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Abstract

A cohesive zone-based constitutive model, originally developed to model fracture, is ex-

tended to include a healing variable to simulate crack healing processes and thus recovery of

mechanical properties. The proposed cohesive relation is a composite-type material model

that accounts for the properties of both the original and the healing material, which are

typically different. The constitutive model is designed to capture multiple healing events,

which is relevant for self-healing materials that are capable of generating repeated healing.

The model can be implemented in a finite element framework through the use of cohesive

elements or the extended finite element method (XFEM). The resulting numerical frame-

work is capable of modelling both extrinsic and intrinsic self-healing materials. Salient

features of the model are demonstrated through various homogeneous deformations and

healing processes followed by applications of the model to a self-healing material system

based on embedded healing particles under non-homogeneous deformations. It is shown

that the model is suitable for analyzing and optimizing existing self-healing materials or for

designing new self-healing materials with improved lifetime characteristics based on multiple

healing events.
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1. Introduction

The concept of self-healing is a promising path to enhance the damage tolerance and

extend the lifetime of structural and functional materials. Research in the last decade has

shown that self-healing mechanisms can be incorporated in various material classes ranging

from polymers to high temperature ceramics [1]. A classical example of an extrinsic self-

healing mechanism is based on healing capsules (particles) dispersed within the base (or

matrix) material as shown in Fig. 1a. In an extrinsic system, the healing process is typically

activated by cracks that interact with the capsules [2, 3, 4]. Such capsule-based self-healing

mechanism finds its application in materials that otherwise do not possess the capacity to

repair damage. Other extrinsic self-healing materials involve hollow fibers filled with healing

agents [5, 6] and microvascular networks with distributed healing agents [7]. Among the

extrinsic self-healing mechanisms, the encapsulated particle-based system has been widely

investigated [8, 9, 10]. The encapsulation-based healing concept may lead to a desirable

autonomous self-healing behavior for the system (base material plus healing agent), but it

is typically limited by the finite amount of the healing agent which often precludes multiple

healing, at least in the location where the healing agent has been consumed. Microvascular

network-based self-healing systems offer the possibility of multiple healing after repeated

damage events by enhancing the supply of the healing agent. In contrast with extrinsic

self-healing material systems, in intrinsic self-healing materials the healing action is due to

the physio-chemical nature of the material itself, as illustrated in Fig.1b [11]. Such materials

have the natural capability of repairing the damage more than once [12].

Though extensive research has been conducted in realizing such material systems exper-

imentally, efforts to develop computational models that could simulate fracture and healing

have been scarce. Simulation-based design guidelines can be used to optimize self-healing

systems. Consequently, the goal of the present work is to develop a computational frame-

work to model the effect of crack healing behavior on the mechanical performance of the

material or the structure under consideration. The modelling and computational framework

is kept sufficiently general such that it is capable of analyzing both extrinsic and intrinsic
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Figure 1: Schematic of (a) a capsule-based extrinsic self-healing material: A matrix crack is attracted

towards the healing capsule, which upon fracture releases the healing agent into the crack, resulting in crack

healing and (b) an intrinsic self-healing material: the healing agent is available directly from the material

chemical composition. The material that fills the crack is typically different than the matrix material for

both the extrinsic and intrinsic cases.

self-healing materials.

In the context of a capsule (or fiber)-based extrinsic self-healing system, there are two

critical aspects that need to be addressed in order to achieve a robust self-healing system.

Firstly, a crack initiated in the host (or matrix) material should be attracted towards the

healing particle (or fiber) and further should break the particle for healing to occur. A

schematic of such self-healing material and the associated healing mechanism is shown in

Fig.1. Crack-particle interaction, which is a crucial aspect to successfully trigger the healing

mechanism, has been analyzed parametrically in [13, 14] to generate design guidelines for the

selection of the healing particles in terms of their mechanical properties. Other studies in

the literature have utilized analytical and numerical techniques to investigate the interaction

between the crack and the healing particles or capsules [15, 16, 17]. The second critical aspect

in a self-healing system, relevant for both extrinsic and intrinsic mechanisms, is centered on

how the material recovers its mechanical properties once the healing mechanism is activated

in or near the fracture surfaces. In particular, the recovery of load-carrying capability as a

function of healing parameters, crack length and capsule properties is a subject of importance

but has not received adequate attention in the literature yet. Consequently, one main focus

of the current research is to simulate the recovery of mechanical properties of the self-healing

system.
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Research efforts have been made in the literature to model the mechanical behavior

of materials taking both fracture and healing into account. Most of the existing models

adopt a continuum damage mechanics-based approach whereby cracking and healing are

interpreted as a degradation or recovery of material stiffness and strength [18, 19, 20, 21,

22, 23, 24]. The common feature of these models is that the internal variables describing

the continuum degradation and healing of the material refer to the effective behavior of

(unresolved) cracking and healing events. Correspondingly, details at the level of individual

cracks are not explicitly taken into account. However, a direct description at the level of

individual cracks and healing particles is desirable in view of designing or fine-tuning a

self-healing material.

Cohesive zone-based approaches have also been proposed for modelling crack healing.

Unlike continuum damage models, the advantage of the above cohesive zone approaches is

that the material damage is treated in a discrete manner as cohesive cracks, which allows

for explicit modelling of crack evolution and its healing. In [25], crack healing is simu-

lated through an artificial crack closure technique by introducing a wedge into the crack.

The methodology is implemented in a finite element framework using cohesive elements for

simulating fracture and a contact law that enforces the conditions for crack healing or re-

tardation. In [26] a Mode I exponential cohesive zone model is proposed to simulate crack

healing by introducing a jump in crack opening displacement. After model verification, they

applied the framework to simulate delamination crack healing in a slender beam specimen to

show the capability of the model. Some limitations of the model are with regard to the mul-

tiple healing events and their one-dimensionality. In [27], a cohesive zone model for fatigue

crack growth is developed, which also considers crack retardation during unloading regimes.

In [28] a thermodynamics-based cohesive zone methodology is used to model crack healing

behavior by extending previous work on continuum damage-healing mechanics [22]. The

model takes into account the effect of various parameters such as temperature, resting time

and crack closure on the healing behavior. However, the fracture properties of the healed

zone, upon complete healing, assume the values of the original material, which is often not

the case even for intrinsic self-healing materials. Furthermore, the capability of simulating
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multiple healing events is not demonstrated in many of the above-mentioned studies, which

is of direct relevance for intrinsic self-healing materials or extrinsic systems with a continuous

supply of healing agent. Other modelling approaches explored in the literature to simulate

crack healing behavior are based on the theory of porous media [29] or the discrete element

method [30, 31].

To overcome the limitations in the existing models in the literature, a generalized cohesive-

zone based crack healing model is developed here, which can be applied to both extrinsic and

intrinsic self-healing materials. The model is capable of simulating property recovery after

multiple healing events and is also able to handle different fracture properties for the healing

material as compared to that of the original material. An additional feature of the model is

that the properties of the healing material may be specified separately for different healing

instances. This is particularly important as the recovery of the fracture properties in the

healed zone is not always complete, resulting in varying fracture properties for each healing

instance that depend, among others, on healing time, diffusion-reaction characteristics and

temperature. It is noted that the model developed here does not explicitly aim to capture

the actual healing kinetics, but to simulate the recovery of the overall load bearing capacity

as a function of crack filling and fracture properties of the filling material. Nonetheless,

detailed healing kinetics of a material can be coupled to the present model through fracture

properties and crack filling behavior to simulate specific materials.

The paper is organized as follows: the proposed crack healing model based on a cohesive

zone approach and its finite element implementation are described in detail in Sec. 2. Veri-

fication of the model is done through basic tests in Sec. 3, from which salient features of the

model are demonstrated. Sec.4 is devoted to the application of the model to a particle-based

extrinsic self-healing system under mechanical loading. Parametric studies are conducted to

showcase the applicability of the model considering some realistic scenarios and the results

are reported. Concluding remarks and further work are highlighted in Sec. 5.
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2. Modelling of fracture and healing

A cohesive zone-based fracture mechanics model is extended to model both the fracture

and the healing in a unified constitutive relation. In the current fracture-healing framework,

the following modelling considerations are made. Firstly, the crack healing model does not

include healing kinetics explicitly, rather the focus is to develop a methodology to simulate

cracking and the recovery of mechanical integrity upon healing. Consequently, whenever

the healing process is activated at a location within the cohesive crack, the resting period is

assumed to be sufficiently long such that complete healing occurs. This assumption is not

necessary per se, but enforced in order to have a specific focus on recovery of mechanical

properties using a modified cohesive constitutive relation. Nonetheless, depending upon the

type of healing process involved in a specific healing material system, appropriate healing

kinetics can be treated separately and coupled with the present framework. This, in turn,

can govern the effect of parameters such as resting time and temperature on the degree of

healing, which can then be fed as an input to the present framework through appropriately

defined fracture properties of the healed material phases. This aspect of healing kinetics is

the subject of companion work by the authors and their collaborators.

In the following subsection, the cohesive crack model without healing is discussed first,

which is then followed by a discussion on the cohesive crack healing model. The numerical

implementation is addressed in the last sub-section.

2.1. Cohesive crack model without healing

The cohesive zone model employed in this work corresponds to a bilinear relation given

by T , which is a scalar measure of the traction t transmitted across the cohesive surface, as a

function of ∆, which is a scalar measure of the cohesive surface opening displacement vector

δ. Though several other cohesive relations have been proposed in the literature, a bilinear

relation captures the essential ingredients of most cohesive relations, namely the cohesive

strength σc and the fracture energy Gc, which are viewed as variable material properties in

the present healing model. The traction T increases with increasing cohesive surface opening

displacement ∆ up to a maximum value given by the strength, σc, and eventually decreases
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to zero, at which point the cohesive zone is fully-separated in the sense that no (positive)

traction can be transmitted across the surface. The initial (increasing) part of the cohesive

response is useful in conjunction with cohesive elements but may be omitted for XFEM

implementations where the cohesive relation is only activated when the critical value σc is

reached. The area under the traction-separation curve, which represents the total work per

unit area expended in creating a fully-separated crack, corresponds to the fracture energy

Gc of the material.

An effective crack opening displacement variable is introduced as follows:

∆ :=
√

〈δn〉2 + γ2(δs)2 , (1)

where δn and δs are, respectively, the normal and tangential components of the crack opening

displacement vector δ resolved in a coordinate system aligned with the local normal and tan-

gential directions of a crack surface. In (1), 〈·〉 := (· + | · |) /2 refers to the Macaulay bracket

and γ is a non-dimensional weighting factor for the normal and tangential contributions

given by

γ :=
δn,0

δs,0

,

where δn,0 and δs,0 denote, respectively, the crack opening at the onset of failure for a pure

normal and a pure tangential opening with respect to the crack surface.

In order to determine whether the crack opening is increasing or decreasing due to the

external loading process, the following loading function f is used:

f = f̂(∆, κ) := ∆ − κ , (2)

where κ is a damage history variable that, at a given time t, corresponds to the maximum

value attained by the equivalent crack opening during a process up to that time, i.e.,

κ(t) := max
t̄∈[0,t]

∆
(

t̄
)

.

The Karush–Kuhn–Tucker relations for the loading and unloading conditions can be ex-

pressed as follows:

fκ̇ = 0 , f ≤ 0 , κ̇ ≥ 0 , (3)
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where κ̇ indicates the (time) rate of change of the damage history variable with κ̇ > 0

corresponding to an active damage step and κ̇ = 0 to an “elastic” step.

The equivalent crack opening is used to compute the equivalent traction T as

T = T̂ (∆, κ) =



























ĝ(∆) if f = 0 and κ̇ > 0,

ĝ(κ)
∆

κ
otherwise,

(4)

where ĝ is the effective traction-separation law. The upper and lower expressions in (4)

provide the equivalent traction during, respectively, crack growth and unloading/reloading.

The specific form of the effective traction-separation law used in the present work is a

linear softening relation, which corresponds to

g = ĝ(∆) = σc
〈∆f − ∆〉

∆f − ∆i

. (5)

In the above expression, the parameters ∆i and ∆f are, respectively, the equivalent

crack opening at the onset of softening and the maximum equivalent crack opening. These

parameters may be chosen such that, for a given fracture strength σc, fracture toughness Gc

and an initial cohesive stiffness K,

∆i =
σc

K
, ∆f =

2Gc

σc

,

where the initially linearly “elastic” loading up to the fracture strength in a bi-linear law

can be reproduced in (4) by assigning an initial damage κ(0) = κ0 = ∆i. The parameters

∆i and ∆f are chosen such that the maximum of the function T̂ in (4) equals the fracture

strength σc and the integral of T̂ from ∆ = 0 to ∆ = ∆f equals the material fracture energy

(toughness) Gc.

After evaluating (4), the normal and shear tractions can be computed as

tn =



























δn

∆
T if δn > 0,

Kδn if δn < 0,

ts = γ2 δs

∆
T ,

(6)

i.e., for δn ≥ 0, one has that t · δ = T∆.
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2.2. Crack healing model

The cohesive relation summarized in the previous section can be extended to formulate

a cohesive crack-healing model. The single healing case is discussed first, which is then

followed by a generalized model capable of multiple healing events.

2.2.1. Single healing event

The proposed crack healing model is a composite-based constitutive model for simulating

the recovery of fracture properties upon activation of crack healing. The traction compo-

nents of the composite response, t̃n and t̃s, are expressed as a weighted sum of the traction

contributions from the original material, t(0)
n and t(0)

s , and the healing material t(1)
n and t(1)

s ,

as follows:

t̃n = w(0)t(0)
n + w(1)t(1)

n t̃s = w(0)t(0)
s + w(1)t(1)

s (7)

where the superscripts (0) and (1) represent the original and healing materials, respectively.

The weighting factors w(0) and w(1) introduced in (7), which can take values between 0

and 1, are the primary parameters in the model and can be interpreted as the surface-

based volume fractions of the original and healing material respectively at the instance of

healing activation. The meaning of “volume fraction” in this context refers to the fraction

of the crack area occupied by a material per unit crack opening displacement. In a two-

dimensional setting, the crack area fraction refers to the crack length fraction per unit

depth. As indicated in (7), it is assumed that a partially damaged area that has been

healed contains contributions from both the original material and the healing material.

Correspondingly, the weighting factors w(0) and w(1) are related to fractions of a partially

damaged surface where the original material is still capable of transmitting a force (in the

sense of a cohesive relation) while the healing material has occupied the complementary

region. Observe that this assumption implies that the model is essentially based on an

“equal strain” distribution among the phases (Voigt model), in this case with the crack

opening playing the role of a strain-like variable. Consequently, the tractions in each phase

may be overpredicted compared to a model based on an “equal stress” assumption (Reuss
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model), however the current Voigt-like model preserves kinematic compatibility whereas a

Reuss-like model does not.

In order to develop the constitutive model, define an energy-based damage parameter

D(0) as follows:

D(0)(t) :=
G

(0)
d (t)

G
(0)
c

(8)

which represents the ratio between the energy dissipated G
(0)
d (t) during decohesion of the

original material up to time t and the fracture energy G(0)
c (work required for complete

decohesion of the original material). In a bilinear cohesive relation, as presented in Sec. 2.1,

this parameter may be approximated as

D(0)(t) ≈
κ(0)(t)

∆
(0)
f

where the initial, undamaged “elastic” response has been neglected (namely it is assumed

in (5) that ∆
(0)
f ≫ ∆

(0)
i ).

Prior to healing, the cohesive response is characterized by the cohesive relation of the

original material, i.e., with w(1) = 0 in (7). If a single healing event occurs at a time t = t∗,

the proposed constitutive model assumes that the factor w(1) is given by the value of the

energy-based damage parameter at the instance of healing activation, D(0)∗

, i.e.,

w(1) = D(0)∗

:=
G

(0)∗

d

G
(0)
c

. (9)

Correspondingly, a value w(1) = 0 upon healing activation represents zero equivalent dam-

aged area fraction of the original material at a given material point (i.e., the original material

is fully intact) while w(1) = 1 represents a fully-damaged original material at a given ma-

terial point (i.e., the healing material would occupy the fully damaged material point upon

healing). The interpretation of (9) is that the volume fraction w(1) available for the healing

material in order to fill and heal can be determined from the value of the energy-based

damage parameter of the original material, defined in (8) at the instance of the healing

activation. Upon healing of the available volume fraction w(1), the volume fraction of the

original material, w(0), assumes a value equal to 1 − w(1), which is equal to the equivalent
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Figure 2: Traction-separation laws of original and healing material, which upon weighted addition, results

in a composite cohesive relation for the crack-healing model.

undamaged area of the original material. Conversely, the energy-based damage parameter

can be interpreted as an equivalent damaged area fraction at a given material point in the

context of the cohesive zone framework. A schematic of the traction-separation relations for

a material point under damage and healing is shown in Fig. 2 depicting the features of the

model.

In accordance with (7) and (9), the effective fracture energy G̃c of the composite material

after healing becomes the weighted sum of the fracture energies of the original and healing

materials, given as

G̃c = w(0)G(0)
c + w(1)G(1)

c . (10)

2.2.2. Traction-crack opening relations: original material

The traction-separation relation corresponding to the original material after healing is

governed by a modified effective displacement-based cohesive crack model explained as fol-
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lows: The effective displacement for the original material defined in the conventional cohesive

zone model is modified by introducing shifts in normal and tangential crack opening dis-

placements to take into account the effect of healing. These shifts in the crack opening

displacements lead to a modified effective displacement for the original material, ∆(0), given

as

∆(0) :=

√

〈

δn − δ
(0)*
n

〉2
+ γ2(δs − δ

(0)*
s )2 , t ≥ t∗ . (11)

The reason for introducing the shift is as follows: On activation of a healing process,

the healing agent diffuses/flows through the crack and crack filling occurs thereby (fully or

partially) reducing the crack opening. As a result, the crack opening displacements after

complete healing should be considered nominally zero. To simulate this process, displace-

ment shifts are introduced into the crack opening displacements, which make the nominal

opening displacement zero upon complete healing. Further, a shift is also applied in the

crack opening history variable, κ, which is reset to its initial value. This is done to simu-

late the intact portion of the original material point, whereas the damaged portion of the

considered material point is assumed to be healed by the healing material.

In a cohesive-zone model, a partially-damaged material has a non-zero crack opening

displacement but it may still be capable of transmitting a force. In the present model, if

healing is activated in a partially damaged surface, it is assumed that the process occurs at

constant stress provided there is no change in the external loading.

The shifts introduced in the normal and the tangential crack opening displacements for

the original material are given as follows:

δ(0)∗
n = δ∗

n − t∗

n/(w(0)K) ,

δ(0)∗
s = δ∗

s − t∗

s/(w(0)K) .
(12)

In the above expressions, δ∗

n and δ∗

s are the actual crack opening displacements in the

original material at the instant of crack healing activation. As shifts in crack opening

displacements are introduced along with restoration of the crack opening history variable κ,

the shifts in crack opening displacements are constructed in such a way that the tractions
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across the cohesive surface maintain their continuity. Consequently, the traction components

t∗

n and t∗

s across the partially damaged surface remain the same before and after healing

activation.

The normal and shear tractions corresponding to the original material during subsequent

loading after healing are then obtained from the corresponding traction-separation relations

(4) and (6) using the aforementioned equivalent opening ∆(0), i.e.,

t(0)
n =



























(δn − δ(0)*
n )

∆(0)
T (0) if δn > δ(0)∗

n ,

K(δn − δ(0)*
n ) if δn < δ(0)∗

n ,

t(0)
s = γ2 (δs − δ(0)*

s )

∆(0)
T (0) .

(13)

2.2.3. Traction-crack opening relations: healing material

Similar to the original material, the traction-separation relations corresponding to the

healing material are governed by a modified equivalent displacement variable, ∆(1) defined

as

∆(1) :=

√

〈

δn − δ
(1)*
n

〉2
+ γ2(δs − δ

(1)*
s )2 , (14)

where δ(1)*
n and δ(1)*

s are shifts applied to the traction-separation relation of the healing

material. The shifts are introduced into the crack opening displacements of the healing

material following the same approach as for the original material. The main difference is

that the healing material is assumed to transmit zero load at the instant of healing activation.

Thus, the shifts in crack opening displacements for the healing material are the actual crack

opening displacements at the instant of healing activation, i.e.,

δ(1)∗
n = δ∗

n

δ(1)∗
s = δ∗

s .
(15)

Similar to the approach adopted for the original material after healing, the normal and

tangential traction components corresponding to the healing material are obtained from an

equivalent traction T (1) of the corresponding traction-separation relations (4) and (6) using
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the equivalent opening ∆(1), i.e.,

t(1)
n =



























(δn − δ(1)*
n )

∆(1)
T (1) if δn > δ(1)∗

n ,

K(δn − δ(1)∗
n ) if δn < δ(1)∗

n ,

t(1)
s = γ2 (δs − δ(1)∗

s )

∆(1)
T (1) .

(16)

It is worth noticing that, in both the original and healing material phases, the shifts in the

crack opening displacements are applied at the component level, i.e., individually on the

normal and tangential components. The composite tractions t̃n and t̃s, given in (7), are ob-

tained through a rule-of-mixtures approach analogous to an equal strain assumption used for

composite materials (in this case an equal crack opening assumption) with material-specific

responses given by (13) and (16). This approach provides sufficient flexibility to specify

separate material properties and fracture behavior for the original and healing materials.

2.2.4. Multiple healing events

The approach presented in the previous section can be extended to account for multiple

healing events. This generalization is capable of dealing with a complex history of (partial)

crackings and healings. In the sequel, the index p refers to the number of healing events,

ranging from 0 to m, with the convention that p = 0 represents the undamaged original

state. The index p may also be used to represent the healing material phase that is formed

during the pth healing event, again with the convention that p = 0 corresponds to the original

material. At the end of the mth healing event, the composite-like traction components t̃[m]
n

and t̃[m]
s of the multiply-healed material are given by

t̃[m]
n =

m
∑

p=0

w[m](p)t(p)
n t̃[m]

s =
m

∑

p=0

w[m](p)t(p)
s (17)

where t(p)
n and t(p)

s are the normal and tangential traction components of the pth material

phase and w[m](p) is the volume fraction of the pth material phase (index in parentheses)

present or created at the mth healing event (index in square brackets). The relation given

in (17) is a generalization of (7) for the case m > 1. For modelling purposes, a separate
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index is assigned to each new healing material created at the pth healing event even though

the actual materials (chemical composition) may be physically the same. The purpose is to

keep track of their individual evolutions throughout a complex loading and healing process

starting at possibly different states (i.e., every healing instance is recorded separately). In

accordance with the proposed constitutive model for the single healing event, it is assumed

that the volume fraction w[m](p) of the pth material phase is related to the energy-based

damage parameter of that phase prior to the mth healing event, which can be expressed

recursively as

w[m](p) =























































1 for p = m = 0,

w[m−1](p)(1 − D[m](p)) for 1 ≤ p < m ,

m−1
∑

p=0
w[m−1](p)D[m](p) for 1 ≤ p = m .

(18)

In the above expression, D[m](p) is the value of energy-based damage parameter D(p) corre-

sponding to the pth healing phase at the mth healing event. With this notation, the term

D(0)∗

in (9) can alternatively be expressed as D[1](0) to indicate the value of the energy-based

damage parameter evaluated at the instant at which the first healing event is activated. It

is also to be noted that the sum of all w[m](p) is equal to 1, where p ranges from 0 to m.

The fracture energy G̃[m]
c of a multiply-healed composite-like crack, which is a general-

ization of (10) for m > 1, corresponds to the weighted sum of the fracture energies of the

phases p = 0, . . . m − 1 available before healing activation and the fracture energy of the

latest formed healing material p = m, i.e.,

G̃[m]
c =

m
∑

p=0

w[m](p)G(p)
c . (19)

At the mth healing event, there are m + 1 material phases at a material point within the

cohesive zone for which the tractions in each phase are governed by the corresponding

cohesive relations. The shifts in the crack opening displacements are obtained for each

phase such that the continuity of the tractions is maintained within each phase, similar to

the equations for the shifts given by (12) and (15).
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For subsequent use, the expressions for the volume fractions w[m](p) in the case of two

healing events are obtained explicitly from (18) with m = 2, i.e.,

w[2](0) = w[1](0)(1 − D[2](0)) = (1 − D[1](0))(1 − D[2](0)) ,

w[2](1) = w[1](1)(1 − D[2](1)) = D[1](0)(1 − D[2](1)) ,

w[2](2) = w[1](0)D[2](0) + w[1](1)D[2](1) = (1 − D[1](0))D[2](0) + D[1](0)D[2](1) .

(20)

The damage in the original material up to the first healing event is reflected in the value

D[1](0) whereas the subsequent damage in the original material and the first healing material

is accounted for, respectively, through the values D[2](0) and D[2](1). The corresponding

composite traction and fracture energy after the second healing event can be computed

from (17) and (19).

2.3. Numerical implementation

The cohesive crack healing model described above can be implemented in a finite element

framework using cohesive elements (or using an XFEM approach). In the context of a

finite element solution procedure performed using a Newton-Raphson iterative approach,

the contribution of the cohesive elements to the global stiffness matrix is provided by their

element-wise consistent tangent matrix, which corresponds to the derivative of the traction

vector with respect to the crack opening displacement. With respect to a local coordinate

system normal (n) and tangential (s) to the crack, the components of the tangent matrix

are, in view of (17), given by the weighted constitutive (material) tangents of each phase p,

i.e.,

∂t̃
[m]
i

∂δj

=
m

∑

p=0

w[m](p) ∂t
(p)
i

∂δj

, i = n, s, j = n, s . (21)

Correspondingly, the tangent matrix of the composite-like model requires the individual

contributions from the phases. The expressions for the constitutive stiffness tangents depend

on the loading-unloading conditions, as indicated in (3), applied separately for each phase

p.
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Under softening condition:

For f (p) = 0 and κ̇(p) > 0, the components of the consistent tangent matrix for the phase

p are obtained, assuming that ∆
(p)
i ≪ ∆

(p)
f , from (4), (5), (11) and (13), as follows:

∂t(p)
n

∂δn

= σ(p)
c







1

∆(p)
−

1

∆
(p)
f

−

〈

δn − δ(p)∗
n

〉2

(∆(p))3






,

∂t(p)
s

∂δs

= γ2σ(p)
c







1

∆(p)
−

1

∆
(p)
f

−
γ2

(

δs − δ(p)∗
s

)2

(∆(p))3






,

∂t(p)
n

∂δs

=
∂t(p)

s

∂δn

= −
γ2σ(p)

c

〈

δn − δ(p)∗
n

〉 (

δs − δ(p)∗
s

)

(∆(p))3
.

Under unloading/reloading conditions

For f (p) < 0 and κ̇(p) = 0, the components of the consistent tangent matrix are, assuming

that ∆
(p)
i ≪ ∆

(p)
f , given as

∂t(p)
n

∂δn

= σ(p)
c

[

1

κ(p)
−

1

∆
(p)
f

]

,

∂t(p)
s

∂δs

= γ2σ(p)
c

[

1

κ(p)
−

1

∆
(p)
f

]

,

∂t(p)
n

∂δs

=
∂t(p)

s

∂δn

= 0 .

The case of the initial “elastic” behavior can in principle be treated formally as a reloading

case by assigning an initial damage κ
(p)
0 = ∆

(p)
i . However, since in the previous formulas

the term ∆
(p)
i has been neglected, the tangent matrix can be separately specified as

∂t(p)
n

∂δn

=
1

γ2

∂t(p)
s

∂δs

= K ,

∂t(p)
n

∂δs

=
∂t(p)

s

∂δn

= 0 ,

where K is the cohesive stiffness, assumed in this case to be the same for all phases.

3. Model evaluation and testing

In this section, the model is tested using a simple three-element mesh as shown in Fig.3,

in which a single zero-thickness cohesive element is placed between two continuum elements
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Figure 3: Three element model: An initially zero thickness cohesive element placed in between two continuum

two dimensional plane strain elements.

of size 20µm × 20µm each. Several aspects are considered to study the behavior of the

model, which include different loading conditions, number of healing events, properties of

the healing material and the degree of damage.

3.1. Fracture and healing in monotonic straining

In the first set of test simulations, the three-element system is subjected to various mono-

tonic straining conditions to study the behavior of the cohesive element under damage and

healing. The loading conditions are prescribed through applied displacements as shown in

Fig.3. The time history of the specified displacement is shown in Fig.4a, which corresponds

to a three-stage deformation, namely (i) a nominally mode-I opening stage involving a linear

increase in applied deformation, (ii) a rest period with healing at the maximum deforma-

tion reached in the first stage and (iii) a resumption of the mode-I deformation. In all the

simulations, it is assumed that complete healing occurs at the end of the zero loading-rate

time period (rest period). The post-healing behavior of the cohesive element corresponds

to the third stage. For the present model, the actual duration of the rest period has no

direct effect on the simulations since the healing kinetics are not modelled explicitly; only

the state of the healing material upon resumption of the loading is relevant. However, the

healing period is indicated in the time history for clarity and to emphasize that healing is,

in general, a process with time scales comparable to (and sometimes larger than) the time
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scales associated to mechanical loading.

For the conditions assumed in the simulation, the evolution of the stress in the cohesive

zone in a three-element system only depends on the fracture properties but not on the elastic

properties of the bulk material. The fracture properties of the original and healing materials

are given as

σ(0)
c = 100 MPa , σ(1)

c = 75, 100 MPa , ∆
(0)
f = ∆

(1)
f = 2µm .

As indicated above, two values are considered regarding the fracture strength σ(1)
c of the

healing material, namely a lower strength compared to the original material (chosen as 75%

of σ(0)
c ) and an equal strength (100%). The healing materials and the original material have

the same final crack opening ∆f . In principle, it is possible to consider the case of a healing

material that has a higher strength, but in order to study that situation, it is more relevant

to carry out an analysis with more than one cohesive element where a secondary crack is

allowed to initiate elsewhere.

The effective traction as a function of time is shown in Fig. 4b for both values of the

fracture strength of the healing material. As shown in the figure, the traction in the cohesive

element initially increases up to the value equal to cohesive strength σ(0)
c of the original

material and then decreases as a result of damage evolution. Complete failure occurs when

the crack opening reaches the critical crack opening for failure ∆
(0)
f of the original phase.

Afterwards, the crack opening continues to grow due to the externally-imposed deformation

at essentially zero stress. As indicated in Fig. 4a, healing is activated at t = 100 s (and is

assumed to be completed at t = 300 s). Correspondingly, a shift in the crack opening of

δ(1)∗
n = 3µm and δ(1)∗

s = 0 is taken into account and the loading is resumed. The maximum

load is reached at the corresponding value of the fracture strength of the healing material

σ(1)
c for both cases considered (75% and 100%). The loading continues in the softening

(degradation) regime until the healing material completely fails, which occurs when the

shifted crack opening is such that ∆(1) = ∆
(1)
f .

The effect of the damage due to loading and the recovery due to healing can be seen

in Fig. 4c in terms of the relevant damage variables as a function of time. During the first
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stage of loading, the damage variable D(0) of the original material increases from 0 to 1,

which indicates that the original material undergoes full damage. The healing process in

the second stage is not modelled explicitly but rather provided as input for the cohesive

model to analyze the recovery of strength. During that process, the damage variable D(0)

of the original material remains at 1 while the damage variable D(1) of the healing material

becomes active with an initial value equal to zero (no damage). During the third stage of

the process, the damage variable D(1) of the healing material increases from 0 to 1, hence

at the end of the loading process the healing material is also fully damaged.

The results of the simulation can also be reported in terms of the traction across the

cohesive interface as a function of the crack opening displacement as shown in Fig. 4d.

Although the loading process in this example is relatively simple, it illustrates the importance

of using the shift in the crack opening variable to properly simulate the evolution of stress

during healing. Indeed, as may be observed in Fig. 4d, the material follows the expected

cohesive response starting from the value ∆(1) = 3µm as a new origin after healing.

3.2. Multiple healing of a partially-damaged material

The next example to illustrate the features of the model pertains to multiple healing

of a partially-damaged material. In this case, the material is loaded and healed according

to the applied deformation shown in Fig. 5a. As indicated in the figure, the material is

initially extended and undergoes partial damage. Subsequently, the material is healed and

the loading is resumed, which generates partial damage of the original and the healing

material. The material then experiences a second healing event before loading is resumed

until final failure. In this simulation, the fracture strength of the healing materials are chosen

as σ(1)
c = σ(2)

c = 0.75σ(0)
c with the actual values as indicated in the previous subsection.

The evolution of the effective (composite) normal traction t̃[m]
n and the phase-weighted

tractions w[m](p)t(p)
n are shown in Fig. 5b as a function of time. The effect of healing on

the fracture strength is reflected in the distinct peak values of the response. The first peak

corresponds to the fracture strength σ(0)
c of the original material. The second peak lies

between the one of the original material and the healed material since the original material
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was not fully damaged before healing was activated, hence it partly contributes to the

effective (composite) fracture strength. In that case the strength is w[1](0)t(0)
n + w[1](1)σ(1)

c ,

with t(0)
n being the stress on the original material at the instant that the stress on the first

healing material reaches its critical value. Similarly, the third peak contains contributions

from the three phases that are active at that instant, namely it is given by w[2](0)t(0)
n +

w[2](1)t(1)
n + w[2](2)σ(2)

c , with t(0)
n and t(1)

n being the stresses on the original and first healing

material at the instant that the stress on the second healing material reaches its critical

value.

The evolution of the damage parameter for each phase is shown in Fig. 5c, where it

can be seen that the rate of damage per phase decreases as the number of active phases

increases (i.e., the damage gets distributed among the different phases, with the largest

rate corresponding to the most recently created phase). The effective traction-separation

relation for multiple healing of a partially-damaged material is shown in Fig.5d. The effective

fracture energy, as given by (19), depends on the number of healing events and the volume

fractions w[m](p). As may be inferred from Fig. 5d, the total fracture energy of the material,

measured as the area under the curve, increases as a result of the healing process compared

to the original material.

3.3. Unloading after healing of partially-damaged material

In order to validate the unloading features of the cohesive model, the three-element

system is subjected to a loading and healing process as indicated in Fig. 6a. In this case the

material is extended, undergoes partial damage followed by healing, after which extension

is resumed and finally the material is unloaded. The unloading is specified in terms of

displacement, which ends at the displacement for which the stress vanishes. The fracture

strength of the healing material is taken as σ(1)
c = 0.75σ(0)

c . The effective traction as a

function of crack opening is shown in Fig. 6b. As may be observed in the figure, upon

unloading, the stress returns elastically to zero along the corresponding unloading curve of

each phase, which depends on the damage parameter of the specific phase. The stress is

zero at the crack opening displacement at which healing occurred according to the shift
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Figure 6: Case 3: Partial damage, healing, partial damage and unloading. The fracture strength of the

healing material is assumed to be equal to 75% of that of the original material.

parameters given in (12) and (15).

Other loading cases, not shown here for conciseness, indicate that the model is able

to predict the behavior under complex sequences of mixed-mode loading, unloading and

healing. The application of the healing cohesive model under non-homogeneous conditions

is analyzed in the following section.

4. Application to particle-based extrinsic self-healing material

In this section, the cohesive healing model is applied to a unit cell of an extrinsic self-

healing material in which a single healing particle is embedded within a matrix material as

shown in Fig.7. In extrinsic systems, the particle contains a healing agent (i.e., the material

contained inside the particle) that is normally protected by an encapsulation system to

prevent premature activation of the healing process. The working principle of this system is

that the healing mechanism is activated when a crack that propagates through the matrix

interacts with the particle, usually breaking the encapsulation and allowing transport of the

healing agent through the crack. Some self-healing system may involve auxiliary materials

that are necessary for triggering and/or participating in a subsequent chemical reaction
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Figure 7: Geometry and finite element model of a unit cell of an extrinsic self-healing material. The unit

cell is subjected to a nominal mode I loading. A small precrack is used to guide a matrix crack towards the

particle. A layer of cohesive elements is placed to allow for crack propagation in a predefined direction given

by the initial precrack.

to create the final form of the healing material. The present simulation assumes that any

additional substance required for the process is readily available in the matrix material (e.g.,

free oxygen transported by diffusion required for oxidation as found in self-healing thermal

barrier coatings [32]). Distinct cohesive relations can be used at different spatial locations

(matrix, particle, matrix-particle interface), hence phase-specific fracture properties can be

specified for the healing agent inside the particle and the healing material that appears in

the cracks after activation of the healing mechanism.

As shown in Fig.7, the unit cell used in the simulations is an L×L domain with a circular

particle of a diameter d = 2r. For simplicity a two-dimensional computational domain under

plane strain conditions is chosen, meaning that the particle should be interpreted as prismatic

(fiber in the out-of-plane direction). Despite this interpretation, the model is assumed to

be qualitatively representative of a spherical particle albeit with a different volume fraction.

In the simulations, the length is chosen as L = 75µm and the diameter as d = 10µm,

which corresponds to a nominal (in-plane) particle volume fraction of 14%. In the finite

element mesh, cohesive elements are inserted along a horizontal plane in the mid-height

of the model, by which the crack is allowed to propagate along the pre-defined path. In

principle, arbitrary crack growth can be modelled by inserting cohesive elements along all
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bulk elements in mesh, although that approach is not required for purposes of the present

study [13]. The finite element mesh is sufficiently resolved so that proper discretization of the

cohesive zone is ensured. Displacement-driven nominal mode I load is applied by specifying

vertical displacements at the corner nodes on the right side of the domain while the corner

nodes at the left are fixed as shown in the figure. Both the matrix and the healing particle

are assumed to be isotropic and linearly elastic up to fracture. For the sake of simplicity,

the material properties (both elastic and fracture) of the matrix and the healing particle are

kept the same and the values are given as follows:

Em = Ep = 150 GPa , νm = νp = 0.25 ,

σm
c = σp

c = σ(0)
c = 400 MPa , Gm

c = Gp
c = G(0)

c = 100 J/m2 ,

where E and ν refer to Young’s modulus and Poisson’s ratio, respectively, and the super-

scripts m and p refer to the matrix and the particle, respectively. Since the properties of the

particle and the matrix are assumed to be equal, the original material, as indicated by the

superscript 0, refers to either the particle or the matrix depending on location. The interface

between the particle and the matrix is assumed to be perfectly bonded and interface frac-

ture is taken not to occur. It is worth pointing out that in general the elastic and fracture

properties of the healing particle and the matrix are different, which in fact decide whether

a matrix crack would break the healing particle or not. This aspect of a matrix crack inter-

acting with healing particles of different properties compared to the matrix is dealt in detail

in [13] but is not relevant for the simulations presented in this section. Instead, emphasis is

placed here on how the crack healing behavior affects the recovery of mechanical properties

of the material system. Further, as indicated above, the fracture properties of the healing

particle in its initial state are in general different than the properties of the healing material

that fills the cracks, which are specified separately as explained in the sequel.

Several parametric studies are conducted to evaluate the behavior of the unit cell and

the results in terms of global load-displacement response are reported in the following sub-

sections. In the first subsection, simulations are conducted to study the effect of variations

in the fracture properties of the healing material. In the second subsection, a parametric
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study is performed to understand how does the available amount of healing agent affect the

crack healing behavior. In the third subsection, multiple healing events are simulated and

the resulting load-displacement response is reported.

4.1. Effect of properties of healing material and healing conditions

The fracture properties of the healing material, formed as the result of the healing process,

are often different from the surrounding host material. The fracture properties of the healed

zone depend on the time available for healing and the properties of the healing product.

A second aspect that is relevant for the healing process is the loading conditions during

healing. Healing is a process that typically requires time to occur, and the efficiency of the

process is often connected to providing a sufficiently long “rest time” in which the loading

rate is zero and chemical reactions have sufficient time to be completed. However, even if

a sufficient “rest time” is provided, the (constant) loading state influences the subsequent

material response of the healed material. In this section, two representative loading states

during healing are considered, namely healing under zero-stress (unloaded) conditions and

healing under fixed applied displacement (constant load during healing). Different properties

for the healing material are considered for each loading state during healing.

4.1.1. Healing under unloaded condition

In the literature, most experimental studies deal with test protocols in which the sample is

unloaded and allowed to return to its unstrained state, hence healing occurs under unloaded

conditions [3, 33, 34, 35, 36]. In order to analyze the predictions of the model under similar

conditions, the unit cell shown in Fig. 7 is subjected to a loading and healing sequence

as indicated in Fig. 8a. Under this loading, the specimen is partially fractured and then

unloaded. Healing is allowed to occur in the unloaded condition, which is then followed

by reloading of the healed specimen. The response of the unit cell in terms of the applied

vertical displacement and the corresponding reaction force is shown in Fig. 8b for various

fracture properties of the healing material, namely σ(1)
c /σ(0)

c , G(1)
c /G(0)

c = 0.25, 0.5, 0.75 and

1, where the superscript 1 refers to the healing material. As shown in Fig. 8b, the curve

corresponding to equal properties of the healing and original material predicts a recovery
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Figure 8: Healing under unloaded condition: applied loading to unit cell and reaction force as a function of

applied displacement for various values of the fracture properties of the healed material.

of the response after healing similar to that of the original material. The next three curves

correspond to lower values of the fracture properties of the healing material and hence the

load-displacement curves fall below that of the original material after healing.

It is to be mentioned that, after healing, recracking occurs along the same path as the

initial crack. This is due to the fact the fracture properties of the healing material are

lower than or at least equal to that of the original material properties. Nonetheless, if the

properties of the healing material are higher than that of the original material, the crack

would propagate along a different path which is weaker than the healed zone. However, the

recovered load-displacement response would be similar to the one with the same fracture

properties, as the crack is traversing along the original material.

4.1.2. Healing under constant load condition

In situations of practical interest, healing may occur under a non-zero load, which implies

that the crack opening is non-zero as the healing material fills the crack gap. To study

the effect of the loading state during healing on the post-healing response of the material,

simulations are carried out according to the loading sequence shown in Fig. 9a. In this case,
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Figure 9: Healing under constant loading condition: applied loading to unit cell and reaction force as a

function of applied displacement for various values of the fracture properties of the healed material.

the specimen is (partially) fractured, allowed to heal at a constant applied displacement

and subsequently reloaded. As in the previous case (healing at unloaded conditions), four

different fracture properties of the healing material are considered, given by the strength

and fracture energy ratios σ(1)
c /σ(0)

c , G(1)
c /G(0)

c = 0.25, 0.5, 0.75 and 1. The load carrying

capability of the healed specimens is shown in Fig. 9b, which indicates the reaction force of

the unit cell as a function of the applied vertical displacement.

For each set of material properties of the healing material, the state of the specimen is

the same prior to healing. After healing at a constant crack opening profile, the specimen

recovers its load-carrying capability as shown in Fig. 9a. It can be observed that the post-

healing force peak is higher than the force peak of the original material for the case when

the healing material has the same fracture properties of the original material. This result is

partly due to the equal strain kinematic assumption of the Voigt-like composite model, as

indicated in Sec. 2.2.1, which tends to overpredict the force response. It is anticipated that

a more complex composite model, which preserves both linear momentum and kinematic

compatibility, would predict a lower post-healing peak. Although the present model provides
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an upper estimate of the post-healed behavior, it allows to compare the effect of the state

of the material during healing on the post-healing behavior. In particular, the post-healing

failure in the case of healing under loaded conditions is more sudden (i.e., qualitatively more

brittle, see Fig.9b) compared to the case of healing at an unloaded state (see Fig.9b), except

when the properties of the healing material are relatively low.

To gain more insight in the healing process under constant crack opening profile, the local

response curves at selected locations are shown in Fig.10 for the case when the properties of

the healing material are σ(1)
c /σ(0)

c = G(1)
c /G(0)

c = 0.5. As can be observed in the figure, the

crack openings at the instant of healing depend on location, with increasing values towards

the side where the opening load is applied. Observe that some points undergo healing from

a fully-failed state, some from a partially-failed state and some points that are cracked at

the end of the loading process experienced no healing since they had not failed at the instant

at which healing was activated.

After healing, the effective crack opening displacements become zero in the healed zone

due to the displacement shifts introduced in the model to account for crack filling. However,

modelling of the crack gap filling and healing is only done implicitly through the shift in

crack opening displacements, whereby the new material is not explicitly modelled as an

additional material (or mass) entering the system.

4.2. Degree of crack filling and healing

In the previous subsection, it was assumed that the healing particle, upon fracture,

releases an amount of healing agent (denoted as Vh) that is sufficient for complete filling of

the crack opening volume (or crack opening area in two dimension, denoted as Vc). However,

depending on the amount of available healing material, the geometrical characteristics of the

crack and the mode of transport, it may occur that the crack is only partially filled, which

is a key factor affecting the healing characteristics and hence the recovery of mechanical

properties. In this section, the effect of the ratio Vh/Vc of healing agent available to the

required healing agent for complete filling is studied. Here, the volume of required healing

agent for complete crack filling refers to the total crack volume at the instance of healing
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Figure 11: Effect of filling efficiency: applied loading to unit cell and reaction force as a function of applied

displacement for various values of healed areas.

activation. The ratio considered is generic and its interpretation in a specific self-healing

material system requires understanding of its healing characteristics. For instance, the

amount of healing material produced as the result of the healing process is directly related

not only to the volume of the healing particle, but also the reaction kinetics of the healing

process. For example, in one of the extrinsic self-healing systems reported in the literature,

the healing agent within the particle produces healing material through increase in volume

by oxidation under high temperature conditions [32, 14]. Hence, the term Vh means here the

volume of the healing product formed as the result of the healing process, which is used for

healing the crack. The notion of complete or partial filling, measured by the ration Vh/Vc,

refers to the amount of crack gap filled with healing material regardless of the fracture

properties of the healing material.

Simulations are conducted for four different healing processes with filling efficiencies of

Vh/Vc = 1, 0.75, 0.5 and 0.25. In all cases the properties of the healing material are taken as

σ(1)
c /σ(0)

c , G(1)
c /G(0)

c = 0.75. The specimens are loaded according to the sequence indicated in

Fig.11a and the corresponding force-displacement curves are shown in Fig.11b. To interpret

32



Healed zone
Cracked zone

V
h
/V

c
= 0.25

par!cle

V
h
/V

c
= 0.75V

h
/V

c
= 0.5
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of clarity, the deformed specimen has a scaling factor of 3.

the results for partial filling, it is useful to indicate the spatial location where healing occurs,

which is shown in Fig. 12. As indicated in the figure, filling is assumed to take place in the

zone adjacent to the healing particle.

The curve shown in Fig. 11b corresponding to a complete filling (filling ratio Vh/Vc = 1)

represents the highest possible recovery of the load-carrying capability for the given fracture

properties of the healing material. As expected, the recovery of the load-carrying capability

decreases with decreasing filling ratios Vh/Vc = 0.75, 0.5, 0.25. One relevant difference be-

tween the effect of a decrease in filling efficiency and a decrease in the fracture properties

of the healing material for a fixed filling efficiency is that in the latter case the initial slope

of the post-healed behavior remains the same for distinct fracture properties whereas in the

former case the initial slope decreases with decreasing filling efficiency (compare Fig. 9b and

Fig. 11b). In the simulations shown in Fig. 11b, the initial post-healing slope reflects the

increase in compliance due to purely geometrical effects. The un-healed portion of the crack

facilitates the (elastic) deformation of the specimen. This effect may potentially be used in

the interpretation of experimental curves as an indication of partial filling of a crack.
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4.3. Multiple healing events

Some materials with intrinsic self-healing capacity (such as MAX phases), may undergo

multiple healing events whereby a crack is healed on multiple occasions [37, 12]. In extrinsic

systems, multiple healing may occur in cases where there is an external supply of healing

material, but also in particle-based systems when inactivated particles (or portions of par-

tially activated particles) can still supply healing material for an additional healing event.

In this section, it is assumed that the particle in the unit cell shown in Fig. 7 is capable of

providing sufficient healing material for two healing events. The specimen is subjected to

a loading and healing process as shown in Fig. 13a. The ratio of crack opening volume (or

area) to the available healing material volume is assumed to be 1 for both healing events,

resulting in complete filling of the crack. The fracture properties of the healing material

after the first healing event are taken as 75% of those of the original material, while for

the second healing event, the properties are taken as 50% of that of the original material,

hence σ(1)
c /σ(0)

c , G(1)
c /G(0)

c = 0.75 and σ(2)
c /σ(0)

c , G(2)
c /G(0)

c = 0.5. This assumption is meant

to implicitly represent a degradation on the quality of the healing material after the first

healing event.

The reaction force on the unit cell is shown in Fig.13b as a function of the applied vertical

displacement. As can be observed in the figure, the load carrying capacity may be (partially)

recovered multiple times provided that the self-healing mechanism supplies sufficient healing

material for multiple healing events. Although a single healing event can naturally extend

the lifetime of a material, a more significant extension can be achieved in a material capable

of multiple self-healing repairs, even if the quality of the healing material degrades during

subsequent healing events. The model developed here may be used for design purposes

to optimize the characteristics of a healing particle and/or a cluster of healing particles by

further investigating convenient particle characteristics or particle arrangements that provide

the capacity of multiple healing events. This may be achieved by, for example, embedding

particles large enough to serve as a reservoir for multiple healing events or by placing a

cluster of particles that may be activated sequentially as cracks re-appear in a material at

adjacent locations. Although those studies are beyond the scope of the current work, the
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Figure 13: Effect of multiple healing: applied loading to unit cell and reaction force as a function of applied

displacement for two healing events

present model may be employed to simulate the recovery of strength and fracture energy

under complex loading histories.

5. Summary and Outlook

A cohesive zone-based computational framework for analyzing self-healing materials is

presented to model the recovery of mechanical properties. Salient features of the composite

model are demonstrated through several test simulations. In particular, the capability of the

model to simulate multiple healing events and handling different fracture properties of the

healing material for each healing event is relevant for analyzing several realistic self-healing

materials. The model can be applied for either extrinsic or intrinsic self-healing material

systems with an appropriate coupling to healing kinetics in each case.

For a unit cell of an extrinsic self-healing material, the simulations show that the recovery

of the load carrying capacity upon healing depends both on the fracture properties of the

healing material that fills the cracks as well as the filling efficiency, which may be seen as a

geometrical characteristic. Further, it is found that the post-healed behavior of a material

healed under loaded conditions appears to be more brittle than for a material healed under
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unloaded conditions, although this conclusion is based on the assumption that the healing

material has the same fracture properties in both cases, which may not be necessarily the

case in some self-healing materials. The simulations also indicate that the characteristics of

the initial post-healing response in a force-displacement diagram may be used as an indicator

of the filling efficiency of a healing event whereby an initial response similar to that of the

original material corresponds to maximum crack filling efficiency regardless of the fracture

properties of the healing material. A decrease in the initial post-healing force-displacement

slope compared to the initial slope of the original material is an indication of an incomplete

filling process, again regardless of the fracture properties of the healing material.

The developed framework does not explicitly model the crack healing kinetics, rather the

results of the healing process are provided as input parameters to the model. Nonetheless,

the coupling of crack healing kinetics into the model is in principle straightforward in the

form of the amount of healing material produced as the result of the healing process, which

is then geometrically related to the crack volume healed. For modelling purposes, it is also

possible to treat the properties of the healing material as a variable during multiple healing

events to implicitly account for a continuous degradation in the healing quality. In general,

the model may be used for designing new self-healing material systems with the capacity of

undergoing multiple healing events and, correspondingly, extending significantly the lifetime

of a material with minimal external intervention.
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