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This paper introduces a new method to improve the reliability and confidence level of
defect depth measurement based on pulsed thermographic inspection by addressing the
over-fitting problem. Different with existing methods using a fixed model structure for all
pixels, the proposed method adaptively detects the optimal model structure for each pixel
thus targeting to achieve better model fitting while using less model terms. Results from
numerical simulations and real experiments suggest that (a) the new method is able to
measure defect depth more accurately without a pre-set model structure (error is usually
within 1% when SNR432 dB) in comparison with existing methods, (b) the number of
model terms should be 8 for signals with SNR∈⎡⎣ ]dB dB30 , 40 , 8–10 for SNR440 dB and
5–8 for SNRo30 dB, and (c) a data length with at least 100 data points and 2–3 times of
the characteristic time usually produces the best results.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Over the last decade, pulsed thermography has gained increasing attention due to its rapid, robust, non-contact, non-
invasive and in-expensive characteristics. It has been qualitatively and quantitatively applied to different classes of material
to detect a variety of in-service degradations [1] such as corrosion in metals, impact damages and delamination in com-
posites [2]. Quantitative characterisation by extracting degradation depth, size, shape and thermal properties has been
proven to be effective in pulsed thermography [3–10].

Quantitative prediction of defect depth has been an important research topic over the past 20 years. Most of the pro-
posed methods estimate the defect depth using a characteristic time. For the different methods based on thermal contrast in
the normal time scale or logarithmic scale, the peak time of the first or second derivative of temperature curve is usually
considered as the characteristic time. The Peak Temperature Contrast method (PTC) [11] calculated the thermal contrast
between the defective/damaged region and an adjacent sound or non-defective region. Because of the 3D heat conduction
effect, the temperature contrast first increases with time and then decreases [11]. The time at which the temperature
difference rises to its maximum value is approximately proportional to the square of the defect depth, and the pro-
portionality coefficient depends on the size of the defect. The smaller the size, the lower the maximum contrast and the
er Ltd. This is an open access article under the CC BY license

ao).

www.sciencedirect.com/science/journal/08883270
www.elsevier.com/locate/ymssp
http://dx.doi.org/10.1016/j.ymssp.2016.08.033
http://dx.doi.org/10.1016/j.ymssp.2016.08.033
http://dx.doi.org/10.1016/j.ymssp.2016.08.033
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2016.08.033&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2016.08.033&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2016.08.033&domain=pdf
mailto:yifan.zhao@cranfield.ac.uk
http://dx.doi.org/10.1016/j.ymssp.2016.08.033


Y. Zhao et al. / Mechanical Systems and Signal Processing 85 (2017) 382–395 383
shorter the peak contrast time is [12]. This dependence limits the applications of the PTC method. Peak Slope Time (PST) is
corresponding to the peak time of the 1st derivative of thermal contrast. It was found that PST is also approximately
proportional to the square of the defect depth and the proportionality coefficient does not depend on the defect size [13].
Krapez et al. [14] proposed to use an early detection of the contrast to recover defect depth that requires a pre-set threshold.
Maldague [15] proposed to use the Discrete Fourier Transform (DFT) to calculate defect depth in the frequency domain. It
was observed that deeper defects are visible at lower frequencies while shallower defects are detected at higher frequencies.
A relationship between the frequency and depth was then studied. All above-mentioned methods require a reference point
which is normally chosen from a sound area manually. There are several reports that tried to automatically obtain the
reference. Ringermacher et al. [16] used the average temperature from the entire surface before flash as the reference. This
works well only when the damaged region is small and the surface is uniformly illuminated. Pilla et al. [17] used the first
several frames to calculate a reference temperature. However, sometimes automatic selection of the reference can be
challenging, especially when the size of defect is large.

Recently some reference-free methods have been developed. Shepard et al. [18] suggested to use the peak time of the
second derivative of temperature decay in the logarithmic scale to determine defect depth, which is also called Log Second
Derivative (LSD) method. It is observed that the second derivative peak time tLSD appears earlier than the Peak Slope Time
tPST , before it is affected by 3D conduction. This method is more accurate than the PST method described above. However,
applying the second order differentiation of the temperature can be noisy. A polynomial function fitting of temperature
decay was therefore proposed to address this problem, where the second derivative is calculated directly from the fitted
model. In this case, fitting the curve on the exact location of the second derivative peak is very important [6]. Zeng et al. [19]
proposed an Absolute Peak Slope Time (APST) method to predict the defect depth. A new time-dependent function is
obtained by multiplying the original temperature decay with the square root of the corresponding time. The absolute peak
slope time tAPST is defined as the peak time of the first derivative of this new function. It has been demonstrated that the
square of the defect depth has a linear relation with tAPST . A polynomial model can also be used to fit the new time-
dependent function and the first derivative can be calculated directly from the fitted model. All of the methods described are
susceptible to signal noise that is typically large in thermography data because the fitted models are data-driven without
considering the underlying physics-based models. Sun [6] introduced a method based on Least-Square Fitting (LSF) of a
theoretical heat transfer model to the temperature decay for a direct determination of depth. This method also accounts for
part of the 3D heat conduction effect and therefore is expected to be more reliable and robust when the 3D effect is
significant. Although fitting based on physics-based models, where the model structure is known, reduces the sensitivity to
noise, it requires the estimation of multiple unknown parameters simultaneously using optimisation techniques. This can be
very time-consuming and requires advanced searching methods.

This paper proposes a Nonlinear System Identification (NSI) method to measure the defect depth in a more automatic
and flexible manner. This paper is organised as follows. The proposed method is presented in Section 2. The results and
discussions of the numerical simulations and the experimental example are presented in Section 3 while the conclusions are
given in Section 4.
2. Nonlinear System Identification method

2.1. Theory

In pulsed thermographic inspection, the experimental setup of which is illustrated in Fig. 1(a), a short and high energy
light pulse is projected onto the sample surface through one or two flash lamps. Heat conduction then takes place from the
heated surface to the interior of the sample, leading to a continuous decrease of the surface temperature [6]. An infrared
camera controlled by a PC captures the time-dependent response of the sample surface temperature. In areas of the sample
surface above a defect (see point 2 in Fig. 1) the transient flow of heat from the surface into the sample bulk is wholly or
partially obstructed, thus causing a temperature deviation from the sound areas (see point 1 in Fig. 1). The time when the
temperature deviation occurs can be used to estimate the defect depth. The surface temperature due to a defect at depth L
for a plate is given by [20,21].
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where∆ ( )T t is the temperature variation of the surface at time t , Q is the pulse energy J, ρ is the material density (kg/m3), c is
the heat capacity (J/K kg), k is the thermal conductivity of the material (W/(K m)), and α is the thermal diffusivity (m /s2 ). In
order to obtain a specific characteristic time without a reference curve, Zeng et al. [19,22] proposed to first multiply both
sides of Eq. (1) with t , and define a new time-dependent function ( )f t as:
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Fig. 1. (a) Experimental configuration of the pulsed thermographic inspection, where point 1 denotes a position on the sample surface without defect
underneath and point 2 denotes a position with defects underneath; (b) Typical observed time–temperature decay curves in the logarithmic domain for
the point 1 and 2, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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where ρ=e ck is the thermal diffusivity. The first derivative of ( )f t is expressed as:
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The peak time of ( )′f t , tAPST , is the corresponding time that the second derivative of ( )f t equals to zero, expressed as
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and the solution can be written as

α
= ( )t

L
2 5APST
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When multiple reflections are considered, the equation can also be expressed as [19]

α
= ( )t

L
1. 93 6APST

2

to provide a more accurate estimation. Eq. (6) is especially suitable for crack detection, where due to the steep slope of
crack walls, incident light (from the flash lamp) bounces against the walls several times. Each bounce heats up the crack
walls slightly [23], which changes the thermal behaviour slightly in comparison with the single reflection. If α is known, the
value of tAPST can be used to measure the sample thickness or defect depth, or estimate the thermal diffusivity α if L is
known. In practical applications, thermographic signals are typically corrupted by imaging noise and affected by 3D heat
conduction. These uncertainties will be further amplified through calculating the first derivative of ( )f t . Noise therefore
affects the accuracy of tAPST measurement and sometimes even no peak is detected. To address this problem, this paper
proposes a Nonlinear System Identification (NSI) method to fit ( )f t to improve the fidelity of depth measurement.

2.2. Nonlinear System Identification method

Fitting a heat transfer model as shown in Eq. (2) is challenging because in most real-world scenarios too many para-
meters are unknown. Without considering any physical parameters, a polynomial model can be used to represent the
complex thermal behaviour. This can be expressed as

( ) ∑ ε= ∙ + ( )
( )=

f t a t t
7j

N

j
j

0

where N is the model order, ε( )t is the noise and aj are coefficients to be estimated. LSD uses such a model to fit the time–
temperature dependency in the logarithmic domain [24]. The challenge is how to automatically select the model order N .
This value should be large enough to ensure a good fit to the observed data. However, N should also not be too large as it will
cause overfitting problems [25]. There is very limited literature to report how to select the model order for fitting time–
temperature dependency of active thermographic inspections or discuss about the challenge.
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Initially, consider the linear-in-the-parameters model [26]
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where pm are candidate model terms, B denotes the number of all candidate model terms, and θm are model coefficients. Let
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each selected model term is measured by an index, called the Error Reduction Ratio (ERR), which indicates how much of the
variance change in the system response, in percentage terms, can be accounted for by including the relevant model terms.
Values of ERR range from 0% to 100%. The larger ERR of a term, the higher the dependence is between this term and the
output.

To stop the search procedure and determine the number of significant terms N , a criteria called Penalised Error-to-Signal
Ratio (PESR) is introduced [30]. It can be written as

( )
∑=

−
( − )

( )
λ =

PESR ERR
1

1
1

21
n

n
M

i

n

i2
1

This term was introduced to monitor the search procedure, where n denotes the index of the selected terms. The search
procedure stops when PESRn arrives at the first valley. The effect of the adjustable parameter λ on the results is discussed in
[30], which suggested that λ should be chosen between 5 and 10. PESR has been used to monitor the search of model
structure for various application [31–33].

Once the model structure is determined, the unknown parameters θi in Eq. (13) can then be estimated using the least
square method. The temperature decay curve can be reconstructed by
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T t
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t
t t t

t 22
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The first derivative of ^( )f t can be calculated by
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If α is known, the thickness can be estimated by

α^ = ∙ ( )L t2 24NSI

where tNSI denotes the highest peak time of ( )^′f t . Or if L is known, the thermal diffusivity can be estimated by

α̂ =
( )

L
t2 25NSI

2

Note the examples of this paper focus on measurement of sample thickness and thermal diffusivity, so the coefficient of
2 was used. To inspect a defective sample, especially when the defect is small, multiple reflections should be considered by
replacing the coefficient 2 in Eqs. (24) and (25) with 1.93.

The procedure of the proposed NSI method can be summarised:

) Extract the temperature decay data for a pixel;
) Define a set of candidate terms as shown in Eq. (11). This paper used { … }−t t t1, , , , B2 1 for all examples;
) Calculate the ERR value of each candidate term, and the term with maximum ERR value is selected;
) Calculate the PESR value after a new term is selected. The term selection procedure stops when PESR arrives the first
valley.

) Reconstruct the time–temperature functions ( )ΔT̂ t and ^( )f t by Eq. (22);
) Calculate the first derivative of ^( )f t by Eq. (23), and then detect the peak time;
) Estimate the sample thickness or defect depth by Eq. (24) or the thermal diffusivity by Eq. (25);
) Repeat the steps 1–7 for all pixels.
3. Results and discussions

3.1. Numerical simulation without noise

To validate the proposed method, numerical simulations were produced by
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where the parameters Q R, and e were set to 1 and the thermal diffusivity was set to × −1 10 m /s6 2 . The symbol, ε( )t , denotes
white noise with a zero mean and a standard deviation σε. Assume σT denotes the standard deviation of the signal without
noise. The signal-to-noise ratio (SNR), representing the level of noise, is written as
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Initially, simulation data without noise for the thickness value of 2 mm were produced. The proposed NSI method was
then applied to these data to estimate the thickness assuming α is known. The sample rate was chosen as 100 Hz and totally
500 data points (5 s) were sampled. The principle of the proposed method can be demonstrated by Fig. 2 and Table 1. The
observed temperature curves ( )∆T t and ( )f t are plotted by the solid blue curve in Fig. 2(a) and (b), respectively. The
maximum order of the candidate terms B was chosen as 15. Table 1 shows the values of PESR with different numbers of
terms against the selection of the parameter λ. It can be observed that the PESR arrives at the first valley when the number
of terms is 9, which is therefore selected as the final number of model terms N . Furthermore, it is inferred that the selection
of λ is not sensitive to the selection of N due to the fact that N is chosen as 9 for all considered values of λ. In this paper, λ was
chosen as 6 for all examples. The reconstructed ( )∆T t and ( )f t can then be produced using Eq. (22), and they are plotted

by the dash red curve in Fig. 2(a) and (b) respectively. Inspection shows that the reconstructed signals fit the observed
signals very well, which is also confirmed by inspection of the fitting error between ( )f t and ( )f̂ t , shown in Fig. 2(c). The
first derivatives of ^( )f t was then calculated by Eq. (23) and the result is illustrated by Fig. 2(d). The peak of ( )^′f t , marked by
the arrow, was then detected at 2.04 s. If α is known, the estimated thickness based on Eq. (24) is 2.02 mm. The error is
within 1% considering the true value of 2 mm.

To assess the sensitivity of the number of the fitting model order for the LSD and APST methods, Fig. 3(a) compares the
estimated thickness using three considered methods (LSD, APST, and NSI) for simulation data without noise against the true
thickness. The number of terms was chosen in the range between 5 and 20. Note that the number of terms determines the
model order for the LSD and APST methods, which is not the case for the NSI method. It has been observed that, not
surprising, for both LSD and APST methods, a higher number of model terms produces better results. It indicates that for
data without noise a selection of a high order model of both LSD and APST methods can guarantee an accurate result.
Fig. 2. (a) The simulated temperature Δ ( )tT (blue solid plot) and reconstructed temperature Δ^( )T t (red dash plot) with a thickness of 2 mm, plotted in the
logarithmic domain; (b) The simulated ( )f t (blue solid plot) and reconstructed ^( )f t (red dash plot) temperature curves; (c) The errors between ( )f t and
^( )f t ; (d) The first derivative of ^( )f t , where the arrow highlights the peak at the time of 2.04 s. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)



Table 1
PESR values for different numbers of selected model terms against different values of λ. The final number of model term N is chosen when the PESR arrives
the first valley.

Number of terms λ

5 6 7 8 9

1 5.132E�01 5.153E�01 5.174E�01 5.195E�01 5.216E�01
2 2.322E�01 2.341E�01 2.361E�01 2.380E�01 2.400E�01
3 2.430E�03 2.460E�03 2.490E�03 2.520E�03 2.560E�03
4 8.770E�04 8.918E�04 9.070E�04 9.226E�04 9.386E�04
5 5.320E�04 5.434E�04 5.551E�04 5.672E�04 5.798E�04
6 8.755E�05 8.983E�05 9.220E�05 9.467E�05 9.723E�05
7 8.284E�05 8.540E�05 8.807E�05 9.087E�05 9.380E�05
8 7.946E�06 8.229E�06 8.529E�06 8.844E�06 9.178E�06
9 2.387E�06 2.484E�06 2.587E�06 2.697E�06 2.814E�06
10 2.390E�06 2.499E�06 2.617E�06 2.743E�06 2.879E�06
11 1.624E�06 1.708E�06 1.798E�06 1.895E�06 2.000E�06
12 3.571E�07 3.774E�07 3.995E�07 4.236E�07 4.499E�07
13 5.997E�07 6.372E�07 6.783E�07 7.236E�07 7.736E�07
14 1.544E�06 1.650E�06 1.767E�06 1.897E�06 2.042E�06
15 2.502E�06 2.688E�06 2.897E�06 3.130E�06 3.392E�06
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3.2. Numerical simulation with noise

In practice, raw data are contaminated with noise and other signal degradations [11,34]. Errors of temperature mea-
surement with infrared cameras are typically classified into (a) errors of method, calibration errors and electronic path
errors [35]. The level of noise is different case to case. To evaluate the performance of all three considered methods against
different levels of noise, numerical simulations were produced and analysed with the SNR from 20 dB to 40 dB. For each
considered SNR, 100 tests were repeated and the estimated thickness was averaged. Fig. 3(b)–(d) illustrates the results of
three examples with the noise level at 40 dB, 30 dB, and 20 dB, respectively. Inspection of these figures clearly indicates that
the results for both LSD and APST methods are sensitive to the selection of the model order. The LSD method produced
relatively large errors of the estimated thickness when the model order is larger than 14 for the noise level at 40 dB (see
Fig. 3(b)), 13 for the noise level at 30 dB (see Fig. 3(c)) and 10 for the noise level at 20 dB (see Fig. 3(d)). Similar results have
been observed for the APST method. Determining an optimal number of model order automatically is a challenge because it
depends on the level of noise unless the noise level can be determined before applying these methods. This is usually
difficult and sometimes impossible for real-world data. It can also be observed that the errors of depth measurement for all
considered methods increase following the decrease of SNR. These observations are not surprising because a model with a
high order will over-fit the observed signal corrupted by noise. Over-fitting generally occurs when a model is excessively
complex, such as having too many parameters relative to the number of observations. The model will describe noise instead
of the underlying relationship. This problem can be further amplified during the calculation of the first or second derivative
of the model fitting. Fig. 4 aims to explain this problem in more detail. A numerical simulation was produced with a SNR of
20 dB. The mode order was chosen as 13 for both LSD and APST methods. Fig. 4(a) and (c) show the raw ( )∆T t and ( )f t with
corresponding fitting using LSD and APST, respectively. Fig. 4(b) shows the plot of the second derivative of ( )ΔT̂ t in the
logarithmic domain, where the red arrow marks the highest peak selected and the blue arrow marks the peak that should
be selected. The over-fitting problem caused an underestimation of the detected thickness, i.e. the detected thickness is
0.22 mm based on Fig. 4(b), which is much smaller than the true value. The plot of the first derivative of ( )f̂ t is shown in
Fig. 4(d), where the red arrow marks the highest peak and the blue arrow marks the peak that should be selected. The over-
fitting problem caused in this case an overestimation, i.e. the detected thickness is 2.18 mm based on Fig. 4(d), which is
larger than the true value. However, for the proposed NSI method, the number of model terms is selected automatically by
monitoring the trade-off between the model complexity, fitting error and the number of sampling using Eq. (21). This
advantage is especially important to analyse real experimental data where the noise levels are unknown. To further evaluate
the performance of the proposed technique, Fig. 5 shows the histogram of the estimated thickness for different noise levels.
With a decrease of SNR to 20 dB it has been observed that both accuracy and precision, described by the mean and standard
deviation respectively, are reduced by inspecting that ^= ±L 2.02 0.02 mm for 40 dB, ^= ±L 2.07 0.13 mm for 30 dB, and
^= ±L 2.30 0.32 mm for 20 dB.

To further explore the results using the proposed method in higher resolution, Fig. 6 shows the averaged values of the
selected N and estimated thickness against the value of SNR as well as corresponding standard derivatives. Fig. 6(a) shows
that the value of N was set to 8 for signals with SNR in the range from 45 dB to 30 dB. For signals with SNR larger than 45 dB,
a higher number of N ( >N 8) was chosen. For signals with SNR smaller than 30 dB, a relative small number of N ( ≤ ≤N5 8)
was chosen to avoid the over-fitting problem.

Inspection of Fig. 6(b) shows that for signals with SNR larger than 32 dB, the error of the estimated thickness is within
0.02 mm. For signals with SNR smaller than 32 dB, the error increases almost exponentially following the decrease of SNR



Fig. 3. Comparison of estimated thickness using the APST method (the blue plot), the LSD method (the green plot) and the propose NSI method (the red
dash line) as well as the true thickness (the black dash line). For the APST and LSD methods, different model orders, from 5 to 20, were tested. For the
proposed NSI method, the number of model terms is automatically chosen. This process was applied to numerical simulations data with different levels of
noise: (a) no noise, (b) SNR¼40 dB, (c) SNR¼30 dB, and (d) SNR¼20 dB. The results were produced by averaging 100 tests for each considered SNR. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(increase of noise level), which is mainly due to finding the wrong peak as shown in Fig. 4. The precision of thickness
measurement, described by the standard deviation, has the similar trend as the accuracy.

3.3. Selection of sampling parameters

This section discusses how the selection of sampling parameters affects the results. Assume that the sampled data length
is expressed as Mt in the unit of time and Mp is the amount of data point. Obviously,

= ∙ ( )M M f 28p t

where f is the sample rate. Let

α
= ∙ = ( )M k t k

L
2 29t NSI

2

Obviously, to ensure the peak time of ( )^′f t is detectable, the coefficient k must be larger than 1. Fig. 7 shows the esti-
mated thickness with different values of k where Mp was fixed as 500 to ensure sufficient data for sampling. It has been
observed that if k is between 1 and 1.5 the error of estimation can be up to 0.5 mm due to insufficient sampling. If k is
between 1.5 and 10, the error can be up to 0.2 mm, which is within a more acceptable range. If k is more than 10, the error is



Fig. 4. An example of the over-fitting problemwhere the SNR of the numerical simulation is 20 dB, and the model order was chosen as 13 for both LSD and
APST methods. (a): The simulated temperature Δ ( )tT (the blue plot) and reconstructed temperature Δ^( )T t (the red plot) using the LSD method plotted in
logarithmic domain; (b) the second derivative of the LSD fitting where the red arrow marks the peak actually detected and the blue arrow marks the peak
that should be detected; (c) The simulated ( )f t (the blue plot) and reconstructed ^( )f t (the red plot) using the APST method; (d) the first derivative of the
APST fitting where the red arrow marks the peak actually detected and the blue arrow marks the peak that should be detected. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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significantly increased because the model primarily fits the data where the temperature is almost stable while the key
segment of rapid temperature decay is fitted badly. It is inferred from these plots that the value of k is recommended to be
chosen between 2 and 3.

To determine the minimum number of data points required to produce reliable results, Fig. 8 shows the effect to the
results from different values of Mt where k was chosen as 2. It has been observed that the error can be up to more than
0.5 mmwhen Mt is between 10 and 20. This observation is another proof of over-fitting where the number of observation is.

insufficient with a relatively complex model structure. When Mt is between 20 and 80, the error is significantly reduced.
For example, the error is reduced from 0.3 mm to 0.02 mm at a noise level of 50 dB. If Mt is larger than 80, the variation of
error is relatively small for all three cases. Hence, to ensure the reliability of results produced by the proposed method, at
least 100 data points are required if the noise level is lower than 35 dB. More data points are suggested if the noise level is
higher. Suggested selections for both parameters should be applicable for other data-driven methods.

3.4. Thermal diffusivity measurement

A real example to use the proposed method to measure thermal diffusivity is presented in this session. A defect-free



Fig. 5. Histogram of the estimated thickness using the proposed NSI method based 100 tests for different levels of noise: (a) no noise, (b) SNR¼40 dB
(c) SNR¼30 dB, and (d) SNR¼20 dB. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 6. The statistical performance of the proposed NSI method for numerical simulations with different levels of noise. The results were calculated based
on 100 tests for each considered SNR. (a) Mean and standard deviation of the selected number of terms against noise level; (b) Mean and standard
deviation of the estimated thickness against noise level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 7. The estimated thickness against the value of ratio k for the numerical simulations with SNR of 50 dB, 40 dB and 35 dB respectively. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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specimen was produced with the dimension of × ×150 mm 100 mm 4 mm, which was made of unidirectional Toray 800
carbon fibres pre-impregnated with Hexcel M21 epoxy resin. The experiment was conducted with the Thermoscopes II, a
proprietary pulsed-active thermography system from Thermal Wave Imaging Inc. This system comprises of two Xenon flash
lamps mounted in an internally reflective hood with a capacitor bank providing power, and a desktop PC to capture and
store data. A FLIR SC7000 series infrared radiometer was used, which has an Indium Antimonide (InSb) sensor with a
spectral range of − μ3 5. 1 m. The radiometer has a full spatial resolution of ×640 512 pixels. The sample was placed with its
surface perpendicular to the camera's line of sight at a distance of 300 mm from the lens. Considering the thickness of the
sample and its low thermal diffusivity, a sampling rate of 25Hz was used, and totally 1000 frames, equally 40 s data length,
were captured and analysed. More details can be found in [36].

Fig. 9(a) shows the raw temperature ( )f t for three randomly selected pixels from the sample. Note the unit of the y axis is
not Celsius but digital intensity outputted by the camera. Similar thermal behaviours for these pixels have been observed.
Fig. 8. The estimated thickness against the number of sampled data for the numerical simulation with SNR of 50 dB, 40 dB and 35 dB respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Results for three randomly selected pixels. (a) Raw values of ( )f t ; (b) the first derivative of the reconstructed ( )f t . (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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The observed minor difference may be caused by the non-uniform illumination. The value of N was automatically selected
as 8 for all three pixels. Assuming the thermal decay of this experiment follows Eq. (22), the value of SNR for each pixel was
calculated and results are 30. 13 dB, 30. 26 dB, and 30. 27 dB respectively. Although the selection of N was not determined
directly by the noise level, the result matches the learned relationship between N and SNR from numerical simulations, as
shown in Fig. 6(a). The plots of the first derivative of the reconstructed ( )f t for three considered pixels after applying the
proposed NSI method are illustrated in Fig. 9(b). They exhibit very similar trends from the 5th to 35th second. The peak time,
tNSI was then detected (17.61 s, 17.57 s and 17.00 s respectively) and the thermal diffusivity was calculated by Eq. (25)
(0. 47 mm /s2 , 0. 47 mm /s2 and 0. 49 mm /s2 respectively), where L

was assumed to be the same across the specimen. To consider the spatial variation, a region of 1 ×00 100 pixels, equal to
×33 mm 33 mm, was selected and each pixel inside this region was analysed by the proposed NSI technique and other two

methods. Fig. 10(a)–(c) show the thermal diffusivity maps for the selected region from LSD, APST and the proposed method
respectively. The result from NSI shows more variations than those from LSD and APST. To evaluate the distribution of the
estimated thermal diffusivities, Fig. 10(d)–(e) show the histograms and the corresponding Gaussian fittings for three tested
methods respectively. It has been observed that the estimated values are located within a narrow range with an approx-
imate Gaussian distribution. LSD produced a smaller averaged thermal diffusivity (0.41 mm2/s) in comparison to those from
APST (0.48 mm2/s) and NSI (0.47 mm2/s). NSI produced the most accurate measurement considering the thermal diffusivity
reported by other papers (0.45 mm2/s) [37]. LSD fits the curve in the logarithmic domain, which compresses the data of later
stage. If the peak time is in the later stage, the accuracy of peak time measurement will be sacrificed due to the compression,
which could be the reason why the measured thermal diffusivity from LSD is not as accurate as those from

other two methods. If the peak time is in the early stage, LSD should have no such an issue.
To further explore the results, Fig. 11(a) and (b) show the maps of SNR and the selected N for the selected region. It can be

clearly observed that the bottom side has relatively higher SNR than the top side. The values of N for most pixels were
chosen between 6 and 8.
4. Conclusions

To quantitatively measure defect depth, a polynomial model is normally used in existing methods to fit either the
temperature decay in the logarithmic domain or the variation of temperature decay in the time domain. There is very
limited literature reporting how the selection of model order affects the results and how to automatically determine the
order. A model with a too low order cannot sufficiently fit the observed data, and consequently, depth estimation maybe not
Fig. 10. Produced thermal diffusivity map (mm /s2 ) by (a) LSD, (b) APST, (c) the proposed method; histogram of the measurement with corresponding
Gaussian fitting from (d) LSD, (e) APST, and (f) the proposed method. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)



Fig. 11. (a) SNR map (dB) measured by the proposed method; (b) the map of the selected N . (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Y. Zhao et al. / Mechanical Systems and Signal Processing 85 (2017) 382–395394
sufficiently accurate. While a model with a too high order may fit the observed data too well to model the noise rather than
the underlying relationship. Such noise will be further amplified when the first or second derivative of fitting is used to
measure the depth. These problems have been demonstrated and evaluated in this paper. This is a potential issue towards
automation of the pulsed thermographic inspection.

Addressing this problem, this paper has developed a Nonlinear System Identification (NSI) method to model the tem-
perature decay. Different to other methods that build the polynomial model in a one-off manner, the NSI method searches
through a relatively large set of candidate model terms to select the most significant model terms one by one. Hence, the
model is built in a term-by-term manner. This search will automatically stop when the first valley of the penalised error-to-
signal ratio is detected. Furthermore, this method accommodates any linear or nonlinear relationship through the set of
candidate terms. The performance of the proposed method including accuracy and precision has been compared with the
start-of-the-art depth measurement methods based on numerical simulation with different noise. The impact of the se-
lection of sampling parameters has also been discussed and recommendations have been proposed. The proposed method
has been further validated through an experimental example by measuring thermal diffusivity for a composite sample. The
results allow the following conclusions:

a. The NSI method is able to adaptively detect the model structure for each considered pixel which ensures a better model
fitting with relatively less model terms. This characteristic considers spatial variation of the model structure among
pixels. Comparing with the LSD and APST methods, this more sophisticated version of model fitting can often measure
the depth more accurately while reducing model complexity.

b. The number of model terms is determined automatically, which is particularly important for automation of defect/
damage depth measurement. Although the numerical simulations in this paper were produced by varying noise levels,
in real applications, the noise level is not necessary to be pre-determined because the method itself will evaluate the
relationship between the model complexity, fitting error and the number of sampling.

c. It has been observed that the number of terms was chosen as about 8 for signals with the SNR in the range from 45 dB to
30 dB. For signals with the SNR larger than 45 dB, a high number of terms (8�10) was chosen. For signals with the SNR
smaller than 30 dB, a relative small number of terms (5�8) was chosen. This conclusion should also be applicable to the
APST and LSD methods.

d. It has been observed from the results of numerical simulations that a sampling data length with twice to three times of

α
L
2

2
usually produces reliable results. Numerical simulations also show that at least 100 data points are required if the

noise level is lower than 35 dB. More data points are suggested if the noise level is higher. These conclusions will aid the
practical selection of thermographic parameters such as sampling rate and integration time.

One limitation of the proposed technique is that it is a data-driven method without considering the heat diffusion model
underlying the inspection process. Accurate evaluation of noise level is challenging because to achieve this the observed
signal has to be clearly divided into ‘true signal’ and noise. The proposal method can be applied to either measure the
thickness of defect-free materials or the defect depth of large defects. Further investigation is required to consider 3D heat
conduction for small defects. Another limitation is that the damage is usually assumed to be parallel to the surface, this is
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necessary to measure the depth using the NSI technique. Addressing these limitations, further research will focus on re-
constructing a 3D representation for defect/damage, degradation volumetric measurement, and determination of the or-
ientation of degradation.
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