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APPLICATION OF STOCHASTIC METHODS 
IN THE VALUATION OF SOCIAL SECURITY PENSION SCHEMES 

 
Subramaniam Iyer 

 
1. INTRODUCTION 

 
The actuarial valuation of social security pension schemes has invariably been based on the 
deterministic approach.  Although it is recognized that the determining parameters are subject to 
stochastic variation, the valuation is based on constant values of the parameters, chosen so as to 
represent the “average” that is expected each year over the time period covered by the valuation 
(Iyer, 1999). Sometimes results are also presented for alternative sets of parameters (typically, 
for two additional sets on either side, termed “conservative” and “optimistic”), or the sensitivity 
of the results to individual key parameters are illustrated, but apart from having some recourse to 
the simulation technique, stochastic methods have not seen much application (Plamondon et.al., 
2002). 
 
This contrasts with the case of other areas of insurance, including that of occupational pensions, 
where stochastic methods are increasingly being applied (Daykin et.al., 1994; Booth et.al., 
1999). 
 
This paper attempts to develop a stochastic valuation method for a newly introduced social 
security pension scheme.  The approach is not based on the simulation technique. Rather, the 
purpose is to derive algebraic expressions for the variances of, and the co-variances among, the 
important aggregates that characterize the development of the scheme, i.e. the financial 
projections of insured salaries and benefit expenditures and their discounted values, taking into 
account stochastic variation in the following factors: 

• The age-specific cohort survival 
• The time-specific intake of new entrants 
• The time-specific real rate of return on the Fund (i.e. the return net of salary escalation). 

On this basis, a method of determining premiums is developed which recognizes explicitly and 
quantifies the underlying stochastic variations. 
 
In order to keep the mathematical manipulations within reasonable limits, however,  the 
following simplifying assumptions are made in regard to the pension model: 

• The scheme provides pensions only on retirement (invalidity and survivors’ pensions are 
not considered).  There are no pensioners at the outset. 

• The ages of entry and retirement are each unique, and constant over time 
• The age-specific mortality rates are constant over time 
• The pension is based on the final salary and is fully indexed to salary escalation.  

 
Another important set of assumptions concerns independence.  Each individual member of the 
scheme is assumed to be independent of every other member – whether in a different cohort or 
even in the same cohort - in regard to the mortality factor.  Further, the investment return factor 
is assumed to be independent of the mortality factor and the new entrant factor. 
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For the development of the theory a continuous formulation is adopted.  The paper does not enter 
into the details of practical application. However, numerical illustrations of the main results are 
provided in Appendix 8.  
 

2. DEMOGRAPHIC PROJECTIONS, ALLOWING FOR STOCHASTIC 
VARIATION IN COHORT SURVIVAL 

 
2.1 Notation and assumptions  

 
In classical demographic projections, the number of survivors to various ages from a given group 
of individuals is projected exactly in line with the (assumed) underlying life table function.  In 
this paper, it is recognized that cohort survival as above represents only the average progression 
of the cohort. The actual outcome is subject to stochastic variation around the average. The aim 
is to quantify the extent of the variation. 
  
For the present purposes, the age x and time t are treated as continuous variables. The population 
element aged x, at time t, is, in general, denoted by P(x, t). That is to say, the population aged 
between x and x+dx at time t is P(x, t)dx. When it is necessary to distinguish between the Active 
Population and the Retired Population, they are indicated, respectively, by the symbols Ac(x, t)  
and Re(x, t).  The Total Active and Retired Populations at time t are denoted by the symbols A(t) 
and R(t). 
 
The entry age is denoted by b and the retirement age by r.  The initial active popula tion, Ac(x, 0), 
b = x < r, is assumed to be given, with Ac(b, 0)dt representing the number of new entrants at t = 
0 – more precisely, the number of new entrants in the interval (-dt, 0). The number of new 
entrants at time t - or rather, in the interval (t-dt, t) - is given by ( ,0) tAc b eρ dt, where ? is an 
assumed constant.  The “dt” is hereafter omitted in the text for brevity, but should be 
understood as implied. 
 
Stochastic variation in survival is assumed to apply to each population element from the time it 
enters the purview of the scheme.  The applicable mortality table, representing the “average” 
survival pattern, is denoted by { xl }, b = x < ? , where ?  is the limiting age, with ? -r < r-b (i.e. 
the potential active lifetime exceeds the potential retirement lifetime).  
 

2.2 Initial Population cohorts 
 
If P(x, t) derives from an initial population cohort, the condition t-x+b < 0 would apply, and the 
corresponding initial population element would be Ac(x-t, 0). The number surviving to age x out 
of this number has the Binomial distribution with parameter t x tp − . Therefore (see Appendix 1, 
Note 1), the expected value and variance of P(x, t) are given by 
 ( , ) ( ,0) t x tEP x t Ac x t p −= −  (1) 
 ( , ) ( ,0) (1 )t x t t x tVP x t Ac x t p p− −= − −  (2) 
If P(x, t) and P(y, u), both deriving from initial population cohorts, are from different cohorts, i.e. 
x-t ? y-u , they will be independent and therefore uncorrelated.  However, if they derive from the 
same cohort (x-t = y-u), they will be correlated. Assuming x > y, the covariance is given by (see 
Appendix 1, Note 1), 
 ( ( , ), ( , )) ( ,0) (1 )t x t u y uCOV P x t P y u Ac x t p p− −= − −  (3) 
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2.3 New Entrant cohorts 

 
We shall first consider the case corresponding to a unit new entrant at t=0. If P(x, t) derives from 
a new entrant cohort (t-x+b > 0), the size of the cohort at entry would be ( )t x be ρ− + , and the 
expected value and variance of P(x, t) would be given by 

 
( )

( )
( )

( , ) t x b t x
x b b

b

D
EP x t e p e

D

ρ
ρ ρ

ρ
− +

−= =  (4) 

 
( ) ( )

( )
( ) ( )( , ) (1 ) [ ]t x b t x xx

x b b x b b
b bb

D D
VP x t e p p e

D D

ρ ρ
ρ ρ

ρ ρ
− +

− −= − = −  (5) 

where ( ) ( ),x x
x x xx x xD l e D l l eρ ρ ρ ρ− −= = . 

The above formulae correspond to a unit new entrant at t = 0.  The actual number of new 
entrants at t = 0 being Ac(b, 0), it is necessary to adjust formulae (4) and (5).  The adjustment is 
obtained by multiplying both the formulae by Ac(b, 0).  It might be thought that formula (5) 
should be multiplied by 2( ,0)Ac b , but this would be incorrect, in view of the assumed 
independence of individual members within a cohort (see Appendix 1, Note 2).  The adjusted 
formulae are given by 

 
( )

( )( , ) ( ,0) t x

b

D
EP x t Ac b e

D

ρ
ρ

ρ=  (6) 

 
( ) ( )

( ) ( )
( , ) ( ,0) [ ]t x xx

b bb

D D
VP x t Ac b e

D D

ρ ρ
ρ

ρ ρ
= −  (7) 

P(x, t) and P(y, u) will be independent and uncorrelated if one is from an initial population 
cohort and the other is from a new entrant cohort.  Similarly, if P(x, t) and P(y, u), both deriving 
from new entrant cohorts, are from different cohorts, i.e. x-t ? y-u, they will be independent and 
therefore uncorrelated.  However, if they derive from the same cohort (x-t = y-u), they will be 
correlated. Assuming x > y , the covariance is given by the following formula (see Appendix 1, 
Note 1), including the adjustment required to take into account the actual number of new entrants 
at t = 0, namely Ac(b, 0), 

 
( )

( )
( )( ( , ), ( , )) ( ,0) (1 ) ( ,0) (1 )t x b t x

x b b y b b y b b
b

D
COV P x t P y u Ac b e p p Ac b e p

D

ρ
ρ ρ

ρ
− +

− − −= − = − (8) 

 
2.4 Total Active and Retired Population projections: Expected values and variances 

 
Since the different cohorts are considered to be evolving independently of each other, the 
variances are additive across cohorts at each point in time. When the expected values of the 
different cohorts surviving to time t are added to produce the expected total active and retired 
populations, the corresponding variances can be added to obtain the variance of the total active 
and retired populations.  Due to the differences in the formulae, the elements from the initial 
population cohorts and those from new entrant cohorts should be added separately, over the 
appropriate age ranges, 1 2 0 1( ), ( ); ( ), ( )a t a t a t a t .  This will give rise to the following formulae for 
the expected value and variance of A(t) or R(t): 
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 2 1

1 0

( )( ) ( )

( )( ) ( )

( ,0)
( ) ( ) ( ,0)[ ]

( ,0)

a t a tt x
t x ta t a t

b

DAc x t
EA t orER t Ac b p dx e dx

Ac b D

ρ
ρ

ρ−

−
= +∫ ∫  (9) 

 
2 1

1 0

( ) ( )
( ) ( )

( ) ( )( ) ( )

( ,0)( ) ( ) ( ,0)[ (1 ) ( ) ]
( ,0)

a t a tt x xx
t x t t x ta t a t

b bb

D DAc x tVA t orVR t Ac b p p dx e dx
Ac b D D

ρ ρ
ρ

ρ ρ− −
−= − + −∫ ∫ (10) 

For the simplified pension model assumed in this paper, with constant entry and retirement ages 
b and r, constant mortality table and with no pensioners at the outset of the scheme, the limits 

0 1 2( ) , ( ), ( )a t a t a t will be as follows (Note: ? -r < r-b): 
 
Active/Retired population  Time range Age range for IP  Age range for NE 
      ( 1 2( ), ( )a t a t )  ( 0 1( ), ( )a t a t ) 
Active population A(t) 0 = t < r-b b+t, r   b, b+t 
     t = r-b  nil   b, r 
 
Retired population R(t)  0 = t < ? -r r, r+t   nil 
    ? -r = t < r-b r, ?    nil 
    r-b = t < ? -b b+t, ?    r, b+t 
    t = ? -b  nil   r, ?  

 
2.5 Total Active and Retired Population projections: Co-variances 

 
A(t) will be correlated with A(u) , and R(t) with R(u), to the extent that there are common cohorts 
between either pair.  Similarly R(t) will be correlated with A(u), u < t, if there are common 
cohorts. However, R(t) will not be correlated with A(u) if u > t, since there cannot be common 
cohorts between them.  
 
Consider, for example, A(t) and A(u) , with u < t.  If Ac(x, t) and Ac(y, u) are from the same 
cohort, then x-t = y-u, or x = y+t-u.  If common cohorts exist over the range 0 2( ( , ), ( , ))c t u c t u  of 
y, of which 0 1( ( , ), ( , ))c t u c t u concerns new entrant cohorts and 1 2( ( , ), ( , ))c t u c t u relates to initial 
population cohorts, using (3) and (8) above, the co-variance between A(t) and A(u) can be 
expressed as  

 
1 2

0 1

( )
( , ) ( , )

( )( , ) ( , )

( ,0)
( ,0)[ (1 ) (1 ) ]

( ,0)

c t u c t uy t ut
y b b t y u u y uc t u c t u

b

D Ac y u
Ac b e p dy p p dy

Ac bD

ρ
ρ

ρ

+ −
− − −

−
− + −∫ ∫  (11) 

Similar formulae apply to the covariance between R(t) and R(u) and between R(t) and A(u), u < t.  
The appropriate limits of integration are obtained according to the following rules: 
If either 0 1( ( ), ( ))a t a t  or 0 1( ( ), ( ))a u a u = nil, then 0 1( ( , ), ( , ))c t u c t u = nil. 

If 0 1( ) ( )a t t u a u− + >  or 1 0( ) ( )a t t u a u− + <  then 0 1( ( , ), ( , ))c t u c t u = nil. 
Otherwise, if 0 0( ) ( )a t t u a u− + <  then 0 0( , ) ( )c t u a u= ; 

      if 0 0( ) ( )a t t u a u− + >  then 0 0( , ) ( )c t u a t t u= − + ; 
        if 1 1( ) ( )a t t u a u− + <  then 1 1( , ) ( )c t u a t t u= − + ; 

              if 1 1( ) ( )a t t u a u− + >  then 1 1( , ) ( )c t u a u= . 
If either 1 2( ( ), ( ))a t a t  or 1 2( ( ), ( ))a u a u = nil, then 1 2( ( , ), ( , ))c t u c t u = nil. 
If 1 2( ) ( )a t t u a u− + >  or 2 1( ) ( )a t t u a u− + <  then 1 2( ( , ), ( , ))c t u c t u = nil. 
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Otherwise, if 1 1( ) ( )a t t u a u− + <  then 1 1( , ) ( )c t u a u= ; 
      if 1 1( ) ( )a t t u a u− + >  then 1 1( , ) ( )c t u a t t u= − + ; 

        if 2 2( ) ( )a t t u a u− + <  then 2 2( , ) ( )c t u a t t u= − + ; 
              if 2 2( ) ( )a t t u a u− + >  then 2 2( , ) ( )c t u a u= . 
 
The limits of integration for the simplified pension model are given in Appendix 2.  
  

2.6 The long-term situation 
 
In the long-term (t = ? -b) both the active and the retired populations would consist entirely of 
new entrant cohorts, and the above formulae would simplify as follows: 

 
( ) ( ) ( )

( ) ( )( ) ( ,0) ; ( ) ( ,0)b r rt t

b b

N N N
EA t Ac b e ER t Ac b e

D D

ρ ρ ρ

ρ ρ
ρ ρ

−
= =  (12) 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ,0) [ ]; ( ) ( ,0) [ ]b r bb rr r rrt t

b bb b bb

N N N N N NVA t Ac b e VR t Ac b e
D D D D

ρ ρ ρ ρ ρ ρ

ρ ρ
ρ ρ ρ ρ

− −= − = −  (13) 

where, 
( ) ( )
xx yyx

N D dy
ϖρ ρ= ∫  

It will be noted that although EA(t) and ER(t) and VA(t) and VR(t) increase continuously and tend 
to infinity as t tends to infinity (unless ? = 0), the respective coefficients of variation, CVA(t) and 

CVR(t),  are proportional to
1 1
2 2( ,0)

t
Ac b e

ρ− −
.  Therefore, they are inversely related to the square 

root of the population factor Ac(b, 0) and tend to zero as t tends to infinity, provided ? > 0.  This 
is in conformity with the law of large numbers. 
 

2.7 The Demographic Ratio 
 
Consider the Demographic Ratio, defined as   

 ( )( )
( )

R tDR t
A t

=  (14) 

R(t) can be regarded as independent of A(t) as they are constituted by different cohorts.  
Therefore R(t) and A(t) are uncorrelated, and if the third and higher central moments of A(t) as 
well as fourth and higher powers of CVA(t) are ignored, the following approximate expressions 
will be obtained for the expected value and the variance of the Demographic Ratio (see 
Appendix 1, Note 3): 

 2( )( ) [1 ( ) ]
( )

ER tEDR t CVA t
EA t

= +  (15) 

 
2

2 2
2

( )
( ) [ ( ) ( )]

( )
ER t

VDR t CVR t CVA t
EA t

= +  (16) 

Equation (15) indicates that the ratio ER(t)/EA(t) is a biased estimator of the Demographic Ratio, 
although the bias declines with time if ? > 0.  Equation (16) shows that the variance of this ratio 
also tends to decline with time.  
 
Further, it can be shown that the coefficient of variation, CVDR(t) decreases with t, tending to 0 
as t? 8 , so that the precision of the estimated Demographic Ratio increases with time.  The 
initial population size has also a similar effect; for a given t, the larger the value of Ac(b,0), the 
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smaller will be CVA(t) and CVR(t) and the larger will be the precision of the estimated 
Demographic Ratio.  
   

3. DEMOGRAPHIC PROJECTIONS, ALLOWING ALSO FOR STOCHASTIC 
INTAKE OF NEW ENTRANTS 

 
3.1 Notation and assumptions  

 
In classical demographic projections, the annual number of new entrants is assumed 
deterministically. For example, the number of new entrants in the interval (t-dt, t) may be taken 
as ( ,0) tAc b e dtρ , where ? is an assumed parameter (see section 2.1). 
 
In this section, the number of new entrants in the interval (t-dt, t) is assumed to be 

0
( )

( ,0)
t

z dz
Ac b e

ρ∫ dt, where ( )zeρ for different values of z are independent identically distributed 
(IID) variables, with expected value and second raw moment given by 
 ( ) 2 ( )( ) ; ( )z zE e e E e eρ ρ ρ π= =  (17) 
so that the variance is given by 
 ( ) 2( )zV e e eρ π ρ= −  (18) 
For the variance to be positive, we should have p > 2?. When p = 2?, the variance is zero, 
meaning that the new entrant factor is deterministic. The symbol φ  is used to denote the 
difference p – ?.  
 
As regards the initial population cohorts, the formulae developed in section 2.2 above are also 
valid in the present case.  It is therefore necessary to discuss only the new entrant cohorts. 
 

3.2 New entrant cohorts: Expected value and variance of P(x, t) 
 
As in section 2, we shall first develop the formulae for a unit new entrant at time t = 0. If P(x, t)  
derives from a new entrant cohort, this cohort would have entered at time t-x+b , and would have 

numbered L = 0
( )

t x b
z d z

e
ρ

− +

∫ at entry.  In view of the IID property of ( )zeρ  we have 
 ( ) ( ) 2( )( ) ; ( )t x b t x b t x bE L e V L e eρ π ρ− + − + − += = −  (19) 
The conditional expectation and variance of P(x, t), given L, are given by 
 ( ( , ) | ) ; ( ( , ) | ) (1 )x b b x b b x b bE P x t L L p V P x t L L p p− − −= = −  (20) 
The unconditional expectation of P(x, t) is therefore 

 
( )

( )
( )

( ( , )) ( ( , ) | ) ( ) t x b t x
x b b x b b

b

D
E P x t EE P x t L p E L p e e

D

ρ
ρ ρ

ρ
− +

− −= = = =  (21) 

The unconditional variance of P(x, t) is obtained as VP(x, t) = EV(P(x,t)|L)+VE(P(x,t)|L) 
 ( )( ( , ) | ) (1 ) ( ) (1 )t x b

x b b x b b x b b x b bEV P x t L p p E L e p pρ− +
− − − −= − = −  (22) 

 2 2 ( ) 2( )( ( , ) | ) ( ) ( )t x b t x b
x b b x b bVE P x t L p V L p e eπ ρ− + − +
− −= = −  (23) 

Adding (22) and (23) and simplifying, we get 

 
( ) ( ) ( ) ( )

2 2
( ) ( ) ( ) ( )

( , ) ( ) ( )t t txx x x xx

bb b b bb

D D D D
VP x t e e e

D D D D

π ρ ρ ρ
π ρ ρ

π ρ ρ ρ
= − + −  (24) 

The formulae (21) and (24), which correspond to a unit new entrant at t = 0, should be adjusted 
to correspond to the actual number of new entrants at t = 0, namely Ac(b, 0).  As in the case of 
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section 2 above, for the same reasons, the adjustment factor would, in either case, be Ac(b, 0).  
The final expressions, therefore, are 

 
( )

( )( , ) ( ,0) t x

b

D
EP x t Ac b e

D

ρ
ρ

ρ=  (25) 

 
( ) ( ) ( ) ( )

2 2
( ) ( ) ( ) ( )

( , ) ( ,0)[ ( ) ( )]t t txx x x xx

bb b b bb

D D D D
VP x t Ac b e e e

D D D D

π ρ ρ ρ
π ρ ρ

π ρ ρ ρ
= − + −  (26) 

It will be noted that (25) is identical to (6), and that (26) will reduce to (7) if p = 2? 
 

3.3 New entrant cohorts: Covariance between P(x, t) and P(y, u), from the same cohort 
 
Unlike the case of section 2, P(x, t) and P(y, u) will be correlated, whether or not they are from 
the same cohort.  As before, the formulae are fir st developed for a unit new entrant at t = 0, and 
then adjusted to correspond to Ac(b, 0) new entrants at t = 0. 
 
Since they are from the same cohort, x-t = y-u.  Assume x > y.  L has the same definition as in 
section 3.2. We use the formula (see Appendix 1, Note 4): 
 ( ( , ), ( , )) ( ( , ), ( , ) | ) ( ( ( , ) | ), ( ( , ) | ))COV P x t P y u ECOV P x t P y u L COV E P x t L E P y u L= + (27) 
The development of the formula proceeds as follows: 
 ( ( , ), ( , ) | ) (1 )x b b y b bCOV P x t P y u L L p p− −= −  (28) 

 ( )( ( , ), ( , ) | ) (1 ) ( ) (1 )t x b
x b b y b b x b b x b bECOV P x t P y u L p p E L e p pρ− +

− − − −= − = −  (29) 

 ( ( , ) | ) ; ( ( , ) | )x b b y b bE P x t L L p E P y u L L p− −= =  (30) 

 2[ ( ( , ) | ) ( ( , ) | )] ( )x b b y b bE E P x t L E P y u L p p E L− −=  (31) 

 2( ( , ) | )* ( ( , ) | ) ( )x b b y b bEE P x t L EE P y u L p p E L− −=  (32) 

 2 2[ ( ( , ) | ), ( ( , ) | )] ( ( ) ( ))x b b y b bCOV E P x t L E P y u L p p E L E L− −= −  (33) 

Substituting for 2( )E L  and E(L) in (33), combining with (29) and simplifying, and incorporating 
the adjustment for correspondence with Ac(b, 0) new entrants at t = 0, 

 
( ) (2 ) ( )

2
( ) (2 ) ( )

( ( , ), ( , )) ( ,0)[( ) (1 )]t t tx x x
y b b y b b

b b b

D D D
COV P x t P y u Ac b e e p e p

D D D

π ρ ρ
π ρ ρ

π ρ ρ− −= − + − (34) 

It will be noted that (34) will reduce to (26) when x = y, and to (8) when p = 2?. 
 

3.4 New Entrant coho rts: Covariance between P(x, t) and P(y, u), from different 
cohorts 

 
Since they are not from the same cohort, x-t ? y-u.  Let us assume that x-t < y-u, which means 

that P(x, t) is from a later cohort than P(y, u).  Let 0
( )

1

t x b
z d z

L e
ρ

− +

∫=  and 0
( )

2

u y b
z dz

L e
ρ

− +

∫= .  We use 
the following formula (see Appendix 1, Note 4)  
 1 2 1 2( ( , ), ( , ) | , ) ( ( ( , ) | ), ( ( , ) | ))ECOV P x t P y u L L COV E P x t L E P y u L+  (35) 
The first term of (35) is zero, because P(x, t) and P(y, u) are uncorrelated if the respective 
cohorts are non-stochastic.  Therefore only the second term is relevant. The derivation proceeds 
as follows, per unit new entrant at t = 0: 
 ( ) ( )

1 2( ) ; ( )t x b u y bE L e E L eρ ρ− + − += =  (36) 

 00 0
2 ( ) ( )( ) ( ) ( ) ( )

1 2( ) ( ) ( )
u y b t x bt x b u y b

u y b
z d z z dzz dz z d z u y b t x u yE L L E e E e e

ρ ρρ ρ π ρ
− + − +− + − +

− +
++ − + + − − +∫ ∫∫ ∫= = =  (37) 
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 1 1 1( ( , ) | ) ( ) ( )x b b x b bEE P x t L E L p p E L− −= =  (38) 
 2 2 2( ( , ) | ) ( ) ( )y b b y b bEE P y u L E L p p E L− −= =  (39) 

 1 2 1 2[ ( ( , ) | ) * ( ( , ) | )] ( )x b b y b bE E P x t L E P y u L p p E L L− −=  (40) 
Substituting from (36) and (37) in (38), (39) and (40), the required co-variance is obtained as 
(40) – (38)*(39) which, after allowing for the actual number of new entrants at t = 0, namely 
Ac(b, 0) and simplification, gives the following result: 

 
( ) ( )( )

( ) ( ) ( )( ( , ), ( , )) ( ,0) [ ]y yt u ux

b b b

D DD
COV P x t P y u Ac b e e e

D D D

φ ρρ
ρ φ ρ

ρ φ ρ= −  (41) 

If x-t > y-u, i.e. P(x,t) is from an earlier cohort than P(y,u), the expression for the co-variance 
would become 

 
( ) ( ) ( )

( ) ( ) ( )( ,0) [ ]yu t tx x

b b b

D D D
Ac b e e e

D D D

ρ φ ρ
ρ φ ρ

ρ φ ρ−  

 
It will be noted that if p = 2?, the expression within the square brackets will, in either case, 
disappear, making the covariance zero. 
 

3.5 Total Active and Retired Population projections: Expected values, variances and 
co-variances 

 
The expected values of A(t) and R(t) are not affected by the stochastic nature of new entrants.  
The formulae already derived in section 2 will therefore hold.    However, the expressions for the 
variances and co-variances will be considerably more complicated. Consider the covariance 
between A(t) and A(u).  The general expression for this covariance would be 

 2 2

0 0

( ) ( )

( ) ( )
( ( ), ( )) ( ( , ), ( , ))

a t a u

a t a u
COV A t A u COV Ac x t Ac y u dydx K L M= = + +∫ ∫  (42) 

where K, L and M are components which are discussed below.  
 
If Ac(x, t) derives from an initial population cohort, then it will not be correlated with any other 
Ac(y, u)  except if they are both from the same cohort.  The component K refers to the integral of 
the co-variances among initial population cohorts, and will be the same as the second member on 
the right-hand-side of (11). If Ac(x, t) is from a new entrant cohort, it will be correlated with any 
Ac(y, u) which is from the same or another new entrant cohort, although the expression for their 
covariance would depend upon whether they are from the same cohort (equation (34)) or from 
different cohorts (equation (41)).  The component L refers to the integral obtained by applying 
formula (41) over the whole range of integration for new entrant cohorts.  The component M is a 
correction to L to allow for the correct formula, i.e. (34), in those cases where Ac(x, t) and Ac(y, 
u) are from the same cohort.  The expressions for K, L and M, after simplification, allowing for 
Ac(b,0) new entrants at t = 0, are as follows (note: 1 2 3L L L L= + − ): 

 2

1

( , )

( , )

( ,0)( ,0)[ (1 ) ]
( ,0)

c t u

t y u u y uc t u

Ac y uK Ac b p p dy
Ac b − −

−= −∫  (43) 

   

 
1

0 1

0

( ) ( ) ( )( ) ( )
1 ( ) ( )( )

( ,0)
a t y a ut u x

a t
b b

N N D
L Ac b e e dx

D D

φ φ ρ
ρ φ

φ ρ

−
= ∫  (44) 
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1

0 0

0

( ) ( ) ( )( ) ( )
2 ( ) ( )( )

( ,0)
a t a u yu t x

a t
b b

N N D
L Ac b e e dx

D D

ρ ρ φ
ρ φ

ρ φ

−
= ∫  (45) 

 

 10 1 0

( )( ) ( ) ( )
( )( ) ( ) ( )( )

3 ( ) ( )( ,0)
a ua t a t a ut u

b b

N N N N
L Ac b e

D D

ρρ ρ ρ
ρ

ρ ρ
+

− −
=  (46) 

 1

0

( )
( , )

( )( , )
( ,0) (1 )

c t u y t ut
y b bc t u

b

D
M Ac b e p dy

D

ρ
ρ

ρ
+ −

−= −∫  (47) 

where ( ) ( )
x yx

N D dy
ωρ ρ= ∫ . The values of 0 1( ), ( )a t a t were defined in section 2.4 and the values of 

0 1 2( , ), ( , ), ( , )c t u c t u c t u were defined in section 2.5.  The value of 0y is x-t+u , subject to the 
minimum of 0 ( )a u and the maximum of 1 ( )a u .  Demographic projections are illustrated in 
Appendix 8, Table 1. 
 
K (43) is not affected by ? or p, but it can be shown that 1 2 3, ,L L L  and M ((44)-(47)) will all 
increase if either ? or p is increased.  Therefore, an increase in ? or p will lead to an increase in 
COV(A(t),A(u)).   
 
It will be noted that when p = 2?, 1 2 3L L L+ = , so that the expression for the co-variance in (42) 
will reduce to K+M, which is identical to (11). Eventually, when the initial population has 
disappeared from the scene  (t > ? – b), expression (42) for the co-variance would reduce to 
L+M. 
  
The expression (42) is also valid for the variance of A(t), which is obtained by putting u = t.  
Similar expressions also apply to the co-variance between R(t) and R(u) and that between R(t) 
and A(u). Provided the initial rela tive age -distribution remains invariant, it will be evident that 
the coefficients of variation of A(t) and R(t) will be inversely proportional to the square root of 
Ac(b,0) which means that the lower the initial population, the higher the coefficients of variation.  
 

3.6 Expressions for co-variances in the long-term 
 
For t exceeding specified values, general expressions can be derived for COV(A(t),A(u)), 
COV(R(t),R(u)), COV(R(t),A(u)) and COV(A(t),R(u)), where u = t (see Appendices 4, 5 and 6).  
In particular, the following expressions, for the variance of A(t) and R(t) and for the covariance 
between R(t) and A(t),  are valid for t > ? -b: 
 2

1 2 3( ) ( ,0)[ ]t t tVA t Ac b Pe P e Peπ ρ ρ= − +  (48) 
where 

 
( ) ( ) ( ) ( ) ( ) ( )

1 ( ) ( ) ( ) ( )

r r
x b x x x r

b b
b b b b

D N N D N N
P dx dx

D D D D

φ ρ ρ ρ φ φ

φ ρ ρ φ

− −
= +∫ ∫  

 
( ) ( )

2
2 ( )

[ ]b r

b

N N
P

D

ρ ρ

ρ

−
=  

 
( ) ( ) ( ) ( )

3 ( ) ( )
b r bb rr

b bb

N N N N
P

D D

ρ ρ ρ ρ

ρ ρ

− −
= −  

 2
1 2 3( ) ( ,0)[ ]t t tVR t Ac b Q e Q e Q eπ ρ ρ= − +  (49) 
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where 

 
( ) ( ) ( ) ( ) ( )

1 ( ) ( ) ( ) ( )
x r x x x

r r
b b b b

D N N D N
Q dx dx

D D D D

φ ρ ρ ρ φ
ϖ ϖ

φ ρ ρ φ

−
= +∫ ∫  

 
( )

2
2 ( )[ ]r

b

N
Q

D

ρ

ρ=  

 
( ) ( )

3 ( ) ( )
r rr

b bb

N NQ
D D

ρ ρ

ρ ρ
= −  

 2
1 2( ( ), ( )) ( ,0)[ ]t tCOV R t A t Ac b R e R eπ ρ= −  (50) 

where 

 
( ) ( ) ( )

1 ( ) ( )
b r r

b b

N N NR
D D

ρ ρ φ

ρ φ

−
=  

 
( ) ( ) ( )

2 ( ) ( )
b r r

b b

N N N
R

D D

ρ ρ ρ

ρ ρ

−
=  

It will be noted that if p = 2?, the first two terms of (48) will cancel out and (48) will reduce to 
the expression for VA(t) in (13).  Similarly, (49) will reduce to the expression for VR(t) in (13), 
and the expression for the covariance in (50) will reduce to zero. 
 
The expected values EA(t) and ER(t) being the same as those in (12), it will be seen the 
coefficients of variation of A(t) and R(t) are given by the expressions 

 2 ( 2 ) 31

2 2

1
( ) [ 1 ]

( ,0)
t tPP

CVA t e e
Ac b P P

π ρ ρ− −= − +  (51) 

 2 ( 2 ) 31

2 1

1
( ) [ 1 ]

( ,0)
t tQQ

CVR t e e
Ac b Q Q

π ρ ρ− −= − +  (52) 

In addition, if Corr(R(t),A(t)) denotes the correlation coefficient between A(t) and R(t), the  ratio 
of COV(R(t),A(t)) to the product EA(t)ER(t)  will be given by 

 ( 2 )1

2

1
( ( ), ( )) ( ) ( ) [ 1]

( ,0)
tR

Corr R t A t CVA t CVR t e
Ac b R

π ρ−= −  (53) 

It will be noted that when p > 2?, all the three expressions will diverge to infinity as t tends to 
infinity.  For a given t, a decrease in the initial population size will lead to an increase in all the 
three coefficients of variation. It can be shown tha t an increase in p will have a similar effect.  
 

3.7 The Demographic Ratio 
 
Considering the Demographic Ratio DR(t), unlike the case in section 2.7, R(t) and A(t) will now 
be correlated.  If, in addition to what was ignored in section 2.7, the second and higher powers of 
Corr(R(t),A(t))CVA(t)CVR(t) and correlations between R(t) and A(t) of order higher than one are 
ignored, the following approximate expressions can be derived (see Appendix 1, Note 3): 

 2( )( ) [1 ( ) ( ( ), ( )) ( ) ( )]
( )

ER tEDR t CVA t Corr R t A t CVA t CVR t
EA t

= + −  (54) 

 
2

2 2
2

( )
( ) [ ( ) ( ) 2 ( ( ), ( ) ) ( ) ( )]

( )
ER t

VDR t CVR t CVA t Corr R t A t CVA t CVR t
EA t

= + −  (55) 

Unlike section 2.7, these two expressions, individually, will diverge to infinity as t? 8 . 
However, the coefficient of variation CVDR(t) can be shown to tend to zero as t? 8 . For a given 
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t, CVDR(t) will increase with decreasing initial population size and with increasing p. These 
effects are illustrated numerically in Appendix 8 (Tables 6 and 7). 
 

4. FINANCIAL PROJECTIONS (STATIC SALARY BASIS) 
 
4.1 Notation and assumptions  

 
As in classic projections, it is assumed that the growth of an individual’s salary is governed by a 
salary escalation due to the increase in the general level of earnings, on top of the progression 
due to age/seniority along a salary scale. By static salary basis, it is meant that salary escalation 
is not taken into account directly in the projections (although the salary scale effect is). The 
assumption is also made that pensions are fully adjusted to salary escalation. In this 
circumstance, the analysis of ratios between benefit and salary projections (e.g. pay-as-you-go 
premiums) will be equivalent to that based on projections allowing directly for salary escalation.   
In fact, salary escalation is allowed for, indirectly, in the assumption concerning the investment 
return (see section 5, below). 
   
The average annual salary of the Ac(x, t) persons aged x, at time t, is denoted by sa(x, t) and the 
annual pension amount of the Re(x, t) pensioners is denoted by pe(x, t).  sa(x, 0) at the start of the 
scheme is assumed to be given.  The average annual salary at entry of the Ac(b, 0) persons 
entering at t = 0 is sa(b, 0).  The total annual salary of the Ac(x,t) persons is denoted by Sa(x, t) 
and the total annual pensions of the Re(x, t) retired persons is denoted by Be(x, t).  Pensions are 
assumed to be based on the final salary at retirement and the proportionate pension rate for entry 
age x is denoted by k(x).  
 
Individual salaries progress according to the salary scale s(x), b = x = r, which is assumed to 
remain constant over time.  Since salary escalation over time is not directly taken into account, 
the salary at entry for all new entrant cohorts would be sa(b, 0). 
 

4.2 Expected values, variances and co-variances 
 
 The following relationships hold between the financial and demographic projection elements: 
 ( , ) ( , ) ( , ); ( , ) Re( , ) ( , )Sa x t Ac x t sa x t Be x t x t pe x t= =  (56) 
where, for the initial population cohorts 

 
( ) ( )

( , ) ( ,0) ; ( , ) ( ,0) ( )
( ) ( )
s x s r

sa x t sa x t pe x t sa x t k x t
s x t s x t

= − = − −
− −

 (57) 

and for the new entrant cohorts 

 
( ) ( )

( , ) ( ,0) ; ( , ) ( ,0) ( )
( ) ( )

s x s r
sa x t sa b pe x t sa b k b

s b s b
= =  (58) 

The expected values of the financial projection elements are therefore related to those of the 
corresponding demographic projection elements as follows: 
 ( , ) ( , ) ( , ); ( , ) ( , ) Re( , )ESa x t sa x t EAc x t EBe x t pe x t E x t= =  (59) 
Based on (9), this leads to the following expressions for ES(t) and EB(t): 

 
2 1

1 0

( )
( ) ( )

( )( ) ( )

( ,0) ( )( ) ( ,0)[ ]
( ,0) ( )

s
a t a tt x

t x t sa t a t
b

DSa x t s xES t Sa b p dx e dx
Sa b s x t D

ρ
ρ

ρ−
−= +

−∫ ∫  (60) 

 2 1

1 0

( )( ) ( )

( )( ) ( )

( )( ,0) ( )
( ) ( ,0)[ ( ) ( ) ]

( ,0) ( )

a t a tt x
t x t sa t a t

b

s r DSa x t s r
EB t Sa b k x t p dx k b e dx

Sa b s x t D

ρ
ρ

ρ−

−
= − +

−∫ ∫ (61) 
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where ( ) ( )( )s
x xD s x Dρ ρ= . 

 
The co-variances of the financial projection elements are related to those of the corresponding 
demographic projection elements as follows: 
 ( ( , ), ( , )) ( , ) ( , ) ( ( , ), ( , ))COV Sa x t Sa y u sa x t sa y u COV Ac x t Ac y u=  (62) 
 ( ( , ), ( , )) ( , ) ( , ) (Re( , ),Re( , ))COV Be x t Be y u pe x t pe y u COV x t y u=  (63) 
 ( ( , ), ( , )) ( , ) ( , ) (Re( , ), ( , ))COV Be x t Sa y u pe x t sa y u COV x t Ac y u=  (64) 
These adjustments should be incorporated in (42) to (47), as appropriate, to obtain the 
expressions for the various co-variances of the financial projections.   In order to illustrate this, 
the expression for COV(S(t),S(u)), u = t, is indicated  below: 
 1 2 3( ( ), ( ))COV S t S u K L L L M= + + − +  (65) 

 2

1

( , )

2( , )

( ,0) ( ) ( )
( ,0)[ ( ,0) (1 ) ]

( ,0) ( )
c t u

t y u u y uc t u

Sa y u s y t u s y
K Sa b sa y u p p dy

Sa b s y u − −

− + −
= − −

−∫  (66) 

 
1 0 1

0

( ) ( ) ( )( ) ( )
1 ( ) ( )( )

( )
( ,0) ( ,0)

s s
a t y a ut u x

s sa t
b b

N N s r D
L Sa b sa b e e dx

D D

φ φ ρ
ρ φ

φ ρ

−
= ∫  (67) 

 
1

0 0

0

( ) ( ) ( )( ) ( )
2 ( ) ( )( )

( )
( ,0) ( ,0)

s s
a t a u yu t x

s sa t
b b

N N s r D
L Sa b sa b e e dx

D D

ρ ρ φ
ρ φ

ρ φ

−
= ∫  (68) 

 0 1 0 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

3 ( ) ( )
( ,0) ( ,0)

s s s s
a t a t a u a ut u

s s
b b

N N N N
L Sa b sa b e

D D

ρ ρ ρ ρ
ρ

ρ ρ
+ − −

=  (69) 

 
1

0

( )
( , )

( ) 2( , )

( ) ( )
( ,0) ( ,0) (1 )

( )

c t u y t ut
y b bc t u

b

D s y t u s y
M Sa b sa b e p dy

D s b

ρ
ρ

ρ

+ −
−

+ −
= −∫  (70) 

where ( ) ( )s s
x yx

N D dy
ωρ ρ= ∫ .Expressions for COV(B(t),B(u)) and COV(B(t),S(u)) and for 

COV(S(t),B(u), u = t, can be developed on similar lines (see Appendix 3). The formula for 
COV(S(t),S(u)) is also valid for VS(t), with t = u, and the formula for COV(B(t),B(u)) is valid for 
VB(t). Financial projections are illustrated in Appendix 8, Tables 2 and 3. 
 
Expressions (48) to (53) concerning the demographic projections in the mature situation can be 
adapted to the financial projections and will lead to similar expressions.  The analysis of the 
effects of the parameters ? and p and of the size of the initial popula tion will be similar to that in 
sections 3.5 and 3.6 and will lead to the same conclusions. 
 

4.3 The capitalized value of pension awards  
 
Let Bc(t) denote the capitalized value of the pensions awarded to those retiring at time t, and a* 
the capitalized value of an indexed unit pension at age r. Then, 

( ) ( ) ( , ) *Bc t c t Ac r t a=  

where ( )( ) ( ,0) ( )
( )
s rc t sa r t k r t

s r t
= − −

−
 if t < r –b; ( )( ) ( ,0) ( )

( )
s rc t sa b k b
s b

=  if t = r – b. 

( )
* rEa a

δ
= ; 

( ) ( )
( ) 2* 2 ( )

( )
r r

r
a a

Va a
δ α

δ

α δ
−

= −
−

 (see Appendix 1, Note 5) 

c(t) is deterministic and a* and Ac(r, t) can be regarded as independent. Therefore, 
 ( ) ( ) ( , ) *EBc t c t EAc r t Ea=  (71) 
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From Appendix 1, Note 6, it follows that 
 2 2 2( ) ( )[ ( , )( * *) * ( , )]VBc t c t VAc r t Va E a Va E Ac r t= + +  (72) 
EAc(r, t) given by (1) or (4), and VAc(r, t) by (2) or (26), depending upon whether t < or > r – b, 
can be substituted in the above expression.. 
The co-variance between Bc(t) and S(t) will be zero if t < r – b.  If t > r –b , 

2
2

( ) ( )
( ( ) , ( )) * ( ) ( ,0) ( ( , ), ( , ))

( )

r

b

s r s x
COV Bc t S t Ea k b sa b COV Ac r t Ac x t dx

s b
= ∫  

Substituting for COV(Ac(r, t), Ac(x, t)) from the expression following (41) and simplifying, for t 
> r-b , 

 
( ) ( )( ) ( )

2 2
( ) ( ) ( )( ( ), ( )) ( ,0) * ( ,0) ( )[ ]

s ss s
b rt tr r

s s s
b b b

D D N N
COV Bc t S t Ac b Ea sa b k b e e

D D D

ρ ρφ ρ
π ρ

φ ρ ρ

−
= −  (73) 

 
5. DISCOUNTED VALUES OF SALARY AND BENEFIT PROJECTIONS 

 
Discounting of projections is relevant in the context of funded financial systems. The following 
development is based on the force of “real interest”, defined here as nominal interest less salary 
escalation. By using this force of interest to discount the projections on the static salary basis, 
salary escalation is effectively taken into account. 
 
       5.1 Notation and assumptions  

 
In the classical approach, the force of real interest, denoted by d, would be assumed to be a 
constant throughout the period of projections (or taking different constant values over successive 
sub-intervals).  In this paper, however, the force of real interest d(t) is assumed to be distributed 
such that ( )ze δ−  for different values of z are independent, identically distributed (IID) variables 
with expected value and second raw moment given by 
 ( ) 2 ( )( ) ; ( )z zE e e E e eδ δ δ α− − − −= =  (74) 
so that the variance is given by 
 ( ) 2( )zV e e eδ α δ− − −= −  (75) 
For the variance to be positive, we should have a < 2d.  If a = 2d the variance is zero, meaning 
that the interest factor is deterministic. The symbol ? is used to denote the difference a – d. 
 

5.2  Case of deterministic projections  
 
We shall first consider the case where the projections themselves are deterministic, so that only 
the interest element is stochastic.  Let S(t) and B(t)  denote the salary and benefit projections on a 
static salary basis, ignoring salary escalation.  It is assumed that pensions are fully indexed to 
salary escalation. Let DS(t) and DB(t)  denote the values of S(t) and B(t) discounted to time t = 0, 
and TDS(t) and TDB(t) the totals of the discounted values over (0, t).  
 
In view of the IID properties described in section 5.1, 

 0 0
( ) 2 ( )2 2 2( ) ( ( ) ) ( ) ; ( ) ( ( ) ) ( )

t t
z dz z dzt tEDS t E S t e S t e EDS t E S t e S t e

δ δδ α− −− −∫ ∫= = = =  (76) 

 0
( )

0 0
( ) [ ( ) ] ( )

u
t tz dz uETDS t E S u e du S u e du

δ δ− −∫= =∫ ∫  (77) 

 2 2 2 2( ) ( ) [ ( )] ( ) [ ]t tVDS t EDS t EDS t S t e eα δ− −= − = −  (78) 
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 2( ( ), ( )) ( ) ( )[ ]t tCOV DS t DB t S t B t e eα δ− −= −  (79) 
Squaring TDS(t) we have 

 0 0 0 0
( ) ( ) ( ) ( )2

0 0 0 0
( ) ( ) ( ) 2 ( ) ( )

u v u v
t t t uz dz z dz z dz z dz

TDS t S u e du S v e dv S u e du S v e dv
δ δ δ δ− − − −∫ ∫ ∫ ∫= =∫ ∫ ∫ ∫  

Noting that u > v, the above expression can be simplified as 

 0
2 ( ) ( )2

0 0
( ) 2 ( ) ( )

v u

v
t u z dz z d z

TDS t S u S v e dvdu
δ δ− −∫ ∫= ∫ ∫  

Taking expectations we have 

 2 ( )

0 0
( ) 2 ( ) ( )

t uu vETDS t S u e du S v e dvδ α δ− − −= ∫ ∫  (80) 

Therefore the variance of TDS(t) is given by 

 2

0 0 0
( ) 2 ( ) ( ) [ ( ) ]

t u tu v uVTDS t S u e S v e dvdu S u e duδ θ δ− − −= −∫ ∫ ∫  (81) 

The above formula can also be expressed as 

 
0 0

( ) 2 ( ) ( )[ ]
t uu v vVTDS t S u e S v e e dvduδ θ δ− − −= −∫ ∫  (82) 

It can similarly be shown that the covariance between TDS(t) and TDB(t) is given by 

 
0 0 0 0

( ) ( )[ ] ( ) ( )[ ]
t u t uu v v u v vS u e B v e e dvdu B u e S v e e dvduδ θ δ δ θ δ− − − − − −− + −∫ ∫ ∫ ∫  (83) 

It can be shown that when a = 2d, i.e. the interest element is deterministic, the expression for 
VTDS(t) in (82) will vanish. Two further useful results are the following: 

 
0

( ( ), ( )) ( ) ( )[ ]
tt u uCOV TDB t DB t B t e B u e e duδ θ δ− − −= −∫  (84) 

 
0

( ( ), ( )) ( ) ( )[ ]
tt u uCOV TDS t DB t B t e S u e e duδ θ δ− − −= −∫  (85) 

 
5.3  Case of stochastic projections  

 
In developing the formulae for this case, the assumption is made that the interest element is 
independent of the mortality and new entrant elements.  Consider first, DS(t). 

 0
( )

( ) ( ) ( ) ( )
t

z dz
DS t S t e S t t

δ−∫= = Φ  (86) 
S(t) depends on the mortality and new entrant elements, while F(t) depends on the interest 
element.  Therefore they are independent of each other. 
 ( ) ( ) ( ) ( )tEDS t ES t E t e ES tδ−= Φ =  (87) 
where ES(t) is given by (60).  VDS(t) is derived as follows: 
 2 2 2 2 2 2 2( ) ( ) ( ) ( ( )) ( ( )) ( ) ( ( ))t tVDS t ES t E t ES t E t ES t e E S t eα δ− −= Φ − Φ = −  
 2 2( ) ( ) ( ( )) [ ]t t tVDS t VS t e ES t e eα α δ− − −= + −  (88) 
ETDS(t) and VTDS(t) are derived as follows: 

 
0 0 0

( ) ( ) ( ) ( )
t t t uETDS t E DS u du EDS u du ES u e duδ−= = =∫ ∫ ∫  (89) 

 
0 0 0 0

( ) ( ( ), ( )) 2 ( ( ), ( ))
t t t u

VTDS t COV DS u DS v dvdu COV DS u DS v dvdu= =∫ ∫ ∫ ∫  

 
0 0 0 0

2[ [ ( ) ( )] ( ) ( ) ] 2[ ]
t u t u

E DS u DS v dvdu EDS u EDS v dvdu A B= − = −∫ ∫ ∫ ∫  

 [ ( ) ( )] [ ( ) ( ) ( ) ( )] [ ( ) ( )] [ ( ) ( )]E DS u DS v E u S u v S v E u v E S u S v= Φ Φ = Φ Φ  

 0 0 0
( ) ( ) 2 ( ) ( ) ( ) ( )[ ( ) ( )] [ ] [ ]

u v v u

v
z dz z dz z dz z dz v u v u vE u v E e e E e e e e

δ δ δ δ α δ δ α δ− − − − − − − − − −∫ ∫ ∫ ∫Φ Φ = = = =  
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 ( )

0 0
( ( ) ( ))

t uu vA e e E S u S v dvduδ α δ− − −= ∫ ∫  

 
0 0

( ) ( )
t uu vB e e ES u ES v dvduδ δ− −= ∫ ∫  

 
0 0 0 0

( ) 2[ ( ( ), ( )) ( ) ( ) ( ) ]
t u t uu v u v vVTDS t e e COV S u S v dvdu e ES u du e e ES v dvδ θ δ θ δ− − − − −= + −∫ ∫ ∫ ∫  (90) 

When S(t) is deterministic, COV(S(u),S(v)) = 0 and the first member of (90) will vanish so that 
(90) reduces to (82).  When a = 2d, i.e. the interest element is deterministic, the second member 
of (90) will vanish and (90) will reduce to 

 
0 0

( ) 2 ( ( ), ( ))
t uu vVTDS t e e COV S u S v dvduδ δ− −= ∫ ∫  

The expression for VTDB(t) will be similar to (90).  It can be shown on the same lines that the 
covariance between TDS(t) and TDB(t) will be given by 

 
0 0 0 0

( ( ), ( )) ( ) ( ) ( )
t u t uu v u v ve e COV S u B v dvdu e ES u du e e EB v dvδ θ δ θ δ− − − − −+ −∫ ∫ ∫ ∫  

 
0 0 0 0

( ( ), ( )) ( ) ( ) ( )
t u t uu v u v ve e COV B u S v dvdu e EB u du e e ES v dvδ θ δ θ δ− − − − −+ + −∫ ∫ ∫ ∫  (91) 

Two further useful results are: 

 
0

( ( ), ( )) [ ( ( ), ( )) ( ) ( ) ( )]
tt u u uCOV DB t TDB t e e COV B t B u e e EB t EB u duδ θ θ δ− − − −= + −∫  (92) 

 
0

( ( ), ( )) [ ( ( ), ( )) ( ) ( ) ( )]
tt u u uCOV DB t TDS t e e COV B t S u e e EB t ES u duδ θ θ δ− − − −= + −∫  (93) 

Discounted financial projections are illustrated in Appendix 8, Table 4.  
 
Let the two terms of (90) be indicated by VTDS1(t) and VTDS2(t). An increase in either d or a 
will lead to a decrease in either term and therefore in VTDS(t). VTDS1(t) involves the factor 
Ac(b,0) whereas VTDS2(t) involves 2( ,0)Ac b and VTDS2 will predominate, so that the co-
variances between S(t) and S(u) will not have much effect on VTDS(t) unless the initial 
population is relatively small. The same conclusions apply to VTDB(t) and COV(TDS(t),TDB(t)).  
For a given t, the coefficients of variation CVTDS(t) and CVTDB(t) will increase with decreasing 
initial population size and with increasing p or decreasing a. These effects will be reflected in the 
stochastic premiums (see section 6). 
 

5.4 Convergence of the expressions in the long-term 
 
Based on the expressions for COV(S(t),S(u)) etc. – see section 4.2 and Appendix 3 – long-term 
expressions for these co-variances can be derived and further, long-term expressions for the 
variances of and the co-variances between totals of discounted values can be developed (see 
Appendices 4, 5 and 6). 
 
The development in Appendix 4 shows that, for any t exceeding a sufficiently large value 0t (> 
2(r-b))                  

 0 0( ) ( ) ( ) ( )VTDS t VTDS t F t F t− = −  (94) 
F(t) is given by an expression of the form,  
 ( ) ( ) ( 2 ) ( ) 2( )

1 2 3 4 5( ) t t t t tF t Fe F e F e F e F eδ ρ α π α ρ α ρ δ ρ− − − − − − − − − −= + + + +  (95) 
Given the conditions (a) p > 2? and (b) a < 2d, the further conditions required for the expression 
in (95) to tend to 0 as t tends to 8 are: 

(c) d > ? and (d) a > p. 
For, (a) and (d) imply that a > 2?. The limiting value of VTDS(t) will then be given by, 
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 0 0( ) ( ) ( )VTDS VTDS t F t∞ = +  (96) 
It turns out that 0( ) ( )VTDB t VTDB t−  (for 0 ( ) 2( )t r b rϖ> − + − ) and 

0 0( ( ), ( )) ( ( ), ( ))Cov TDB t TDS t Cov TDB t TDS t−  (for 0 2( ) ( )t r b rϖ> − + − ) too have a structure 
similar to (94) and (95) (see Appendices 5 and 6), and will converge as in (96) under the same 
conditions. Further, based on (89), it can be shown that, ETDS(t) – ETDS( 0t ) (for 0t r b> − ), and 
ETDB(t) – ETDB( 0t ) (for 0t bϖ> − ), respectively take the forms P( 0t ) – P(t) and Q( 0t ) – Q(t), 
where P(t) and Q(t) are given by,  

 
( ) ( ) ( )

( ) ( )
( ) ( )

( ,0) ( ,0)
( ) ; ( ) ( )

s s s
b r rt t

s s
b b

Sa b N N Sa b N
P t e Q t k b e

D D

ρ ρ ρ

δ ρ δ ρ
ρ ρδ ρ δ ρ

− − − −−
= =

− −
 (97) 

It follows that ETDS(t) and ETDB(t) will converge as t ?  8  subject to condition © above (d > 
?). 
 
6 APPLICATION OF STOCHASTIC METHODS IN THE FINANCING OF SOCIAL 

SECURITY PENSION SCHEMES 
 
6.1 General principles 

 
The classical method of determining premiums for any given financial system (see Iyer, 1999, 
chapter 1) is on the basis of deterministic projections, which is effectively in terms of expected 
values.  Any margins which are then added to absorb the effect of chance variations are 
necessarily arbitrary.  However, since expressions for the variances and co-variances are now 
available, an improved method can be applied incorporating the appropriate adjustment for 
chance variations.  
 
Any financial system essentially seeks a level premium, which, when applied to a function f(S)  
of projected salaries, will balance another function g(B) of projected benefits. The classical 
method determines the premium pr by the formula 

 
( )
( )

Eg B
pr

Ef S
=  (98) 

Following the method outlined in Booth et. al., 1999 (p. 640) an alternative approach (based on 
the so-called percentile principle) is to consider a variable u defined by 
 ( ) ( )u kf S g B= −  (99) 
An assumption is required concerning the statistical distribution of u. The normal distribution 
could possibly be justified on the basis of the central limit theorem, when the population size is 
sufficiently large. The premium pr* (referred to in the sequel as the stochastic premium) is 
determined such that the probability of failure of the financial system (i.e. that u will be negative) 
is less than a pre-determined e.  pr* will be given by the larger root of the equation 
 2 2( ) ( ) 0E u y V uε− =  (100) 

where, yε  is the (1 )thε−  percentile of the appropriate distribution. 
Alternatively, given any premium pr**, the probability that its application will lead to the failure 
of the financial system can be determined.  
 
 
 
 
 



 19 

6.2 The pay-as-you-go system 
 
In the framework of the continuous formulation in this paper, the pay-as-you-go system aims at 
balancing the income and expenditure at a given point in time.  Given projections established at 
t=0 , the relevant functions for the pay-as-you-go premium at time t=n are  

( ) ( ); ( ) ( )f S S n g B B n= =  
The classical premium is given by 

( )( )
( )

ES nPAYG n
EB n

=  

The stochastic premium PAYG*(n) is given by the larger root of (100), where 
 2( ) ( ) ( ); ( ) ( ) ( ) 2 ( ( ), ( ))E u kES n EB n V u k VS n VB n kCOV S n B n= − = + −  (101) 
 

6.3 The Average Premium system 
 
The Average Premium system aims to balance expenditure over successive intervals of several 
years through the application of a level premium over each interval, allowing for any 
accumulated fund at the start of the interval.  The relevant functions corresponding to the interval 
(0, n), starting with a fund F(0), are 

( ) ( ); ( ) ( ) (0)f S TDS n g B TDB n F= = −  
The classical premium is given by 

( ) (0)(0, )
( )

ETDB n FAVP n
ETDS n

−=  

The stochastic premium is the larger root of (100), where 
( ) (0) ( ) ( )E u F kETDS n ETDB n= + −  

2( ) ( ) ( ) 2 ( ( ), ( ))V u k VTDS n VTDB n kCOV TDS n TDB n= + −  (102) 
 

6.4 The Reserve Ratio system 
 
The Reserve Ratio system applies a level premium over an interval of years such that a Fund is 
accumulated bearing a specified ratio to the level of the expenditure at the end of the period. For 
the interval (0, n), the relevant functions, allowing for a reserve rat io ? and an initial fund F(0)  
are 

( ) ( ); ( ) ( ) ( ) (0)f S TDS n g B TDB n DB n F= = + Λ −  
The classical premium is given by 

( ) ( ) (0)
(0, , )

( )
ETDB n EDB n F

RRP n
ETDS n
+ Λ −

Λ =  

The stochastic premium is the larger root of (100), where 
( ) (0) ( ) ( ) ( )E u F kETDS n ETDB n EDB n= + − − Λ  

 
 

 2 2( ) ( ) ( ) ( ) 2 ( ( ), ( ))V u k VTDS n VTDB n VDB n kCOV TDS n TDB n= + + Λ −  (103) 
 2 ( ( ), ( )) 2 ( ( ), ( ))k COV TDS n DB n COV TDB n DB n− Λ + Λ  
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      6.5 The Terminal Funding system 
  
In the framework of the continuous formulation in this paper, the Terminal Funding system fully 
capitalizes the pensions awarded at any time t by the corresponding contribution income. For 
determining the Terminal Funding premium at t = n, based on projections established at t = 0, 
the relevant functions are  

( ) ( ); ( ) ( )f S S n g B Bc n= =  
The classical method is based on the formula 

 
( )

( )
( )

EBc n
TFP n

ES n
=  (104) 

The stochastic premium would be the larger root of (100), where 
 ( ) ( ) ( )E u kES n EBc n= −  (105) 
 2( ) ( ) ( ) 2 ( ( ), ( ))V u k VS n VBc n kCOV Bc n S n= + −  (106) 
 
      6.6 The General Average Premium system 

 
The General Average Premium system is based on the concept of a constant premium that will 
ensure the financial equilibrium of a pension scheme throughout the infinite lifetime of the 
scheme following an actuarial valuation (at t = 0), taking credit for the accumulated fund. The 
General Average Premium system can be regarded as the limiting form of the Average Premium 
system, when n? 8 .  Provided the necessary conditions for convergence are met (i.e. d > ? and a 
> p – see section 5.4, above), the formulae and the procedure of section 6.3 above can be applied, 
by substituting ETDS(8 ) for ETDS(n),  VTDS(8 ) for VTDS(n), etc. 
 
      6.7 Sensitivity of the premiums to population size and parameters  
 
In contrast to the classical premiums, the stochastic premiums are affected by the size of the 
initial population, being inversely related to the population size.  However, the sensitivity to a 
change in the population size is considerably higher for the Pay-as-you-go and Terminal Funding 
systems, as compared to the other systems. This is to be explained by the fact that the projected 
values (on which the PAYG and TF systems depend directly) are much more sensitive to 
population size changes than the totals of discounted projected values (to which the other 
systems relate). In all cases, the stochastic premium tends to the classical premium as the 
population size tends to infinity.  
 
As regards the effect of the parameters, the classical premiums are affected by ? and d but are 
independent of the secondary parameters p and a. Stochastic PAYG and TFP premiums are 
affected by p, with an increase in p leading to an increase in the premiums, but are not affected 
by a. Stochastic AVP and RRP premiums are affected by both p and a, increasing with increasing 
p and decreasing with increasing a, although the effect of changing p is relatively marginal. 
These effects of changing population size and changing parameters on the stochastic premiums 
are illustrated in Appendix 8, Tables 5 to 8. 
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       7. CONCLUSION 
 
The traditional, deterministic, approach to the actuarial valuation of social security pension 
schemes has continued practically unchanged to this day. This paper has explored the possibility 
of applying stochastic methods, drawing on the techniques being applied in other areas of 
insurance but tailoring them to the special characteristics of social security pensions.  Although it 
is based on certain simplifying assumptions, the paper has shown that it is feasible to apply 
stochastic methods in this area as well.  
 
The paper has brought out several interesting features of the stochastic aspects of social security 
pension projections.  It has demonstrated in particular that deterministic projections can be 
highly misleading when the population size is small. Fortunately most social security pension 
schemes, being national in scope, have high coverage in terms of numbers of individuals.  
Nevertheless, the paper has shown that stochastic methods can throw considerably more light on 
the evolution of a social security pension scheme and therefore enable more informed policy 
decisions to be taken.   
 
The paper has been largely theoretical and further work is certainly required, in particular, to 
facilitate practical application.  It is hoped that the paper will succeed in drawing attention to this 
potential new area of application of stochastic methods, stimulate interest in further research and 
eventually, lead to the adoption of stochastic methods in social security pension scheme 
valuations.  
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APPENDIX 1 
MATHEMATICAL NOTES 

 
Note 1 (sections 2.2, 2.3) 

 
Consider a cohort of size N at age z, which is subject to a given life table { }xl .  Let N(y) and N(x) 
denote the survivors to ages y and x (z < y < x), where y and x are not necessarily integral.  Then 

N(y) has the binomial distribution with parameters N and y

z

l
p

l
=  and we have 

( ( )) ; ( ( )) (1 )E N y Np V N y Np p= = −  

Let ' x

z

l
p

l
=  and '' x

y

l
p

l
= .  Then ' "p pp= . 

( ( )) '; ( ( )) '(1 ')E N x Np V N x Np p= = −  

( ( ) | ( )) ( ) ''E N x N y N y p=  
2( ( )* ( )) ( ( )* ( ( ) | ( )) ( ( ) '')E N x N y E N y E N x N y E N y p= =  

2 2 2 2 2''[ ( ( )) ( ( ))] ''[ (1 ) ] "(1 ) "p V N y E N y p Np p N p Npp p N p p= + = − + = − +  
'(1 ) * ' '(1 ) ( ( )) ( ( ))Np p Np Np Np p E N x E N y= − + = − +  

Therefore the covariance between N(x) and N(y) is given by 

( ( ), ( )) '(1 ) (1 )yx

z z

ll
COV N x N y Np p N

l l
= − = −  

Note 2 (section 2.3) 
 
A parallel can be drawn with the distinction between u and v, defined by 

1

;
n

i
i

u nx v x
=

= = ∑  

where the 'ix s are independent variables having the same distribution as x.  We have 
( ) ( ) ( )E u E v nE x= =  

But the variances are not equal.  They are given by 
2( ) ( ); ( ) ( )V u n V x V v nV x= =  

 
Note 3 (sections 2.7 and 3.7) 

Let x and y be two variables and le t 
x

u
y

= .  Let the main parameters of x and y be: 

2 2( ) ; ( ) ; ( ) ; ( ) ; ( , )E x V x E y V y COV x y kµ σ ν θ= = = = =  
Approximate expressions for E(u) and V(u) can be derived as follows: 

2
1

2( ) ( ) ( ) (1 )(1 ) (1 )
x x x y k

E u E E E
y y

µ µ µ µ ν µ θ
ν ν ν µ ν ν µν ν

−− + − −
= = = + + = − +

− +
 

2 2 2 2
2 2 2

2 2 2 2( ) (1 ) (1 ) (1 3 4 )
x y k

E u E
µ µ ν µ σ θ

µ ν µνν ν µ ν
−− −

= + + = + + −  

2 2 2
2 2

2 2 2( ) ( ) ( ) ( 2 )
k

V u E u E u
µ σ θ

µνν µ ν
= − = + −  
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Note 4 (sections 3.3 and 3.4) 
 
Let x, y be two variables, either being dependant on z. Then, the conditional co-variance between 
x and y is given by,   

( , | ) ( | ) ( | ) ( | )Cov x y z E xy z E x z E y z= −  
Taking the expectation over the range of z,  

( , | ) ( | ) [ ( | ) ( | )]ECov x y z EE xy z E E x z E y z= −  
The co-variance between the conditional expectations is given by 

( ( | ), ( | )) [ ( | ) ( | )] ( | ) ( | )Cov E x z E y z E E x z E y z EE x z EE y z= −  
By adding the two results, and noting that EE signifies unconditional expectation, it follows that 

( , ) ( , | ) ( ( | ), ( | ))Cov x y ECov x y z Cov E x z E y z= +  
The above result is valid even if z represents a group of variables. Therefore, if x depends on z 
and y depends on w, 

( , ) ( , | , ) ( ( | ), ( | ))Cov x y ECov x y z w Cov E x z E y w= +  
 

Note 5 (section 4.3) 
 
These formulae for Ea* and Va* correspond to formulae (24.60) and (24.62) on pp. 644-645 of 
Booth et. al., 1999, but relate to the continuous formulation adopted in this paper. When a = 2d, 
the formula for Va* reduces to formula (24.32) on p.629 of Booth et. al. 
 

Note 6 (section 4.3) 
 
Let x and y be two independent variables, and let u = xy. 

( ) ( ) ( )E xy E x E y=  
2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )V u E u E u E x y E x E y= − = −  

Since x and y are independent, so are their squares. Therefore, 
2 2 2 2 2 2( ) ( ) ( ) ( ( ) ( )( ( ) ( ))E x y E x E y V x E x V y E y= = + +  

It follows that 
2 2( ) ( ) ( ) ( ) ( ) ( ) ( )V u V x V y V x E y V y E x= + +  
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APPENDIX 2 
LIMITS OF INTEGRATION 0 ( , )c t u , 1( , )c t u  AND 2 ( , )c t u FOR  

SIMPLIFIED PENSION SCHEME 
 
Co-variants   Range of t Range of u   Range NE Range IP   
       0 1, ( , )c c t u  1 2, ( , )c c t u  
 
A(t) and A(u)   t < r-b  u < t    b, b+u  b+u, r-t+u 
   t = r-b  u < t-r+b  nil  nil 
     t > u = t-r+b  b, r-t+u nil 
 
R(t) and R(u)   t < ?-r  u < t    nil  r, r+u 
   ? -r = t < r-b t > u = t-?+r   nil  r, ? -t+u 
     u < t-? +r  nil  nil   
  r-b = t < ? -b t > u = r-b  r, b+u   b+u, ? -t+u 
     r-b > u > t-? +r nil  r, ? -t+u 
      u < t-? +r  nil  nil 
   t =  ? -b t > u = t-?+r   r, ? -t+u  nil 
     u < t-? +r  nil  nil 
 
R(t) and A(u)   t < ?-r  u < t    nil  r-t+u, r 
   ? -r = t < r-b t > u = t-?+r   nil  r-t+u, r 
     u < t-? +r  nil  r-t+u, ? -t+u 
   r-b = t < ? -b t > u =r-b  r-t+u, r nil 
     r-b > u > t-? +r r-t+u, b+u  b+u, r 
     t-r+b = u < t-?+r r-t+u, b+u  b+u, ? -t+u 
     u < t-r+b  b, b+u  b+u, ? -t+u 
   t = ? -b  t > u = t-?+r   r-t+u, r nil 
     t-r+b = u < t-?+r r-t+u, ? -t+u nil 
     t-? +b = u < t-r+b  b, ? -t+u  nil 
     u < t-? +b  nil  nil  
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APPENDIX 3 
EXPRESSIONS FOR COV(B(t), B(u)) AND COV(S(t),B(u))  

 
Expression for COV(B(t),B(u)), u = t 

 

1 2 3( ( ), ( ))COV B t B u K L L L M= + + − +  

 
2

1

2( , ) 2
2( , )

( ,0) ( )
( ,0)[ ( ,0) (1 ) ( ) ]

( ,0) ( )

c t u

t y u u y uc t u

Sa y u s r
K Sa b sa y u p p k y u dy

Sa b s y u − −

−
= − − −

−∫   

 
1

0 1

0

( ) ( ) 2 ( )( ) ( ) 2
1 ( ) ( )( )

( )
( ,0) ( ,0) ( )

a t y a ut u x
s sa t
b b

N N s r D
L Sa b sa b e e k b dx

D D

φ φ ρ
ρ φ

φ ρ

−
= ∫   

 
1 0 0

0

( ) ( ) 2 ( )( ) ( ) 2
2 ( ) ( )( )

( )
( ,0) ( ,0) ( )

a t a u yu t x
s sa t
b b

N N s r D
L Sa b sa b e e k b dx

D D

ρ ρ φ
ρ φ

ρ φ

−
= ∫   

 0 1 0 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) 2 2

3 ( ) ( )( ,0) ( ,0) ( ) ( )a t a t a u a ut u
s s
b b

N N N N
L Sa b sa b e s r k b

D D

ρ ρ ρ ρ
ρ

ρ ρ
+

− −
=   

1

0

( ) 2( , ) 2
( ) 2( , )

( )
( ,0) ( ,0) (1 ) ( )

( )

c t u y t ut
y b bc t u

b

D s r
M Sa b sa b e p k b dy

D s b

ρ
ρ

ρ
+ −

−= −∫  

 
Expression for COV(S(t),B(u)), u = t 

 

1 2 3( ( ), ( ))COV S t B u K L L L M= + + − +  

 
2

1

( , )

2( , )

( ,0) ( ) ( )
( ,0)[ ( ,0) (1 ) ( ) ]

( ,0) ( )

c t u

t y u u y uc t u

Sa y u s y t u s r
K Sa b sa y u p p k y u dy

Sa b s y u − −

− + −
= − − −

−∫   

 
1

0 1

0

( ) ( ) ( )( ) ( )
1 ( ) ( )( )

( )
( ,0) ( ,0) ( )

sa t y a ut u x
s sa t
b b

N N s r D
L Sa b sa b e e k b dx

D D

φ φ ρ
ρ φ

φ ρ

−
= ∫   

 
1

0 0

0

( ) ( ) ( )( ) ( )
2 ( ) ( )( )

( )
( ,0) ( ,0) ( )

sa t a u yu t x
s sa t
b b

N N s r D
L Sa b sa b e e k b dx

D D

ρ ρ φ
ρ φ

ρ φ

−
= ∫   

 0 1 0 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

3 ( ) ( )
( ,0) ( ,0) ( ) ( )

s s
a t a t a u a ut u

s s
b b

N N N N
L Sa b sa b e s r k b

D D

ρ ρ ρ ρ
ρ

ρ ρ
+ − −

=   

 
1

0

( )
( , )

( ) 2( , )

( ) ( )
( ,0) ( ,0) (1 ) ( )

( )

c t u y t ut
y b bc t u

b

D s y t u s r
M Sa b sa b e p k b dy

D s b

ρ
ρ

ρ
+ −

−

+ −
= −∫  

 
Expression for COV(S(u),B(t)), u = t 

 

1 2 3( ( ), ( ))COV B t S u K L L L M= + + − +  

 2

1

( , )

2( , )

( ,0) ( ) ( )
( ,0)[ ( ,0) (1 ) ( ) ]

( , 0 ( )
c t u

t y u u y uc t u

Sa y u s r s y
K Sa b sa y u p p k y u dy

Sa b s y u − −

−
= − − −

−∫   

 
1 0 1

0

( ) ( ) ( )( ) ( )
1 ( ) ( )( )

( )
( ,0) ( ,0) ( )

s s
a t y a ut u x

s sa t
b b

N N s r D
L Sa b sa b e e k b dx

D D

φ φ ρ
ρ φ

φ ρ

−
= ∫   
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1

0 0

0

( ) ( ) ( )( ) ( )
2 ( ) ( )( )

( )
( ,0) ( ,0) ( )

s s
a t a u yu t x

s sa t
b b

N N s r D
L Sa b sa b e e k b dx

D D

ρ ρ φ
ρ φ

ρ φ

−
= ∫   

 0 1 0 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

3 ( ) ( )
( ,0) ( ,0) ( ) ( )

s s
a t a t a u a ut u

s s
b b

N N N N
L Sa b sa b e s r k b

D D

ρ ρ ρ ρ
ρ

ρ ρ
+ − −

=   

 
1

0

( )
( , )

( ) 2( , )

( ) ( )
( ,0) ( ,0) (1 ) ( )

( )

c t u y t ut
y b bc t u

b

D s r s y
M Sa b sa b e p k b dy

D s b

ρ
ρ

ρ
+ −

−= −∫  

 
 

APPENDIX  4 
LONG-TERM EXPRESSIONS FOR COV(A(t),A(u)), COV(S(t),S(u)) and VTDS(t) 

 
Co-variance between A(t) and A(u), (t = 2(r–b), u = t) 

 
The formulae and expressions will be identical to those for COV(S(t),S(u)) below, except that the 
salary scale function will be eliminated throughout. Thus, all commutation functions will be 
replaced by the corresponding functions without the salary scale being incorporated (replace 

( ) ( )( ) ( ),
ss
x xx xD byD N byN

ρ ρρ ρ etc). Moreover, the adjustment factor should be Ac(b,0) (instead of 
Sa(b,0)sa(b,0)). 
 

Co-variance between S(t) and S(u), (t = 2(r–b), u = t) , according to range of u 
The adjustment factor Sa(b,0)sa(b,0) should apply to all the following formulae. 
 
u = r - b: ( ( ), ( )) ( )tCOV S t S u e f uρ= , where 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) [ ]
s s s s s s
b r b b u b b uu u

s s s
b b b

N N N N N N
f u e e

D D D

ρ ρ φ φ ρ ρ

φ ρ
ρ φ ρ

+ +− − −
= −  

 where ? = p – ?. 
r - b < u = t – (r – b): 2

1 2( ( ), ( )) t z t zCOV S t S u k e e k e eπ φ ρ ρ− −= −  
where z = t – u; 

( ) ( ) ( ) ( )

1 ( ) ( )

s s s s
b r b r

s s
b b

N N N Nk
D D

ρ ρ φ φ

ρ φ

− −=  

( ) ( )

2
2 ( )[ ]

s s
b r

s
b

N N
k

D

ρ ρ

ρ

−
=  

u > t – (r – b): 2
1 2 3( ( ), ( )) ( ) ( ) ( )t t tCOV S t S u e f z e f z e f zπ ρ ρ= − +  

            where z = t – u; 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

1 ( ) ( ) ( ) ( ) ( ) ( )( ) [ ]
s s s s s s s sr rs s
b b z b r x z r b x zz zx x

s s s s s s
b b b b b bb z b z

D DN N N N N N N N
f z e dx e dx

D D D D D D

ρ ρ φ φ φ φ ρ ρρ φ
φ ρ

ρ φ φ ρ ρ φ

+ − −− −

+ +

− − − −
= + +∫ ∫

( ) ( )

2
2 ( )( ) [ ]

s s
b rz

s
b

N N
f z e

D

ρ ρ

ρ
ρ

− −
=  

( )

3 ( )

( )
( ) (1 )

( )

sr z
y z y
s
b bb

D ls y
f z dy

D s b l

ρ

ρ

−
+= −∫  
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Variance of TDS(t) 

 
In the following, 1 2 1 2 3( ), , , ( ), ( ), ( )f u k k f z f z f z  denote the functions occurring in the expressions 
relating to COV(S(t),S(u)), after incorporating the adjustment factor. 
 
Let the two components of (90) be denoted by VTDS1(t) and VTDS2(t).  
For t = 2(r – b), 

1( ) 1(2( )) (2( )) ( )VTDS t VTDS r b H r b H t− − = − −  
where, 

( ) ( ) ( 2 ) ( )
1 2 3 4( ) t t t tH t H e H e H e H eδ ρ α π α ρ α ρ− − − − − − − −= + + +  

( )( ) ( )( )

1 1 2
0

2
[ ( ) ]

r b r b r b
u e e

H e f u du k k
θ φ θ ρ

θ

δ ρ θ φ θ ρ

− − − − − − −
−= + −

− − −∫  

( )( )

2 1 1
0

2
[ ( ) ]

r b r b
z e

H e f z dz k
θ φ

θ

α π θ φ

− − −

= −
− −∫  

( )( )

3 2 2
0

2
[ ( ) ]

2

r br b
ze

H k e f z dz
θ ρ

θ

α ρ θ ρ

−− −

= −
− − ∫  

4 3
0

2
( )

r b
zH e f z dzθ

α ρ

−

=
− ∫  

For t = r – b, 
2( ) 2( ) ( ) ( )VTDS t VTDS r b G r b G t− − = − −  

( ) ( 2 ) 2 ( )
1 2 3( ) t t tG t G e G e G eδ ρ α ρ δ ρ− − − − − −= + +  

( ) ( )

( )( ,0)
s s
b r

s
b

N N
k Sa b

D

ρ ρ

ρ

−
=  

( )( ) ( )( )
2

1
0

2
[ ( ) ( ) { }]

r b r b r b
u u e e

G k e e ES u du k
θ ρ δ ρ

θ δ

δ ρ θ ρ δ ρ

− − − − − − −
− −= − + −

− − −∫  

2

2

2
( )( 2 )

k
G

θ ρ α ρ
−

=
− −

 

2

3 2( )
k

G
δ ρ

=
−

 

It follows that for 0 2( )t r b≥ − , 

0 0( ) ( ) ( ) ( )VTDS t VTDS t F t F t− = −  
( ) ( ) ( 2 ) ( ) 2( )

1 2 3 4 5( ) t t t t tF t Fe F e F e F e F eδ ρ α π α ρ α ρ δ ρ− − − − − − − − − −= + + + +  
where  1 1 1 2 2 3 3 2 4 4 5 3; ; ; ;F H G F H F H G F H F G= + = = + = = . 
 
Note 1.  The expressions for Cov(S(t),S(u)) are obtained by simplifying the respective integrals, 
within the appropriate integration limits (section 2.4 and Appendix 2).  
 
Note 2.  The expression for VTDS1(t) – VTDS1(2(r-b)) is obtained by expressing the relevant 
integral as the sum of  sub-integrals, as follows (and then simplifying each) : 
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2( ) 0 2( ) 0

( ( ), ( )) [ ] ( ( ), ( ))
t u t r b u r b u

u v u v

r b r b r b u r b

e e Cov S u S v dvdu e e Cov S u S v dvduδ θ δ θ
− − +

− − − −

− − − − +

= + +∫ ∫ ∫ ∫ ∫ ∫  

A similar procedure applies to the expression for VTDS2(t) – VTDS2(r-b). 
 
 
 

APPENDIX  5 
LONG-TERM EXPRESSIONS FOR COV(R(t),R(u)), COV(B(t),B(u)) and VTDBt) 

 
Co-variance between R(t) and R(u), (t = (r–b)+2(? -r), u = t) 

 
The formulae and expressions will be identical to those for COV(B(t),B(u) below, except that the 
salary scale functions (s(b), s(r)) and the pension rate function k(b) will be suppressed 
throughout. Moreover, the adjustment factor should be Ac(b,0) (instead of Sa(b,0)sa(b,0)). 
 

Co-variance between B(t) and B(u), (t = (r–b)+2(?-r), u = t), according to range of u 
The adjustment factor Sa(b,0)sa(b,0) should apply to all the following formulae. 
 
 r-b = u = ?  - b: ( ( ), ( )) ( )tCOV B t B u e f uρ= , where 

( ) ( ) ( ) ( ) ( ) 2
2

( ) ( ) ( ) 2

( )( ) [ ] ( )
( )

r r b u r b uu u

b b b

N N N N N s rf u e e k b
D D D s b

ρ φ φ ρ ρ

φ ρ
ρ φ ρ

+ +− −= −  

 where ? = p – ?. 
?  - b < u = t – (? - r): 2

1 2( ( ), ( )) t z t zCOV B t B u k e e k e eπ φ ρ ρ− −= −  
where z = t – u; 

( ) ( ) 2
2

1 ( ) ( ) 2

( )
( )

( )
r r

b b

N N s r
k k b

D D s b

ρ φ

ρ φ=  

( ) 2
2 2

2 ( ) 2

( )
[ ] ( )

( )
r

b

N s r
k k b

D s b

ρ

ρ=  

u > t – (?  - r): 2
1 2 3( ( ), ( )) ( ) ( ) ( )t t tCOV B t B u e f z e f z e f zπ ρ ρ= − +  

            where z = t – u; 
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) 2

2
1 ( ) ( ) ( ) ( ) ( ) ( ) 2

( )
( ) [ [ ] ] ( )

( )
r r z r x z r x zz zx x

b b b b b br z r z

D DN N N N N N s r
f z e dx e dx k b

D D D D D D s b

ρ ρ φ φ ρ ρϖ ϖρ φ
φ ρ

ρ φ φ ρ ρ φ

+ − −− −

+ +

− −
= + +∫ ∫

( ) 2
2 2

2 ( ) 2

( )( ) [ ] ( )
( )
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b

N s rf z e k b
D s b

ρ

ρ
ρ

−=  

( ) 2
2

3 ( ) 2

( )
( ) [ (1 ) ] ( )

( )

z
y z y

b br

D l s r
f z dy k b

D l s b

ρϖ

ρ

−
+= −∫  
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Expression for the variance of TDB(t) 
 

In what follows, the functions 1 2 1 2 3( ), , , ( ), ( ), ( )f u k k f z f z f z  refer to those corresponding to 
COV(B(t),B(u)), after incorporating the adjustment factor. 

 
As in the case of VTDS(t) (see (90)), let VTDB(t) = VTDB1(t) + VTDB2(t).  
 
For t = (r – b) + 2(? – r), 

1( ) 1(( ) 2( )) (2( )) ( )VTDB t VTDB r b r H r b H tϖ− − + − = − −  
where, 

( ) ( ) ( 2 ) ( )
1 2 3 4( ) t t t tH t H e H e H e H eδ ρ α π α ρ α ρ− − − − − − − −= + + +  

( )( ) ( )( )

1 1 2

2
[ ( ) ]

b b b
u

r b

e e
H e f u du k k

ϖ ϖ θ φ ϖ θ ρ
θ

δ ρ θ φ θ ρ

− − − − − − −
−

−

= + −
− − −∫  

( )( )

2 1 1
0

2
[ ( ) ]

r r
z e

H e f z dz k
ϖ ϖ θ φ

θ

α π θ φ

− − −

= −
− −∫  

( )( )

3 2 2
0

2
[ ( ) ]

2

rr
ze

H k e f z dz
ϖϖ θ ρ

θ

α ρ θ ρ

−− −

= −
− − ∫  

4 3
0

2
( )

r
zH e f z dz

ϖ
θ

α ρ

−

=
− ∫  

For t = ?  – b , 
2( ) 2( ) ( ) ( )VTDB t VTDB b G r b G tϖ− − = − −  

( ) ( 2 ) 2 ( )
1 2 3( ) t t tG t G e G e G eδ ρ α ρ δ ρ− − − − − −= + +  

( )

( )* ( ,0)
s
r

s
b

N
k Sa b

D

ρ

ρ=  

( )( ) ( )( )
2

1
0

2
[ * ( ) ( ) * { }]

b b r b
u u e e

G k e e EB u du k
ϖ ϖ θ ρ δ ρ

θ δ

δ ρ θ ρ δ ρ

− − − − − − −
− −= − + −

− − −∫  

2

2

2 *
( )( 2 )

k
G

θ ρ α ρ
−

=
− −

 

2

3 2

*
( )

k
G

δ ρ
=

−
 

It follows that for 0 ( ) 2( )t r b rϖ≥ − + − , 

0 0( ) ( ) ( ) ( )VTDB t VTDB t F t F t− = −  
( ) ( ) ( 2 ) ( ) 2( )

1 2 3 4 5( ) t t t t tF t Fe F e F e F e F eδ ρ α π α ρ α ρ δ ρ− − − − − − − − − −= + + + +  
where  1 1 1 2 2 3 3 2 4 4 5 3; ; ; ;F H G F H F H G F H F G= + = = + = = . 
 
Note.  The procedures for the development and simplification of the above expressions are 
similar to those adopted in Appendix 4 (see Notes 1 and 2, Appendix 4).  
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APPENDIX  6 
LONG-TERM EXPRESSIONS FOR COV(R(t),A(u)), COV(B(t),S(u))  and 

Cov(TDB(t),TDS(t)) 
 

Co-variance between R(t) and A(u), (t = 2(r–b)+(? -r), u = t) 
 
The formulae and expressions will be identical to those for COV(B(t),S(u)) below, except that the 
pension rate function (k(b)) and the salary scale function (s(x))will be suppressed throughout. 
Thus, all commutation functions will be replaced by the corresponding functions without the 

salary scale being incorporated (replace 
( ) ( )( ) ( ),

ss
x xx xD byD N byN

ρ ρρ ρ etc). Moreover, the adjustment 
factor should be Ac(b,0) (instead of Sa(b,0)sa(b,0)). 
 

Co-variance between B(t) and S(u), (t = 2(r–b)+(? -r), u = t) , according to range of u 
The adjustment factor Sa(b,0)sa(b,0) should apply to all the following formulae. 
 
u = r - b: ( ( ), ( )) ( )tCOV B t S u e f uρ= , where 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )
( ) [ ] ( )

( )

s s s s
r b b u b b uu u

s s
b b b

N N N N N s r
f u e e k b

D D D s b

ρ φ φ ρ ρ

φ ρ
ρ φ ρ

+ +− −
= −  

 where ? = p – ?. 
r - b < u = t – (?  – b): 2

1 2( ( ), ( )) t z t zCOV B t S u k e e k e eπ φ ρ ρ− −= −  
where z = t – u; 

( ) ( ) ( )

1 ( ) ( )
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( )
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s
b b

N N N s r
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D D s b
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ρ φ

−
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( ) ( ) ( )
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r b r

s
b b
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k k b

D D s b

ρ ρ ρ

ρ ρ

−
=  

t – (? -b)  < u  = t – (r – b): 2
1 2 3( ( ), ( )) ( ) ( ) ( )t t tCOV B t S u e f z e f z e f zπ ρ ρ= − +  

            where z = t – u; 1( )f z =  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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z
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−
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t – (r-b)  < u  = t – (? -r): 2
4 2 5( ( ), ( )) ( ) ( ) ( )t t tCOV B t S u e f z e f z e f zπ ρ ρ= − +  

            where z = t – u; 
( ) ( ) ( ) ( )( ) ( )

4 ( ) ( ) ( ) ( )
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s s s s
x z r b x zz zx x

s s
b b b br r

D DN N N N s rf z e dx e dx k b
s bD D D D

φ φ ρ ρϖ ϖρ φ
φ ρ

φ ρ ρ φ

− −− −− −= +∫ ∫  
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5 ( )
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( ) [ (1 ) ] ( )
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z
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D ls y s r
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ρ

−
+

−

= −∫  

u  > t – (? -r): 2
6 2 7( ( ), ( )) ( ) ( ) ( )t t tCOV B t S u e f z e f z e f zπ ρ ρ= − +  
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            where z = t – u; 
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

6 ( ) ( ) ( ) ( ) ( ) ( )

( )( ) [ { }] ( )
( )

s s s s s sr z r z
x z r b x z b rz zx x r z

s s s
b b b b b br r

D D DN N N N N N s rf z e dx e dx k b
s bD D D D D D

φ φ ρ ρ ρ ρρ φ φ
φ ρ

φ ρ ρ φ ρ φ

+ +
− −− − +− − −= + +∫ ∫

 
( )

7 ( )

( ) ( )
( ) [ (1 ) ] ( )

( ) ( )

r
y z y

b br z

D ls y s r
f z dy k b

D s b l s b

ρ

ρ
+

−

= −∫  

 
Co-variance between A(t) and R(u), (t = ? -b, u = t) 

 
The formulae and expressions will be identical to those for COV(S(t),B(u)) below, except that the 
pension rate function (k(b)) and the salary scale function (s(x))will be suppressed throughout. 
Thus, all commutation functions will be replaced by the corresponding functions without the 

salary scale being incorporated (replace 
( ) ( )( ) ( ),

ss
x xx xD byD N byN

ρ ρρ ρ etc). Moreover, the adjustment 
factor should be Ac(b,0) (instead of Sa(b,0)sa(b,0)). 
 

Co-variance between S(t) and B(u), (t = ? -b, u = t) , according to range of u 
The adjustment factor Sa(b,0)sa(b,0) should apply to all the following formulae. 
 
r –b = u < ?  - b: ( ( ), ( )) ( )tCOV S t B u e g uρ= , where 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )( ) [ ] ( )
( )

s s
b r r b u r b u

s
b b b

N N N N N N s rg u k b
s bD D D

ρ ρ φ φ ρ ρ

ρ φ ρ

+ +− − −= −  

 where ? = p – ?. 
u = ?  – b: 2

1 2( ( ), ( )) t z t zCOV S t B u h e e h e eπ φ ρ ρ− −= −  
where z = t – u; 

( ) ( ) ( )
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N N N s r
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D D s b
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Co-variance between TDS(t) and TDB(t) 

 
In the following, 1 2 1 2 3 4 5 6 7( ), , , ( ), ( ), ( ), ( ), ( ), ( ), ( )f u k k f z f z f z f z f z f z f z  denote the functions 
occurring in the expressions relating to COV(B(t),S(u)) and 1 2( ), ,g u h h  denote the functions 
occurring in the expressions for  COV(S(t),B(u)), after incorporating the respective adjustment 
factors. 
 
Let the four components of (91) be denoted by CovTDBTDS1(t), CovTDBTDS2(t), 
CovTDSTDB1(t) and CovTDSTDB2(t). 
.  
For t = 2(r – b) + (? – r), 

1( ) 1(2( ) ( )) (2( ) ( )) ( )CovTDBTDS t CovTDBTDS r b r H r b r H tϖ ϖ− − + − = − + − −  
where, 

( ) ( ) ( 2 ) ( )
1 2 3 4( ) t t t tH t H e H e H e H eδ ρ α π α ρ α ρ− − − − − − − −= + + +  
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For t = ?  – b , 
2( ) 2( ) ( ) ( )CovTDBTDS t CovTDBTDS b G b G tϖ ϖ− − = − −  

( ) ( 2 ) 2 ( )
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For t = ?  – b , 
1( ) 1( ) ( ) ( )CovTDSTDB t CovTDSTDB b L b L tϖ ϖ− − = − −  

( ) ( ) ( 2 )
1 2 3( ) t t tL t L e L e L eδ ρ α π α ρ− − − − − −= + +  

( )( ) ( )( )

1 1 2

1
[ ( ) ]

b b b
u

r b

e e
L e g u du h h

ϖ ϖ θ φ ϖ θ ρ
θ

δ ρ θ φ θ ρ

− − − − − − −
−

−

= + −
− − −∫  

1
2 ( )( )

h
L

α π θ φ
−

=
− −

 

2
3 ( 2 )( )

hL
α ρ θ ρ

=
− −

 

For t = ?  – b , 
2( ) 2( ) ( ) ( )CovTDSTDB t CovTDSTDB b G b G tϖ ϖ− − = − −  
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It follows that for 0 2( )t r b≥ − +(? - r), 

0 0 0( ( ) , ( )) ( ( ), ( )) ( ) ( )Cov TDS t TDB t Cov TDS t TDB t F t F t− = −  
( ) ( ) ( 2 ) ( ) 2( )

1 2 3 4 5( ) t t t t tF t Fe F e F e F e F eδ ρ α π α ρ α ρ δ ρ− − − − − − − − − −= + + + +  
where  1 1 1 1 1 2 2 2 3 3 2 3 2 4 4 5 3 3; ; ; ;F H G L J F H L F H G L J F H F G J= + + + = + = + + + = = + . 
 
Note.  The procedures for the development and simplification of the above expressions are 
similar to those adopted in Appendix 4 (see Notes 1 and 2, Appendix 4).  
 

APPENDIX 7 
LIST OF SYMBOLS 

(in the approximate order in which they first appear in the text) 
 
P(x, t)  Population aged x at time t (active or retired) 
?  New entrant growth parameter (new entrant intake deterministic)  
b  Entry age of new entrants 
r  Retirement age   
?   Limiting age of the mortality table 
Ac(x, t)  Active Population, aged x at time t 
Re(x, t)  Retired Population, aged x at time t 
EF             Expected value of (any stochastic function) F 
VF  Variance of F 
COV(F,G) Co-variance between (stochastic functions) F and G (also CovFG) 

( )( ) , xxD N
ρρ  Commutation functions based on force of interest ? 

( )( ) , xxxxD N
ρρ  Special commutation functions ( ( ) x

xx x xD l l eρ ρ−= )  

0 1( ( ), ( ))a t a t  Age-limits of the surviving new entrant population at time t 

1 2( ( ), ( ))a t a t  Age limits of the surviving initial population at time t 
P(t)  Total population at time t (active or retired) 
A(t)  Total Active Population at time t 
R(t)  Total Retired Population at time t 

0 1( , ), ( , )c t u c t u Age-limits (at u) for common new entrant cohorts between P(t) and P(u)  

1 2( , ), ( , )c t u c t u Age-limits (at u) for common initial population cohorts between P(t),P(u) 
DR(t)  Demographic ratio 
CVF  Coefficient of variation of (a stochastic function) F 
Corr(F,G) Correlation coefficient between stochastic functions F and G (also CorrFG) 
? Primary new entrant growth parameter (new entrant intake stochastic) 
p  Secondary new entrant growth parameter (new entrant intake stochastic) 
φ   p - ? 
s(x)  Salary scale function 

( )( ) ,
ss
xxD N

ρρ  Commutation functions based on force of interest ?, incorporating the   salary 
scale function 

sa(x, t)  Average annual salary of the active population aged x at time t 
pe(x, t)  Average annual pension of the retired population aged x at time t 
Sa(x, t)  Annual salary bill of the active population aged x at time t 
Be(x, t)  Annual pension bill of the retired population aged x at time t 
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S(t)  Total salary bill at time t 
B(t)  Total pension bill at time t 
Bc(t)  Capitalized value of the pensions of those retiring at time t 
a*  Capitalized value of an indexed unit pension at age r 
k(x)  Proportionate rate of pension for entry age x 
d Force of real interest (deterministic) or primary real interest parameter (force of 

interest stochastic) 
a  Secondary real interest parameter (force of interest stochastic) 
?  a – d 
DS(t)  Discounted value of S(t) 
DB(t)  Discounted value of B(t)  
TDS(t)  Total over (0, t) of discounted salaries 
TDB(t)  Total over (0, t) of discounted pension expenditures 
pr  Classical (deterministic) premium 
pr*  Stochastic premium 
PAYG(n) Pay-as-you-go premium at t = n 
AVP(0, n) Average premium over (0, n) 

(0, : )RRP n Λ  Reserve Ratio system premium over (0, n), with ratio = ?  
TFP(n)  Terminal Funding premium at t = n 
GAP  General Average Premium   
  
 

APPENDIX 8 
NUMERICAL ILLUSTRATIONS 

 
A hypothetical retirement pension scheme  

 
The illustrations relate to a newly introduced pension scheme that provides retirement pensions, 
for life, from age 65.  The pension rate is 1 per cent of the final salary per year of service. Pre-
scheme service is not taken into account. The pension is fully adjusted, in line with the salary 
escalation of active persons. 
 
The age-distribution of the initial insured active population (per 10,000), as well as of the 
corresponding initial salary bill, is shown in the table below.  There are no pensioners at the 
outset.  New entrants enter at age 20. The average cohort survival pattern, assumed to remain 
invariant, is according to the service and life tables summarized below. The progression of 
individual salaries , ignoring salary escalation, is according to the salary scale indicated below.   
 
In order to illustrate the effect of changes in the population size and the parameters, the 
calculations have been made for the following six variants. The implied coefficients of variation 
of exp(?(t)) (CV1) and of exp(-d(t)) (CV2) are indicated. The value of Ac(20,0) is proportional to 
the initial population; for the population of 10,000, its value is 291. 
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Variant Initial population ? p d a CV1 CV2 
 
A  10,000   0.01 0.025 0.03 0.055 7.08% 7.08% 
A1    1,000   0.01 0.025 0.03 0.055 7.08% 7.08% 
A2       100   0.01 0.025 0.03 0.055 7.08% 7.08% 
B  10,000   0.01 0.0205 0.03 0.0595 2.24% 2.24% 
C  10,000   0.01 0.0205 0.03 0.0305 2.24%   17.30%  
D  10,000   0.01 0.0495 0.03 0.0595  17.30%  2.24%  

 
Tables 1 to 5 give detailed results for A, the main variant. Table 6 illustrates the sensitivity of the 
results to population size and Table 7 the effect of the parameters on the results.  Table 8 shows 
the General Average Premiums for the different variants. 

 
   Initial population data, mortality assumptions and salary scale 

 Age Initial Initial Age Salary Service Age Life   
 Group Popn Sal Bill scale Table Table   
 [$'000]   
    20-25 1415 1875 20 100 1000                65 1000   
    25-30 1339 2587 25 165 995 70 861   
    30-35 1265 3092 30 221 989 75 677   
    35-40 1193 3402 35 267 982 80 463   
    40-45 1121 3539 40 302 972 85 254   
    45-50 1047 3525 45 328 958 90 101   
    50-55 967 3365 50 344 936 95 25   
    55-60 878 3082 55 350 903 100 0   
    60-65 776 2721 60 350 851     
   Totals 10000 27188 65 350 775     

 
Table 1.  Demographic projections, Variant A 

 
(t) EA VA ER VR CovRA CVA CVR corr(RA) ER/EA EDR VDR CVDR

0 10000 0 0 0 0 0.00% 0.00% 0 0.00% 0.00% 0.000000  

10 11051 879 1293 276 0 0.27% 1.28% 0 11.70% 11.70% 0.000002 1.31%

20 12214 5542 2137 795 0 0.61% 1.32% 0 17.50% 17.50% 0.000006 1.45%

30 13498 20009 2537 1099 0 1.05% 1.31% 0 18.80% 18.80% 0.000010 1.67%

40 14918 52903 2811 1257 0 1.54% 1.26% 0 18.84% 18.85% 0.000014 1.99%

50 16487 113940 3106 1384 799 2.05% 1.20% 0.0636 18.84% 18.85% 0.000019 2.30%

60 18221 204711 3433 2345 7716 2.48% 1.41% 0.3522 18.84% 18.85% 0.000020 2.38%

70 20137 334211 3794 4916 22276 2.87% 1.85% 0.5496 18.84% 18.85% 0.000021 2.41%

80 22255 516308 4193 9095 44983 3.23% 2.27% 0.6564 18.84% 18.85% 0.000021 2.44%

90 24596 769444 4634 15131 77860 3.57% 2.65% 0.7216 18.84% 18.85% 0.000022 2.47%

100 27182 1118077 5122 23685 124526 3.89% 3.00% 0.7652 18.84% 18.86% 0.000022 2.50%

110 30041 1594556 5660 35653 189881 4.20% 3.34% 0.7964 18.84% 18.85% 0.000023 2.54%

120 33201 2241578 6256 52229 280439 4.51% 3.65% 0.8196 18.84% 18.86% 0.000024 2.58%
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Table 2. Financial projections (static salary basis), Variant A 
(t) ES EB VS VB CovBS CVS CVB E(Bc) VBc CovBcS CVBc

0 27188 0 0 0 0  0 0 0  

10 30047 245 4828 10 0 0.23% 1.32% 617 691 0 4.26%

20 33208 919 23158 131 0 0.46% 1.24% 1364 3833 0 4.54%

30 36700 1886 97953 523 0 0.85% 1.21% 2261 10523 0 4.54%

40 40560 3070 304327 1321 0 1.36% 1.18% 3332 22082 0 4.46%

50 44825 4386 726647 2500 3434 1.90% 1.14% 4143 23008 16168 3.66%

60 49540 5319 1364261 5596 33134 2.36% 1.41% 4578 29272 60755 3.74%

70 54750 5986 2278626 12244 95651 2.76% 1.85% 5060 37464 126862 3.83%

80 60508 6623 3569542 22685 193148 3.12% 2.27% 5592 48187 222559 3.93%

90 66872 7319 5369850 37739 334315 3.47% 2.65% 6180 62228 358647 4.04%

100 73905 8089 7855861 59074 534686 3.79% 3.00% 6830 80619 549523 4.16%

110 81677 8940 11260960 88926 815308 4.11% 3.34% 7549 104704 814319 4.29%

120 90267 9880 15893360 130270 1204140 4.42% 3.65% 8342 136238 1178395 4.42%
Note: Expected values in $1,000; variances and co-variances in $1,000x1,000 

 
Table 3a.  COV(S(t), S(u)), Variant A ($1,000x1,000) 

(u) 
(t) 10 20 30 40 50 60 70 80 90 100 110 120
10 4828 5695 8809 13092 17106 19020 21020 23231 25674 28374 31358 34656
20 5695 23158 40717 64446 88651 102796 113758 125722 138944 153557 169707 187555

30 8809 40717 97953 162890 233761 284327 320467 354367 391637 432825 478346 528654
40 13092 64446 162890 304327 454477 577698 671988 750722 829932 917217 1013682 1120292

50 17106 88651 233761 454477 726647 964816 1163587 1329207 1479408 1635331 1807319 1997396
60 19020 102796 284327 577698 964816 1364261 1716440 2022400 2290833 2545188 2813297 3109173

70 21020 113758 320467 671988 1163587 1716440 2278626 2787364 3242137 3654913 4056610 4483804
80 23231 125722 354367 750722 1329207 2022400 2787364 3569542 4291712 4951218 5564388 6171897
90 25674 138944 391637 829932 1479408 2290833 3242137 4291712 5369850 6381217 7320275 8209137

100 28374 153557 432825 917217 1635331 2545188 3654913 4951218 6381217 7855861 9257041 10575400
110 31358 169707 478346 1013682 1807319 2813297 4056610 5564388 7320275 9257041 11260960 13185230

120 34656 187555 528654 1120292 1997396 3109173 4483804 6171897 8209137 10575400 13185230 15893360
 

Table 3b. COV(B(t) ,B(u)), Variant A ($1,000x1,000) 
(u) 

(t) 10 20 30 40 50 60 70 80 90 100 110 120
10 10 6 2 0 0 0 0 0 0 0 0 0

20 6 131 69 17 1 0 0 0 0 0 0 0
30 2 69 523 242 53 2 0 0 0 0 0 0

40 0 17 242 1321 566 116 4 0 0 0 0 0

50 0 1 53 566 2500 1250 614 512 561 620 685 757
60 0 0 2 116 1250 5596 4867 4604 4901 5410 5979 6608

70 0 0 0 4 614 4867 12244 12459 12974 14138 15619 17261
80 0 0 0 0 512 4604 12459 22685 24254 26020 28544 31539

90 0 0 0 0 561 4901 12974 24254 37739 41306 44904 49402
100 0 0 0 0 620 5410 14138 26020 41306 59074 65483 71700

110 0 0 0 0 685 5979 15619 28544 44904 65483 88926 99318
120 0 0 0 0 757 6608 17261 31539 49402 71700 99318 130269
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Table 3c.  COV(B(t), S(u)), Variant A ($1,000x1,000) 
(u) 

(t) 10 20 30 40 50 60 70 80 90 100 110 120
10 0 0 0 0 0 0 0 0 0 0 0 0

20 233 0 0 0 0 0 0 0 0 0 0 0
30 301 596 0 0 0 0 0 0 0 0 0 0

40 235 713 1039 0 0 0 0 0 0 0 0 0
50 437 1422 2894 4122 3434 3795 4194 4635 5123 5661 6257 6915
60 1493 6288 13573 22523 30604 33134 36619 40470 44727 49431 54629 60375

70 2191 11017 27139 48344 71160 87053 95651 105711 116829 129116 142695 157702
80 2539 13581 36843 71771 112748 148649 175089 193148 213461 235911 260722 288142

90 2810 15203 42634 88329 148513 208536 261198 302554 334315 369475 408333 451278
100 3106 16808 47368 100093 175754 261289 345668 421323 483475 534686 590920 653067

110 3432 18575 52358 110944 197430 303749 421733 539019 645998 736859 815308 901055
120 3793 20529 57864 122622 218614 339811 485386 646849 808383 957782 1087958 1204140

 
Table 4.  Discounted financial projections, Variant A 

(t) EDS EDB ETDS ETDB VTDS VTDB CovTDBTDS CovTDBDS CovTDBDB CovTDSDS CovTDSDB

0 2718 0 2718 0 0 0 0 0 0 0 0

10 2225 18 27114 75 9769199 145 35890 5579 45 1346944 11001

20 1822 50 47088 433 61922520 10577 781196 55947 1549 3937569 108919

30 1492 76 63441 1091 166833700 102562 4001629 175764 9037 6486460 333219

40 1221 92 76830 1952 317439400 436999 11398900 344469 26086 8459370 640006

50 1000 97 87792 2919 500367900 1206683 23775510 525857 51458 9715577 949653

60 818 87 96767 3851 701564700 2460270 40228420 673150 72278 10302890 1105143

70 670 73 104115 4651 908839500 4027816 58694000 758407 82929 10346790 1130524

80 548 60 110131 5309 1112756000 5727774 77612530 786821 86124 9990323 1092889

90 449 49 115057 5848 1306658000 7442042 96050780 773741 84691 9365280 1024626

100 367 40 119089 6289 1486305000 9095385 113431800 733242 80257 8580768 938873

110 301 32 122391 6651 1649388000 10640350 129412100 676302 74024 7720736 844820

120 246 26 125094 6947 1795041000 12050340 143822500 611058 66883 6846101 749157
Note: Expected values in $10,000; variances and co-variances in $10,000x10,000 

 
Table 5.  Premiums, Variant A 

          PAYG system             TFP system               AVP system              RRP system  

(t) Classical Stochastic Classical Stochastic Period Classical Stochastic Classical Stochastic

10 0.82% 0.83% 2.05% 2.20% (0,10) 0.28% 0.30% 0.61% 0.71%

20 2.77% 2.83% 4.11% 4.42% (0,20) 0.92% 1.03% 1.46% 1.72%

30 5.14% 5.26% 6.16% 6.63% (0,30) 1.72% 1.97% 2.32% 2.78%

40 7.57% 7.80% 8.22% 8.85% (0,40) 2.54% 2.97% 3.14% 3.80%

50 9.78% 10.14% 9.24% 9.84% (0,50) 3.33% 3.95% 3.88% 4.74%

60 10.74% 11.14% 9.24% 9.82% (0,60) 3.98% 4.77% 4.44% 5.44%

70 10.93% 11.36% 9.24% 9.80% (0,70) 4.47% 5.39% 4.82% 5.92%

80 10.95% 11.37% 9.24% 9.78% (0,80) 4.82% 5.83% 5.09% 6.25%

90 10.95% 11.38% 9.24% 9.75% (0,90) 5.08% 6.16% 5.30% 6.49%

100 10.95% 11.39% 9.24% 9.73% (0,100) 5.28% 6.41% 5.45% 6.67%

110 10.95% 11.39% 9.24% 9.70% (0,110) 5.43% 6.59% 5.57% 6.81%

120 10.95% 11.40% 9.24% 9.68% (0,120) 5.55% 6.74% 5.66% 6.92%
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Table 6.  Comparison of Variants A A1 A2 (CVDR and stochastic premi ums) 
 CVDR PAYG TFP AVP  RRP  

(t) A A1 A2 A A1 A2 A A1 A2 A A1 A2 A A1 A2 
10 1.3% 4.2% 13.1% 0.8% 0.9% 1.0% 2.2% 2.5% 3.5% (0,10) 0.3% 0.3% 0.3% 0.7% 0.7% 0.8% 

20 1.5% 4.6% 14.5% 2.8% 3.0% 3.4% 4.4% 5.1% 7.2% (0,20) 1.0% 1.0% 1.1% 1.7% 1.7% 1.8% 
30 1.7% 5.3% 16.6% 5.3% 5.5% 6.5% 6.6% 7.7% 11.0% (0,30) 2.0% 2.0% 2.1% 2.8% 2.8% 2.9% 
40 2.0% 6.3% 19.5% 7.8% 8.3% 10.3% 8.9% 10.3% 15.1% (0,40) 3.0% 3.0% 3.1% 3.8% 3.8% 3.9% 

50 2.3% 7.3% 22.2% 10.1% 11.0% 14.6% 9.8% 11.2% 16.3% (0,50) 3.9% 4.0% 4.1% 4.7% 4.8% 4.9% 
60 2.4% 7.5% 22.7% 11.1% 12.1% 16.7% 9.8% 11.1% 16.4% (0,60) 4.8% 4.8% 5.0% 5.4% 5.5% 5.6% 

70 2.4% 7.6% 22.9% 11.4% 12.4% 17.6% 9.8% 11.1% 16.4% (0,70) 5.4% 5.4% 5.6% 5.9% 5.9% 6.1% 
80 2.4% 7.7% 23.1% 11.4% 12.4% 18.1% 9.8% 11.0% 16.6% (0,80) 5.8% 5.9% 6.0% 6.2% 6.3% 6.4% 

90 2.5% 7.8% 23.3% 11.4% 12.5% 18.8% 9.8% 11.0% 16.7% (0,90) 6.2% 6.2% 6.3% 6.5% 6.5% 6.7% 
100 2.5% 7.9% 23.6% 11.4% 12.5% 19.6% 9.7% 10.9% 17.0% (0,100) 6.4% 6.4% 6.6% 6.7% 6.7% 6.8% 

110 2.5% 8.0% 23.9% 11.4% 12.5% 20.7% 9.7% 10.8% 17.3% (0,110) 6.6% 6.6% 6.8% 6.8% 6.8% 7.0% 

120 2.6% 8.1% 24.2% 11.4% 12.6% 22.1% 9.7% 10.7% 17.8% (0,120) 6.7% 6.8% 6.9% 6.9% 6.9% 7.1% 
 

Table 7.  Comparison of Variants B C D (CVDR and stochastic premiums) 
 CVDR PAYG TFP AVP  RRP  

(t) B C D B C D B C D B C D B C D 
10 1.3% 1.3% 1.4% 0.8% 0.8% 0.8% 2.2% 2.2% 2.2% (0,10) 0.3% 0.3% 0.3% 0.6% 0.8% 0.6% 

20 1.3% 1.3% 2.0% 2.8% 2.8% 2.8% 4.4% 4.5% 4.4% (0,20) 1.0% 1.2% 1.0% 1.5% 2.1% 1.5% 
30 1.4% 1.4% 3.1% 5.2% 5.2% 5.4% 6.6% 6.7% 6.7% (0,30) 1.8% 2.3% 1.8% 2.5% 3.5% 2.5% 

40 1.4% 1.4% 4.5% 7.7% 7.7% 8.1% 8.8% 8.9% 9.0% (0,40) 2.7% 3.6% 2.7% 3.4% 5.0% 3.4% 
50 1.3% 1.3% 6.0% 10.0% 10.0% 10.7% 9.8% 9.9% 10.2% (0,50) 3.5% 5.0% 3.6% 4.2% 6.4% 4.2% 

60 1.3% 1.3% 7.0% 11.0% 11.0% 12.0% 9.8% 9.9% 10.2% (0,60) 4.3% 6.1% 4.3% 4.8% 7.5% 4.8% 

70 1.3% 1.3% 8.1% 11.2% 11.2% 12.5% 9.7% 9.9% 10.3% (0,70) 4.8% 7.0% 4.8% 5.2% 8.2% 5.2% 
80 1.2% 1.2% 9.3% 11.2% 11.2% 12.8% 9.7% 9.9% 10.4% (0,80) 5.2% 7.7% 5.2% 5.5% 8.7% 5.5% 

90 1.2% 1.2% 10.8% 11.2% 11.2% 13.1% 9.7% 9.9% 10.6% (0,90) 5.5% 8.1% 5.5% 5.7% 9.0% 5.7% 
100 1.1% 1.1% 12.4% 11.1% 11.1% 13.6% 9.7% 9.9% 10.8% (0,100) 5.7% 8.4% 5.7% 5.9% 9.2% 5.9% 

110 1.1% 1.1% 14.3% 11.1% 11.1% 14.1% 9.7% 9.9% 11.0% (0,110) 5.9% 8.7% 5.9% 6.0% 9.4% 6.0% 
120 1.1% 1.1% 16.4% 11.1% 11.1% 14.9% 9.7% 9.9% 11.4% (0,120) 6.0% 8.9% 6.0% 6.1% 9.5% 6.1% 

Note to Tables 5, 6 and 7: The RRP system premium relates to the reserve ratio of 5. 
Table 8.  Limiting values of discounted financial projections and GAP 

 Variant ETDS ETDB VTDS VTDB CovTDBTDS GAP GAP  
  (classical) (stochastic)  

 A 137415 8296 2645254877 20719273 229947655 6.04% 7.35%  
 A1 13742 830 26950756 209307 2330706 6.04% 7.36%  
 A2 1374 83 319328 2304 26430 6.04% 7.45%  
 B 137415 8296 234251067 1766318 19973878 6.04% 6.51%  
 C 137415 8296 51928158764 533555426 5210354509 6.04% 9.97%  
 D 137415 8296 313130969 2040346 24619168 6.04% 6.52%  

 
Note: Expected values in $10,000; variances and co-variance in $10,000x10,000 

Note to tables 5 to 8: Stochastic premiums are based on the Normal distribution and correspond 
to the 95 th percentile (e = 0.05)   
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