Recall that if Z is a normal subgroup of a finite group G, then a block b̄ of
O(G/Z) is said to be dominated by a block b of OG if b̄µ(b) 6= 0, where µ is the
O-algebra surjectionOG→ O(G/Z) induced by the canonical surjection G→ G/Z.

Lemma 2.10. Let Z be a normal subgroup of G and let µ : OG→ O(G/Z) be the
O-algebra homomorphism induced by the canonical surjection map from G to G/Z.
Then for any block b of OG, either µ(b) = 0 or µ(b) is a sum of blocks of O(G/Z).
Moreover, we have the following.

(i) For any block c of O(G/Z) there is a unique block b of OG such that cµ(b) 6= 0.
(ii) If Z is an `′-group and µ(b) 6= 0, then µ restricts to an isomorphism OGb ∼=
O(G/Z)µ(b).

(iii) If Z is an `-group and Z ≤ Z(G), then µ induces a bijection between the set
of blocks of OG and the set of blocks of O(G/Z).

(iv) The map µ commutes with the action of σ̂.

Proof. The first claim and part (i) follow from the fact that µ is a surjective ho-
momorphism of O-algebras whence the image of any central idempotent is either
zero or a central idempotent. Suppose that Z is an `′-group and that µ(b) 6= 0.
Then Irr(b) = Irr(µ(b)) where we regard Irr(G/Z) as a subset of Irr(G) via inflation
[36, Chapter 5, Theorem 8.8]. Thus, OGb and O(G/Z)µ(b) have the same O-rank
and the restriction of µ to OGb is injective. Since this restriction is also surjective,
we obtain (ii). For a proof of (iii), see [36, Chapter 5, Theorem 8.11]. Part (iv) is
immediate from the definitions. �

Lemma 2.11. Suppose N CG are finite groups such that G/N ∼= C2 × C2. Then
for any G-stable linear character τ ∈ Irr (N), its square τ2 extends to a linear
character of G.

Proof. Let H C G be such that G/H ∼= C2 and H/N ∼= C2. Since H/N is cyclic
and τ is G-stable, and therefore H-stable, τ extends to a linear character τ̂ of H.
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Suppose that g ∈ G. Then gτ = τ so both τ̂ and g τ̂ are elements of Irr(H | τ) =
Irr(H | gτ). Thus by Lemma 2.9, there exists a linear character λ ∈ Irr (H/N) such
that g τ̂ = λτ̂ . Since H/N ∼= C2, λ2 = 1.

As τ is a linear character, τ̂2 is an extension of τ2 to H. Therefore g(τ̂2) =
(g τ̂)2 = (λτ̂)2 = τ̂2. It follows that τ̂2 is G-stable, and therefore τ̂2 extends to G.
Hence, τ2 extends to G. �

The following easy lemma will be used in the next section.

Lemma 2.12. Let G be a finite group and let H be a subgroup of G. If θ : H → K̄×

is a linear character of `′-order, then σ̂θ = θ`.

Proof. Since θ and σ̂θ have the same kernel, we may assume that H is an abelian
`′-group. Then for any x ∈ H, we have

σ̂θ(x) = σ(θ(x)) = θ(x)` = θ`(x). �

The following descent result is a consequence of Rickard’s theorem on lifting
splendid Rickard equivalences from characteristic ` to characteristic 0.

Lemma 2.13. Let (K ′,O′, k′) be an `-modular system and let O0 := W (k′) ≤ O′
be the Witt vectors of k′ in O′. Let b a central idempotent of O0G, H a finite group
and c a central idempotent of O0H. Suppose that C is a splendid Rickard complex
of (O′Gb,O′Hc)-bimodules. Then there exists a splendid Rickard complex C0 of
(O0Gb,O0Hc)-bimodules such that the following holds.

(i) C ∼= O′ ⊗O0
C0 as a complex of (O′Gb,O′Hc)-bimodules.

(ii) For all i, Hi(C) ∼= O′ ⊗O0
Hi(C0) as (O′Gb,O′Hc)-bimodules.

If in addition, Hd(C) induces a Morita equivalence between O′Hc and O′Gb for
some d, then Hi(C0) induces a Morita equivalence between O0Hc and O0Gb for
all i.

Proof. SinceO0 andO have the same residue field the existence of C0 and statement
(i) are immediate from the existence and uniqueness assertions of [37, Theorem 5.2].
More specifically, the complex C̄ := k′ ⊗O′ C0 is a splendid Rickard complex of
(kGb̄, kHc̄)-bimodules where b̄ and c̄ denote the images of b and c in kG and kH
respectively. By [37, Theorem 5.2], there exists a splendid Rickard complex C0 of
(O0Gb,O0Hc)-bimodules such that k′ ⊗O0

C0
∼= C̄. Note that Rickard’s theorem

is stated under the assumption that the fraction field of O0 be a splitting field for
G and H but the proof does not use this – the only ingredient is the completeness
of O0 and the fact that `-permutation modules lift (uniquely) from k to O0. By
extension of scalars, O′ ⊗O0

C0 is a splendid Rickard complex of (O′Gb,O′Hc)-
bimodules. Further,

k ⊗O′ (O′ ⊗O0 C0) ∼= k ⊗O0 C0

as (O′Gb,O′Hc)-bimodules. Statement (i) now follows by [37, Theorem 5.2], C is
the unique splendid Rickard complex lifting C̄.

Statement (ii) follows from (i) since O0 ⊆ O′ is a flat extension. The final
statement follows from an application of the Noether-Deuring theorem (see for
instance [29, Prop. 4.5]). �

3. Galois actions and Lusztig series

We continue with the notation of the previous section. There is a canonical
embedding (as valuation fields) of Q` in K. Let Q̄` denote the algebraic closure of

Q` in K̄. We fix a prime p different from `, a group isomorphism ι : (Q/Z)p′ → F×p
and an injective group homomorphism  : (Q/Z)→ Q̄×` .



8 NIAMH FARRELL AND RADHA KESSAR

3.1. Characters of tori and duality. Let G be a connected reductive algebraic
group defined over Fp with Frobenius endomorphism F : G→ G (see Remark 4.6).
We fix an F -stable maximal torus T0 of G, a triple (G∗,T∗0, F ) dual to the triple
(G,T0, F ) and an F -equivariant isomorphism X(T0) ∼= Y (T∗0) which sends simple
roots to simple coroots as in [13, Definition 13.10], where X(T0) denotes the set of
characters of T0 and Y (T∗0) denotes the set of cocharacters of T∗0. We let ∇(G, F )
denote the set of pairs (T, θ) where T is an F -stable maximal torus of G and
θ : TF → Q̄` is a linear character. Dually, let ∇∗(G∗, F ) denote the set of pairs
(T∗, s) where T∗ is an F -stable maximal torus of G∗ and s ∈ T∗F .

The choice of ι,  and the isomorphism X(T0) ∼= Y (T∗0) above determine a
bijection [13, 11.15, Proposition 13.13]

(1) ∇(G, F )/GF → ∇∗(G∗, F )/G∗F .

If (T, θ) ∈ ∇(G, F ) and (T∗, s) ∈ ∇∗(G∗, F ) then we write (T, θ)
G↔ (T∗, s) if the

classes of (T, θ) and (T∗, s) correspond under the above bijection. We write T
G↔ T∗

if T is an F -stable maximal torus of G and T∗ is an F -stable maximal torus of G∗

such that (T, θ)
G↔ (T∗, s) for some θ and some s. For s a semisimple element of

G∗F we denote by ∇(G, F, s) the set of all pairs (T, θ) such that (T, θ)
G↔ (T∗, s)

for some F -stable maximal torus T∗ of G∗ containing s.
The following lemma lists some well-known properties of bijection (1). We give

a short indication of the proof for the convenience of the reader. Let

τ : Gsc → [G,G]

be a simply-connected covering (see [10, Section 8.1]).

Lemma 3.1. Let s be a semisimple element of G∗F .

(i) If (T, θ) ∈ ∇(G, F, s), then for any n ∈ N, (T, θn) ∈ ∇(G, F, sn).
(ii) There exists an isomorphism Z(G∗)F → Irr(GF /τ(GF

sc)), (t 7→ t̂) such that
for all t ∈ Z(G∗)F , ∇(G, F, t) = {(T, t̂TF )} where T runs over all F -stable
maximal tori of G.

Proof. Let T be an F -stable maximal torus of G. By construction of the bijection

(1), if T∗ is an F -stable maximal torus of G∗ such that T
G↔ T∗, then there exists

an isomorphism ζ : T∗F → Irr(TF ), such that (T, ζ(t))
G↔ (T∗, t) for all t ∈ T∗F

(see [10, (8.15)]). Now suppose that (T, θ)
G↔ (T∗, s). Then (T, θ) is GF -conjugate

to (T, ζ(s)), hence (T, θn) is GF -conjugate to (T, ζ(sn)) and (T, ζ(sn))
G↔ (T∗, sn)

proving (i).
By [10, (8.19)], there exists an isomorphism Z(G∗)F → Irr(GF /τ(GF

sc)), (t 7→ t̂)
such that for any T, T∗ and ζ as above, and any t ∈ Z(G∗)F ≤ T∗F , we have
that t̂TF = ζ(t) where we view t̂ as a character of GF via pull back through GF →
GF /τ(GF

sc) (see [12, Proposition 5.11(ii)] for the independence of the isomorphism).

It follows that for any t ∈ Z(G∗)F , (T, t̂TF ) = (T, ζ(t))
G↔ (T∗, t), and hence

(T, t̂TF ) ∈ ∇(G, F, t).

Now suppose that (T, θ) ∈ ∇(G, F, t), say (T, θ)
G↔ (T∗, t). Then (T, θ) is

GF -conjugate to (T, ζ(t)) = (T, t̂TF ). But t̂ is a linear character of GF , so it is
GF -stable, hence (T, θ) = (T, t̂TF ), proving part (ii). �

Definition 3.2. Let H be a finite group and let h ∈ H be an `′-element. We denote
by aH(h) the order of h modulo Z(H), and by rH(h) the multiplicative order of `
modulo aH(h).
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Lemma 3.3. Let s ∈ G∗F be a semisimple `′-element and let r = rG∗F (s).

(i) Let (T, θ) ∈ ∇(G, F ). Then (T, θ) ∈ ∇(G, F, s) if and only if (T,σ̂ θ) ∈
∇(G, F, s`).

(ii) Let τ denote the linear character of GF corresponding to s`
r−1 by the isomor-

phism in Lemma 3.1 (ii). Then σ̂r

θ = θτTF for all (T, θ) ∈ ∇(G, F, s).

Proof. Part (i) follows from Lemma 2.12 and Lemma 3.1 (i). To prove (ii), note
that by definition of r, s`

r−1 ∈ Z(G∗F ) = Z(G∗)F , hence τ is well-defined. Let
(T, θ) ∈ ∇(G, F, s). By Lemma 3.1 (i), (T, θ`

r−1) ∈ (G, F, s`
r−1). Hence, by

Lemma 3.1 (ii), θ`
r−1 = θτTF . Thus

σ̂r

θ = θ`
r

= θθ`
r−1 = θτTF

where the first equality holds by Lemma 2.12. �

3.2. Regular embeddings. We fix a regular embedding i : G → G̃ (see [10,

Section 15.1]) and let F denote a Steinberg morphism on G̃ compatible with the

Steinberg morphism F on G. The map T 7→ Z(G̃)T induces a bijection between

the set of (F -stable) maximal tori of G and the set of (F -stable) maximal tori of G̃.

The inverse bijection is given by T̃ 7→ T̃ ∩G. Set T̃0 = Z(G̃)T0. Let (G̃∗, T̃∗0, F )

be dual to (G̃, T̃0, F ) and i∗ : G̃∗ → G∗ be a surjection dual to i with i∗(T̃∗0) = T∗0.

Fix an isomorphism X(T̃0)→ Y (T̃∗0) lifting the isomorphism X(T0)→ Y (T∗0).

Lemma 3.4. Let s̃ be a semisimple element of G̃∗F and let s = i∗(s̃). Let T̃ be an

F -stable maximal torus of G̃, θ̃ : Irr(T̃F )→ Q̄` a linear character of T̃F and let θ

denote the restriction of θ̃ to TF . If (T̃, θ̃) ∈ ∇(G̃, F, s̃), then (T, θ) ∈ ∇(G, F, s).

Proof. See [4, Lemme 9.3 (a)]. �

We also record for future use the following fact.

Lemma 3.5. Let s̃ ∈ G̃∗F be a semisimple element and set s = i∗(s̃). Then
aG̃∗F (s̃) = aG∗F (s) and rG̃∗F (s̃) = rG∗F (s).

Proof. Let a = aG∗F (s). Then i∗(s̃a) = sa ∈ Z(G∗F ) ≤ Z(G∗). Now since

i∗ : G̃∗ → G∗ is a surjective homomorphism with kernel a central torus of G̃∗ (see

[4, Proposition 2.5]), i∗−1(Z(G∗)) = Z(G̃∗). Hence s̃a ∈ Z(G̃∗) ∩ G̃∗F = Z(G̃∗F )
showing that aG̃∗F (s̃) ≤ aG∗F (s). The reverse inequality is immediate from the

fact that the restriction of i∗ to G̃∗F is surjective (see [4, Corollaire 2.7]). �

3.3. Lusztig series. For a semisimple element s of G∗F, we denote by E(GF , s) ⊆
Irr(GF ) the rational Lusztig series corresponding to the G∗F -conjugacy class of s.
Recall that E(GF , s) is the set consisting of the irreducible characters for which
〈χ,RG

T (θ)〉 6= 0 for some (T, θ) ∈ ∇(G, F, s). By results of Lusztig, the series
E(GF , s) as s runs over a set of representatives of GF -conjugacy classes of semi-
simple elements of GF partition Irr(GF ).

Lemma 3.6. Let χ ∈ Irr(GF ), (T, θ) ∈ ∇(G, F ) and let s ∈ G∗F be a semisimple
`′-element.

(i) For any ϕ ∈ Aut(K̄), 〈ϕχ ,RG
T ( ϕθ)〉 = 〈χ ,RG

T (θ)〉.
(ii) χ ∈ E(GF , s) if and only if σ̂χ ∈ E(GF , s`).

Proof. By the character formula [13, Proposition 12.2], ϕRG
T (θ) = RG

T (ϕθ). Hence,

〈χ , RG
T (θ)〉 = ϕ〈χ ,RG

T (θ)〉 = 〈ϕχ , ϕRG
T (θ)〉 = 〈ϕχ , RG

T (ϕθ)〉
where the second equality holds since RG

T (θ) is a generalised character. This proves
(i). Part (ii) follows from (i) and Lemma 3.3 (i). �
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The next lemma recalls a consequence of the Jordan decomposition of characters.
Recall that for a Q̄`-valued class function χ of GF the uniform projection of χ is
the orthogonal projection (with respect to 〈 , 〉) of χ onto the subspace of class
functions generated by RG

T (θ), (T, θ) ∈ ∇(G, F ).

Lemma 3.7. Suppose that Z(G) is connected and let s be a semi-simple element of

G∗F. Suppose that CG∗(s) has all classical components. Then each χ ∈ E(GF , s)
is uniquely determined by its uniform projection.

Proof. The hypothesis implies that the unipotent characters of CG∗(s)
F are uniquely

determined by their uniform projections [34, 8.1(a)]. Then by Jordan decomposition
([33, 4.23], see also [10, Theorem 15.8]) each χ ∈ E(GF , s) is uniquely determined
by its uniform projection. �

Lemma 3.8. Let s ∈ G∗F be a semisimple element and ϕ ∈ Aut(K̄). Suppose that

C◦G∗(s) has only classical components. Suppose further that there exists s̃ ∈ G̃∗F

with i∗(s̃) = s and a linear character η̃ ∈ Irr(G̃F ) such that ϕθ̃ = θ̃η̃T̃F for all

(T̃, θ̃) ∈ ∇(G̃, F, s̃). Then for any χ ∈ E(GF , s), there exists an x ∈ G̃F such that
ϕχ = x(χη̃GF ).

Proof. Let χ ∈ E(GF , s) and let χ̃ ∈ Irr(G̃F |χ) ∩ E(G̃F , s̃) (for the existence of χ̃

see [4, Proposition 11.7]). Let (T̃, θ̃) ∈ ∇(G̃, F, s̃). By assumption,

〈χ̃ , RG̃
T̃

(θ̃)〉 = 〈
ϕ

χ̃ , RG̃
T̃

(
ϕ

θ̃)〉 = 〈
ϕ

χ̃ , RG̃
T̃

(θ̃η̃T̃F )〉,

where the first equality holds by Lemma 3.6. On the other hand, since η̃ ∈ Irr(G̃F )
is linear,

〈χ̃ , RG̃
T̃

(θ̃)〉 = 〈χ̃η̃ , RG̃
T̃

(θ̃)η̃〉 = 〈χ̃η̃ , RG̃
T̃

(θ̃η̃T̃F )〉,
where now the second equality holds by the character formula [13, Proposition

12.2]. Since 〈χ̃ , RG̃
T̃

(θ̃)〉 = 0 for all (T̃, θ̃) ∈ ∇(G̃, F ) \ ∇(G̃, F, s̃), it follows that
ϕχ̃ and χ̃η̃ have the same uniform projections. By definition Z(G̃∗) is connected,
so CG̃∗(s̃) is connected. Since C◦G∗(s) has all classical components the same is true
of CG̃∗(s̃). Hence by Lemma 3.7, ϕχ̃ = χ̃η̃. It follows that ϕχ and χη̃GF are both

elements of Irr(GF | ϕχ̃) = Irr(GF | χ̃η̃), proving the result. �

3.4. Blocks. For s ∈ G∗F a semisimple `′-element we denote by E`(GF , s) the
union of the rational Lusztig series E(GF , t), where t runs over a set of representa-
tives of G∗F -conjugacy classes of the semisimple elements of G∗F whose `′-part is
G∗F -conjugate to s. We recall that by results of Broué-Michel and Hiss [10, Theo-
rem 9.12], E`(GF , s) is the union of the irreducible characters in some subset of the
set of blocks of OGF and if b is an `-block of OGF such that Irr(b) ⊆ E`(GF , s),
then Irr(b) ∩ E(GF , s) 6= ∅. If Irr(b) ⊆ E`(GF , s) we say “b is in E`(GF , s)” and
write b ∈ E`(GF , s).

Since the largest order of semisimple elements of the groups G∗F
n

become arbi-
trarily large as n→∞, it is easy to see from the above discussion that there is no
finite subfield k0 of k such that b ∈ k0GFn

for all n and all blocks b of kGFn

. We
give an explicit example below.

Example 3.9. Let G = PGLr(Fp), r ≥ 2, and let F : G → G be the standard

Frobenius over Fp with GFn ∼= PGLr(p
n), and G∗ = SLr(Fp), G∗F

n ∼= SLr(p
n) for

n ∈ N. Choose a strictly increasing sequence of positive integers (ni)i∈N such that

|G∗Fni |` = |G∗F
nj |` for all i, j and set Gi = GFni

, G∗i = G∗F
ni

. For each i, let
λi ∈ Fpni be an element of order (pni − 1)`′ and let si ∈ G∗i be a diagonal matrix

with diagonal entries λi, λ
−1
i , 1, . . . , 1. Let di be the smallest positive integer such
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that s`
di

i is G∗-conjugate to si. Since (pni − 1)`′ → ∞ as i → ∞, we have that
di →∞ as i→∞.

For each i ∈ N, choose a block bi of kGi in E`(Gi, si) and a character χi ∈
E(Gi, si) ∩ Irr(bi). By Lemma 3.6, σ̂m

χ ∈ E(Gi, s
`m

i ) for m ∈ N. Hence by
Lemma 2.3, σm(bi) is in E`(Gi, s`

m

i ). It follows that if bi = σm(bi) then m is
divisible by di. Hence the smallest subfield k0 of k such that bi ∈ k0G contains at
least pdi elements. In particular, there exists no finite subfield k0 of k such that
bi ∈ k0G for all i. Since the `-part of the order of the Gi’s is equal, this also shows
that there is no finite subfield k0 of k such that b belongs to k0G for all blocks b of
kG with a given defect.

4. Applications of the Bonnafé-Dat-Rouquier theorem

We keep all the notation of the sections before Example 3.9. In particular, G is a
connected reductive algebraic group defined over Fp with Frobenius endomorphism
F : G → G. We fix a finite extension Q` ⊆ K ′ ⊆ K̄ of Q` in K̄ such that K ′ is a
splitting field for all sections of GF and of G∗F and let O′ be the ring of integers
of K ′ over Z`.

The proof of our main theorem relies in a fundamental way on the reduction
theorem of [5, Section 7] which we now describe. Let s ∈ G∗F be a semisimple
`′-element. Let L∗ = CG∗ (Z◦ (C◦G∗(s))) be the minimal Levi subgroup of G∗

containing C◦G∗(s) and let L be a Levi subgroup of G dual to L∗ as in [13, Chapter
13]. Since s ∈ G∗F , L∗ and L are F -stable. Further, the duality between G and
G∗ induces an F -equivariant isomorphism NG(L)/L → NG∗(L

∗)/L∗, (w 7→ w∗)
and a bijection ∇(L, F )/LF → ∇∗(L∗, F )/L∗F which is equivariant with respect
to the action of (NG(L)/L)F on ∇(L, F )/LF and the action of (NG∗(L

∗)/L∗)F

on ∇∗(L∗, F )/L∗F : for all w ∈ (NG(L)/L)F , (T, θ) ∈ ∇(L, F ), and (T∗, s) ∈
∇∗(L∗, F ),

(2) (T, θ)
L↔ (T∗, s) ⇐⇒ w(T, θ)

L↔ w∗(T∗, s).

Note that we identify (NG(L)/L)
F

and NGF (L)/LF . Let N∗ = CG∗(s)
F .L∗ and

define N to be the subgroup of NG(L) containing L such that N/L corresponds
to N∗/L∗ via the above isomorphism between NG∗(L

∗)/L∗ and NG(L)/L. As

discussed in [5, Section 7A], NF /LF ∼= N∗F /L∗F ⊆ CG∗(s)
F /C◦G∗(s)

F . Let eG
F

s

(respectively eL
F

s ) denote the sum of all blocks of O′GF (respectively O′LF ) in
E`(GF , s) (respectively E`(LF , s)).

Let V be the unipotent radical of a parabolic subgroup of G containing L as a
Levi subgroup and let YV = {gV ∈ G/V | g−1F (g) ∈ V.F (V)} be the correspond-
ing Deligne-Lusztig (G,L)-variety [5, 2.E]. Let GΓc(YV,O′)red be the complex of
`-permutation (O′GF ,O′LF )-bimodules defined in [5, 2.A, 2.C].

Theorem 4.1. [5, Theorem 7.7] Suppose that NF /LF is a cyclic group. The com-

plex GΓc(YV,O′)redeL
F

s extends to a splendid Rickard complex C of

(O′GF eG
F

s ,O′NF eL
F

s )-bimodules.
There is a bijection b 7→ b′ between blocks of O′GF in E`(GF , s) and blocks

of O′NF covering blocks of O′LF in E`(LF , s) determined by the rule bC = Cb′.
Given a block b of O′GF in E`(GF , s) the complex bCb′ is a splendid Rickard
complex of (O′GF b,O′NF b′)-bimodules and such that Hdim(YV)(bCb′) induces a
Morita equivalence between O′GF b and O′NF b′.

The above Morita equivalences descend to unramified discrete valuation rings
and are compatible with taking quotients by central `-subgroups. Let k′ be the
residue field of O′ and let O0 := W (k′) ⊆ O′ be the ring of Witt vectors of k′ in
O′.
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Proposition 4.2. Keep the notation and hypothesis of Theorem 4.1. Let b be a
block of O′GF in E`(GF , s) and let b′ be the block of O′NF in bijection with b.

Let Z ≤ Z(GF ) be an `-group and let b̄ (respectively b̄′) be the block of O′(GF /Z)
(respectively O′(NF /Z)) dominated by b (respectively b̄′). Then O0(GF /Z)b̄ and
O0(NF /Z)b̄′ are Morita equivalent. Consequently, O(GF /Z)b̄ and O(NF /Z)b̄′ are
Morita equivalent.

Proof. Note that Z ≤ Z(LF ). By Theorem 4.1 and Lemma 2.13, there exists an
(O0G

F b,O0N
F b′)-bimodule M such that M induces a Morita equivalence between

O0G
F b andO0N

F b′ and such thatO′⊗OM ∼= Hdim(YV)(bCb′) as (O′GF b,O′NF b′)-
bimodules.

For any integer i, Hi(bCb′) is isomorphic to a summand of Hi(C) and

ResG
F×NF

GF×LF H
i(C) = Hi(GΓc(YV,O′)redeL

F

s )

is isomorphic to a summand of Hi(GΓc(YV,O′)red). By [5, 2.C]

Hi(GΓc(YV,O′)red) ∼= Hi(GΓc(YV,O′)) ∼= Hi(RΓc(YV,O′)).
For any z ∈ Z and any gV ∈ YV, we have z.gV = gV.z. Hence, by the func-
toriality of `-adic cohomology with respect to finite morphisms, zu = uz for all
u ∈ Hi(RΓc(YV,O′)) and z ∈ Z. By the above discussion it follows that zu = uz
for all u ∈M and z ∈ Z. Now the first assertion result follows from [15, Lemma 2.7].
The second is immediate from the first as O0 ⊆ O. �

Thus the problem of bounding the Morita Frobenius number of b is reduced to
the problem of bounding the Morita Frobenius number of b′. This in turn can be
bounded by appealing to the rationality of unipotent character values. The two
theorems below give instances of this philosophy in action.

Let i : G ↪→ G̃ be a regular embedding as in Section 3.1 with dual i∗ : G̃∗ → G∗.

Let L̃ = Z(G̃)L be a Levi subgroup of G̃ and let L̃∗ be the full inverse image of L∗

under i∗. Then Z(L̃) is connected by [4, Corollaire 4.4] and [L̃, L̃] = [L,L], hence

the restriction of i to L is a regular embedding of L into L̃ with dual i∗ : L̃∗ → L∗.

Lemma 4.3. The group L̃F normalises NF .

Proof. Since L̃ = Z(G̃)L and N ⊆ NG(L), it is clear that [L̃, N ] ⊆ L and hence

[L̃F , NF ] ⊆ LF ⊆ NF . �

Recall the number rH(h) as introduced in Definition 3.2.

Theorem 4.4. Keep the notation and hypothesis of Proposition 4.2. Let r =
rL∗F (s) and suppose that C◦L∗(s) has all classical components. Then

O(NF /Z)σ̂r(b̄′) ∼= O(NF /Z)b̄′.

Proof. Let s̃ be a semisimple `′-element of L̃∗F with i∗(s̃) = s. By Lemma 3.5

t̃ := s̃`
r−1 ∈ Z(L̃∗)F . Let τ̃ be the linear character of L̃F corresponding to t̃ as in

Lemma 3.1 (ii) applied to L̃. By Lemma 3.3, σ̂
r

θ̃ = θ̃τ̃T̃F for all (T̃, θ̃) ∈ ∇(L̃, F, s̃).

Let c be a block of OLF covered by b′ and let χ ∈ Irr(c) ∩ E(LF , s). Then since
C◦L∗(s) has all classical components, it follows from Lemma 3.8, applied to L, that

there exists an x ∈ L̃F such that
σ̂r

χ = x(χτ̃LF ).

Let t := s`
r−1 = i∗(t̃). Since i∗ is a surjective homomorphism and t̃ is central, t ∈

Z(L∗). Further, by Lemma 3.4, τ := τ̃LF is the linear character of LF corresponding
to t. Since N∗ centralises s, N∗ centralises t. Hence by Lemma 3.1 and by (2), τ
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is NF -stable. Since NF /LF is cyclic and of `′-order, τ extends to an irreducible
character τ̌ of NF of `′-order. Note that τ̌ takes values in O.

Let χ̌ ∈ Irr(NF |χ)∩ Irr(b′) and let d be the block of ONF containing χ̌τ̌ . Since

L̃F acts on NF by Lemma 4.3, both σ̂r

χ̌ and xχ̌xτ̌ are elements of Irr(NF |σ̂r

χ) =
Irr(NF |xχxτ). Also, xd is the block of ONF containing xχ̌xτ̌ . Since NF /LF is
cyclic and hence abelian, it follows from Lemma 2.9 that there is an isomorphism
ONF σ̂r(b′) ∼= ONF xd which restricts to the identity on Z ≤ Z(LF ). Conjugation
by x−1 induces an isomorphism ONF xd ∼= ONFd which is the identity on Z ≤ GF .
Finally the O-algebra automorphism ONF → ONF satisfying n 7→ τ̌(n−1)n for all
n ∈ NF , restricts to an isomorphism ONFd ∼= ONF b′. This last isomorphism also
restricts to the identity on Z since τ̌ is an `′-character, and Z is an `-group. Thus
ONF σ̂r(b′) ∼= ONF b′ via an isomorphism which is the identity on Z.

Hence O(NF /Z)σ̂r(b′) ∼= O(NF /Z)b̄′ where b̄′ denotes the block of O(NF /Z)
dominated by b′. The result then follows by Lemma 2.10 (iv). �

The next result is similar in spirit to the previous one and will be used to deal
with some cases where C◦L∗(s) has an exceptional component.

Theorem 4.5. Keep the notation and hypothesis of Proposition 4.2. Suppose that
s ∈ Z(L∗)F and a ∈ N is such that σ̂a

χ′ = χ′ for all unipotent characters χ′ ∈
Irr(LF ). Then

O(NF /Z)σ̂a(b̄′) ∼= O(NF /Z)b̄′.

Proof. Let ψ ∈ Irr(b′) and χ ∈ E(LF , s) such that ψ covers χ. Let ŝ denote the
linear character of LF corresponding to s as in Lemma 3.1 (ii). Note that ŝ is NF -
stable. By [13, Proposition 13.30, (ii)] there exists a unipotent character χ′ of LF

(necessarily unique) such that χ = ŝχ′. By assumption, therefore σ̂a

χ = σ̂a

(ŝχ′) =
(σ̂

a

ŝ)χ′. Let ξ = σ̂a

(ŝ)ŝ−1. Then σ̂a

χ = ξχ.
Since ξ is a linear NF -stable character of LF and NF /LF is cyclic by assump-

tion, ξ extends to a linear character ξ̂ ∈ Irr
(
NF
)
. Hence σ̂a

ψ and ξ̂ψ are both

elements of Irr(NF | σ̂a

χ) = Irr(NF |ξχ). Let d be the block of ONF containing ξ̂ψ.
Since NF /LF is abelian, it follows from Lemma 2.9 that there is an isomorphism
ONF σ̂a(b′) ∼= ONF d which restricts to the identity on Z ≤ Z(LF ). As in Theo-
rem 4.4, there is an isomorphism ONF d ∼= ONF b′ which restricts to the identity
on Z ≤ Z(LF ). Composition induces an isomorphism ONF σ̂a(b′) ∼= ONF b′ which
restricts to the identity on Z ≤ Z(LF ). �

Remark 4.6. Here and in Section 4, we have assumed that F is a Frobenius
morphism. However, suitable analogues of the results of these sections, in particular
Theorem 4.1, hold under the weaker assumption that some power of F is a Frobenius
morphism, and thus may also be applied to the Ree and Suzuki groups. We will
make use of this in Proposition 6.2. We have chosen to stick to the Frobenius case
for the general exposition as most of our references for these sections make this
assumption.

5. Blocks of finite groups of Lie type in non-defining characteristic

We keep the notation of Section 4. In addition we assume in this section that
G is simple and simply-connected. Throughout b will denote a block of OGF in
E`(GF , s), Z an `-subgroup of Z(GF ) and b̄ the block of O(GF /Z) dominated
by b. Further, whenever NF /LF is cyclic we will denote by b′ the block of ONF

in bijection with b as in Theorem 4.1 and b̄′ will denote the block of O(NF /Z)
dominated by b′.

Our first result lifts some of the results of [19] on unipotent blocks to O. We
note that the character theoretic arguments applied to blocks of kGF in [19] also
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apply to blocks of OGF . In particular, if b is a block of OGF containing characters
whose sum is rational valued (that is, there exist χ1, . . . , χr ∈ Irr(b) such that
(χ1 + · · ·+ χr) (g) ∈ Q for all g ∈ G), then σ̂(b) = b.

Proposition 5.1. Suppose that s = 1. Then O(GF /Z)σ̂r(b̄) ∼= O(GF /Z)b̄ with
r = 1, 2 and if G is not of type E7 or E8, O(GF /Z)σ̂(b̄) ∼= O(GF /Z)b̄.

Proof. The unipotent characters of classical groups are determined by their uniform
projections [34, 8.1(a)] and the characters RG

T (1) are rational valued, hence the
unipotent characters of classical groups are rational valued. So if G is of classical
type then σ̂(b) = b. Assume now that G is of exceptional type, and let b =
bGF (L, λ) for a unipotent e-cuspidal pair (L, λ) of `-central defect (see [8, Theorem
4.4] and [18, Théorème A]). If G = L then b has cyclic defect groups (see the proof
of [19, Theorem 5.5]), so by Proposition 2.6 we may assume that L is a proper Levi
subgroup of G.

If G is of type E7 or E8 then by [22, Table 1], σ̂
r

λ = λ for some r ≤ 2. Hence
by the proof of [19, Lemma 5.2], σ̂r(b) = b and therefore OGF σ̂r(b) ∼= OGF b via
an isomorphism which is trivial on Z. Thus by Lemma 2.10 (iv), O(GF /Z)σ̂r(b̄) ∼=
O(GF /Z)b̄ for some r ≤ 2. If G is not of type E7 or E8 then σ̂λ = λ by [22, Table
1] and hence, by the same arguments, O(GF /Z)σ̂(b̄) ∼= O(GF /Z)b̄. �

Recall that by [13, Lemma 13.14 (iii)], CG∗(s)/C
◦
G∗(s) is isomorphic to a sub-

group of Irr(Z(G)/Z◦(G)) ∼= Irr(Z(G)) ∼= Z(G). Further, Z(G) is cyclic in all
cases except possibly when G is of type Dm with m even (see [35, Table 24.2]).
Therefore CG∗(s)

F /C◦G∗(s)
F , and hence NF /LF , is cyclic in all cases except pos-

sibly when G is of type Dm with m even. We will use this fact without further
comment. Also, we note that in many cases below Z = 1.

Recall that a semisimple element t of a connected reductive group H is called iso-
lated if its connected centraliser C◦H(t) is not contained in any proper Levi subgroup
of H. The element t is isolated in H if and only if the image, t̄, of t in H/Z(H)
is isolated in H/Z(H). The quotient H/Z(H) is a direct product of adjoint simple
groups and t̄ is isolated in H/Z(H) if and only if the projection of t̄ on every simple
factor of H/Z(H) is isolated. Suppose that F ′ : H→ H is a Frobenius morphism.

Then if t ∈ HF ′ , aHF ′ (t) is a divisor of the order of t̄ in H/Z(H). Thus, by the
classification of isolated elements in simple algebraic groups, [3, Section 5] (see also

[40, Table 6.2]), if t ∈ HF ′ is an isolated `′-element of H and H has all classical
components, then aHF ′ (t) equals 1 or 2 and if H has at most one component not
of type A, then aHF ′ (t) ≤ 6. We note that Table 2 of [3] lists an isolated element
of order 4 in type D, but the listed element is in fact of order 2.

By choice of L∗, s is isolated in L∗ and whenever s is isolated in G∗, then
N∗ = L∗ = G∗ and b = b′.

Proposition 5.2. Suppose that G is of type A, B or C. Then O(GF /Z)b̄ is Morita
equivalent to O(NF /Z)b̄′ and O(NF /Z)b̄′ ∼= O(NF /Z)σ̂(b̄′).

Proof. Since L∗ is a classical group, aL∗F (s) ≤ 2 for all isolated elements s ∈ L∗F .
Since s is an `′-element, aL∗F (s) = 2 can only occur when ` is odd. Hence rL∗F (s) =
1. Thus the result follows from Proposition 4.2 and Theorem 4.4. �

Proposition 5.3. Suppose that G is of type D.

(i) If NF /LF is cyclic, then O(GF /Z)b̄ is Morita equivalent to O(NF /Z)b̄′ and
O(NF /Z)b̄′ ∼= O(NF /Z)σ̂(b̄′).

(ii) If NF /LF is not cyclic, then O(GF /Z)σ̂r(b̄) ∼= O(GF /Z)b̄ for some r = 1, 2.

Proof. The proof of part (i) is identical to that of Proposition 5.2. Suppose that
NF /LF is not cyclic. Then NF /LF ∼= C2×C2. Further, GF = Spin+

2n(q) and s is a
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quasi-isolated element of G∗F of order 4 such that C◦G∗(s) is of type A2n−3 (see [7,

Remark 9.24]). Since NF /LF ⊆ (CG∗(s)/C
◦
G∗(s))

F
and exp (CG∗(s)/C

◦
G∗(s)) = 2

divides the order of the `′-element s [13, Remark 13.15 (i)], ` is odd. Let r = rG∗F (s)
and note that r ≤ 2.

Let i : G ↪→ G̃ be a regular embedding and s̃ ∈ G̃∗F a semisimple `′-element
such that i∗(s̃) = s. It follows from Lemma 3.3 (ii) that σ̂r

θ̃ = θ̃τ̃T̃F for all

(T̃, θ̃) ∈ ∇(G̃, F, s̃), where τ̃ is the linear character of G̃F corresponding to s̃`
r−1.

Suppose that χ ∈ Irr(b) ∩ E(GF , s). By Lemma 3.8, since G is of classical type,
σ̂r

χ = x(χ τ̃GF ) for some x ∈ G̃F . Let d be the block of OGF containing χ τ̃GF .
Then σ̂r(b) is the block ofOGF containing x(χ τ̃GF ), so σ̂r(b) = xd. Conjugation by
x−1 induces an isomorphism OGF xd ∼= OGF d which is the identity on Z ≤ GF .
The automorphism OGF → OGF given by g 7→ τ̃GF (g−1)g induces an isomor-
phism OGF d ∼= OGF b which is also trivial on Z. Hence, OGF σ̂r(b) ∼= OGF b
via an isomorphism which is trivial when restricted to Z yielding an isomorphism
O(GF /Z)σ̂r(b̄) ∼= O(GF /Z)b̄. �

Proposition 5.4. Suppose that G is of type G2, F4 or E6 and s 6= 1. Then
O(GF /Z)b̄ is Morita equivalent to O(NF /Z)b̄′. If s is isolated in G∗ and either
o(s) = 3 and ` ≡ 2 mod 3, or o(s) = 4 and ` ≡ 3 mod 4, then O(NF /Z)b̄′ ∼=
O(NF /Z)σ̂r(b̄′) for some r = 1, 2. Otherwise, O(NF /Z)b̄′ ∼= O(NF /Z)σ̂(b̄′).

Proof. The first assertion is Proposition 4.2. If s is isolated in G∗ and either
o(s) = 3 and ` ≡ 2 mod 3, or o(s) = 4 and ` ≡ 3 mod 4, then rL∗F (s) = 2. Otherwise
rL∗F (s) = 1. Since for all non-trivial semisimple `′-elements s ∈ G∗F , C◦L∗(s) has
all classical components by [3, Section 5], the result follows from Theorem 4.4. �

Proposition 5.5. Suppose that G is of type E7 and s 6= 1. Then O(GF /Z)b̄ is
Morita equivalent to O(NF /Z)b̄′. If ` ≡ 2 mod 3 and one of the following holds,

• s is isolated in G∗ and o(s) = 3
• s is not isolated in G∗, s ∈ Z(L∗)F and L∗ has a component of type E6

• s is not isolated in G∗, L∗ has a component of type E6 and aL∗(s) = 3,

or if ` ≡ 3 mod 4 and s is isolated in G∗ with o(s) = 4, then O(NF /Z)b̄′ ∼=
O(NF /Z)σ̂r(b̄′) for some r = 1, 2. Otherwise, O(NF /Z)b̄′ ∼= O(NF /Z)σ̂(b̄′).

Proof. The first assertion is just Proposition 4.2. Suppose that s is isolated in G∗.
Then if o(s) = 3 and ` ≡ 2 mod 3 or if o(s) = 4 and ` ≡ 3 mod 4, rG∗F (s) = 2.
Otherwise rG∗F (s) = 1. Since C◦G∗(s) has all classical components by [3, Section
5], the result follows by applying Theorem 4.4 with L∗ = N∗ = G∗.

Now suppose that s is not isolated in G∗ and s ∈ Z(L∗)F . If ` ≡ 2 mod 3 and
L∗ has a component of type E6, then the minimal a such that σ̂a

χ′ = χ′ for all
unipotent characters χ′ of Irr(LF ) is 2. Otherwise the minimal such a is 1, so the
result follows from Theorem 4.5.

Finally, suppose that s is not isolated in G∗ and s /∈ Z(L∗)F . If ` ≡ 2 mod
3, L∗ has a component of type E6 and aL∗(s) = 3, then rL∗F (s) = 2. Otherwise,
rL∗F (s) = 1. Again, since C◦L∗(s) has all classical components by [3, Section 5], the
result follows from Theorem 4.4. �

There are three non-trivial isolated elements in E8 whose centralisers have an
exceptional component. These cases are dealt with separately in Section 5.1.

Proposition 5.6. Suppose that G is of type E8, s 6= 1 and that if s is isolated
in G∗, then CG∗(s) has all classical components. The block O(GF /Z)b̄ is Morita
equivalent to O(NF /Z)b̄′.

• If s is isolated in G∗, o(s) = 5 and ` ≡ 2 or 3 mod 5 then O(NF /Z)b̄′ ∼=
O(NF /Z)σ̂r(b̄′) for some r ≤ 4.
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• If one of the following holds,
– s is isolated in G∗, o(s) = 3 and ` ≡ 2 mod 3; or o(s) = 4 and ` ≡ 3

mod 4; or o(s) = 5 and ` ≡ 4 mod 5; or o(s) = 6 and ` ≡ 5 mod 6,

– s is not isolated in G∗, s ∈ Z(L∗)F , L∗ has a component of type E6

or E7 and ` ≡ 2 mod 3,

– s is not isolated in G∗, s /∈ Z(L∗)F , L∗ has a component of type E7,
aL∗(s) = 4 and ` ≡ 3 mod 4, or

– s is not isolated in G∗, s /∈ Z(L∗)F , L∗ has a component of type E6

or E7, aL∗(s) = 3 and ` ≡ 2 mod 3,

then O(NF /Z)b̄′ ∼= O(NF /Z)σ̂r(b̄′) for some r = 1, 2.

• In all other cases O(NF /Z)b̄′ ∼= O(NF /Z)σ̂(b̄′).

Proof. First suppose that s is isolated in G∗. If o(s) = 5 and ` ≡ 2 or 3 mod 5
then rG∗F (s) = 4; if o(s) = 3 and ` ≡ 2 mod 3, or o(s) = 4 and ` ≡ 3 mod 4, or
o(s) = 5 and ` ≡ 4 mod 5, or o(s) = 6 and ` ≡ 5 mod 6 then rG∗F (s) = 2; otherwise
rG∗F (s) = 1. As we are assuming that CG∗(s) has all classical components, we can
then apply Theorem 4.4.

Now suppose that s is not isolated in G∗ and s ∈ Z(L∗)F . If ` ≡ 2 mod 3 and
L∗ has a component of type E6 or E7, then the minimal a such that σ̂

a

χ′ = χ′ for
all unipotent characters χ′ of Irr(LF ) is 2. Otherwise the minimal such a is 1, and
the result follows from Theorem 4.5.

Finally, suppose that s is not isolated in G∗ and s /∈ Z(L∗)F . If L∗ has a
component of type E7, ` ≡ 3 mod 4 and aL∗(s) = 4 or if L∗ has a component
of type E6 or E7, ` ≡ 2 mod 3 and aL∗(s) = 3, then rL∗F (s) = 2. Otherwise,
rL∗F (s) = 1. Thus since C◦L∗(s) has all classical components, the result follows
from Theorem 4.4. �

5.1. Isolated blocks of E8 with CG∗(s) of non-classical type. In this subsec-
tion we assume that G = E8. We will deal with the non-trivial isolated semisimple
elements s ∈ G∗F which are not covered by Proposition 5.6.

Notation 5.7. We let Cb denote the set of blocks in E`(GF , s) which are Galois
conjugates of b, that is, blocks of the form σ̂m(b), m ∈ N.

Lemma 5.8. Set |Cb| = m and r = rG∗F (s). Then σ̂r(b) is a block in E`
(
GF , s

)
and b = σ̂n(b) for some n ≤ rm.

Proof. By Lemma 3.6 (ii) the action of the group 〈σ̂〉 on Irr(GF ) induces an action
on the set of Lusztig series E(GF , t), where t runs over the G∗F -conjugacy classes
of `′-elements of G∗F . Further, since Z(G∗F ) = 1, aG∗F (s) = o(s) and it follows
that s`

r

= s. Thus the stabiliser in 〈σ̂〉 of E(GF , s) is of the form 〈σ̂u〉, for some
non-negative integer u dividing r. In particular, the first assertion is proved. Now,
the set of `-blocks of GF contained in E`(GF , s) is 〈σ̂u〉 invariant and Cb is the
〈σ̂u〉-orbit of b under the action of 〈σ̂u〉 on this set, hence b = σ̂um(b), proving the
second assertion. �

Proposition 5.9. Let G be a simple algebraic group of type E8 and suppose that
1 6= s ∈ G∗F is an isolated semisimple `′-element such that CG∗(s) has an excep-
tional component. Then o(s) = 2 or o(s) = 3. If o(s) = 3 then OGF b ∼= OGF σ̂r(b)
for some r ≤ 4 and if o(s) = 2 then OGF b ∼= OGF σ̂r(b) for some r ≤ 2.

Proof. By [30, Table 1, Table 5], it is enough to consider s in the following cases.



RATIONALITY OF BLOCKS OF QUASI-SIMPLE FINITE GROUPS 17

o(s) Components of CG∗(s)
F

2 E7 ×A1

3 E6 ×A2

3 2E6 × 2A2

In particular, the first assertion of the proposition holds. If b has cyclic defect
groups, then the remaining assertion follows from Proposition 2.6. For the rest
of the proof we assume that b has non-cyclic defect groups. If o(s) = 2, then
rG∗F (s) = 1 and if o(s) = 3, then rG∗F (s) = 2. Thus, by Lemma 5.8 it suffices to
prove that |Cb| ≤ 2. Let GF = E8(q), and if ` is odd, let e be the order of q modulo
`. If ` = 2 let e be the order of q modulo 4. We will use the parametrisation of
`-blocks of GF by e-cuspidal pairs to obtain the desired bound on |Cb|.

First suppose that ` ≤ 5 (i.e. ` is bad for G). By [30, Theorem 1.2], the blocks
in E`(GF , s) are in bijection with GF -conjugacy classes of pairs (M, λ) of G such
that (M, λ) is an e-cuspidal pair of G, and λ ∈ E(MF , s) is of quasi-central `-
defect. The bijection is described via Lusztig induction: a block corresponds to a
pair (M, λ) if and only if all irreducible constituents of RG

M(λ) lie in the block. The
tables in Section 6 of [30] list the e-cuspidal pairs of G. Since σ̂ commutes with
Lusztig induction, if the pair (M, λ) corresponds to the block b, then (M, σ̂

m

λ)
corresponds to σ̂m(b) for σ̂m(b) in Cb. Further, if g ∈ GF , then gλ = λ if and only
if g( σ̂

m

λ) = σ̂m

λ, hence (M, λ) and (M, σ̂
m

λ) have the same relative Weyl group.
Thus, all blocks in Cb correspond to the same numbered line of the tables in Section
6 of [30]. Moreover, since λ and σ̂m

λ have the same degree, by the degree formula
for Jordan correspondence (see [13, Remark 13.24]), it follows that if Cb has more
than one element then the λ column of the relevant line of the table contains at
least two entries of the same degree. Finally, the only relevant lines of the tables
are those which correspond to blocks with non-cyclic and in particular non-trivial
defect. Inspection of the tables yields |Cb| ≤ 2.

Now suppose that ` ≥ 7. In this case block distributions are described in [9].
By [9, Theorem 4.1], the blocks of GF in E`(GF , s) are in bijection with GF -
conjugacy classes of pairs (M, λ) of G such that (M, λ) is an e-cuspidal pair of G
and with λ ∈ E(MF , s); the bijection is defined by the same condition on Lusztig
induction as for bad ` above. Further, if (M, λ) is an e-cuspidal pair for G and α ∈
E(CM∗(s)

F , 1) is in Jordan correspondence with λ, then (CM∗(s)
F , α) is a unipotent

e-cuspidal pair for CG∗(s) and the `-block of GF corresponding to (M, λ) and
the unipotent `-block of CG∗(s)

F corresponding to (CM∗(s)
F , α) have isomorphic

defect groups [9, Theorem 4.1, Proposition 5.1]. Now, if the multiplicity of the
eth-cyclotomic polynomial Φe in the polynomial order of CG∗(s)

F is at most 1,
then the Sylow `-subgroups are cyclic, and consequently every `-block of CG∗(s)

F

has cyclic defect. Thus, we may assume that this multiplicity is at least 2; that is,
e is one of 1, 2, 3, 4, 6.

Suppose that e = 1 or 4. We refer again to the tables of [30, Section 6] for a list
of e-cuspidal pairs noting that now unnumbered lines also correspond to blocks. By
the same considerations as for the bad primes case it follows that any two blocks
in Cb correspond to the same (numbered or unnumbered) line of the table and that
if |Cb| > 1 then the λ column of the relevant line of the table contains at least two
entries of the same degree and of positive `-defect. As before, we obtain |Cb| ≤ 2.
The results for e = 2 follow by Ennola duality from the e = 1 case [6, Section 3A].

Now suppose that e = 3. The results for e = 6 will again follow by Ennola
duality. The third column of the following table lists pairs (CM∗(s)

F , α) where
(CM∗(s), α) is a unipotent 3-cuspidal pair of CG∗(s). These were calculated using
CHEVIE [23] and GAP [38].
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Table 2: Unipotent 3-cuspidal pairs of CG∗ (s)

Row CG∗ (s)F (CM∗ (s)F , α) Defect groups

1 E7(q)A1(q)

{
(Φ3

3.A1(q), 1⊗ 1)

(Φ3
3.A1(q), 1⊗ φ11)

Not cyclic

2 E7(q)A1(q)

{
(Φ1Φ3.3D4(q).A1(q), 3D4[−1]⊗ 1)

(Φ1Φ3.3D4(q).A1(q), 3D4[−1]⊗ φ11)
Cyclic

3 E7(q)A1(q)


(Φ3.A5(q).A1(q), φ42 ⊗ 1)

(Φ3.A5(q).A1(q), φ42 ⊗ φ11)
(Φ3.A5(q).A1(q), φ2211 ⊗ 1)

(Φ3.A5(q).A1(q), φ2211 ⊗ φ11)

Cyclic

4 E7(q)A1(q)

{
(E7(q).A1(q), 10 chars⊗ 1)

(E7(q).A1(q), 10 chars⊗ φ11)
Trivial

5 E6(q)A2(q)
(
Φ4

3, 1
)

Not cyclic

6 E6(q)A2(q)
(
Φ2

3.
3D4(q), 3D4[−1]

)
Not cyclic

7 E6(q)A2(q)


(Φ3.E6(q), φ81,6)
(Φ3.E6(q), φ81,10)

(Φ3.E6(q), φ90,8)
Cyclic

8 2E6(q)2A2(q)


(
Φ2

3Φ6.2A2(q), 1⊗ 1
)(

Φ2
3Φ6.2A2(q), 1⊗ φ21

)(
Φ2

3Φ6.2A2(q), 1⊗ φ111
) Not cyclic

9 2E6(q)2A2(q)


(
2E6(q).2A2(q), 9 chars⊗ 1

)(
2E6(q).2A2(q), 9 chars⊗ φ21

)(
2E6(q).2A2(q), 9 chars⊗ φ111

) Trivial

Again, all blocks in Cb correspond to the same line of the table, and the corre-
sponding α’s have the same degree. Since the only relevant lines are those with
non-cyclic entry in the last column, |Cb| = 1. �

6. Defining Characteristic and Ree and Suzuki Groups.

In this section p denotes a prime number and G a simple, simply connected
group defined over Fp. Let F : G→ G be an endomorphism a power of which is a
Frobenius morphism, allowing for the case that GF is a Ree or Suzuki group. We
freely use the notation of Sections 3 and 4 in this context.

Proposition 6.1. Suppose that p = `. Let b be a block of OGF , Z ≤ Z(GF ) and
let b̄ be the block of O(GF /Z) dominated by b. Then O(GF /Z)σ̂(b̄) ∼= O(GF /Z)b̄.

Proof. If Z(GF ) ≤ C2, Z(GF ) ∼= C2 × C2 or if b is a principal or Steinberg block,
then as shown in [19, Theorem 4.1], σ̂(b) = b.

Suppose that Z(GF ) ∼= Cm for some m > 2 coprime to ` and assume that b is not

the principal or the Steinberg block. Let ϕ = F
φ(m)−1
` be the group automorphism

of GF defined in [19, Theorem 4.1] with F` an F`-split Steinberg endomorphism
of G and φ the Euler totient function. Let ϕ′ be the O-algebra isomorphism
induced by ϕ. Then, applying the arguments of [19, Theorem 4.1] to ϕ′ instead
of to the k-algebra isomorphism induced by ϕ, it follows that ϕ′(b) = σ̂(b). The
restriction ϕ′|OGF b : OGF b → OGF σ̂(b) is also an O-algebra isomorphism, hence
OGF b ∼= OGF σ̂(b) as O-algebras.

Now let Z be a central subgroup of GF . Then Z is an `′-group by [35, Table 24.2]

so by Lemma 2.10 (ii), OGF b ∼= O(GF /Z)b̄ and OGF σ̂(b) ∼= O(GF /Z)σ̂(b). Since

σ̂(b) = σ̂(b̄) by Lemma 2.10 (iv), it follows that O(GF /Z)b̄ ∼= O(GF /Z)σ̂(b̄). �

The next proposition deals with the Suzuki and Ree groups in non-defining
characteristic.
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Proposition 6.2. Let b be a block of OGF .

(i) Suppose that ` 6= p = 2, G is of type B2 and GF is the Suzuki group
2B2(22n+1). Then OGF σ̂(b) ∼= OGF b.

(ii) Suppose that ` 6= p = 3, G is of type G2 and GF is the Ree group 2G2(32n+1).
Then OGF σ̂(b) ∼= OGF b.

(iii) Suppose that ` 6= p = 2, G is of type F4 and GF is the Ree group 2F4(22n+1).
There exists an F -stable Levi subgroup L of G and a block c of LF such that
OGF b is Morita equivalent to OLF c and OLF c ∼= OLF σ̂r(c) for some r ≤ 2.

Proof. If b is the principal block, then σ̂(b) = b and there is nothing to prove. Thus
we may assume that b is non-principal. First suppose that GF is as in (i) or (ii).
By the proof of [19, Theorem 5.7], b has either cyclic or Klein four defect groups
and we are done by Proposition 2.6.

Assume from now on that GF is of type 2F4(22n+1). For s a semisimple element
of `′-order of G∗F , E`(GF , s) is a union of `-blocks of GF (see [25, p. 113]).
Moreover, Theorem 4.1 and hence Proposition 4.2 continue to hold with L∗ and L
as in Section 5. We note that since Z(G) = 1, NF = LF and Z = 1.

Let s ∈ G∗F be a semisimple `′-element such that b ∈ E`(GF , s). If s = 1,
then again by the proof of [19, Theorem 5.7], b has either cyclic or Klein four
defect groups or b is the principal block and in these cases we are done as above
(with L = G). So we may assume that s 6= 1 and hence that L is a proper
Levi subgroup of G. In particular every simple component of L and of CG∗(s)
has classical type. If CG∗(s) contains no rational component of type 2B2, then the
conclusion of Lemma 3.7 and hence of Theorem 4.4 holds for s and b. Further, since
all components of L are of classical type, aL∗(s) ≤ 2 whence rL∗(s) = 1. Thus, we
obtain OLF c ∼= OLF σ̂(c). If CG∗(s) has a rational component of type 2B2, then

CG∗(s) = L∗ and the conclusion of Theorem 4.5 holds. Moreover, σ̂
2

χ′ = χ′ for all
unipotent characters χ′ ∈ Irr(LF ). Hence OLF c ∼= OLF σ̂2(c). �

7. Sporadic groups, exceptional covering groups and alternating
groups.

We give further analogues of results of [19] over O. Let b be a block of OG for
a finite group G.

Proposition 7.1. Suppose that G is a covering group of sporadic simple group or
the Tits group. Then OGσ̂(b) ∼= OGb.

Proof. If b has cyclic defect, we apply Proposition 2.6. For the remaining cases, the
checks done in [19] in GAP [21] show that σ̂(b) = b. �

Next we treat the exceptional covering groups of simple groups. The list in [19]
was incomplete so we include a full proof over O for the complete list here.

Proposition 7.2. Let G be one of the following exceptional covering groups

2.L2(4), 2.L3(2), 2.L3(4), 41.L3(4), 42.L3(4), 6.L3(4), 42.L3(4),
121.L3(4), 122.L3(4), (42 × 3).L3(4), 2.L4(2), 2.U4(2), 2.U6(2),
6.U6(2), 22.U6(2), (22 × 3).U6(2), 3.A6, 6.A6, 2.S6(2), 2.Sz(8),
22.Sz(8), 2.O+

8 (2), 22.O+
8 (2), 2.G2(4), 2.F4(2), 2.2E6(2), 6.2E6(2),

22.2E6(2), (22 × 3).2E6(2), 31.U4(3), 32.U4(3), 61.U4(3), 62.U4(3),
32.U4(3), 121.U4(3), 122.U4(3), (32 × 4).U4(3), 3.O7(3), 6.O7(3),
3.G2(3), 3.A7, 6.A7.

Then OGb ∼= OGσ̂(b).

Proof. We may assume that b has non-cyclic defect groups. By Lemma 2.10 we
may also assume that Z(G)`′ is cyclic.



20 NIAMH FARRELL AND RADHA KESSAR

We see from checking in GAP [21] that in most cases the collections of `-blocks
of G with equal, non-cyclic defect and the same number and degrees of characters,
none of which are rational valued, have size 1. Where there exists such a collection
of size greater than 1, it has size 2. Suppose that b1 and b2 are non-principal
`-blocks of G with equal, non-cyclic defect and the same number and degrees of
characters, none of which are rational valued. Then in all but 2 situations, it is

possible to check directly in GAP [21] that there exists a single block b̂ of a finite

group Ĝ with G E Ĝ such that b̂ covers both b1 and b2. Hence OGb1 ∼= OGb2 via
conjugation by an element of Ĝ.

Finally, suppose that we are in one of the two remaining cases – that is, either
` = 2 and G = (42× 3).L3(4), or ` = 3 and G = (32× 4).U4(3). Suppose that b is a
non-principal `-block of G with non-cyclic defect groups which contains no rational
valued character and let b̄ be the unique block of G/Z(G)` dominated by b. Then if
` = 2 and G = (42 × 3).L3(4), b̄ is one of two 2-blocks of 3.L3(4) which are faithful
on the Sylow 3-subgroup of G/Z(G). If ` = 3 and G = (32 × 4).U4(3) then b̄ is one
of two 3-blocks of 4.U4(3) which are faithful on the Sylow 2-subgroup of G/Z(G).

In both cases, by a GAP check there exists a single block b̂ of a finite group Ĝ with
G/Z(G)` E Ĝ covering both the relevant blocks of G/Z(G)`. In other words, there
exists an automorphism of G/Z(G)` sending b̄ to σ̂(b̄). Further in both cases, G is
a universal covering group of G/Z(G)`. Since every automorphism of a quasisimple
finite group lifts to an automorphism of its universal covering group (see Section
5.1 of [24]), it follows from Lemma 2.10 that OGb ∼= OGσ̂(b). �

Proposition 7.3. Let G be a quasi-simple finite group such that G/Z(G) is an
alternating group. Then OGb ∼= OGσ̂(b).

Proof. Let Ĝ denote a finite group such that G C Ĝ and Ĝ/Z(Ĝ) is a symmetric

group, and let b̂ denote a block of OĜ covering b. Since we may assume that b

and hence b̂ does not have cyclic defect groups, by Lemma 2.10 (i) and the proof

of [19, Theorem 3.1], σ̂(b̂) = b̂. It follows that b and σ̂(b) are both covered by b̂ and

therefore OGb ∼= OGσ̂(b) via conjugation by an element of Ĝ. �

8. Proof of main theorems

Theorem 1.1 is part of the following result.

Theorem 8.1. Let G be a quasi-simple finite group and let Ḡ = G/Z(G). Let b be
a block of OG and let D be a defect group of OGb. There exists a finite group N and
a block c of ON such that OGb is Morita equivalent to ONc and ONc ∼= ONσ̂r(c)
for some r ≤ 4. Moreover,

(i) if Ḡ is not a finite group of Lie type of type E8 in characteristic p 6= ` then
r ≤ 2, and

(ii) if Ḡ is a sporadic group, an alternating group, a finite group of Lie type in
characteristic ` or a finite group of Lie type of type A, B or C in characteristic
p 6= `, then r = 1.

Consequently, mf (kGπ(b)) ≤ mf (OGb) ≤ 4 and sf (OGb) ≤ 4|D|2!. Unless Ḡ is a
finite group of Lie type of type E8 in characteristic p 6= `, mf (OGb) ≤ 2. If Ḡ is
one of the groups in (ii), then mf (OGb) = 1.

Proof. We first consider the claim that there exists a finite group N and a block c of
ON such that OGb is Morita equivalent to ONc and ONc ∼= ONσ̂r(c) with bounds
for r as in the statement. For G an exceptional covering group or Ḡ an alternating
group, a sporadic group, the Tits group, or a finite group of Lie type in characteristic
` (including the Suzuki and Ree groups), then the result holds with N = G and
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c = b by Propositions 7.2, 7.1, 7.3, and 6.1 respectively. Proposition 6.2 proves the
result for Ḡ a Suzuki or Ree group in characteristic p 6= `. Finally, suppose that G
is a non-exceptional cover of a finite group of Lie type in characteristic p 6= `. Then
G = GF /Z for G a simple simply-connected algebraic group over Fp, F : G → G
a Frobenius morphism and Z a central subgroup of GF . Hence the result holds
by Propositions 5.1, 5.2, 5.3, 5.4, 5.5, 5.6 and 5.9. Note that although we assume
in Section 5 that Z is an `-group, this is enough to show that the results hold in
general by Lemma 2.10. This proves the first part of the theorem.

Now f (ONc) ≤ r. Hence,

mf (kGπ(b)) ≤ mf (OGb) = mf (ONc) ≤ f (ONc) ≤ r,
where the first and second inequalities hold by Proposition 2.5 (i), and the equality
holds by Proposition 2.5 (ii) and the fact that OGb and ONc are Morita equivalent.
This proves the assertion about Morita Frobenius numbers.

Finally, since Morita equivalence between blocks of finite group algebras pre-
serves orders of defect groups, the defect groups of ONc have order |D|, hence

sf (OGb) = sf (ONc) ≤ f (ONc)|D|2! ≤ r|D|2! ≤ 4|D|2!

where the equality holds by Proposition 2.5 (iii) and the first inequality holds by
Proposition 2.5 (i). �

Proof of Theorem 1.4:

Proof. The result follows from the first part of Theorem 1.1, [27, Theorem 8.6] and
[28, Theorem 1.4]. �

Proof of Theorem 1.6:

Proof. This follows from the first part of Theorem 1.1 and Lemma 2.8. �
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