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Michaël Garcia Ortiz

SoftBank Robotics Europe - AI Lab
43, rue du Colonel Pierre Avia

75015 Paris - France
mgarciaortiz@softbankrobotics.com

Abstract. In the context of Developmental Robotics, we propose to
learn how the sensations of a robot are modified by its action. Many
theories of Artificial Intelligence argue that sensorimotor prediction is a
fundamental building block of cognition. In this paper, we learn the sen-
sorimotor prediction on data captured by a mobile robot equipped with
distance sensors. We show that Neural Networks can learn the senso-
rimotor regularities and perform sensorimotor prediction on continuous
sensor and motor spaces.

1 Introduction

State-of-the-art algorithms in Machine Learning, and more recently in Deep
Learning [6], provide very powerful modules for perception [7] and action [15]
for robotic systems. End-to-end skill learning [8] also demonstrated the feasi-
bility of fully trainable architectures. However, these approaches rely heavily
on extensive labeling of datasets [14], and expert design and fine-tuning of the
learning algorithms. Applied to robotics, these approaches allow a certain level
of skills in perception and action, but don’t allow a robot to learn new concepts.
The challenge of genuine artificial intelligence for robots remains: how can a
robot learn how to perceive the world and learn to act in it by itself?

Current applications of Machine Learning for robotics are very far from how
humans and animals learn. Babies, for example, don’t have access to labeled
information. In order to recognize objects, environments, or other persons, chil-
dren build their own model of the world by interacting with it. Developmental
robotic [2] proposes to take inspiration from animals and human intelligence.
The goal is to identify the mechanisms that endow cognitive development, in or-
der to allow robot to develop autonomously. We place ourselves in this context,
where an agent has to learn, without prior knowledge or labels provided by the
engineer, how to perceive its environment and how to act in it.

The agent senses its environment through sensors, and acts on its environ-
ment by controlling its motors. This sensorimotor loop is the only information
about the world accessible to the agent. By learning how actions modify sensor
values, the agent builds a model of its interaction with the world. This model
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can be used to predict future sensory states depending on motor commands, in
order to avoid undesirable states or reach desirable ones. Many fundamental [12,
3, 4] as well as practical [17] theories of intelligence and cognition argue that
sensorimotor prediction is an elementary building block of cognition.

In this paper, we consider a robotic agent, endowed with distance sensors,
moving in a fixed environment. We compare neural network architectures that
can be used to learn sensorimotor prediction in the case of continuous sensor
and motor spaces.

2 Related Works

Our approach differs from existing approaches by not using explicit vector quan-
tization for the input and output space, which means that we perform prediction
as regression and not classification. Additionally, the robot learns to control its
sensorimotor space autonomously, without relying on features implemented by
the designer.

In [18], the authors use a mobile robot navigating in a fixed environment.
They use sensorimotor prediction as a forward model to perform prediction for an
arbitrary motor program, in order to choose a sequence of actions that prevents
the robot from colliding with obstacles. The speed of the robot is constant,
but its direction can change. Their architecture relies on vector quantization for
sensors, and context units that serve as a temporal internal representation that
disambiguate situation and help the learning.

In [11], a sensorimotor prediction approach is used for navigation in the case
of a simulated agent. The architecture presented uses a lot of prior knowledge:
the sensorimotor prediction is based on already pre-processed features, and a pre-
dicting algorithm for each constituent of the environment. This is not compatible
with a developmental approach, where the constituents of the environment are
not known in advance but should be discovered.

In [10], the authors propose a computational model for sensorimotor contin-
gencies and an algorithm for predicting future states of the sensors, in the case
of a robot equipped with distance sensors, moving in a rectangular empty envi-
ronment. The sensor values are quantized in 3 values, and the robot translates
on 2 axis (no rotation). This work doesn’t provide technical solutions to learning
sensorimotor prediction in more complex (possibly continuous) spaces.

In [5], sensorimotor prediction is used as a forward model in order to control
a robotic arm. The authors consider continuous sensor and motor spaces, and
perform sensorimotor prediction on the configurations of the joint of the arm.
Even if they showed robust online learning, the notion of multiple environmental
element (such as walls and corners in our case) influencing this prediction is
missing.

Even if the presented approaches are related to our work, the simplification
of motor and sensor space (through vector quantization) doesn’t guarantee that
they can be used in more complex environments or with more complex sensors.
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3 Presentation of the approach

The agent acts in its environment through motors Mi that can be controlled by
sending a motor command mi, and it senses its environment through the sensors
Si receiving sensory signals si. At each timestep t, the agent sends a motor com-
mands mi(t) and receives sensor values si(t). The agent experiences sequences
of {s(t),m(t)}, which are collected in order to learn a sensorimotor predictive
model. The sensorimotor prediction is learned offline, and online incremental
learning is not considered in this work. We focus on whether learning sensori-
motor prediction can be achieved using standard neural networks, however, we
will need to prove in future works that an incremental approach can be used, for
the results to be used in a developmental robotics setting.

3.1 Prediction as a regression problem

Learning the sensorimotor prediction can be approached as a regression problem.
The task of the regression algorithm is to learn the mapping
(s(t),m(t) → ∆s(t + 1)) where ∆s(t + 1) = s(t + 1) − s(t). Our prediction
algorithm is trained using neural network. We will propose several architectures
in order to learn the sensorimotor prediction.

We predict the change in sensory values ∆s(t + 1) instead of learning to
predict the future value of the sensory input s(t + 1). Fundamentally, what
interests us is to learn how motors affect sensors, so it makes sense to predict
this change. On a more pragmatic level, by only predicting the change and
not the raw value, we optimize the capacity of the neural network, and we
avoid representing redundant information in the network. This is in line with
the predictive coding approach [4, 3].

Each architecture (illustrated in Fig.1) is trained using gradient descent. For
each training example, the inputs ((s(t),m(t)) are used to formulate a prediction
∆s(t+ 1)pred that we compare to the actual output ∆s(t+ 1) . We compute the
mean squared error as the average (over a batch of training samples) squared
difference between the actual (desired) and the predicted output. We use this
error signal to update the weights of the networks using gradient descent. Once
the network is trained, we use it to perform prediction on a separate portion of
the dataset and evaluate its prediction capabilities.

3.2 Neural Network Architectures for Sensorimotor Prediction

Feed Forward Neural Network As a baseline for learning sensorimotor pre-
diction, we propose to use a standard Feed-Forward Neural Network. The net-
work takes as input a concatenation of s(t) and m(t). It is composed of several
hidden layers of either sigmoid or rectifier linear units. The output layer is a
linear layer connected to s(t+ 1), and all the layers are fully connected.
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Concatenated Sensorimotor State We want to compare the standard Feed-
Forward architecture with an architecture where representations for sensors and
motors are learned separately, and then concatenated to perform sensorimotor
prediction. First, s(t) is projected (fully connected) to a representation layer hs,
and similarly m(t) is projected to a different representation layer hm. hs and hm
are concatenated and projected to a layer hsm. This representation, supposed to
represent the sensorimotor sate of the robot, is then projected to a prediction
layer hpred, which in turn is used to predict the output s(t+ 1).

Gated Sensorimotor Prediction As suggested in [16], gated interactions
can be used to learn sensorimotor prediction. We take inspiration from Gated
Neural Networks to propose an architecture where motors are influencing sensors
through multiplicative gating interactions using factors. s(t) is projected to a
representation layer hs, and m(t) is projected to a representation layer hm. hs
and hm are then each projected on the factors f of the gating neural network. The
factor activations are multiplied and fully connected to a representation layer
hsm, in turn projected to a prediction layer hpred used to predict the output
s(t+ 1).

s(t)

m(t)

f
s(t)

hm

s(t+1)

s(t)

m(t)

s(t+1)

(a) Feed-Forward (b) Concatenated 
Sensorimotor State

(c) Gated Sensorimotor 
Prediction

+

m(t)

hs

hsm hpred
s(t+1)

hs

hm

hsm hpred

Fig. 1. Different architectures used for sensorimotor prediction

3.3 Long-term prediction

An important property of sensorimotor prediction is the capacity to predict
future sensory states by simulating motor sequences. In order to predict mul-
tiple timesteps into the future, we propose to use the result of the sensori-
motor prediction ∆s(t + 1)) at time t + 1 to update the value of s(t + 1) :
s(t + 1) = s(t) + ∆s(t + 1) . We can, in turn, perform sensorimotor prediction
(s(t+ 1),m(t+ 1)→ ∆s(t+ 2)).

This approach doesn’t consider long-term dependencies, and we expect that
it is not suitable to learn long-term predictions. However, we argue that it is
sufficient to predict the immediate evolution of the sensor values depending on
the motor sequence.
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4 Experimental Setup

We use a Thymio-II robot [13] for our experiments. We use its 5 front distance
sensors, and each sensor encodes a distance value as an integer in the range
[1500, 5000], approximately corresponding to [13cm, 0cm]. Motors are controlled
in speed by integer commands in the range [−500, 500], approximately corre-
sponding to a range of speeds of [−15cm/s, 15cm/s]. For our experiments, we
limit the range of the motors to [−200, 200]. The sensor values are rescaled as
floats in the range [0.0, 1.0] and motor commands are rescaled as floats in the
range [−1.0, 1.0]. We control the robot using the library Aseba [9]. The frame
rate is superior to 10Hz, and we interpolate the sensor readings at 5 Hz. The
environment of the robot is a rectangular empty maze of size 60 x 80 cm. Every
2 seconds, the robot picks randomly a new motor command (see Fig.2.(a)). We
collected 40 sequences of 120 minutes each (around 1.4 million data points). We
illustrated the sensations of the robot in Fig.2.(b).

Fig. 2. (a) Top-down visualization of the trajectory of the robot during one recorded
sequence. (b) Sensor values of the robots captured while approaching different elements
of the environment (illustrated with a black line for the environment and red arrow
for the direction of the robot). Each line corresponds to a sensor reading at a certain
distance from the element of the environment. The displacement of the robot between
two consecutive lines is 0.5 cm.

The sensors are noisy, and the transfer function from sensor reading to actual
distance is not linear. Additionally, these values depend on the reflective proper-
ties of the surface. The perception of what a wall or a corner is can’t lie only in
the values of the sensors, as these values change dramatically depending on their
calibration, the surface, or their orientation. This highlights the pertinence of
sensorimotor contingency theory [12], which states that the world imposes regu-
larities on the way sensor values are changed by action, and that the mastering
of these regularities is what constitutes perception.
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5 Experiments and Results

We use Tensorflow [1] to program our Neural Networks. We train the different
architectures for 1 million iterations, with a batch size of 32 and a learning rate of
0.01, and we compute the average mean squared error of prediction over 100000
random samples from a separate dataset. For clarity, we display the MSE of the
prediction multiplied by a factor 100.

Prediction error for the Baselines We compare different configurations of
the baseline architecture presented in Sec.3. The results are presented in Tab.1.
Rectifier Linear units are performing better than Sigmoid units. We suppose
that it is because of the continuous nature of the mapping it tries to learn. In
the following experiments, we will use Rectifier Linear Units.

Layer Size 1 layer 2 layers 3 layers

Rectifier Linear units 32 0.202 0.174 0.159
64 0.187 0.159 0.149
128 0.179 0.152 0.144

Sigmoid units 32 0.211 0.200 0.290
64 0.210 0.199 0.247
128 0.211 0.194 0.242

Table 1. MSE for the baseline Feed-Forward neural networks

Comparison of structured networks We compare the two architectures
that learn separate sensory and motor representations. We found that fixing
the representation size of hm to 3 is sufficient. We fixed the number of factors
to 256 for the Gated sensorimotor prediction, and experimented with multiple
sizes of hs and hsm. As we can see from Tab.2, splitting the learning of sensors
and motors doesn’t improve the results. For equivalent size of the network, a
standard Feed-Forward network with Rectifier Linear Units performs better than
the network with separate learning of sensory representations. It might mean
that the network benefits from very early sensorimotor representations.

Size of hsm

Concat. sensorimotor state Gated sensorimotor state
32 64 128 32 64 128

Size of hs

32 0.166 0.157 0.151 0.161 0.153 0.151
64 0.164 0.156 0.150 0.158 0.154 0.149
128 0.163 0.155 0.150 0.155 0.152 0.148

Table 2. MSE for the structured neural networks
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Illustration of the long-term prediction We use an already trained model
(Feed-Forward with 3 layers and 128 units per layer) to predict the future values
of the sensors over multiple timesteps, depending on different motor commands.
We can generate predictions of the change in the sensor space, and reconstruct
future values of the sensors. The evolution of sensor values depending on the
motor commands is presented in Fig.3. One line correspond to one prediction,
and we plot one prediction every 3 timestep. As can be observed, the chaining
of prediction can be used to successfully predict the future values of the sensors
depending on the motor commands.

Fig. 3. Prediction across multiple timesteps, for different motor commands. The robot
is facing a wall (bold line), and a trained model is used to predict the future sensory
values depending on the motor commands. (a) corresponds to a movement forward,
(b) to a movement backward, (c) to a rotation to the right and (d) to the left.

6 Conclusion

In this paper, we motivated the use of sensorimotor prediction in order for an
autonomous robot to aquire knowledge about the regularities of interaction with
its environment. We presented different neural architectures for this sensorimo-
tor prediction, and showed that Feed-Forward Neural Networks with Rectifier
Linear Units can be used to learn on continuous sensorimotor spaces. We also
found that early sensorimotor representations might be beneficial to the overall
learning, as learning sensor and motor separately appears to be detrimental to
the overall quality of prediction. Finally, we showed that it was possible to chain
the predictions in order to simulate future sensory values of the robot depending
on its motor commands.

In future works, we want to investigate the use of predictive coding as a means
to perform an efficient vector quantization on continuous sensory space. This pre-
dictive coding strategy will also be a way to transform our current framework
into an incremental learning framework. Additionaly, we want to propose a prob-
abilistic approach based on generative models. Another direction is to use the
sensorimotor representations learned in the context of continuous sensorimotor
prediction, and use them to predict discrete events, such as collisions. Another
axis of developement is the use of latent variables to represent the context of the
robot in its environment. Finally, we want to investigate the possibility of using
genetic algorithm to learn an efficient structure for sensorimotor prediction.
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