City Research Online

City, University of London Institutional Repository

Citation: Yu, J., Tang, C. S., Sodhi, M. \& Knuckles, J. (2020). Optimal subsidies for development supply chains. Manufacturing and Service Operations Management, 22(6), pp. 1131-1147. doi: $10.1287 / \mathrm{msom} .2019 .0801$

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/21903/

Link to published version: https://doi.org/10.1287/msom.2019.0801

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Appendix A: Long Replenishment Lead Time

We analyze the case when the replenishment lead time is long so that both (instead of one) retailers place their orders "before" the market size M is realized. We show numerically that the structural results continue to hold.

A.1. Setting 2: Selling two substitutable products through one retailer

Observe that Setting 2 (Figure 4-2) corresponds to the base case when $s_{m 1}=s_{m 2}=0$. Hence, $D_{1}=m$. $\frac{\left(p_{2}-s_{b_{2}}\right)-\delta\left(p_{1}-s_{b_{1}}\right)}{\delta-1}$, and $D_{2}=m \cdot\left[1-\frac{\left(p_{2}-s_{b_{2}}\right)-\left(p_{1}-s_{b_{1}}\right)}{\delta-1}\right]$.

Retailer's pricing problem. Because the retailer's pricing problem occurs after the orders z_{1} and z_{2} are placed and the market size m is realized, the ordering costs (i.e., $w_{1} \cdot z_{1}, w_{2} \cdot z_{2}$) are "sunk" and the sales $S_{1}=\min \left\{D_{1}, z_{1}\right\}$ and $S_{2}=\min \left\{D_{2}, z_{2}\right\} ;$ respectively. Therefore, the retailer's problem is: $\max _{p_{1}, p_{2}}\left\{\left(p_{1}+s_{r_{1}}\right)\right.$. $\left.D_{1}+\left(p_{2}+s_{r_{2}}\right) \cdot D_{2}\right\}, \quad$ s.t. $\quad D_{1} \leq z_{1}, D_{2} \leq z_{2}$. Let $\mathcal{M}_{2}=\frac{2 z_{2} \cdot(\delta-1)}{\delta-1-s_{1}+s_{2}}$ and $\mathcal{M}_{3}=\frac{2(z 1+z 2)}{1+s_{1}}$, we can show that:

$$
\begin{gathered}
p_{1}^{*}=\left\{\begin{array}{ll}
\frac{1}{2}\left(1+s_{b_{1}}-s_{r_{1}}\right) & \text { if } m \leq \mathcal{M}_{3} \\
1+s_{b_{1}}-\frac{z_{1}+z_{2}}{m} & \text { if } m \geq \mathcal{M}_{3}
\end{array}, \quad p_{2}^{*}= \begin{cases}\frac{1}{2}\left(\delta+s_{b_{2}}-s_{r_{2}}\right) & \text { if } m \leq \mathcal{M}_{2} \\
\frac{m\left(2 \delta-1-s_{1}+2 s_{b_{2}}\right)-2 z_{2}(\delta-1)}{2 m} & \text { if } \mathcal{M}_{2}<m<\mathcal{M}_{3} \\
\delta+s_{b_{2}}-\frac{z_{1}+\delta \cdot z_{2}}{m} & \text { if } m \geq \mathcal{M}_{3}\end{cases} \right. \\
S_{1}^{*}=\left\{\begin{array}{ll}
\frac{m \cdot\left(\delta \cdot s_{1}-s_{2}\right)}{2(\delta-1)} & \text { if } m \leq \mathcal{M}_{2} \\
\frac{1}{2} m\left(1+s_{1}\right)-z_{2} & \text { if } \mathcal{M}_{2}<m<\mathcal{M}_{3}, \quad S_{2}^{*}= \begin{cases}\frac{m \cdot\left(\delta-1+s_{2}-s_{1}\right)}{2(\delta-1)} & \text { if } m \leq \mathcal{M}_{2} \\
z_{2} & \text { if } m>\mathcal{M}_{2} \\
z_{1} & \text { if } m>\mathcal{M}_{3}\end{cases}
\end{array} .\right.
\end{gathered}
$$

Retailer's ordering problem. By using $\left(p_{1}^{*}, p_{2}^{*}\right)$ and $\left(S_{1}^{*}, S_{2}^{*}\right)$, the retailer's problem is:

$$
\begin{gathered}
\max _{z_{1}, z_{2}} E_{M}\left[\Pi_{r}(m)\right]=\int_{0}^{\mathcal{M}_{2}} \Pi_{r, 1}(m) \cdot f(m) \mathrm{d} m+\int_{\mathcal{M}_{2}}^{\mathcal{M}_{1}} \Pi_{r, 2}(m) \cdot f(m) \mathrm{d} m+\int_{\mathcal{M}_{1}}^{\infty} \Pi_{r, 3}(m) \cdot f(m) \mathrm{d} m, \text { where } \\
\Pi_{r}(m)=\left(p_{1}^{*}+s_{r_{1}}\right) \cdot S_{1}^{*}+\left(p_{2}^{*}+s_{r_{2}}\right) \cdot S_{2}^{*}-w_{1} \cdot z_{1}-w_{2} \cdot z_{2}= \begin{cases}\Pi_{r, 1}(m) & \text { if } m \leq \mathcal{M}_{2} \\
\Pi_{r, 2}(m) & \text { if } \mathcal{M}_{2}<m<\mathcal{M}_{1} \\
\Pi_{r, 3}(m) & \text { if } m \geq \mathcal{M}_{1}\end{cases}
\end{gathered}
$$

Donor's problem. When offering uniform subsidy $s_{1}=s_{2}=s$, the donor's problem is: $\max _{s} E_{M}\left[S_{1}^{*}+\right.$ $\left.S_{2}^{*}\right]$ s.t. $E_{M}\left[s \cdot\left(S_{1}^{*}+S_{2}^{*}\right)\right] \leq K$, where

$$
E_{M}\left[S_{1}^{*}+S_{2}^{*}\right]=\int_{0}^{\mathcal{M}_{2}} \frac{m(\delta \cdot s+\delta-1)}{2(\delta-1)} \cdot f(m) \mathrm{d} m+\int_{\mathcal{M}_{2}}^{\mathcal{M}_{1}}\left(\frac{m \cdot s}{2}+z_{2}^{*}\right) \cdot f(m) \mathrm{d} m+\int_{\mathcal{M}_{1}}^{\infty}\left(z_{1}^{*}+z_{2}^{*}\right) \cdot f(m) \mathrm{d} m .
$$

A.2. Setting 3: Two manufacturers sell two products separately through two retailers

We now consider Setting 3 (Figure 4-3) that corresponds to the base case when $s_{m 1}=s_{m 2}=0$ and the wholesale price is exogenous.

Retailers' pricing problem. By using the same approach as before, each retailer solves:

$$
\begin{array}{ll}
\max _{p_{1}} & \left\{\left(p_{1}+s_{r_{1}}\right) \cdot D_{1}\right\} \text { s.t. } D_{1}=m \cdot \frac{\left(p_{2}-s_{b_{2}}\right)-\delta\left(p_{1}-s_{b_{1}}\right)}{\delta-1} \leq z_{1} \text {, and } \\
\max _{p_{2}}\left\{\left(p_{2}+s_{r_{2}}\right) \cdot D_{2}\right\} \text { s.t. } D_{2}=m \cdot\left[1-\frac{\left(p_{2}-s_{b_{2}}\right)-\left(p_{1}-s_{b_{1}}\right)}{\delta-1}\right] \leq z_{2} .
\end{array}
$$

Let $\mathcal{M}_{2}^{\prime}=\frac{z_{2} \cdot(4 \delta-1) \cdot(\delta-1)}{2 \delta^{2}-\delta\left(2+s_{1}\right)+(2 \delta-1) s_{2}}$ and $\mathcal{M}_{3}^{\prime}=\frac{z_{1}(2 \delta-1)+z_{2} \delta}{\left(1+s_{1}\right) \cdot \delta}$, we get:
$p_{1}^{*}=\left\{\begin{array}{ll}\frac{\delta-1-s_{b_{1}}-s_{2}+2 \delta\left(s_{b_{1}}-s_{r_{1}}\right)}{4 \delta-1} & \text { if } m \leq \mathcal{M}_{2}^{\prime} \\ \frac{m\left((\delta-1)\left(1+s_{b_{1}}\right)-\delta s_{r_{1}}\right)-z_{2}(\delta-1)}{m(2 \delta-1)} & \text { if } \mathcal{M}_{2}^{\prime}<m<\mathcal{M}_{3}^{\prime} \\ 1+s_{b_{1}}-\frac{z_{1}+z_{2}}{m} & \text { if } m \geq \mathcal{M}_{3}^{\prime}\end{array} \quad\right.$ if $m \leq \mathcal{M}_{2}^{\prime}= \begin{cases}\frac{2 \delta^{2}-2 \delta-s_{b_{2}}-\delta s_{1}+2 \delta\left(s_{b_{2}}-s_{r_{2}}\right)}{4 \delta-1} \\ \frac{m\left(\delta\left(2 \delta-2-s_{1}\right)+(2 \delta-1) s_{b_{2}}\right)-2 z_{2}(\delta-1) \delta}{m(2 \delta-1)} & \text { if } \mathcal{M}_{2}^{\prime}<m<\mathcal{M}_{3}^{\prime} \\ \delta+s_{b_{2}}-\frac{z_{1}+z_{2} \delta}{m} & \text { if } m \geq \mathcal{M}_{3}^{\prime}\end{cases}$

$$
S_{1}^{*}=\left\{\begin{array}{ll}
m \cdot \frac{\delta^{2}\left(1+2 s_{1}\right)-\delta\left(1+s_{1}+s_{2}\right)}{(4 \delta-1)(\delta-1)} & \text { if } m \leq \mathcal{M}_{2}^{\prime} \\
\frac{\delta \cdot\left(m\left(1+s_{1}\right)-z_{2}\right)}{2 \delta-1} & \text { if } \mathcal{M}_{2}^{\prime}<m<\mathcal{M}_{3}^{\prime} \\
z_{1} & \text { if } m \geq \mathcal{M}_{3}^{\prime}
\end{array}, \quad S_{2}^{*}= \begin{cases}m \cdot \frac{(2 \delta-1) \cdot s_{2}+\delta\left(2 \delta-2-s_{1}\right)}{(4 \delta-1)(\delta-1)} & \text { if } m \leq \mathcal{M}_{2}^{\prime} \\
z_{2} & \text { if } m>\mathcal{M}_{2}^{\prime}\end{cases}\right.
$$

Retailers' ordering problem. By using $\left(p_{1}^{*}, p_{2}^{*}\right)$ and $\left(S_{1}^{*}, S_{2}^{*}\right)$, each retailer's profit $\Pi_{r}^{i}(m), i=1,2$ is:

$$
\begin{aligned}
& \Pi_{r}^{1}(m)=\left(p_{1}^{*}+s_{r_{1}}\right) \cdot S_{1}^{*}-w_{1} \cdot z_{1}= \begin{cases}\Pi_{r, 1}^{1}(m) & \text { if } m \leq \mathcal{M}_{2}^{\prime} \\
\Pi_{r, 2}^{1}(m) & \text { if } \mathcal{M}_{2}^{\prime}<m<\mathcal{M}_{3}^{\prime} \\
\Pi_{r, 3}^{1}(m) & \text { if } m \geq \mathcal{M}_{3}^{\prime}\end{cases} \\
& \Pi_{r}^{2}(m)=\left(p_{2}^{*}+s_{r_{2}}\right) \cdot S_{2}^{*}-w_{2} \cdot z_{2}= \begin{cases}\Pi_{r, 1}^{2}(m) & \text { if } m \leq \mathcal{M}_{2}^{\prime} \\
\Pi_{r, 2}^{2}(m) & \text { if } \mathcal{M}_{2}^{\prime}<m<\mathcal{M}_{3}^{\prime} \\
\Pi_{r, 3}^{2}(m) & \text { if } m \geq \mathcal{M}_{3}^{\prime}\end{cases}
\end{aligned}
$$

Hence, each retailer maximizes its own profit by solves:

$$
\begin{aligned}
& \max _{z_{1}} E_{M}\left[\Pi_{r}^{1}(m)\right]=\int_{0}^{\mathcal{M}_{2}^{\prime}} \Pi_{r, 1}^{1}(m) \cdot f(m) \mathrm{d} m+\int_{\mathcal{M}_{2}^{\prime}}^{\mathcal{M}_{3}^{\prime}} \Pi_{r, 2}^{1}(m) \cdot f(m) \mathrm{d} m+\int_{\mathcal{M}_{3}^{\prime}}^{\infty} \Pi_{r, 3}^{1}(m) \cdot f(m) \mathrm{d} m, \\
& \max _{z_{2}} E_{M}\left[\Pi_{r}^{2}(m)\right]=\int_{0}^{\mathcal{M}_{2}^{\prime}} \Pi_{r, 1}^{2}(m) \cdot f(m) \mathrm{d} m+\int_{\mathcal{M}_{2}^{\prime}}^{\mathcal{M}_{3}^{\prime}} \Pi_{r, 2}^{2}(m) \cdot f(m) \mathrm{d} m+\int_{\mathcal{M}_{3}^{\prime}}^{\infty} \Pi_{r, 3}^{2}(m) \cdot f(m) \mathrm{d} m
\end{aligned}
$$

Donor's problem. When offering uniform subsidy $s_{1}=s_{2}=s$, the donor's problem is: $\max _{s} E_{M}\left[S_{1}^{*}+\right.$ $\left.S_{2}^{*}\right]$ s.t. $E_{M}\left[s \cdot\left(S_{1}^{*}+S_{2}^{*}\right)\right] \leq K$, where
$E_{M}\left[S_{1}^{*}+S_{2}^{*}\right]=\int_{0}^{\mathcal{M}_{2}^{\prime}} \frac{m(s+\delta(3+2 s))}{4 \delta-1} \cdot f(m) \mathrm{d} m+\int_{\mathcal{M}_{2}^{\prime}}^{\mathcal{M}_{3}^{\prime}}\left(\frac{\delta\left(m(1+s)-z_{2}^{*}\right)}{2 \delta-1}+z_{2}^{*}\right) \cdot f(m) \mathrm{d} m+\int_{\mathcal{M}_{3}^{\prime}}^{\infty}\left(z_{1}^{*}+z_{2}^{*}\right) \cdot f(m) \mathrm{d} m$.

A.3. Numerical Analysis

We consider the market size $M \sim N(1,0.04)$, set $w_{1}=0.5, w_{2}=0.8$, set $\delta=1.2$, and we get Figure 1 .

Figure 1 Optimal uniform subsidy (left) and the corresponding total sales (right)

From Figure 1, we find that the optimal per unit subsidy s^{*} is lower in setting 3 , and the total sales $\left(S_{1}^{*}+S_{2}^{*}\right)$ is higher in setting 3 . Hence, we can conclude that, by using the same budget K, having more retail-channel choice can increase product adoption. Therefore, our structural results obtained in Section 5 continue to hold even when the replenishment lead time is long so that both retailers have to place their orders before the market size is realized.

Appendix B: Proofs

Proof of Proposition 1 By considering the budget constraint, we can obtain that $D \leq \frac{1-w+\sqrt{(1-w)^{2}+8 K}}{4}$. As the objective function is increasing in D, we know that the optimal $D^{*}=\frac{1-w+\sqrt{(1-w)^{2}+8 K}}{4}$. And we can then calculate the optimal s^{*} via substitution.

Proof of Proposition 2 By taking the first order derivative of $f_{1}\left(D_{1}, D_{2}\right)$ with respect to D_{1}, D_{2}, we get:

$$
\begin{aligned}
& \frac{\partial f_{1}}{\partial D_{1}}=4\left(D_{1}+D_{2}\right)+\left(w_{1}-1\right)=2 s_{1}+\left(1-w_{1}\right)=2\left(D_{1}+D_{2}\right)+s_{1}>0 \\
& \frac{\partial f_{1}}{\partial D_{2}}=4\left(D_{1}+\delta D_{2}\right)+\left(w_{2}-\delta\right)=2 s_{2}+\left(\delta-w_{2}\right)=2\left(D_{1}+\delta D_{2}\right)+s_{2}>0
\end{aligned}
$$

from which we know that $f_{1}\left(D_{1}, D_{2}\right)$ is increasing in both D_{1} and D_{2}. As the objective function $D_{1}+k \cdot D_{2}$ is also increasing in both D_{1} and D_{2}, we know that the optimal D_{1}^{*} and D_{2}^{*} should satisfy the binding budget constraint (i.e., $f_{1}\left(D_{1}^{*}, D_{2}^{*}\right)=K$). Next, by considering the first order condition of the objective function of the donor's problem given by (10), we obtain $D_{2}^{*}=\frac{\left(\delta-w_{2}\right)-\left(1-w_{1}\right)}{4(\delta-1)}$. When $\delta-w_{2} \geq 1-w_{1}$, then D_{2}^{*} is feasible, else when $\delta-w_{2}<1-w_{1}$, we can find that the objective function is always decreasing in D_{2} when $D_{2}>0$, thus we can obtain $D_{2}^{*}=0$. As such, we can get the corresponding D_{1}^{*} and optimal subsidy $\left(s_{b_{i}}^{*}, s_{r_{i}}^{*}\right)$ via substitution. Moreover, as $\left(D_{1}^{*}, D_{2}^{*}\right)=\left(\frac{1}{4}\left(1-w_{1}+\sqrt{8 K+\left(1-w_{1}\right)^{2}}\right), 0\right)$ is always a feasible solution of donor's problem in setting 2 , we know that total demand in setting $2 D_{1}^{*}+D_{2}^{*} \geq \frac{1}{4}\left(1-w_{1}+\sqrt{8 K+\left(1-w_{1}\right)^{2}}\right)$.

Proof of Proposition 3 By denoting the subsidy cost (i.e., the left hand side of (13)) as $f_{2}\left(D_{1}, D_{2}\right)$ and by taking the first order derivative of $f_{2}(\cdot)$ with respect to D_{1}, D_{2}, we get:

$$
\begin{aligned}
& \frac{\partial f_{2}}{\partial D_{1}}=2 D_{1} \cdot \frac{2 \delta-1}{\delta}+2 D_{2}+\left(w_{1}-1\right)=2 s_{1}+\left(1-w_{1}\right)=\frac{2 \delta-1}{2 \delta} \cdot D_{1}+D_{2}+s_{1}>0 \\
& \frac{\partial f_{2}}{\partial D_{2}}=2(2 \delta-1) D_{2}+2 D_{1}+\left(w_{2}-\delta\right)=2 s_{2}+\left(\delta-w_{2}\right)=(2 \delta-1) D_{2}+D_{1}+s_{2}>0
\end{aligned}
$$

from which we know that $f_{2}\left(D_{1}, D_{2}\right)$ is increasing in both D_{1} and D_{2}. As the objective function $D_{1}+D_{2}$ is also increasing in both D_{1} and D_{2}, we know that the optimal D_{1}^{*} and D_{2}^{*} should satisfy the binding budget constraint (i.e., $f_{2}\left(D_{1}^{*}, D_{2}^{*}\right)=K$). Also, from (12), we know that D_{i} only depends on the total subsidy s_{i} for each product so that we can solve out the unique s_{i} based on the binding budget constraint, while the optimal $s_{b_{i}}^{*}$ and $s_{r_{i}}^{*}$ are not uniquely determined.

Proof of Corollary 1 To achieve the same demand $\left(D_{1}, D_{2}\right)$, the donor should spend $f_{1}\left(D_{1}, D_{2}\right)=2 D_{1}^{2}+$ $2 \delta D_{2}^{2}+4 D_{1} D_{2}+\left(w_{1}-1\right) D_{1}+\left(w_{2}-\delta\right) D_{2}$ in setting 2 and spend $f_{2}\left(D_{1}, D_{2}\right)=\frac{2 \delta-1}{\delta} D_{1}^{2}+2 D_{1} D_{2}+(2 \delta-1) D_{2}^{2}+$ $\left(w_{1}-1\right) D_{1}+\left(w_{2}-\delta\right) D_{2}$ in setting 3. By comparing $f_{1}\left(D_{1}, D_{2}\right)$ and $f_{2}\left(D_{1}, D_{2}\right)$, we obtain:

$$
f_{1}\left(D_{1}, D_{2}\right)-f_{2}\left(D_{1}, D_{2}\right)=\left(2-\frac{2 \delta-1}{\delta}\right) \cdot\left(D_{1}^{2}+\delta D_{2}^{2}\right)+2 D_{1} D_{2}>0 .
$$

Hence we know that to get the same $\left(D_{1}, D_{2}\right)$, the donor needs to spend more money in a single retailer case (i.e., setting 2) than two competing retailers case (i.e., setting 3). Recall Proposition2 and 3, the optimal solutions of the donor's problem all satisfy the binding constraint. Therefore, we know that the optimal solution $\left(D_{1,1}^{*}, D_{1,2}^{*}\right)$ of setting 2 with a single retailer satisfies $f_{1}\left(D_{1,1}^{*}, D_{1,2}^{*}\right)=K$. Meanwhile, we also know that $f_{2}\left(D_{1,1}^{*}, D_{1,2}^{*}\right)<K$, which means ($D_{1,1}^{*}, D_{1,2}^{*}$) is not the optimal solution of setting 3 with two competing retailers. As such, we know that the optimal solution of setting 3 yields a greater total demand (i.e., the objective function $D_{1}+D_{2}$) than the optimal solution of setting 2 .

Proof of Proposition 4 It is easy to check that the objective function $D=\frac{1-c}{4}+\frac{s^{\prime}}{4}$ and the donor's subsidy cost $s^{\prime} \cdot\left(\frac{1-c}{4}+\frac{s^{\prime}}{4}\right)$ are both increasing in s^{\prime}. Hence we know that the budget constraint is binding at the optimal solution. By solving the binding budget constraint, we obtain $s^{\prime}=\frac{-(1-c)+\sqrt{(1-c)^{2}+16 K}}{2}$ and we then get $D^{*}=\frac{(1-c)+\sqrt{(1-c)^{2}+16 K}}{8}, W^{*}=\frac{\left[(1-c)+\sqrt{(1-c)^{2}+16 K}\right]^{2}}{128}, \pi_{r}^{*}=\frac{\left[(1-c)+\sqrt{(1-c)^{2}+16 K}\right]^{2}}{64}, \pi_{m}^{*}=\frac{\left[(1-c)+\sqrt{(1-c)^{2}+16 K}\right]^{2}}{32}$ via substitution.

Proof of Proposition 5 By denoting $f_{1}\left(D_{1}, D_{2}\right)$ as the subsidy cost (i.e., the left hand side of (19)) and taking the first order derivative, we obtain:

$$
\begin{aligned}
& \frac{\partial f_{1}}{\partial D_{1}}=\left[-1+c_{1}+4\left(D_{1}+D_{2}\right)\right]+4 D_{1}+4 D_{2}=s_{1}^{\prime}+4\left(D_{1}+D_{2}\right)>0 \\
& \frac{\partial f_{2}}{\partial D_{2}}=\left[-\delta+c_{2}+4\left(\delta D_{2}+D_{1}\right)\right]+4\left(D_{1}+\delta D_{2}\right)=s_{2}^{\prime}+4\left(D_{1}+\delta D_{2}\right)>0
\end{aligned}
$$

Hence we know that for feasible $s_{1}^{\prime}, s_{2}^{\prime}, D_{1}, D_{2}$, the donor's expense $f_{1}\left(D_{1}, D_{2}\right)$ is increasing in D_{1} and D_{2}. As the objective function $D_{1}+D_{2}$ is also increasing in D_{1} and D_{2}, we know the optimal $\left(D_{1}^{*}, D_{2}^{*}\right)$ satisfies the binding budget constraint (i.e., $\left.\left[-1+c_{1}+4\left(D_{1}^{*}+D_{2}^{*}\right)\right] \cdot D_{1}^{*}+\left[-\delta+c_{2}+4\left(D_{1}^{*}+\delta D_{2}^{*}\right)\right] \cdot D_{2}^{*}=K\right)$. Next, by considering the first order condition of donor's objective function given by (20), we obtain $D_{2}^{*}=\frac{\delta-c_{2}-\left(1-c_{1}\right)}{\delta(\delta-1)}$. When $\delta-c_{2} \geq 1-c_{2}$, $D_{2}^{*}>0$ so that we can further compute $D_{1}^{*}=\frac{c_{2}-c_{1} \delta}{8(\delta-1)}+\frac{1}{8} \sqrt{c_{1}^{2}-2 c_{2}+16 K+\frac{\left(c_{1}-c_{2}\right)^{2}}{\delta-1}+\delta}$ via substitution. When $\delta-c_{2}<1-c_{2}, \frac{\delta-c_{2}-\left(1-c_{1}\right)}{\delta(\delta-1)}<0$ so that the objective function is always increasing in D_{2} when $D_{2}>0$. Hence we get the optimal $D_{2}^{*}=0$ and $D_{1}^{*}=\frac{1}{8}\left(1-c_{1}\right)+\sqrt{\left(1-c_{1}\right)^{2}+16 K}$. And we can then further compute the optimal subsidy $\left(s_{1}^{\prime *}, s_{2}^{\prime *}\right)$, and the corresponding π_{m}^{*}, π_{r}^{*} and W^{*} via substitution.

Proof of Proposition 6 By denoting $f_{2}\left(D_{1}, D_{2}\right)$ as the subsidy cost (i.e., the left hand side of (22)) and taking the first order derivative of $f_{2}\left(D_{1}, D_{2}\right)$ with respect to D_{1} and D_{2}, we get:

$$
\begin{aligned}
& \frac{\partial f_{2}}{\partial D_{1}}=c_{1}-1+2 D_{2}+2 D 1 \cdot\left(4+\frac{1}{1-2 \delta}-\frac{2}{\delta}\right)=2 s_{1}^{\prime}+1-c_{1}>0 \\
& \frac{\partial f_{2}}{\partial D_{2}}=c_{2}-\delta+2 D_{1}+D_{2} \cdot\left(-5+\frac{1}{1-2 \delta}+8 \delta\right)=2 s_{2}^{\prime}+\delta-c_{2}>0
\end{aligned}
$$

Therefore, for feasible $s_{1}^{\prime}, s_{2}^{\prime}, D_{1}, D_{2}$, the donor's expense $f_{2}\left(D_{1}, D_{2}\right)$ is increasing in D_{1} and D_{2}. As the objective function $D_{1}+D_{2}$ is also increasing in D_{1} and D_{2}, we obtain that the optimal $\left(D_{1}^{*}, D_{2}^{*}\right)$ should satisfy the binding budget constraint (i.e., $\left.\left[c_{1}-1+D_{2}^{*}+D_{1}^{*} \cdot\left(4+\frac{1}{1-2 \delta}-\frac{2}{\delta}\right)\right] \cdot D_{1}^{*}+\left[c_{2}-\delta+D_{1}^{*}+D_{2}^{*} \cdot\left(-\frac{5}{2}+\frac{1}{2-4 \delta}+4 \delta\right)\right] \cdot D_{2}^{*}=K\right)$, which is stated as the first statement of Proposition 6. Next, we know from (21) that D_{i} only depends on s_{i}^{\prime}, which also implies that the total subsidy per unit s_{i}^{\prime} for product i is uniquely determined but the optimal subsidy $\left(s_{b_{i}}^{*}, s_{r_{i}}^{*}, s_{m_{i}}^{*}\right)$ are not unique. Then we can easily check that π_{r}^{*}, π_{m}^{*}, and W^{*} also only depend on s_{i}^{\prime}. Finally,
we show the third statement by the following. To achieve the same demand (D_{1}, D_{2}) , the donor should spend $f_{1}\left(D_{1}, D_{2}\right)$ in the setting 2 and spend $f_{2}\left(D_{1}, D_{2}\right)$ in the setting 3 . By comparing $f_{1}\left(D_{1}, D_{2}\right)$ and $f_{2}\left(D_{1}, D_{2}\right)$, we obtain:

$$
f_{1}\left(D_{1}, D_{2}\right)-f_{2}\left(D_{1}, D_{2}\right)=\frac{1}{2}\left[D_{2}\left(12 D_{1}+5 D_{2}\right)+\frac{4 D_{1}^{2}}{\delta}+\frac{2 D_{1}^{2}+D_{2}^{2}}{2 \delta-1}\right]>0
$$

Hence we know that to get the same $\left(D_{1}, D_{2}\right)$, the donor needs to spend more money in setting 2 than setting 3. As the optimal solutions of the donor's problem all satisfy the binding constraint, we know that the optimal solution $\left(D_{1,1}^{*}, D_{1,2}^{*}\right)$ of setting 2 satisfies $f_{1}\left(D_{1,1}^{*}, D_{1,2}^{*}\right)=K$. Meanwhile, we also know that $f_{2}\left(D_{1,1}^{*}, D_{1,2}^{*}\right)<K$, which means $\left(D_{1,1}^{*}, D_{1,2}^{*}\right)$ is not the optimal solution of setting 3 . As such, we know that the optimal solution of setting 3 yields a greater total demand (i.e., $D_{1}+D_{2}$) than setting 2 .

Proof of Proposition 7 Then by taking the second order derivative of $E_{m}\left[\Pi_{r}(m)\right]$ with respect to z and using the Leibniz integral rule, we obtain

$$
\frac{\partial^{2} E_{m}\left[\Pi_{r}(m)\right]}{\partial z^{2}}=-\int_{\frac{2 z}{1+s}}^{\infty} \frac{2}{m} \cdot f(m) \mathrm{d} m<0
$$

Hence we know the expected profit function of the retailer is concave. Hence the optimal z^{*} satisfies the first order condition (i.e., $\int_{\frac{2 z^{*}}{1+s}}^{\infty}\left(1+s-\frac{2 z^{*}}{m}\right) \cdot f(m) \mathrm{d} m-w=0$). We use $g(z, s, w)$ to represent the function $\int_{\frac{2}{2 *}}^{1+s}\left(1+s-\frac{2 z^{*}}{m}\right) \cdot f(m) \mathrm{d} m-w$, and we have $g\left(z^{*}, s, w\right)=0$. By taking the first order derivative of $g(z, s, w)$ with respect to z, s and w, we get:

$$
\frac{\partial g}{\partial z}=-\int_{\frac{2 z}{1+s}}^{\infty} \frac{2}{m} \cdot f(m) \mathrm{d} m<0, \quad \frac{\partial g}{\partial s}=\int_{\frac{2 z}{1+s}}^{\infty} f(m) \mathrm{d} m>0, \quad \frac{\partial g}{\partial w}=-1<0
$$

From the above, we know that $g(z, s, w)$ is increasing in s and decreasing in z and w. Hence to ensure $g\left(z^{*}, s, w\right)=$ 0 , we can easily know that z^{*} is increasing in s and decreasing in w.

Proof of Proposition 8 By taking the first order derivative of $E_{M}[S]$ with respect to s, we get:

$$
\begin{aligned}
\frac{\partial E_{M}[S]}{\partial s}= & \frac{1+s}{2} \cdot \frac{2 z^{*}}{1+s} \cdot f\left(\frac{2 z^{*}}{1+s}\right) \cdot \partial\left(\frac{2 z^{*}}{1+s}\right) / \partial s+\int_{0}^{\frac{2 z^{*}}{1+s}} \frac{m}{2} \cdot f(m) \mathrm{d} m \\
& -z^{*} f\left(\frac{2 z^{*}}{1+s}\right) \cdot \partial\left(\frac{2 z^{*}}{1+s}\right) / \partial s+\int_{\frac{2 z^{*}}{1+s}}^{\infty} \frac{\partial z^{*}}{\partial s} \cdot f(m) \mathrm{d} m \\
= & \int_{0}^{\frac{2 z^{*}}{1+s}} \frac{m}{2} \cdot f(m) \mathrm{d} m+\int_{\frac{2 z^{*}}{1+s}}^{\infty} \frac{\partial z^{*}}{\partial s} \cdot f(m) \mathrm{d} m
\end{aligned}
$$

From Proposition 7 we know that z^{*} is increasing in s. Hence we obtain that $\frac{\partial E_{M}[S]}{\partial s}>0$, which indicates that the total sale is increasing in the donor's subsidy s. With the objective function $E_{M}[S]$ and the total subsidy
cost $s \cdot E_{M}[S]$ both increasing in s, we know that the optimal solution will be achieved at the binding budget constraint. With the binding budget constraint, we know that when the budget K increase, the optimal s^{*} will increase.

By taking the first order derivative of the subsidy cost $s \cdot E_{M}[S]$ with respect to z^{*}, we get $\frac{\partial\left(s \cdot E_{M}[S]\right)}{\partial z^{*}}=s$. $\left(\int_{\frac{2 z}{1+s}}^{\infty} f(m) \mathrm{d} m\right)>0$, from which we know the cost is increasing in z^{*}. As we have shown in Proposition 7 that z^{*} is decreasing in the wholesale price w, we obtain that the cost is decreasing in w. To ensure budget constraint is binding, we get that when w increases, the optimal s^{*} will increase.

Proof of Proposition 9 By taking the second order derivative of $E_{M}\left[\Pi_{r}(m)\right]$, we get:

$$
\frac{\partial E_{M}^{2}\left[\Pi_{r}(m)\right]}{\partial z_{1}^{2}}=\frac{\partial M_{1}}{\partial z_{1}} \cdot 0+\int_{M_{1}}^{\infty}\left(\frac{-2(\delta-1)}{m \delta}\right) \cdot f(m) \mathrm{d} m<0
$$

from which we know the retailer's expected profit by selling product 1 is a concave function of z_{1}. By considering the first order condition, we obtain that the optimal ordering decision for product 1 (i.e., z_{1}^{*}) satisfies $\int_{\frac{2 z_{1}^{*}(\delta-1)}{\delta s_{1}+w_{2}-s_{2}}}^{\infty}\left[\frac{-2(\delta-1) z_{1}^{*}}{m \delta}+\frac{\delta s_{1}-s_{2}+w_{2}}{\delta}\right] \cdot f(m) \mathrm{d} m-w_{1}=0$.

We use $g\left(z_{1}, s_{1}, s_{2}, w_{1}, w_{2}\right)$ to represent $\int_{\frac{2 z_{1}(\delta-1)}{\delta s_{1}+w_{2}-s_{2}}}^{\infty}\left[\frac{-2(\delta-1) z_{1}}{m \delta}+\frac{\delta s_{1}-s_{2}+w_{2}}{\delta}\right] \cdot f(m) \mathrm{d} m-w_{1}$, and we have shown that $g\left(z_{1}^{*}, s_{1}, s_{2}, w_{1}, w_{2}\right)=0$. By taking the first order derivative of $g\left(z_{1}, s_{1}, s_{2}, w_{1}, w_{2}\right)$ with respect to $z_{1}, s_{1}, s_{2}, w_{1}, w_{2}$, we get:

$$
\begin{array}{r}
\frac{\partial g}{\partial z_{1}}=\int_{M_{1}}^{\infty}\left(\frac{-2(\delta-1)}{m \delta}\right) \cdot f(m) \mathrm{d} m<0, \quad \frac{\partial g}{\partial s_{1}}=\int_{M_{1}}^{\infty} f(m) \mathrm{d} m>0 \\
\frac{\partial g}{\partial s_{2}}=\int_{M_{1}}^{\infty}-\frac{1}{\delta} f(m) \mathrm{d} m<0, \quad \frac{\partial g}{\partial w_{1}}=-1<0, \quad \frac{\partial g}{\partial w_{2}}=\int_{M_{1}}^{\infty} \frac{1}{\delta} f(m) \mathrm{d} m>0
\end{array}
$$

To ensure $g\left(z_{1}^{*}, s_{1}, s_{2}, w_{1}, w_{2}\right)=0$, we can easily obtain that z_{1}^{*} is increasing s_{1} and w_{2}, while is decreasing in s_{2} and w_{1}.

Proof of Proposition 10 We use $S S_{1}(m)$ and $S S_{2}(m)$ to represent the total sales (i.e., $S_{1}+S_{2}$) under cases when $m \leq M_{1}$ and $m \geq M_{1}$, respectively; and we have $S S_{1}\left(M_{1}\right)=S S_{2}\left(M_{1}\right)$. By taking the first order derivative of $E_{M}\left[S_{1}+S_{2}\right]$ with respect to s, we obtain:

$$
\begin{aligned}
\frac{\partial E_{M}\left[S_{1}+S_{2}\right]}{\partial s}= & \frac{\partial M_{1}}{\partial s} \cdot S S_{1}\left(M_{1}\right) \cdot f\left(M_{1}\right)+\int_{0}^{M_{1}} \frac{m}{2} \cdot f(m) \mathrm{d} m \\
& -\frac{\partial M_{1}}{\partial s} \cdot S S_{2}\left(M_{1}\right) \cdot f\left(M_{1}\right)+\int_{M_{1}}^{\infty}\left(\frac{\partial z_{1}^{*}}{\partial s}+\frac{m}{2 \delta}\right) \cdot f(m) \mathrm{d} m \\
= & \int_{0}^{M_{1}} \frac{m}{2} \cdot f(m) \mathrm{d} m+\int_{M_{1}}^{\infty}\left(\frac{\partial z_{1}^{*}}{\partial s}+\frac{m}{2 \delta}\right) \cdot f(m) \mathrm{d} m
\end{aligned}
$$

When $s_{1}=s_{2}=s$, we know that the optimal order quantity z_{1}^{*} satisfies $g\left(z_{1}^{*}, s, w_{1}, w_{2}\right)=\int_{\frac{2}{\delta z_{1}^{*}(\delta-1)}}^{\infty s+w_{2}-s} \frac{-2(\delta-1) z_{1}}{m \delta}+$ $\left.\frac{\delta s-s+w_{2}}{\delta}\right] \cdot f(m) \mathrm{d} m-w_{1}=0$. By taking the first order derivative of $g(\cdot)$, we find that $\frac{\partial g}{\partial z_{1}}<0$ and $\frac{\partial g}{\partial s}>0$, from which we can further know z_{1}^{*} is increasing in s so as to ensure $g\left(z_{1}^{*}, s, w_{1}, w_{2}\right)=0$. As z_{1}^{*} is increasing in s, we can obtain that the total expected sales is increasing in s (i.e., $\frac{\partial E_{M}\left[S_{1}+S_{2}\right]}{\partial s}>0$). Moreover, it is obvious that the total expense $E_{M}\left[s \cdot\left(S_{1}+S_{2}\right)\right]=s \cdot E_{M}\left[S_{1}+S_{2}\right]$ is also increasing in s. Hence we know that the optimal per unit subsidy s^{*} should satisfy the binding budget constraint.

Proof of Proposition 11 By taking the first order derivative of $E_{M}\left[\Pi_{r_{1}}(M)\right]$ with respect to z_{1}, we get:

$$
\begin{aligned}
\frac{\partial E_{M}\left[\Pi_{r_{1}}(m)\right]}{\partial z_{1}}= & \frac{\partial M_{2}}{\partial z_{1}} \cdot \Pi_{r_{1}, 1}\left(M_{2}\right) \cdot f\left(M_{2}\right)+\int_{0}^{M_{2}}\left(-w_{1}\right) \cdot f(m) \mathrm{d} m \\
& -\frac{\partial M_{2}}{\partial z_{1}} \cdot \Pi_{r_{1}, 2}\left(M_{2}\right) \cdot f\left(M_{2}\right)+\int_{M_{2}}^{\infty}\left[-\frac{4(\delta-1)}{m(2 \delta-1)} \cdot z_{1}+\frac{\delta-1-\left(s_{2}-w_{2}\right)}{2 \delta-1}+s_{1}-w_{1}\right] \cdot f(m) \mathrm{d} m \\
= & -w_{1}+\int_{M_{2}}^{\infty}\left[-\frac{4(\delta-1)}{m(2 \delta-1)} \cdot z_{1}+\frac{\delta-1-\left(s_{2}-w_{2}\right)}{2 \delta-1}+s_{1}\right] \cdot f(m) \mathrm{d} m
\end{aligned}
$$

By checking the second order derivative of $E_{M}\left[\Pi_{r_{1}}(m)\right]$, we obtain: $\frac{\partial^{2} E_{M}\left[\Pi_{r_{1}}(m)\right]}{\partial z_{1}^{2}}=\frac{\delta-1}{2 \delta-1} \cdot\left[\frac{1}{\delta} \cdot f\left(M_{2}\right)-\right.$ $\left.4 \int_{M_{2}}^{\infty} \frac{1}{m} f(m) \mathrm{d} m\right]<0$ when $\frac{1}{\delta} \cdot f\left(M_{2}\right)<4 \int_{M_{2}}^{\infty} \frac{1}{m} f(m) \mathrm{d} m$. Hence we know that $E_{M}\left[\Pi_{r_{1}}(M)\right]$ is a concave function of z_{1}; and we can obtain Proposition 11 by considering the first order condition.

Proof of Proposition 12 By taking the first order derivative of $E_{M}\left[S_{1}+S_{2}\right]$ with respect to s, we get:

$$
\frac{\partial E_{M}\left[S_{1}+S_{2}\right]}{\partial s}=\int_{0}^{M_{2}} \frac{1+2 \delta}{4 \delta-1} \cdot m \cdot f(m) \mathrm{d} m+\int_{M_{2}}^{\infty}\left[\frac{2(\delta-1)}{2 \delta-1} \cdot \frac{\partial z_{1}^{*}}{\partial s}+\frac{m}{2 \delta-1}\right] \cdot f(m) \mathrm{d} m
$$

From Proposition 11, we know that $-w_{1}+\int_{M_{2}}^{\infty}\left[-\frac{4(\delta-1)}{m(2 \delta-1)} \cdot z_{1}^{*}+\frac{\delta-1-\left(s_{2}-w_{2}\right)}{2 \delta-1}+s_{1}\right] \cdot f(m) \mathrm{d} m=0$. Hence when $s_{1}=s_{2}=s$, we denote $g\left(s, z_{1}\right)=-w_{1}+\int_{M_{2}}^{\infty}\left[-\frac{4(\delta-1)}{m(2 \delta-1)} \cdot z_{1}^{*}+\frac{\delta-1-\left(s-w_{2}\right)}{2 \delta-1}+s\right] \cdot f(m) \mathrm{d}$ and we know $g\left(s, z_{1}^{*}\right)=0$. It is easy to check that $\frac{\partial g}{\partial z}<0$ and $\frac{\partial g}{\partial s}>0$, from which we can obtain that z_{1}^{*} is increasing in s so as to ensure $g\left(s, z_{1}^{*}\right)=0$. With $\frac{\partial z_{1}^{*}}{\partial s}>0$, we can show $\frac{\partial E_{M}\left[S_{1}+S_{2}\right]}{\partial s}>0$. Therefore, we obtain that both the objective function and the subsidy cost shown in the donor's problem (41) is increasing in s, from which we know that the budget constraint should be binding at the optimal solution.

