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Abstract  

The flower pollination algorithm (FPA) is an efficient metaheuristic optimization algorithm 

mimicking the pollination process of flowering species. In this study, FPA is applied, for first time, to 

the optimum design of reinforced concrete (RC) cantilever retaining walls. It is found that FPA offers 

important savings with respect to conventional design approaches and that it outperforms genetic 

algorithm (GA) and the particle swarm optimization (PSO) algorithm in this design problem. 

Furthermore, parameter tuning reveals that the best FPA performance is achieved for switch probability 

values ranging between 0.4 and 0.7, a population size of 20 individuals and a Lévy flight step size scale 

factor of 0.5. Finally, parametric optimum designs show that the optimum cost of RC retaining walls 

increases rapidly with the wall height and smoothly with the magnitude of surcharge loading. 
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1 Introduction 

 

In many multimodal engineering design problems, conventional optimization techniques do 

not perform adequately as they are trapped in local optima. In these problems, the use of nature-

inspired metaheuristic algorithms is recommended (Yang 2008). A great number of 

metaheuristic algorithms exist including genetic algorithms (GA) (Holland 1975), particle 

swarm optimization (PSO) (Kennedy 2011), firefly algorithm (FA) (Yang 2010), cuckoo 

search (CS) (Gandomi et al. 2013) and many others.  
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Recently, Xin-She Yang (Yang 2012) developed the Flower Pollination Algorithm (FPA). 

FPA has been inspired by the evolution mechanism of flowering plants. It is a population-

based metaheuristic algorithm recognised for its simplicity in formulation and efficiency in 

terms of computational performance (Alyasseri et al. 2018). As a result, FPA has been applied, 

with success, to numerous optimization problems in various scientific fields (Alyasseri et al. 

2018). However, the number of applications of FPA to structural engineering problems is still 

rather limited. Bekdas et al. (2015) examined optimum structural design of steel truss 

structures using FPA and they found that it is directly competitive to other well-established 

optimization algorithms. Furthermore, Nigdeli et al. (2016) applied FPA to benchmark 

structural design problems related to plane frames, cantilever beams, I-beams and tubular 

columns and they found that FPA can be more robust and efficient than other algorithms. 

Moreover, Nigdeli et al. (2017) used a hybrid FPA version to obtain the optimal values of 

tuned mass dampers in frames subjected to earthquake excitations. 

Reinforced concrete retaining walls are structures that are designed to resist lateral soil pressure 

in cases where there is a change in ground elevation. They are widely used in road construction 

and they typically involve large material volumes. Therefore, optimization of their design is 

essential. However, the significant number of independent design variables and the highly 

nonlinear constraints involved in the design of reinforced concrete structures (Mergos 2017, 

Mergos 2018) in general and the design of concrete retaining walls in particular make their 

optimum structural design a complex task that can only be performed efficiently by automated 

optimization algorithms.  

A significant number of studies exist on the optimum design of RC cantilever retaining walls 

using different optimization algorithms. Saribas and Erbatur (1996) examined optimum design 

of earth-retaining walls using constrained nonlinear programming and assuming seven design 

variables determining geometry and steel reinforcement. Moreover, Ceranic et al. (2001) used 

simulated annealing (SA) algorithm to optimally design RC retaining walls employing seven 

independent design variables.  Furthermore, Babu and Basha (2008) developed a reliability-

based optimum design strategy of RC retaining walls that accounts for uncertainties in soil, 

steel and concrete mechanical properties. Yepes et al. (2008) performed an extensive 

parametric study on the optimum design of these walls structures using SA algorithm and 

assuming 20 independent design variables. Kaveh et al. (2010) investigated the optimum 

design of retaining walls employing the harmony search optimization algorithm. Khajehzadeh 

et al. (2010) applied a modified version of PSO with passive congregation to achieve economic 

design of RC retaining walls. Ghazavi et al. (2011) used the ant colony optimization technique 
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to minimize the cost of RC retaining walls. In a newer study, Yepes et al. (2012) extended their 

previous work on the optimum design of RC retaining walls to address not only minimum 

economic cost but also minimum embodied CO2 emissions. It is recalled that concrete 

construction is one of the major contributors to global CO2 emissions (Mergos 2018a, 2018b). 

Pei and Xia (2012) investigated the optimum design of retaining walls using different heuristic 

optimization algorithms such as GA, PSO and SA. Papazafeiropoulos et al. (2013) addressed 

the optimum seismic design of cantilever RC walls using numerical 2-D finite element 

simulations and genetic algorithms. Kaveh and Khayatazad (2014) developed optimal design 

solutions of cantilever retaining RC walls under earthquake loads by using the Ray 

optimization method. Furthermore, Khajehzadeh et al. (2014) examined multi-objective 

optimum design of retaining walls adopting a hybrid version of the adaptive gravitational 

search algorithm with pattern search setting economic cost and embodied CO2 emissions as 

design objectives. Sheikholeslami et al. (2016) examined optimum design of these wall 

systems using a hybrid FA with upper bound strategy. Aydoglou (2017) examined the optimum 

seismic design of RC retaining walls using a biogeography-based optimization algorithm 

(BBO) with Lévy flights. Rahbari et al. (2017) investigated the optimum robust seismic design 

of retaining walls using GA and the response surface approach in combination with nonlinear 

dynamic finite element analyses. Gandomi et al. (2017) studied the optimum design of these 

wall systems using various evolutionary algorithms such as differential evolution (DE), 

evolutionary strategy (ES) and BBO. 

The present study applies, for first time, the FPA algorithm to the structural design of RC 

cantilever retaining walls for minimum economic cost. The objective here is to examine the 

computational efficiency of FPA for this common structural design problem and compare it 

with other well-established optimization algorithms such as PSO and GA. Furthermore, an 

exploratory study is conducted to establish the FPA parameter values that maximize its 

performance in the design of these wall systems. Finally, a parametric study is conducted to 

show the effects of wall height and surcharge loading on the minimum costs of RC cantilever 

retaining walls. 

 

2 Flower pollination algorithm 

 

FPA mimics the evolution process of flowering plants via pollination. Flower pollination is 

either abiotic or biotic (Glover 2007, Yang 2012). Abiotic pollination occurs at short distances 

and it is therefore considered as a local pollination mechanism (Yang 2012). Biotic pollination 
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is facilitated by the pollinators (e.g. butterflies, bees and bats) that travel long distances. 

Therefore, it is treated as a global pollination procedure. The travel behaviour of pollinators 

can be well reproduced by Lévy flights (Pavlyukevich 2007). Another important characteristic 

of flower pollination is the so-called flower constancy. Indeed, pollinators tend to select 

specific flower species and neglect others (Yang 2012). In this way, pollinators reduce risks 

and ensure nectar intake. The afore-described features of flower pollination have been used to 

formulate the four basic rules of FPA algorithm: 

1. Biotic pollination is treated as a global optimization process with pollinators 

conducting Lévy flights. 

2. Abiotic pollination is treated as a local optimization procedure. 

3. Flower constancy is taken into account by setting that the probability of reproduction 

is proportional to the level of similarity of the flowers involved. 

4. The type of pollination procedure (local or global) is determined by a switch probability 

p that is a pre-fixed constant in [0, 1]. 

 

In FPA, a candidate solution vector xi is represented by a flower i in a population of n flowers.  

To form the next population, the flowers perform either global or local pollination. The global 

pollination mechanism, in combination with the flower constancy rule, is modelled by the 

equation below: 

 

 𝒙𝑖
𝑡+1 = 𝒙𝑖

𝑡 + 𝛾 ∙ 𝐿(𝜆) ∙ (𝒈∗ − 𝒙𝑖
𝑡) (1) 

 

Where 𝒙𝑖
𝑡represents flower i at iteration t, g* is the best flower of all the population of flowers 

at iteration t, 𝜆 is a constant, γ is a constant scaling factor to control the step size, 𝐿(𝜆) > 0 is 

the Lévy flight step size that represents the strength of the pollination. A value of λ = 3/2 and 

γ = 0.01 is recommended by Yang (2012). 

Furthermore, the local pollination mechanism, in combination with the flower constancy rule, 

is modelled by the following formula, where 𝒙𝑗
𝑡and 𝒙𝑘

𝑡  are different flowers of the same 

population and ε is drawn from a uniform distribution in [0, 1].  

 

 𝒙𝑖
𝑡+1 = 𝒙𝑖

𝑡 + 𝜀 ∙ (𝒙𝑗
𝑡 − 𝒙𝑘

𝑡 )   (2) 

 

The fourth FPA rule determines the type of flower pollination (i.e. local or global). If a random 

number drawn in [0, 1] is lower than p then global pollination is conducted. Otherwise, local 
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pollination is performed. A value of p = 0.8 is recommended in the original publication of FPA 

(Yang 2012). Taking the previous into consideration, Fig. 1 presents the pseudo-code of FPA. 

 

 

Figure 1. Pseudo-code of the FPA algorithm 

 

3 Optimum design problem formulation 

 

In this section, the structural design of a RC cantilever retaining wall is set as an optimization 

problem of the general form of Eq. (3), where Ƒ(𝒙) is the objective function and x is the design 

solution vector that comprises of d independent design variables xi (i = 1 to d). Furthermore, 

the solution should be subject to m number of constraints gj(x) ≤ 0 (j = 1 to m). 

 

Minimize: Ƒ(𝒙) 

Subject to: 𝑔𝑗(𝒙) ≤ 0, 𝑗 = 1 𝑡𝑜 𝑚  (3) 

Where: 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑑) 

 

Herein, six independent design variables xi (i = 1 to 6) are used to describe the geometry of the 

concrete wall as shown in Fig. 2. The variables x1 and x3 are the stem thicknesses at the top and 

bottom respectively. The variables x2 and x4 represent the lengths of the footing toe and heel 

respectively. The variable x5 is the footing thickness and the variable x6 is the additional depth 

of the heel beam that this used to increase sliding resistance. The width t of the heel beam is 

treated as a fixed parameter with value t as it is not expected to influence significantly the 

Set objective min f (x), x = (x1, x2, …, xd) 

Initialize a population of n flowers with random procedures 

Determine the best solution g* of the initial population 

Determine the value of switch probability p ϵ [0, 1] 

while (t < MaxIteration) 

 for i = 1 : n (for all flowers of the population) 

  if rand < p 

   Draw a d-dimensional Lévy distribution step vector L  

   Do global pollination by 𝒙𝑖
𝑡+1 = 𝒙𝑖

𝑡 + 𝛾 ∙ 𝐿(𝜆) ∙ (𝒈∗ − 𝒙𝑖
𝑡) 

  else 

   Draw ε from a uniform distribution in [0, 1] 

   Select randomly j and k among all flowers of the population 

   Do local pollination by 𝒙𝑖
𝑡+1 = 𝒙𝑖

𝑡 + 𝜀 ∙ (𝒙𝑗
𝑡 − 𝒙𝑘

𝑡 )   

  end if 

  Evaluate objective function values of new solutions 

  When better, update new solutions in the population 

 end for 

 Determine the best solution g* of the new population 

end while 
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design of the wall. The wall height h is also considered as fixed parameter determined by the 

soil profile of the problem under investigation. Having established geometry, standard 

structural design of the wall is conducted assuming all other design parameters as fixed. The 

latter include soil and material properties, the surcharge loading q as well as the coefficients 

of active Ka and passive earth pressure Kp in addition to the coefficient of friction µ at the base 

of the wall. 

The constraints of the optimization problem are set in accordance with the requirements of the 

RC retaining walls structural design as specified in Eurocode 7 (EC7) (CEN 2004). The design 

of these walls consists of three basic phases: 1) stability analysis; 2) bearing pressure analysis; 

3) members design and detailing (Mosley et al. 2012).  

 

 

Figure 2. Design variables and parameters of the concrete cantilever retaining wall 

 

The stability analysis phase consists of two checks. The overturning and the sliding stability 

checks. The former check is realised by comparing the design overturning moment about the 

bottom corner of the footing toe 𝑀𝐸𝑑
𝑜  with the overturning design moment resistance about the 

same point 𝑀𝑅𝑑
𝑜  as shown in Eq. (4). In the calculation of 𝑀𝐸𝑑

𝑜  and 𝑀𝑅𝑑
𝑜 , partial safety factors 

are used to the characteristic values of the loads depending on whether they are permanent or 

live loads and whether they have favourable or unfavourable effects on the design check. The 

values of the partial safety factors are taken by the UK National Annex of EC7. The active 

earth pressure and the surcharge lateral pressure are the loads with unfavourable effects and 

the weights of the wall and the soil resting on the wall are the loads with favourable effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2 x3 x4 t 

x1 
q  
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𝑀𝐸𝑑

𝑜

𝑀𝑅𝑑
𝑜 − 1 ≤  0 (4) 

In a similar manner, the sliding check is conducted by comparing the design sliding force 𝐻𝐸𝑑
𝑠  

at the base of the footing with the design sliding resistance 𝐻𝑅𝑑
𝑠  as shown in Eq. (5). The 

resistance to sliding is provided by the friction at the base of the wall as well as the passive 

earth pressure over the depth of the heel beam. 

 

 
𝐻𝐸𝑑

𝑠

𝐻𝑅𝑑
𝑠 − 1 ≤  0 (5) 

 

In the second phase of the wall design procedure, the bearing stresses underneath the retaining 

walls are evaluated and the maximum values pmax are compared with the corresponding 

maximum allowable values pall specified by the soil type. The bearing pressures are calculated 

as the combined effect of an equivalent overturning moment M about the centroid of the footing 

base and a concentric vertical load N following standard procedures. 

 

 
𝑝𝑚𝑎𝑥

𝑝𝑎𝑙𝑙
− 1 ≤  0 (6) 

 

Furthermore, to avoid uplift, the eccentricity e = M / N should not be greater than 1/6th  

(“middle third rule”) of the total footing length D (i.e. D = x2 + x3 + x4 + t) as prescribed in Eq. 

(7). 

 

 
6𝑒

𝐷
− 1 ≤ 0 (7) 

 

The last phase of the cantilever wall design procedure is the design of the bending 

reinforcement of the stem, toe and heel. Standard RC sections design procedures are applied 

herein. Moreover, different bending reinforcement is used in the top and bottom half of the 

stem of the wall to reduce costs but also maintain simplicity in construction. Furthermore, for 

construction simplicity, it is assumed that the heel and toe bending reinforcement extend along 

the full length of the top and the bottom sides of the footing of the wall respectively. In this 

design phase, the design constraints require that the longitudinal reinforcement ratio ρl should 

not exceed the allowable maximum steel reinforcement ratio ρmax as prescribed in Eq. (8). It is 

also recalled that if ρl is smaller than the minimum allowable ratio ρmin then the minimum 
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longitudinal reinforcement has to be placed. The volumetric ratios limits ρmax and ρmin are the 

same as the ones prescribed for RC beams in Eurocode 2 (EC2) (CEN 2000). 

 

 
𝜌𝑙

𝜌𝑚𝑎𝑥
− 1 ≤  0 (8) 

 

The objective function Ƒ(𝒙) is taken herein as the sum of the concrete Cc and reinforcing steel 

Cs material costs, the cost of formwork Cf and the cost of soil excavations Ce following Eq. 

(9), where mi and pi (i = c, s, f, e) are the material quantities and the corresponding unit prices 

respectively. All costs refer to one meter wall length. The material unit prices used in this study 

are given in Table 1 based on the Hellenic Ministry of Public Works (HMPW 2013). 

Furthermore, a penalty term is added to Ƒ(𝒙) to account for violations of the constraints of Eqs 

(4)-(8). 

 

 Ƒ(𝒙) = ∑ 𝐶𝑖 = ∑ 𝑚𝑖 ∙ 𝑝𝑖𝑖𝑖     (i = c, s, f, e) (9) 

 

Table 1. Material unit prices 

Material pi Unit 

Concrete C30/37 116  𝑚3 

Steel B500c 1.07 Kg 

Falsework 15.7 𝑚2 

Excavation works 7 𝑚3 

 

4 Application case study 

 

4.1 Introduction 

 

In this section, a case study RC retaining wall is optimally designed using FPA. The design 

example is taken from the book of Mosley et al. (2012), where the design variables values used 

to determine wall geometry are given in Table 2. In this example, the following fixed problem 

parameters are used: concrete grade C30/37; reinforcing steel grade B500c; q = 10 kN/m2; Ka 

= 0.33; Kp = 3.5; µ = 0.45; h = 4500 mm; t = 500 mm. Furthermore, the density of the granular 

material supported by the wall is ρsoil = 1700 kg /m3. It is also assumed that the bearing capacity 

of the underlying soil is high enough and it does not affect the design. Using Eq. (9), the cost 

of the wall following the solution presented in Mosley et al. (2012) is calculated as €953.80/m. 
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In the same table, the design variables of the best design solution obtained by FPA are 

presented. It is worth noting that a value of x6 = 0 mm is suggested by FPA, which essentially 

means that no heel beam is required to satisfy the sliding check of Eq. 5 and a uniform footing 

thickness is applied. This finding is meaningful from an engineering point of view since the 

sliding resistance coming from friction at the base of the wall is adequate to resist the sliding 

force demand. This optimal solution will be used as a reference in the following as it is the best 

solution derived after several FPA trials. The optimal cost of this design solution is €681.82/m 

which represents a 29% reduction with respect to the conventional design approach (Mosley 

et al. 2012).   

 

Table 2. Design variables 

Variable Description Mosley et al. 

(2012) 

FPA 

optimal  

Units 

x1 Stem thickness at top 300  251 𝑚𝑚 

x2 Length of footing toe 800  613 𝑚𝑚 

x3 Stem thickness at bottom 400  251 𝑚𝑚 

x4 Length of footing heel 2200  2494 𝑚𝑚 

x5 Footing thickness 400 276 𝑚𝑚 

x6 Additional depth of heel beam 600  0 𝑚𝑚 

 

4.2 FPA parameters tuning 

 

As discussed in the previous, this is the first study applying FPA to the structural design of RC 

retaining walls. Hence, it is important that the overall performance of FPA is investigated and 

its parameters are tuned to better address this optimization problem landscape. More 

particularly, the effects of n, p, λ and γ will be examined herein. 

Table 3 presents the outcomes of ten different FPA runs after 2000 iterations with population 

size n = 20, λ = 3/2, γ = 0.01 and assuming different switch probability values p ranging 

between 0 and 1 by an increment of 0.1. In this table, the average, minimum and maximum 

costs obtained by the ten FPA trials are presented as well as their coefficient of variation. It is 

evident that, on average, the FPA yields very good predictions for most of the switch 

probability values. Nevertheless, the quality of the results decreases significantly for the 

extreme p values (i.e. p = 0, 1). This is the case because for the extreme p values FPA conducts 

only either global or local pollination and therefore it is not able to combine exploration and 

exploitation of the search space. Values of p between 0.1 and 0.9 give generally very good and 
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similar results. The quality of the results further improves for p values between 0.4 and 0.7. 

The best FPA performance is obtained by setting the switch probability p = 0.5 since this value 

exhibits both the best average cost and the minimum coefficient of variation.  

 

Table 3. FPA outcomes for different switch probability values 

p Average  

Cost 

(€/m) 

Minimum  

Cost    

(€/m) 

Maximum  

Cost    

(€/m) 

Coeficient of 

variation 

(%) 

0 880.65 681.83 1158.17 8.87772 

0.1 681.99 681.83 836.98 0.03162 

0.2 685.41 681.83 716.47 1.59262 

0.3 685.50 681.82 716.81 1.60494 

0.4 681.83 681.82 681.86 0.00158 

0.5 681.83 681.82 681.84 0.00093 

0.6 681.83 681.82 681.89 0.00322 

0.7 681.85 681.82 682.11 0.01320 

0.8 685.88 681.83 711.56 1.34938 

0.9 695.36 681.92 718.48 2.19466 

1 836.98 738.50 1034.90 11.66593 

 

 

Figure 3. Iteration histories for different p values 

 

Furthermore, Fig. 3 shows the average iterations histories derived by the FPA simulations with 

different p values. Not all probability values are presented for illustration reasons. It can be 

seen that the p = 1 value yields the slowest convergence. For p = 0, the initial convergence is 

rapid but then the algorithm is not able to improve its performance. For probability value p = 

0.5, the best convergence response is achieved. In this case, the FPA algorithm requires 

approximately 500 iterations to reach convergence. Similar response is generally observed for 
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p values between 0.4 and 0.7. The solutions with p = 0.2 and 0.8 converge eventually to 

approximately the same solution as p = 0.5. However, they converge at a slower pace, which 

means that more computation effort is required to reach the optimum solution. 

In addition to the switch probability value, the role of the population size is also examined 

herein. Table 4 presents the outcomes of ten different FPA runs for 2000 iterations with switch 

probability value p = 0.5, λ = 3/2, γ = 0.01 and three different population sizes: n = 10, 20 and 

30. It is found that the population size has only a minor effect on the results. A population size 

of n = 10 has only marginally higher average cost than n = 20. For n ≥ 20, the average cost 

remains practically constant. 

 

Table 4. FPA outcomes for different population sizes 

n Average  

Cost  

(€/m) 

Minimum  

Cost  

(€/m) 

Maximum  

Cost 

(€/m) 

Coeficient of 

variation 

(%) 

10 681.91 681.82 682.71 0.04121 

20 681.83 681.82 681.84 0.00093 

30 681.82 681.82 681.82 1.75e-14 

 

Furthermore, Fig. 4 shows the average iteration histories of the solutions with the different 

population sizes. It is seen that all solutions converge almost to the same solution. However, 

the n = 10 solution converges later than the larger population sizes. This partly counteracts the 

savings in reaching the optimum solution by reducing the population size. On the other hand, 

the population sizes n = 20 and 30 converge almost at the same pace. Hence, the use of n = 30 

instead of n = 20 seems unnecessary as it increases the computational cost. 

 

 

Figure 4. Iteration histories for different n values 
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Table 5 shows the outcomes of ten different FPA runs after 2000 iterations with population 

size n = 20, γ = 0.01, p = 0.5 and three different λ values (λ =1, 3/2 and 2). It is clear that all λ 

values yield excellent results with λ = 1 leading to the minimum coefficient of variation. 

Moreover, Fig. 5 shows the average iterations histories derived by the FPA simulations with 

different λ values. It can be seen that the λ = 3/2 value provides the fastest convergence to the 

optimum value. Slightly worse convergence is achieved by λ = 1. The worst convergence 

performance is achieved by the λ = 2 value.   

 

Table 5. FPA outcomes for different λ values 

λ Average  

Cost 

(€/m) 

Minimum  

Cost    

(€/m) 

Maximum  

Cost    

(€/m) 

Coeficient 

of variation 

(%) 

1 681.82 681.82 681.82 1.55e-05 

3/2 681.83 681.82 681.84 9.30e-04 

2 681.82 681.82 681.82 3.71e-05 

 

 

Figure 5. Iteration histories for different λ values 

 

Table 6 presents the outcomes of ten different FPA runs after 2000 iterations with population 

size n = 20, p = 0.5, λ = 3/2 and six different γ values (i.e. γ = 0.005, 0.01, 0.05, 0.1, 0.5 and 

1). It evident that all γ values provide excellent results with very small and similar coefficients 

of variation. The γ = 0.05 value drives to the minimum coefficient of variation but again it is 

emphasized that the differences are rather insignificant. Furthermore, Fig. 6 illustrates the 

average iterations histories derived by the FPA simulations with the different γ values. It is 

found that convergence rate increases as the scaling factor to the step size γ increases from 

0.005 to 0.5. However, the opposite takes place when γ increases from 0.5 to 1. This effectively 
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means that the γ = 0.5 value yields the best convergence performance for the problem under 

investigation.   

 

Table 6. FPA outcomes for different γ values 

γ Average  

Cost 

(€/m) 

Minimum  

Cost    

(€/m) 

Maximum  

Cost    

(€/m) 

Coeficient 

of variation 

(%) 

0.005 681.82 681.82 681.82 0 

0.010 681.83 681.82 681.84 9.30e-04 

0.050 681.82 681.82 681.82 3.71e-05 

0.100 681.82 681.82 681.82 8.84e-05 

0.500 681.82 681.82 681.83 2.65e-04 

1.000 681.83 681.82 681.87 2.14e-03 

 

 

Figure 6. Iteration histories for different γ values 

 

4.3 Comparison with PSO and GA 

 

In this section, the FPA is compared with the PSO and GA algorithms in terms of 

computational performance. Similarly to FPA, a population size of 20 individuals and 2000 

maximum iterations are used for the PSO and GA algorithms.   

The standard PSO version is used herein. It is noted, however, that enhanced PSO versions 

have been developed to improve the computational performance of this algorithm (e.g. Yang 

et al. 2011, Wang et al. 2019a, Wang et al. 2019b). Furthermore, to identify the inertia 

coefficient that yields the best PSO performance for the problem under investigation, a 

parametric study is conducted herein. The statistics of the PSO results for the different inertia 

coefficients and ten independent runs are shown in Table 7. It is deducted that the best PSO 
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performance is obtained by setting its inertia coefficient equal to 1 and this is the value used in 

the rest of this study. With respect to GA, the version implemented in MATLAB R2017a 

(MathWorks 2017) is used. Default parameters values as suggested in MathWorks (2017) are 

applied. After ten runs, the average cost obtained by GA is €805.35/m, the minimum 

€751.34/m and the coefficient of variation is 4.95%.  

The performances of PSO and GA are now compared with the performance of FPA for n = 20 

and p = 0.5, γ = 0.5 and λ = 3/2 that yielded the best computational performance of FPA in the 

previous section. Comparing PSO with FPA, both algorithms determine almost the same 

minimum cost. However, the average cost calculated by PSO is considerably (2.2%) higher 

than the one of FPA. The coefficient of variation is also higher in the case of PSO. It is noted 

that these differences may look insignificant per wall meter but they can become important 

when walls extend along several kilometres in road construction. Comparing GA with FPA, it 

is clear that FPA performs significantly better than GA both in terms of minimum costs and 

coefficients of variation. 

 

Table 7. PSO outcomes for different switch probability values 

Inertia 

Coefficient 

Average  

Cost 

(€/m) 

Minimum  

Cost    

(€/m) 

Maximum  

Cost    

(€/m) 

Coeficient 

of variation 

(%) 

0 711.43 681.86 724.39 2.21060 

0.1 724.74 716.28 775.71 2.50547 

0.2 707.63 681.83 722.78 2.31792 

0.3 711.87 681.83 729.77 2.27078 

0.4 711.95 681.83 725.82 2.27078 

0.5 726.89 681.83 767.94 4.31511 

0.6 704.08 681.83 722.69 2.72863 

0.7 712.54 681.84 724.63 2.29491 

0.8 716.28 681.83 730.45 1.79413 

0.9 704.73 681.83 766.67 4.00127 

1 696.66 681.83 721.18 2.75076 

 

Furthermore, Fig. 7 presents a comparison of the convergence performance of the FPA and the 

GA and PSO algorithms. Figure 7a compares the average cost histories and Fig. 7b the 

normalized errors in logarithmic scale of the average cost histories (i.e. error = (cost – 681.82) 

/ 681.82) of all three algorithms with respect to the minimum cost achieved (i.e. €681.82/m of 

the reference FPA solution). It can be seen that the FPA algorithm provides better performance 

from the early iteration steps and it drives to significantly more accurate results at the end of 

the analyses. It is also clear that FPA approaches the minimum cost almost exponentially with 
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the number of iterations. On the other hand, PSO reduces the error in the first iteration steps 

but is not able to yield more accurate predictions after a specific iteration step (approx. 220). 

This can be attributed to the relatively poor exploration capacity of the PSO algorithm in the 

later stage of iterations that allows it to be trapped in local optimal solutions (Li et al. 2015). 

The error of GA remains significant throughout the iterations history. 

 

 
 

Figure 7. Comparison of FPA with PSO and GA performances; a) average cost histories; b) 

average normalized error histories 

 

4.4 Parametric optimum designs and further comparisons with PSO and GA 

 

In this section, the costs of optimum designs of the RC retaining wall as a function of the wall 

height h and the surcharge loading q are presented. All costs are derived by using FPA with p 

= 0.5, n = 20, γ = 0.5 and λ = 3/2 and 2000 maximum iterations. The FPA predictions are also 

compared with the respective PSO and GA predictions for the respective h and q values. This 

parametric study is important as it can affect decision making in the early phases of the wall 

design. Both optimum cost variations are presented in Fig. 8. Average costs are presented 

therein based on the results of ten independent algorithm runs for each h and q value.  

In Fig. 8a, optimum costs are presented for wall heights ranging from 2 to 14 meters with a 

step of 0.5 m. It can be seen that cost increases rapidly and nonlinearly with the height of the 

wall. Increasing the height of the wall from 4m to 14m can increase the cost almost by ten 

times. Similar findings are reported in Yepes et al. (2008). Furthermore, Fig. 8b shows the 

variation of optimum wall costs with the magnitude of surcharge loading q. Results are 

presented for q values ranging from 0 to 20 kN/m2 with a step of 1 kN/m2. It is evident that the 

cost of the walls increases almost linearly with the magnitude of the surcharge loading. 
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However, the rate of increase is rather slow. An increase of q from zero to 20 kN/m2 drives 

only to approximately 25% increase in the wall costs.  

In all comparisons of FPA with PSO and GA algorithms in Fig. 8, FPA provides lesser or equal 

costs to the PSO and GA algorithms. In Fig. 8a, it can be concluded that the differences in 

costs achieved by the three algorithms become more significant for large walls heights, where 

high costs are generally involved. Furthermore, in Fig. 8b, it is shown that the FPA predicts a 

clear linear trend of the walls cost and surcharge loading. On the other hand, the PSO and GA 

algorithms fail to yield a clear trend of wall costs with surcharge loading. It is worth noting 

that in some cases PSO and GA predict a decrease of minimum cost with an increase of the 

surcharge loading, which is counter-intuitive. 

 

  

Figure 8. Average optimum costs achieved by FPA and PSO as a function of a) h; b) q 

 

5 Conclusions  

 

FPA is a novel optimization algorithm mimicking the evolution process of flowering species. 

Following its development, it has been applied to various optimization problems in different 

scientific fields. Despite the fact that several studies exist on the optimization of RC retaining 

walls, none of these studies has employed FPA to obtain the optimum solutions.  

To fill this gap, the present study applies FPA to the optimum structural design of an RC 

cantilever retaining wall case study with six independent design variables. It is found that FPA 

reduces significantly the cost of the wall with respect to conventional design approaches. 

Furthermore, parametric studies are conducted to identify the FPA parameters that provide the 

best performance of this algorithm on the optimization problem of the present study. It is found 
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that switch probability values p ranging between 0.4 and 0.7 yield the optimum performance 

in terms of both minimum costs and convergence performance. Switch probability values of 

0.2 and 0.8 still drive to optimal costs but they converge at a slower pace. On the other hand, 

the extreme switch probability values p = 0 and 1 are not typically able to track the global 

optimal solutions. Moreover, the effect of the population size is investigated. It is found that 

the performance of FPA is not significantly affected by the population size for the problem 

under investigation. More particularly, a population size of 20 individuals offers a good 

balance between performance and computational effort. Populations with more than 20 

individuals do not seem to improve the final results as well as the rate of convergence. 

Populations with less than 20 individuals reach ultimately the same optimum costs but they 

require more iterations to converge.  

Furthermore, the effect of constant λ of the Lévy flight step size 𝐿(𝜆) is also examined. It is 

found that solutions with λ values between 1 and 2 converge eventually to similar minimum 

costs. However, the rate of convergence is maximised if λ is set equal to 3/2 as also 

recommended by Yang (2012). Finally, the influence of the Lévy flight step size scale factor γ 

on the performance of FPA is investigated. It is concluded that γ does not affect considerably 

the ultimate optimum costs achieved by FPA. However, it strongly affects the rate of 

convergence of the algorithm. For the design of RC retaining walls, it is found that γ = 0.5 

offers the best convergence rate of the FPA algorithm. 

The efficiency of FPA in solving the optimization problem of this study is compared with the 

one of the PSO and GA algorithms for a great number of different wall configurations. It is 

generally found that FPA outperforms both PSO and GA yielding lesser costs and with smaller 

variability.  

Finally, a parametric study is conducted to investigate the effects of the wall height and 

surcharge loading on the optimum costs of RC cantilever retaining walls. It is concluded that 

the optimum costs increase rapidly and nonlinearly with the wall height. On the other hand, 

they increase almost linearly but rather smoothly with the surcharge loading. 
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The Flower Pollination Algorithm (FPA) used in this study is readily available in the 

MATLAB file exchange system. Furthermore, the conventional design of the reinforced 

concrete retaining wall case study examined herein is presented in Mosley et al. (2012). It is 

noted that the FPA algorithm is based on stochastic processes. Hence, exact replication of the 

results presented in this study is not possible. 
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