

City, University of London Institutional Repository

Citation: Soylu, A., Giese, M., Schlatte, R., Jimenez-Ruiz, E., Kharlamov, E., Ozcep, O.,

Neuenstadt, C. & Brandt, S. (2017). Querying industrial stream-temporal data: An ontology-
based visual approach. Journal of Ambient Intelligence and Smart Environments, 9(1), pp.
77-95. doi: 10.3233/ais-160415

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/22948/

Link to published version: https://doi.org/10.3233/ais-160415

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Journal of Ambient Intelligence and Smart Environments 0 (0) 1 1
IOS Press

Querying Industrial Stream-Temporal Data:
an Ontology-based Visual Approach 1

Ahmet Soylu a,∗, Martin Giese b, Rudolf Schlatte b, Ernesto Jimenez-Ruiz b, Evgeny Kharlamov c,
Özgür Özçep d, Christian Neuenstadt d and Sebastian Brandt e

a Department of Computer Science, Norwegian University of Science and Technology, Gjøvik, Norway
E-mail: ahmet.soylu@ntnu.no
b Department of Informatics, University of Oslo, Oslo, Norway
E-mail: {martingi, rudi, ernestoj}@ifi.uio.no
c Department of Computer Science, University of Oxford, Oxford, UK
E-mail: evgeny.kharlamov@cs.ox.ac.uk
d Institute of Information Systems, University of Lübeck, Lübeck, Germany
E-mail: {oezcep, neuenstadt}@ifis.uni-luebeck.de
e Corporate Technology, Research and Technology Center, Siemens AG, Munich, Germany
E-mail: sebastian-philipp.brandt@siemens.com

Abstract. An increasing number of sensors are being deployed in business-critical environments, systems, and equipment; and
stream a vast amount of data. The operational efficiency and effectiveness of business processes rely on domain experts’ agility
in interpreting data into actionable business information. A domain expert has extensive domain knowledge but not necessarily
skills and knowledge on databases and formal query languages. Therefore, centralised approaches are often preferred. These
require IT experts to translate the information needs of domain experts into extract-transform-load (ETL) processes in order to
extract and integrate data and then let domain experts apply predefined analytics. Since such a workflow is too time intensive,
heavy-weight and inflexible given the high volume and velocity of data, domain experts need to extract and analyse the data of
interest directly. Ontologies, i.e., semantically rich conceptual domain models, present an intelligible solution by describing the
domain of interest on a higher level of abstraction closer to the reality. Moreover, recent ontology-based data access (OBDA)
technologies enable end users to formulate their information needs into queries using a set of terms defined in an ontology.
Ontological queries could then be translated into SQL or some other database query languages, and executed over the data in its
original place and format automatically. To this end, this article reports an ontology-based visual query system (VQS), namely
OptiqueVQS, how it is extended for a stream-temporal query language called STARQL, a user experiment with the domain
experts at Siemens AG, and STARQL’s query answering performance over a proof of concept implementation for PostgreSQL.

Keywords: visual query formulation, ontology-based data access, temporal data, stream sensor data, data retrieval, usability

1. Introduction

The advances in pervasive computing and the emer-
gence of low cost wireless and non-intrusive sensors

1This work was funded by the EU FP7 Grant “Optique” (agree-
ment 318338), and by the EPSRC projects MaSI3, DBOnto, and
ED3.

*Corresponding author. E-mail: ahmet.soylu@ntnu.no

open up new possibilities for industries such as oil
and gas, power, mining, and agriculture [38,35,20,34].
For example, operators can recognise hazardous condi-
tions by actively monitoring stream sensor data com-
ing from plant equipment such as pumps, motors, and
turbines, or analyse historical sensor data in the event
of a problem for a proper diagnosis. The operational
efficiency and effectiveness of business processes rely
on domain experts’ agility in interpreting data into ac-

1876-1364/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

2 A. Soylu et al. / Querying Industrial Stream-Temporal Data: an Ontology-based Visual Approach

mappings

Visual Query System

Domain

Expert
STARQL

SPARQL

OBDA Components

SELECT I Query Planning and

Execution

temporal

data

stream

data
static

data

Query

Transformation
CQL

SQL

results

Ontology

(OWL)

Fig. 1. OptiqueVQS in an OBDA scenario over relational databases.

tionable business information, so as to give reactive
and proactive responses with respect to important data
patterns appearing in data streams [51]. However, do-
main experts, who have extensive domain knowledge,
may or may not have technical skills and knowledge
on databases and formal textual query languages for
stream-temporal data sources, such as CQL [2], C-
SPARQL [3] and STARQL [30], to specify and ex-
tract data of interest [39]. Therefore, centralised ap-
proaches are often preferred. These require IT experts
to translate the information needs of domain experts
into extract-transform-load (ETL) [12] processes in
order to extract and integrate data possibly from dis-
perse data sources. Domain experts then apply prede-
fined analytics over the delivered data. However, such
a workflow is too time intensive, heavy-weight and in-
flexible given the high volume and velocity of data.

Turnaround time between an important event and a
possible reaction could be reduced drastically, if do-
main experts could directly specify and isolate impor-
tant data fragments rather than having IT experts in the
middle. A simple example could be shutting down an
overheated turbine; however, an event could also be of
a more complex nature involving more than one sen-
sory source and static data. Visual query formulation
[8] is a viable approach as it aims to lower the knowl-
edge and skill barriers to a minimum. In this con-
text, ontology-based visual query formulation is gain-
ing attention as ontologies come with certain benefits
compared to visual query formulation over database
schemas (cf. [47]). Firstly, ontologies, i.e., semanti-
cally rich conceptual domain models, present an intel-
ligible solution by describing the domain of interest on
a higher level of abstraction closer to the reality. Sec-

ondly, the federation and reasoning power of ontolo-
gies are very valuable (cf. [14]) for addressing scenar-
ios where data is distributed, incomplete or conflict-
ing. Finally, ontology-based data access (OBDA) ap-
proach extends the reach of ontology-based querying
from triple stores to relational databases [32,48,22]. In
OBDA, end users formulate their information needs
into queries using a set of terms defined in an ontology.
Ontological queries could then be translated into SQL
or some other database query languages through a set
of mappings linking the ontology and the underlying
data sources, and executed over the data in its original
place and format automatically.

Although a considerable amount of work exists on
ontology-based visual query formulation for SPARQL,
it is limited for ontology-based visual stream-temporal
querying (cf. [47]). Therefore, OptiqueVQS [44,43,
45], an ontology-based visual query system (VQS),
has been extended for stream-temporal querying upon
the requirements provided by Siemens AG1 within
an OBDA project called Optique2 [14,15]. Previously,
OptiqueVQS was successfully evaluated with different
type of user groups in non-stream and non-temporal
scenarios with casual users [44], and with domain ex-
perts at Statoil ASA3 and Siemens AG [43]. Although
OptiqueVQS used in an OBDA scenario over rela-
tional databases in the context of Siemens and Op-
tique project, it could be used directly over a triple
store or any other OBDA framework. Figure 1 shows
how OptiqueVQS is used in an OBDA scenario along

1http://www.siemens.com
2http://optique-project.eu
3http://www.statoil.com

http://www.siemens.com
http://optique-project.eu
http://www.statoil.com

A. Soylu et al. / Querying Industrial Stream-Temporal Data: an Ontology-based Visual Approach 3

with relevant OBDA components. Now, this article re-
ports how OptiqueVQS has been extended to gener-
ate stream-temporal queries in STARQL [30], a user
experiment with the domain experts at Siemens over
stream sensor data, and STARQL’s query answering
performance over a proof of concept implementa-
tion for PostgreSQL4. The results suggest that Op-
tiqueVQS is a viable tool for domain experts for query-
ing stream-temporal data sources and STARQL’s com-
putational performance is promising.

In what follows, Section 2 introduces the Siemens
case and OBDA. Section 3 presents STARQL and
OptiqueVQS interface with stream-temporal querying.
Section 4 presents a computational experiment with
STARQL and a user experiment with Siemens’ domain
experts. Finally, Section 5 presents the related work
and Section 6 concludes the article.

2. Background

Siemens presents a real and large-scale industrial
use case, which drives the research presented in this
article on ontology-based visual query formulation for
stream-temporal data sources. The use case is also im-
portant to demonstrate that OBDA over legacy rela-
tional databases plays a pivotal role for the integral and
wide-ranging proliferation ontologies and ontology-
based approaches in the industry.

2.1. The Siemens use case

Siemens produces a wide range of complex appli-
ances, such as gas and steam turbines, generators, and
compressors, which are used in business-critical pro-
cesses, including power generation, in energy sector.
Therefore, in order to prevent high downtime costs,
Siemens runs several service centres, each responsible
for remote monitoring and diagnostics of such many
thousands of appliances. Data is stored in several thou-
sand databases with varied schemas and the size of the
data is in the order of hundreds of terabytes, e.g., there
is about 15 GB of data associated to a single turbine,
and it currently grows with the average rate of 30 GB
per day [20]. Service centres have two main categories
of tasks:

(a) reactive tasks: engineers become active once a
problem is reported by customers, and then query

4https://www.postgresql.org

and analyse time-stamped sensor data distributed
across multiple sources;

(b) and predictive tasks: data received from the ap-
pliances is actively monitored, and pre-defined
patterns are detected in the incoming sensor and
event data for early diagnosis.

Figure 2 presents the service process triggered after
a malfunction of a unit (i.e., reactive scenario) [20]. In
this case, a service ticket requesting assistance is cre-
ated either manually or automatically by a diagnostic
system. The ticket often has very limited information
concerning the location and cause of the problem. Ser-
vice engineers query databases containing sensor and
event data (i.e., data acquisition) through manipulating
4.000 predefined queries and query patterns. In case
these are not sufficient, an IT expert has to be involved
to create a new query or query pattern. Standard dia-
grams are used to visualise sensor data and event mes-
sages are listed in excel spreadsheet with timestamps
and other attributes. Data then is pre-processed man-
ually using generic procedures in order to, for exam-
ple, see whether the sensor data quality is appropri-
ate or not. The engineer uses sophisticated diagnostic
models and tools, such as principal component analy-
sis or other statistical methods, to analyse and detect
the given problem based on the pre-processed data. Fi-
nally, the process is terminated when an explanation
for the problem is found. The process for predictive
analysis is similar, but have to be applied online to
streaming data with minimal user intervention.

For situations not initially anticipated, new queries
are required, and an IT expert familiar with both the
power plant system and the data sources in question
(e.g., up to 2.000 sensors in a part of appliance and
static data sources) has to be involved to formulate
these queries. Thus, unforeseen situations may lead
to significant delays of up to several hours or even
days due to miscommunication, high workload of IT
personnel, complexity of query formulation, and long
query execution times. In average, up to 35 queries re-
quire modification every month, up to 10% of queries
are changed throughout a year, and several new queries
are developed monthly [20].

With few built-in features for manipulating time in-
tervals, traditional database systems often offer insuf-
ficient support for querying time series data, and it
is highly non-trivial to combine querying techniques
with the statistics-based methods for trend analysis
that are typically in use in such cases. By enabling en-
gineers to formulate complex stream-temporal queries

https://www.postgresql.org

4 A. Soylu et al. / Querying Industrial Stream-Temporal Data: an Ontology-based Visual Approach

Arrival	of	a	service	ticket

A	turbine	(T01)	failed	to	start	
during	the	last	five	hours.

Data	acquisition
Return	the	most	frequent	
start	failure	and	warning	

messages	of	the	gas	turbine	
T01	during	the	last	week.	

Query	result	visualisation

Visualise sensor	data	and	list	
event	messages.

Data	preprocessing
Preprocess	data	using	generic	
procedures	such	as	sensor	
check,	threshold	and	trend	

analysis.

Data	analysis

Detect	and	isolate	the	given	
problem	by	using	sophisticated	
diagnostic	models	and	tools.

Report	preparation

Establish	an	explanation	for	
the	problem	in	the	service	

ticket.

Fig. 2. Siemens service process for reactive tasks.

on their own with respect to an expressive domain vo-
cabulary, IT experts will not be required anymore for
adding new queries, and manual pre-processing steps
can be avoided. This would lead to (i) timely-decision
making, (ii) augmented value creation by redeploying
freed-up time, and (iii) previously unforeseen uses of
data through ad-hoc querying.

2.2. Ontology-based data access

A significant amount of world’s enterprise data re-
sides in relational databases rather than triple stores.
Therefore, ontology-based visual query formulation
would not be a pragmatic solution for industry without
technologies for ontology-based data access over rela-
tional databases. OBDA technologies, such as Ontop
[6], Mastro [10], and Ultrawrap [36], make it possible
to virtualise RDF graphs from relational databases and
enable in-place access to relational data over ontolo-
gies without migrating or duplicating any data. More-
over, thanks to OBDA, while using well-established
query optimisation and evaluation support available
for traditional database systems, one could also (i) in-
tegrate data from multiple databases with different
schemas by relating each to a common ontology, and
(ii) utilise implicit information in query the answering
process by relating the whole set of implied informa-
tion with logical reasoning.

OBDA over relational databases is based on two key
mechanisms:

(a) mappings to describe the relationships between
the terms in the ontology and their representa-
tions in the data sources (i.e., data and database
schema).

(b) and query transformation to expand and translate
the posed queries (e.g., in SPARQL) into the lan-
guage of the underlying relational database sys-
tem (e.g., to SQL).

Figure 3 presents a simplified OBDA scenario. The
example involves an ontology, in which a turbine
could be either gas or diesel turbine. A diesel turbine
could have different types depending on the fuel type,
such as biodiesel turbine. The corresponding relational
database includes two tables, one for gas turbines and
other for diesel turbines. The latter has fuel attribute
to differentiate between different diesel turbine types.
There are three mappings indicating how to construct
RDF triples given the data that comes from an SQL
query over the data source. A user submits a SPARQL
query Q asking for all Turbines. At this point, sev-
eral query transformations take place (cf. [5]). First,
the query is rewritten into QI taking ontological con-
strains into account in order to retrieve both explicit
and implicit answers. Second, by using mappings, QI

is unfolded into QII, which is the query in the lan-
guage of the underlying database system. Finally, the
QII is optimised and transformed into QIII. The exam-

A. Soylu et al. / Querying Industrial Stream-Temporal Data: an Ontology-based Visual Approach 5

gas_turb(id, . . .)
diesel_turb(id, fuel, . . .)

Database

Q
user query

Turbine(x)
Turbine(x) U
GasTurbine(x) U
DieselTurbine(x) U
BiodieselTurbine(x)

SELECT id FROM gas_turb
UNION
SELECT id FROM diesel_turb
UNION
SELECT id FROM diesel_turb
WHERE fuel='biodiesel'

QI

rewrite w.r.t. ontology
QII

unfold to SQL w.r.t. mappings

SELECT id FROM gas_turb
UNION
SELECT id FROM diesel_turb

QIII

optimise

GasTurbine(id) ← SELECT id FROM gas_turb

DieselTurbine(id) ← SELECT id FROM diesel_turb

BiodieselTurbine(id) ← SELECT id FROM diesel_turb
WHERE fuel = 'biodiesel'

Mappings

Turbine

Gas Turbine Diesel Turbine

Biodiesel Turbine

Ontology

isaisa

isaO
B

D
A

 s
e

tt
in

g
Q

u
er

y
tr

an
sf

o
rm

at
io

n

Fig. 3. An example OBDA scenario.

ple is described considering the Ontop5 [6], which is
the OBDA tool used in the Optique project.

In order to ensure that these transformation steps
preserve the right semantics of query answering, one
should ensure the right combination of ontology and
mapping languages. In particular, it has been shown
that the combination of the DL-Lite as the ontol-
ogy language (e.g., OWL 2 QL6) and global-as-view
(GAV) mappings guarantees that both rewriting and
unfolding are semantically correct and efficient (cf. [5,
32,48]). Moreover, in OBDA, one assumes that the on-
tology alone is consistent and it is also consistent in
a combination with the data computed by executing
mappings, i.e., by populating the classes in the ontol-
ogy with the data from databases.

A key benefit of the mapping and query transfor-
mation approach is avoiding the representation contro-
versy [28] between ontologies and relational databases
(i.e., impedance mismatch) due to their semantic and
syntactic differences [40]. By separating transactional
and domain perspectives, end users can formulate their
information needs into queries in an intelligible man-
ner using the terms coming from an ontology, and get
their queries answered efficiently and effectively with
OBDA and traditional mature database technologies.
Another advantage is that there is no need to chase
GBs of data for reasoning to generate all the implicit
facts derived by the ontology, since this problem is
handled by embedding the consequences of the ontol-

5http://ontop.inf.unibz.it
6https://www.w3.org/TR/owl2-profiles

ogy into the mappings (cf. [15]) – see Figure 3 for an
example.

3. Stream-temporal querying and OptiqueVQS

In an industrial context, OptiqueVQS is meant for
domain experts who may or may not have technical
skills and knowledge, for example on databases, query
languages, programming languages, and semantic web
technologies, and usually have frequent, varied, and
sophisticated information needs.

Catarci et al. [8] in their review point out that
query interfaces combining multiple presentation and
integration paradigms have a better potential to ad-
dress broader user and task types. Therefore, a multi-
paradigm approach is in the core of OptiqueVQS’
design and implementation. OptiqueVQS is not con-
cerned with reflecting the underlying formality (i.e.,
query language and ontology) per se, as this would
demand considerable technical background from end
users. Full expressivity is also not a goal, as simpler
interfaces covering the majority or the essential frag-
ments of end-user information needs are more likely
to succeed [7]. Expressivity is intentionally compro-
mised for the sake of usability by targeting frequently
needed query fragments with less perceived complex-
ity for the user [?]. Therefore, OptiqueVQS primarily
targets tree-shaped conjunctive queries and the essen-
tial fragments of STARQL.

STARQL has been selected as an underlying query
language for querying temporal-stream data primarily

http://ontop.inf.unibz.it
https://www.w3.org/TR/owl2-profiles

6 A. Soylu et al. / Querying Industrial Stream-Temporal Data: an Ontology-based Visual Approach

due to its support for OBDA; otherwise, OptiqueVQS
could potentially generate queries in any other lan-
guage. STARQL offers a query framework dealing
with streams of timestamped RDF triples with respect
to a set of mappings and an ontology. The develop-
ment of STARQL was inspired by the Siemens use
case requirements. STARQL allows expressing typi-
cal mathematical, statistical, and event pattern features
needed in real-time monitoring scenarios (i.e., expres-
sivity); comes with a formal syntax and semantics (i.e.,
neat semantics); takes streams of timestamped asser-
tions as input and produces streams of timestamped as-
sertions (i.e., orthogonality); allows selecting an ontol-
ogy and streams over which the query will be evalu-
ated (i.e., scope locality); allows storing and re-using
often-used query patterns (i.e., library functions); and
uses roughly same STARQL queries to query historic
data or to query real-time streams (i.e., common inter-
face) [30].

3.1. STARQL

STARQL [29? ,30] provides an expressive declara-
tive interface to both historical and streaming data. In
STARQL, querying historical and streaming data pro-
ceeds in an analogous way and in both cases the query
may refer to static data, i.e., data that do not have a
timestamp and hence are considered to hold at every
time point. The answers coming from the static sub-
query are used for the stream processing in the remain-
der of the query. This separation between the static and
dynamic aspects provides a useful abstraction which
eases the query building process.

The relevant slices of the temporal data are specified
with a window, a sliding parameter that determines the
rate at which snapshots of the data are taken, and a
window width. The window, both in the case of histor-
ical data and in the case of streaming data, is a moving
window containing a reference to the developing time
NOW. The difference is that in the case of historical
data, the data is read from an ordinary database (such
as a PostgreSQL database), whereas in the real-time
case the data is coming from a real-time stream source.
Moreover, in the historical case, it may make sense to
specify windows with a right end-point bigger than the
running time NOW (as the data is available) whereas
in the stream case this is not possible.

The contents of the temporal data are grouped ac-
cording to a sequencing strategy into a sequence of
small graphs that represent different states. For each
state i, (referenced by the keyword GRAPH i), one

may ask whether some assertion holds in it. On top
of the sequence, relevant patterns and aggregations are
formulated in the HAVING clause, using a highly ex-
pressive template language. In Figure 4, an example
STARQL query is given, which asks for a train with
turbine named “Bearing Assembly”, and queries for
the journal bearing temperature reading in the genera-
tor. It uses a simple echo to display the results.

OptiqueVQS (and its underlying engine) follows the
OBDA paradigm. Hence, it has to be configured with
data sources, an ontology, and last but not least with
mappings. The followings illustrate these components
and how they are actually used w.r.t. the STARQL
query in Figure 4. The focus is on the historical-data
scenario, that is, it is assumed that the stream measure-
ment referenced in the STARQL query is read from an
ordinary relational table such as a PostgreSQL table.

The source data is assumed to be stored in relational
tables. For example, historical measurement data are
stored in a table measurement containing an ID, an at-
tribute for the time of the measurement, the source sen-
sor of the measurement, and the measured value. The
structure of trains, turbines, and sensors are stored in
various tables containing information regarding which
component is attached to which component.

For example, there is a ternary relation for sensors
including an identifier, the assembly at which they are
attached and a human-readable name, and a similar re-
lation exist for measurements:
measurement (mid,timestamp,sensor,value);
sensor (id,assemblypart,name)

These tables and schemata may be quite complex
and should be hidden from the user of the VQS. The
user should access data via an ontology, a conceptual
model containing relevant concepts (such as Sensor,
Turbine, Train etc.) and properties/roles (such as has-
Value) interrelated via constraints. For example, one
constraint of the ontology is invoked in Figure 4 and it
states that all temperature sensors are sensors. Bridg-
ing the conceptual (ontology) level with the real-world
data (relational databases) is handled by mappings that
roughly say how the concepts and properties are pop-
ulated by objects from the database.

A simple mapping for the static (i.e., non-temporal)
concept sensor is given with the following rule:

?x ns1 : type TemperatureSensor ←−
SELECT f(SID) as x FROM sensor
WHERE sensor.name ~‘^TC*’

The right-hand side is an SQL query that selects all
sensors identified by an SID and having a name that

A. Soylu et al. / Querying Industrial Stream-Temporal Data: an Ontology-based Visual Approach 7

PREFIX ns1 : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ns2 : <http://www.siemens.com/ontology/gasturbine/>
CREATE PULSE pulseA WITH FREQUENCY = "PT1s"^^xsd:duration

CREATE STREAM S_out AS
SELECT { ?_val0 ?Train_c1 ?Turbine_c2 ?Generator_c3 ?BearingHouse3_c4

?JournalBearing_c5 ?TemperatureSensor_c6 }
FROM STREAM measurement

[NOW - "PT10s"^^xsd:duration, NOW]->"PT1s"^^xsd:duration
USING PULSE pulseA
WHERE {

?Train_c1 ns1:type ns2:Train.
?Turbine_c2 ns1:type ns2:Turbine.
?Generator_c3 ns1:type ns2:Generator.
?BearingHouse3_c4 ns1:type ns2:BearingHouse3.
?JournalBearing_c5 ns1:type ns2:JournalBearing.
?TemperatureSensor_c6 ns1:type ns2:TemperatureSensor.
?Train_c1 ns2:hasTurbine ?Turbine_c2.
?Train_c1 ns2:hasGenerator ?Generator_c3.
?Generator_c3 ns2:hasBearingHouse3 ?BearingHouse3_c4.
?BearingHouse3_c4 ns2:hasJournalBearing ?JournalBearing_c5.
?JournalBearing_c5 ns2:isMonitoredBy ?TemperatureSensor_c6.
?Turbine_c2 ns2:hasName "Bearing Assembly"^^xsd:string.

}
SEQUENCE BY StdSeq AS seq
HAVING EXISTS i IN seq

(GRAPH i { ?TemperatureSensor_c6 ns2:hasValue ?_val0 })

Fig. 4. An example diagnostic task in STARQL.

starts with “TC” (for temperature sensors). The at-
tribute SID is used as a template to generate (virtu-
ally) all assertions saying that an object with identifier
SID is an instance of the concept TemperatureSensor.
The SID is wrapped into a functional term f(SID) in
order to overcome the so-called impedance mismatch
between the real-world data (such as the values of SID)
and that of abstract objects (real temperature sensor,
represented by f(SID)).

The mappings for temporal concepts and properties
are slightly more complex. In STARQL, temporal con-
cepts and roles (such as hasValue) are used in the HAV-
ING clause in states. One first needs to specify how
non-temporal data are mapped in a general mapping
schema and then instantiate them with concrete win-
dow parameters.

For example, a classical mapping relates the tem-
poral property hasValue to the table measurement for
storing sensor IDs and measurement values as follows:

?x ns2:hasValue ?y ←
SELECT measurement.sid as ?x,

measurement.value as ?y
FROM measurement

The concrete mapping using the window parameters
then is the following:

GRAPH i { ?x hasVal ?y }←
SELECT sid as ?x , sval as ?y
FROM Slice(measurement,i,r,sl,st)

The left-hand side contains a template on a state and
the right-hand side extends the mapping for hasValue
by applying the function Slice describing the relevant
finite temporal slice of the table measurement from
which the ontology level assertions are produced and
using the window parameters such as range r, slide sl,
the sequencing strategy st and the index i (see Neuen-
stadt et al. [29] for further details).

In classical OBDA, queries are answered by trans-
forming the query according to the ontology and the
mappings. This is done automatically by the engines
underlying the VQS according to a correct and com-
plete algorithm. The outcome of the transformation
may become considerably larger than the more abstract
STARQL query. This is illustrated by a simple trans-
formation to PostgreSQL in the evaluation section. For

8 A. Soylu et al. / Querying Industrial Stream-Temporal Data: an Ontology-based Visual Approach

more information on STARQL itself, readers are re-
ferred to Özçep et al. [30].

3.2. OptiqueVQS

OptiqueVQS is a visual query system rather than a
visual query language (VQL), that is, it is based on a
system of interactions rather than a formal visual syn-
tax and notation (cf. [13]). This allows OptiqueVQS
to offer familiar and informal presentation and interac-
tion styles, while constraining the user interaction so
as to enforce the formulation of valid queries.

OptiqueVQS is designed as a widget-based user-
interface mashup (UI mashup) [44,42]. Widgets are
standalone, full-fledged, and re-usable applications,
which are put together in a common graphical space in
order to build a new interface augmenting the user ex-
perience [41]. Widgets communicate with each other
by broadcasting event messages as a user interacts with
them and widgets react automatically to the events de-
pending on their signatures. Such an approach offers
flexibility, modularity, and adaptability and enables
us to combine multiple representation paradigms,
such as forms, diagrams and icons, and interaction
paradigms, such as schema navigation, range selec-
tion, and matching [8]. A multi-paradigm approach is
important to support different user and task types as
stated earlier [39,47].

Since the HAVING clauses of typical STARQL
queries are comparatively complex, in OptiqueVQS
stream query formulation is separated into two tasks:
(i) selecting the exact data stream to query (which val-
ues from which sensors, etc.), and (ii) what to do with
these values. The second is done by letting the user
choose one from a set of templates. Technically, a tem-
plate computes a HAVING clause, and a list of se-
lected variables for output, based on a variable from
the WHERE part, a dynamic property (i.e., whose ex-
tension is time dependent) of that variable, and possi-
ble parameters instantiated by the user (range intervals,
etc.). Some available templates are “echo" for copying
values to the result stream, “range" for checking that
values are within a given parametrisable interval, and
“gradient" for checking that the derivate does not ex-
ceed a given value.

OptiqueVQS with stream-temporal querying presents
five widgets to a user:

(i) the first widget (W1), see the bottom left side of
Figure 5, is a menu-based widget and allows the
user to navigate through concepts of an ontology
by selecting relationships between them;

(ii) the second widget (W2), see the top part of Fig-
ure 5, is a diagram-based widget presenting typed
variables as nodes and object properties as arcs to
give an overview of the query formulated so far;

(iii) the third widget (W3), see the bottom right side
of Figure 5, is a form-based widget and presents
the attributes of a selected concept for selection
and projection operations;

(iv) the fourth widget (W4), see Figure 6, is a form-
based widget and supports selection of param-
eters, such as slide (i.e., frequency at which
the window content is updated/moves forward)
and window width interval, for stream-temporal
queries;

(v) the fifth widget is (W5), see Figure 7, is a tabular
widget and allows selecting a template for each
stream attribute, which is by default “echo” (this
widget is normally used for displaying example
results in SPARQL mode).

In a typical scenario7 [46], W1 initially lists all do-
main concepts and the user first selects a starting con-
cept (i.e., kernel concept) from W1. The selected con-
cept appears on the diagram (i.e., W2) as a typed vari-
able node and becomes the active node (i.e., pivot).
W3 displays the attributes of selected variable node as
text fields, range sliders, etc. W3 relies on propaga-
tion of property restrictions [?], that is, properties of
sub/super concepts are also presented for a given con-
cept. The user can put constraints on attributes and a
constrained attribute appears over the corresponding
node in the query diagram with letter “c”. The user can
select attributes for output by using the “eye” button.
An attribute selected for output appears on the corre-
sponding variable node with a letter “o”. The user can
further refine the type of variable node from W3, by
selecting appropriate subclasses, which are treated as
a special attribute (named “Type”). However, currently
other attributes presented in W3 remains unchanged
after refinement. Once there is a pivot node, each item
in W1 represents a combination of a possible relation-
ship – range concept pair pertaining to the pivot. Then,
if the user selects an item from W1, it triggers a join
between the pivot and the new variable node (of type
range concept) over the specified relationship. The new
variable node becomes the pivot. The user can change
the pivot by clicking on any variable node in the query
diagram (i.e., W2) and expand the query form there.

7Demo video: https://youtu.be/TZTxujz5hCc

https://youtu.be/TZTxujz5hCc

A. Soylu et al. / Querying Industrial Stream-Temporal Data: an Ontology-based Visual Approach 9

Fig. 5. OptiqueVQS with stream-temporal querying.

In a stream-temporal scenario, dynamic proper-
ties are presented in blue by W3. As soon as a dy-
namic property is selected, OptiqueVQS switches to
STARQL mode. A stream button appears on top of the
W2 and lets the user to activate W4 for parameter con-
figuration. If the user clicks on the “Result Overview”
button, W5 appears for selecting a template for each
dynamic attribute. Finally, the user can register the
query through W5 by clicking on the “Register query”
button. The user can also save and load queries to the
query catalogue, that is particularly important since
users could use and extend queries written by others
as well (i.e., passive collaboration [27]). The exam-
ple query depicted in Figure 5, Figure 6 and Figure 7
presents the query example given in Figure 4.

OptiqueVQS has a backend composed of several
components [43]. The core component is graph projec-
tor [?] enabling a graph-based navigation over an on-
tology during the query formulation process. It adapts
a technique called navigation graph to extract a suit-
able graph-like structure from a set of OWL 2 axioms
[?]. A data sampler component is also a part of the
backend and it is used to enrich a given ontology with

additional axioms to capture values from data that are
frequently used and rarely changed. This includes the
list of values and numerical ranges in an OWL data
property range. Such an approach allows presenting
attributes in different form elements, such as sliders,
multi-select boxes, date pickers etc, with respect to the
underlying data. Moreover, backend harvests the query
log for ranking and suggesting query extensions as the
user formulates a query, that is, the W1 and W3 lists
concepts and properties adaptively with respect to the
partial query the user has formulated so far [?].

OptiqueVQS is free of any SPARQL or OWL jar-
gon and its usability is based on several design choices.
W1, W2, and W3 provide a fine combination of on-
tology exploration (gradual and on-demand) and query
formulation. W1 presents valid object property and
range concept combinations in pairs for the pivot con-
cept in order to reduce the number of navigational
steps. W2 employs a tree-shaped query representation,
rather than an arbitrary graph representation, to im-
prove comprehensibility, and inverted object proper-
ties to restrict arcs to a single direction (i.e., left to
right). Finally, W3 simplifies the type refinement by

10 A. Soylu et al. / Querying Industrial Stream-Temporal Data: an Ontology-based Visual Approach

Fig. 6. OptiqueVQS with stream-temporal querying – parameter selection.

presenting the subclasses of a pivot in an ordinary form
element. Regarding the expressiveness, OptiqueVQS
currently supports tree-shaped conjunctive queries (in-
cluding aggregation and excluding negation) and a re-
stricted fragment of STARQL (e.g., no support for cor-
relating multiple dynamic properties).

4. Evaluation

A query catalogue involving 40 representative queries
for Siemens has been established (non-disclosable).
An analysis of the query catalogue shows that 70% of
queries are tree-shaped conjunctive queries and 65%
are tree-shaped conjunctive queries excluding negation
and including aggregation. This means that Siemens’
engineers could potentially formulate 65% of their in-
formation needs with OptiqueVQS.

The solution presented in this article has been fur-
ther evaluated in twofold:

(i) a proof of concept implementation has been re-
alised for the transformation of STARQL queries
to PostgreSQL and query execution times have
been measured;

(ii) a user study has been conducted with domain ex-
perts from Siemens in order to measure the effec-
tiveness and efficiency of OptiqueVQS.

4.1. Transformation of STARQL queries to
PostgreSQL

The proof of concept implementation presented in
this section is meant to show that the evaluation of
STARQL is even possible on standard SQL engines
like PostgreSQL. The evaluation strategy is based on
the implementation of a system for answering his-
torical queries. This system relies on recorded data
and evaluates all temporal windows, which are cre-
ated by a sliding widow operator, in a single calcula-
tion step. Therefore, the implemented transformation
process consists of two phases. First, a view is gen-
erated that represents the temporal data linked to an
additional window identifier (called windowID) that is
produced by a window and pulse operator. In the sec-
ond step the WHERE and HAVING clauses are trans-
lated into a second SQL view that evaluates the respec-
tive view based on the data aligned to each windowId.

A. Soylu et al. / Querying Industrial Stream-Temporal Data: an Ontology-based Visual Approach 11

Fig. 7. OptiqueVQS with stream-temporal querying – template selection.

In the following, the translation result of the window
operator is explained first.

WindowFunction: The window operator FwinOp takes
a temporal table with a timestamp column and addi-
tional data columns as input and generates a SQL view
of windows as output. The view groups all timestamp
columns into a window group that is referenced by an
additional column of windowIDs. The window opera-
tor view can be seen as three applied functions, namely
F seqMeth(FdataJoin(FwindowGen)). By the inner function
FwindowGen, temporal borders are generated for each
window, based on window parameters width w and
slide sl that are defined in the window expression of
each stream. The resulting view includes a sequence
of windowIDs with additional columns for temporal
borders, i.e., the left and right borders of each win-
dow. Timestamps of the input table are used for a ref-
erence to the start and endpoint of each window, where
start and end of the current window is given for ev-
ery timestamp t by tstart = bt/slc × sl and tend =
max{tstart − w, 0}.

As PostgreSQL includes functions for time series
generation, the window generation step can be evalu-

ated directly by the PostgreSQL processor (see view
Measurement_window in the example of Figure 8).

JoinStream: In general, the implementation for a join
on different input streams js can be seen as a sim-
ple join in SQL, but as there are different window pa-
rameters for each stream, they cannot be simply joined
on the windowID. Furthermore, there is a need for a
function that chooses at each pulse in time the related
windowID of each input stream. Therefore, an addi-
tional global pulse function is calculated, which is de-
fined by the user in the STARQL query, to synchronise
the windows of all input streams.

All input streams are finally joined together based
on the pulse frequency pulse_freq (in the example of
Figure 8 from view pulse_pulseA) into the new re-
calculated joined pulse pWindowID that references
the same windows for all streams (see view Measure-
ment_window_pulse in the example of Figure 8). The
recalculation is defined as follows:

pWindowID =
⌊WindowID× sl

pulse f req

⌋
.

12 A. Soylu et al. / Querying Industrial Stream-Temporal Data: an Ontology-based Visual Approach

CREATE VIEW pulse_pulseA AS //a time series for the pulse is created
SELECT pulse AS time, row_number() OVER (ORDER BY pulse) - 1 AS wid
FROM (SELECT generate_series ($start$, end, $pulse_slide$) AS pulse) series;

CREATE VIEW Measurement_window AS //a time series for the window sequence is created
SELECT row_number() OVER (ORDER BY time) - 1 AS wid,
time - ($window_slide$) AS left, lead(time, 1) over(order by time) AS next, time
FROM (SELECT generate_series ($start$,end, $window_slide$) AS time) series;

CREATE VIEW Measurement_window_pulse AS //the window sequence is filtered by pulse
SELECT p.wid AS pWid, m.left, m.time
FROM Measurement_window m RIGHT JOIN pulse_pulseA p ON p.time BETWEEN m.time
AND m.next AND m.next > p.time;

CREATE VIEW Measurement_data AS //the original data table is joined on timestamps
SELECT DISTINCT pWid AS wid, tble.*
FROM Measurement_public_window_pulse pj LEFT OUTER JOIN Measurement_public tble
ON tble.timestamp BETWEEN pj.left AND pj.time;

CREATE VIEW Measurement_stream AS //a temporal abox seq column is added
SELECT dense_rank() OVER
(PARTITION BY wid ORDER BY timestamp ASC) AS abox, * FROM Measurement_public_data;

Fig. 8. A PostgreSQL transformation result for the STARQL window operator.

DataJoin: As soon as the historical window se-
quence is generated by the function FwindowGen, the sec-
ond function FdataJoin can be applied on the window
view by joining the result of the window generation
with the actual input-data of the incoming stream (see
view Measurement_data in the example of Figure 8).

SequencingFunction: The third function (F seqMeth),
which serves as a sequencing operator, adds an ad-
ditional ABoxID column to the sliding window view
(see view Measurement_stream in the example of Fig-
ure 8). In the current example this can be seen as
a simple recalculation of the windowed timestamps
on a granularity parameter of the sequencing method.
Based on the parameter the time is rounded to seconds
(or minutes) and entries with the same timestamp are
then merged into identical ABoxes afterwards.

The schematic transformation result of the trans-
formed window operator for PostgreSQL is shown in
Figure 8.

Transformation of WHERE and HAVING clause: The
second transformation phase transforms the WHERE
and HAVING clauses into a SQL view according to
the algorithm presented by Neuenstadt et al. [29]. The
resulting view evaluates the calculated windows of the
window operator based on the given constraints in the
STARQL query. The transformation result of the ex-

ample from Figure 4 is given in Figure 9 (simplified)
by the S_out_having view.

The SQL view consists of two parts: the transforma-
tion of the WHERE clause (SUB_WHERE) and the
transformation of the HAVING clause (SUB_HAVING)
that are both connected by a natural join. Both parts
rely on mappings to a database schema of differ-
ent tables on the PostgreSQL server, e.g., the sen-
sormetadata table, which stores detailed information
on all available sensors; while the HAVING clause
also evaluates the previous described view of the win-
dow operator transformation result by referring to
the Measurement_stream view. One can also see how
the selection of sensors is restricted in the WHERE
clause of the static part to temperature sensors on
the BearingAssembly, while the transformed HAVING
clause itself does not restrict any sensor types.

This section explained the transformation of histori-
cal STARQL queries into SQL that can be directly ex-
ecuted on PostgreSQL servers. The execution times of
STARQL queries on a Postgres server are evaluated in
the following subsection.

4.2. Experimental results

During the evaluation, the STARQL query given in
Figure 4 has been taken and transformed based on the
Optique prototype into a SQL based result (see Fig-

A. Soylu et al. / Querying Industrial Stream-Temporal Data: an Ontology-based Visual Approach 13

CREATE VIEW S_out_having AS
SELECT DISTINCT wid, TemperatureSensor_c6, _val0, Turbine_c2
FROM

(SELECT * FROM
(SELECT * FROM

(
SELECT "TemperatureSensor_c6", "Turbine_c2"
FROM (
SELECT DISTINCT
(’http://www.siemens.com/ont[...]’ || qview1."id") AS "Turbine_c2",
(’http://www.siemens.com/ont[...]’ || qview6."tagid") AS "TemperatureSensor_c6"
FROM

assembly qview1,
sensormetadata qview6,
partof qview7,
sensor qview8

WHERE
(qview1."name" = ’BearingAssembly’) AND
(qview6."property" = ’Temperature’) AND
(qview6."location" = qview7."partid") AND
(qview6."tagid" = qview8."id") AND
(qview1."id" = qview8."assembly") AND

) SUB_QVIEW
) SUB_TRIPLE1

) SUB_WHERE /* end of WHERE-clause transformation */
NATURAL JOIN

(SELECT wid, __val0, _TemperatureSensor_c6 FROM
(SELECT * FROM
(SELECT wid, abox AS i, "TemperatureSensor_c6", "_val0"
FROM
(SELECT DISTINCT qview2.wid, qview2.abox, qview2."value" AS "_val0",
(’http://www.siemens.com/ont[...]’ || qview1."tagid") AS "TemperatureSensor_c6"
FROM
sensormetadata qview1,
measurement_stream qview2

WHERE
(qview1."tagid" = qview2."sensor") AND
(((((’Position’ = qview1."property") OR
(’PositionDemand’ = qview1."property")) OR
(qview1."property" LIKE ’Axial%’)) OR
(qview1."property" LIKE ’Rotation%’)) OR
(’Temperature’ = qview1."property")) AND
qview2."value" IS NOT NULL AND
qview1."tagid" IS NOT NULL

)SUB_QVIEW
) SUB_TRIPLE0

)SUB_QVIEW
)SUB_HAVING /* end of HAVING-clause transformation */

)SUB_FROM;

Fig. 9. A PostgreSQL transformation result for STARQL WHERE and HAVING clauses.

14 A. Soylu et al. / Querying Industrial Stream-Temporal Data: an Ontology-based Visual Approach

ure 9). It has been executed on a reference dataset that
includes the signals of 25 sensors. These sensors emit
values irregularly over a time of approximately one
month. The dataset, which is sampled in seconds, can
be seen as a representation of real-world scenarios that
also occur in Siemens’ data centres.

The query has been evaluated over a PostgreSQL
installation on a machine with a i7 2.4 GHz core and
8GB of RAM. The standard SQL database executes
queries in a process based way, and therefore, can-
not distribute its execution directly over cores or ma-
chines. The execution time has been measured in two
steps. First, the time that is used by the window oper-
ator to generate the complete sequence of windows on
the whole input data set has been measured and sec-
ond, the evaluation of all windows with respect to the
given queries has been measured.

The results for different window and data sizes can
be found in Table 1. They basically show that the query
can even be executed on standard SQL engines in the
range of one minute, while a larger amount of time is
used for the execution of the window operator. That is
as expected, because the PostgreSQL engine does not
natively support the execution of a window operator.

Furthermore, STARQL has been also tested on dis-
tributed and scalable environments having a native
window operator like Exareme8 [21].

4.3. User study

A user experiment has been conducted at Siemens
for OptiqueVQS with stream-temporal support [45?].
The experiment was designed as a think-aloud study,
since the goal of the experiment was not purely sum-
mative, but to a large extent formative. The experiment
was built on a “turbine ontology” with 40 concepts and
65 properties.

Three participants, who cover the relevant occupa-
tion profiles, have taken part in the experiment; the
profiles of participants are summarised in Table 2. A
brief introduction on the topic and tool was delivered
to the participants along with a simple example. Then
they were asked to fill in a profile survey. The survey
asks users about their age, occupation and level of ed-
ucation, and asks them to rate their technical skills,
such as on programming and query languages, knowl-
edge on the semantic web technologies, and their fa-
miliarity with similar tools on a Likert scale (i.e., 1 for

8http://madgik.github.io/exareme

“not familiar at all,” 5 for “very familiar”). Participants
were then asked to formulate a series of information
needs into actual queries with OptiqueVQS, given at
most three attempts for each query. Each participant
performed the experiment in a dedicated session, while
being observed by a surveyor. Participants were in-
structed to think aloud, including any difficulties they
encountered, while performing the given tasks. Table 3
lists the tasks representing the information needs used
in the experiment (tasks 3-5 are stream queries).

Once users were done with the tasks, they were
asked to fill in an exit survey asking about their expe-
riences with the tool in order to measure user satisfac-
tion. The survey asks users to rate whether the ques-
tions were easy to do with the tool (S1), the tool was
easy to learn (S2), was easy to use (S3), gave a good
feeling of control and awareness (S4), was aestheti-
cally pleasing (S5), was overall satisfactory (S6), and
was enjoyable to use (S7) on a Likert scale (again, 1
for “strongly disagree” and 5 for “strongly agree”).
Users were also asked to comment on what they did
like and dislike about the tool and to provide any feed-
back which they deem important.

Since OptiqueVQS is a data retrieval (DR) tool,
where a single missing or irrelevant object implies a to-
tal failure contrary to information retrieval (IR) [? ?],
effectiveness is measured in terms of a binary measure
of success (i.e., correct/incorrect query) and efficiency
is measured in terms of total time taken to formulate
a query [39,47]. The results of the experiment are pre-
sented in Table 4. In total, 15 tasks were completed
by the participants with 100 percent correct comple-
tion rate and 66 percent first-attempt correct comple-
tion rate; and, on average, a task took 143 seconds to
complete in 1.3 attempts. First-attempt correct com-
pletion refers to the cases where a user formulates a
correct query for a given task at his/her first attempt.
One should be aware that query formulation is an it-
erative process [50,27]; therefore, query reformulation
is a natural step. Nevertheless, the results indicate that
domain experts could formulate queries with high ef-
ficiency and effectiveness by using OptiqueVQS. The
feedback provided by the participants through the exit
survey is presented in Table 5 and Table 6. The usabil-
ity scores given by participants are quite high and their
comments suggest that they did like the design of in-
terface. Users generally praised the capabilities and the
design of OptiqueVQS.

R&D engineers asked for advanced operators such
as “OR” and negation, since they, compared to diagno-
sis engineers, often need to formulate more complex

http://madgik.github.io/exareme

A. Soylu et al. / Querying Industrial Stream-Temporal Data: an Ontology-based Visual Approach 15

Table 1
Result overview for window operator and query evaluation.

Window Width Data Set Window Gen Time Window Eval Time
1 Second 1 Day 2.4 sec 0.468 sec

1 Week 28.1 sec 3.5 sec
1 Month 1 min 14 sec 1 min 17 sec

10 Seconds 1 Day 14.9 sec 18.2 sec
1 Week 1 min 38 sec 35.2 sec
1 Month 2 min 44 seec 2 min 54 sec

Table 2
Profile information of the participants.

Age Occupation Education Technical skills Semantic Web Similar tools
P1 37 R&D engineer PhD 4 1 1
P2 54 Diagnostics Engineer Bachelor 5 1 3
P3 39 Engineer PhD 5 1 2

Table 3
Information needs used in the user experiment.

Information need
T1 Display all trains that have a turbine and a generator.
T2 Display all turbines together with the temperature sensors in their burner tips. Be sure to include the turbine name and the

burner tags.
T3 For the turbine named “Bearing Assembly”, query for temperature readings of the journal bearing in the compressor. Display

the reading as a simple echo.
T4 For a train with turbine named “Bearing Assembly”, query for the journal bearing temperature reading in the generator.

Display readings as a simple echo.
T5 For the turbine named “Burner Assembly”, query for all burner tip temperatures. Display the readings if they increase mono-

tonically.

Table 4
The results of the user experiment (c for complete, t for time in seconds, and a for attempt count).

T1 T2 T3 T4 T5 Av.
c t a c t a c t a c t a c t a c t a

P1 1 120 1 1 150 1 1 130 1 1 70 1 1 60 1 1 106 1.0
P2 1 120 1 1 180 2 1 240 2 1 60 1 1 180 1 1 156 1.4
P3 1 45 1 1 40 2 1 40 2 1 60 2 1 60 1 1 49 1.6

Av. 1 95 1 1 123 1.6 1 136 1.6 1 63 1.3 1 100 1 1 103 1.3

Table 5
The results of the exit survey.

Question P1 P2 P3 Avg.
“I think that I would like to use this system frequently.” 5 4 4 4.3
“I found the system unnecessarily complex.” 1 3 2 2.0
“I thought the system was easy to use.” 5 4 5 4.6
“I think that I would need the support of a technical person to be able to use this system.” 1 1 1 1.0
“I found the various functions in this system were well integrated.” 4 4 4 4.0
“I thought there was too much inconsistency in this system.” 2 2 2 2.0
“I would imagine that most people would learn to use this system very quickly.” 5 4 4 4.3
“I found the system very cumbersome to use.” 1 2 2 1.6
“I felt very confident using the system.” 4 4 3 3.6
“I needed to learn a lot of things before I could get going with this system.” 2 1 1 1.3

16 A. Soylu et al. / Querying Industrial Stream-Temporal Data: an Ontology-based Visual Approach

Table 6
The feedback given by the participants.

What did you like about the tool? Person
“Easy to learn” P1
“Nice user interface” P1
“Possibility to see the original query” P1
“Very comfortable to use” P2
“UI looks really nice” P3
“The floating tree shows exactly what kind of situation I am looking for. Gives a nice overview.” P3
“The interaction between the buttons and the tree work really well.” P3
“The turbine structure is really useful to find sensors quickly.” P3
“Very nice icons for the turbine parts.” P3
“Especially complex queries appear easy to understand.” P3

What didn’t you like about the tool? Person
“Should be possible to extend search for things not directly connected to the current concept.” P1
“When selecting a turbine name, the turbine box in the tree does not show me the turbine name but only c. I find this confusing.” P2
“Did not always know where to click for the stream part. E.g., the little circle on in the column.” P3
“It may be confusing to have to run the query before specifying it further. Could it be run automatically, e.g., after each change
to the tree?”

P3

“Did not know what the start time and end time field means for a stream. Is that automatically registering / de-registering the
query at a certain time point?”

P3

“I do not understand what the numbers on the buttons mean. Is that the number of instances of the item (i.e., turbine.)” P3
“I find the order of items confusing. This is not alphabetical and also does not make sense from the structure of the turbine.” P3
“Why am I offered sensors that don’t exist at certain locations? For instance, I see ’RotationSpeed’ for the burners?” P3

queries. The participants wished for the ability to com-
bine multiple queries and connect concepts that are not
directly linked (i.e., non-local navigation [? 47]). Par-
ticipants also wanted attributes and attribute values in
W3 to be filtered automatically with respect to previ-
ously selected constraints (including type refinement)
– i.e., similar to faceted-search (cf. [?]). Non-local
navigation and faceted-search like filtering are chal-
lenging with large ontologies and data sources. This
is because, for the former, most relevant connections
between two concepts must be found, and for the lat-
ter, selected constraints must be checked against data
to filter out attributes and attribute values.

Overall, the high completion and satisfaction rates
suggest that domain experts are quite comfortable
with OptiqueVQS’s stream-temporal capabilities. The
study also shows that the learnability of OptiqueVQS
is high as participants did not receive any substan-
tial training. Earlier, three other user experiments were
conducted: one with casual users [44] and two others
with domain experts at Statoil and Siemens on non-
streaming scenarios [43,20]. These studies revealed
similar results and confirmed that OptiqueVQS could
address various user types and different scenarios with
high efficiency, effectiveness and user satisfaction.

5. Related Work

A high majority of work on stream processing is re-
alised in the context of data stream management sys-
tems (DSMSs). They mainly extend relational model
to support continuous queries with declarative lan-
guages analogous to SQL such as CQL [2], Tele-
graphCQ [9], Aurora/Borealis [19], and PIPES [23].
Notable examples of stream query languages in the Se-
mantic Web are Streaming SPARQL [?], C-SPARQL
[3], SPARQLstream [4], RSP-QL [11], CQELS [25],
and EP-SPARQL [?]. However, they either have no
implemented and/or optimised engine or the engine is
still not fully developed [?]. These approaches usu-
ally extend SPARQL with a window operator whose
content is a multi-set of variable bindings for the open
variables in the query. Among them, only SPARQL-
stream and STARQL support ontology based data ac-
cess approach. However, SPARQLstream query lan-
guage does not support historic data and its engine
provides no reasoning support, while STARQL does.
STARQL also offers more advanced user-defined func-
tions from the Optique backend system like Pearson
correlation [21]. Özcep et al. [30] compare and discuss
advantages and disadvantages of different approaches.

A. Soylu et al. / Querying Industrial Stream-Temporal Data: an Ontology-based Visual Approach 17

Visual query formulation is a long-standing en-
deavour, and as such it has accumulated a consider-
able number of studies over years. Majority of these
studies are within the relational database commu-
nity (cf. [8]), for instance, query by example (QBE)
[52]. Attempts in the semantic web community is
quite recent; however, several visual tools exist for
SPARQL (cf. [47]). A variety of such approaches
could be classified as VQLs, such as RDF-GL [18],
Nitelight [37], and QueryVOWL [16]. However, VQLs
are still comparable to formal textual query languages
as users need to have knowledge and skills to un-
derstand the underlying visual notation and syntax.
VQSs offer a good balance between usability and ex-
pressiveness; examples include OZONE [49], Konduit
VQB [1], and gFacet [17]. However, none of these
approaches support querying stream-temporal data
sources. Only example supporting stream-temporal
querying is SPARQL/CQELS visual editor designed
for Super Stream Collider framework [33]. The tool
follows the jargon of the underlying language closely
and; therefore, it is not appropriate for end users with-
out technical skills.

OptiqueVQS is valuable also conceptually as an in-
stance of the end-user programming [26] paradigm in
pervasive environments, which aims to empower end
users to orchestrate data and objects (e.g., sensors, ac-
tuators, and appliances) distributed across the digital
ecosystem on their own, such as for activity recog-
nition [24] and self-monitoring [31]. This is because
the abundance of data and internet-connected objects
render it difficult for IT experts to consider all pos-
sible eventualities and develop solutions addressing
broader contexts. The OBDA platform underlying Op-
tiqueVQS [15,14] presents an example where ontolo-
gies could help building scalable and efficient architec-
tures for data retrieval, integration, and access in per-
vasive environments.

6. Conclusion

OptiqueVQS with stream-temporal querying has
been developed in an industrial context with real re-
quirements. Its main design goal is to provide a fine
balance between usability and expressiveness. Do-
main experts at Siemens have used OptiqueVQS for
querying streaming sensor data with high efficiency
and effectiveness. The underlying formal textual query
language, STARQL, and OBDA platform, Optique,
are mature enough to promote ontologies and Op-

tiqueVQS as a realistic solution for querying dynamic
industrial scale data sources.

The future work involves extending the function-
ality of OptiqueVQS to cover a larger fragment of
STARQL, while maintaining its high usability. This
includes stream-temporal specific functionalities, such
as ability to correlate multiple dynamic properties; and
generic functionalities, such as simpler forms of nega-
tion and disjunction (e.g., only over data properties).
The current widget-based architecture and design of
OptiqueVQS provide us with a sufficient room for a
sustainable evolution, where new functionality could
be distributed to different widgets and complex func-
tionality could be hidden behind layers.

References

[1] O. Ambrus, K. Möller, and S. Handschuh. Konduit VQB: A Vi-
sual Query Builder for SPARQL on the Social Semantic Desk-
top. In Proceedings of the Workshop on Visual Interfaces to the
Social and Semantic Web (VISSW 2010), volume 565 of CEUR
Workshop Proceedings. CEUR-WS.org, 2010.

[2] A. Arasu, S. Babu, and J. Widom. The CQL Continuous Query
Language: Semantic Foundations and Query Execution. The
VLDB Journal, 15(2):121–142, 2006.

[3] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Gross-
niklaus. C-SPARQL: SPARQL for Continuous Querying. In
Proceedings of the 18th International Conference on World
Wide Web (WWW 2009), pages 1061–1062. ACM, 2009.

[4] J.-P. Calbimonte, O. Corcho, and A. J. G. Gray. Enabling
Ontology-based Access to Streaming Data Sources. In Pro-
ceedings of the 9th International Semantic Web Conference
(ISWC 2010), volume 6496 of LNCS, pages 96–111. Springer,
2010.

[5] D. Calvanese, G. Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. Tractable Reasoning and Efficient Query Answering
in Description Logics: The DL-Lite Family. Journal of Auto-
mated Reasoning, 39(3):385–429, 2007.

[6] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov,
D. Lanti, M. Rezk, M. Rodriguez-Muro, and G. Xiao. Ontop:
Answering SPARQL Queries over Relational Databases. Se-
mantic Web, in press.

[7] T. Catarci. What happened when database researchers met us-
ability. Information Systems, 25(3):177–212, 2000.

[8] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. Visual
query systems for databases: A survey. Journal of Visual Lan-
guages and Computing, 8(2):215–260, 1997.

[9] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,
J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden,
F. Reiss, and M. A. Shah. TelegraphCQ: Continuous Dataflow
Processing. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD 2003), pages
668–668. ACM, 2003.

[10] C. Civili, M. Console, G. De Giacomo, D. Lembo, M. Lenz-
erini, L. Lepore, R. Mancini, A. Poggi, R. Rosati, M. Ruzzi,
V. Santarelli, and D. F. Savo. Mastro Studio: Managing

18 A. Soylu et al. / Querying Industrial Stream-Temporal Data: an Ontology-based Visual Approach

Ontology-based Data Access Applications. Proceedings of the
VLDB Endowment, 6(12):1314–1317, 2013.

[11] D. Dell’Aglio, E. Della Valle, J.-P. Calbimonte, and O. Corcho.
RSP-QL Semantics: A Unifying Query Model to Explain Het-
erogeneity of RDF Stream Processing Systems. International
Journal on Semantic Web & Information System, 10(4):17–44,
2014.

[12] A. Doan, A. Halevy, and Z. Ives. Principles of Data Integra-
tion. Morgan Kaufmann, 1st edition edition, 2012.

[13] R. G. Epstein. The TableTalk Query Language. Journal of
Visual Languages and Computing, 2(2):115–141, 1991.

[14] M. Giese, D. Calvanese, P. Haase, I. Horrocks, Y. Ioannidis,
H. Kllapi, M. Koubarakis, M. Lenzerini, R. Möller, O. Öz-
cep, M. Rodriguez-Muro, R. Rosati, R. Schlatte, M. Schmidt,
A. Soylu, and A. Waaler. Scalable End-user Access to Big
Data. In R. Akerkar, editor, Big Data Computing. CRC Press,
2013.

[15] M. Giese, A. Soylu, G. Vega-Gorgojo, A. Waaler, P. Haase,
E. Jimenez-Ruiz, D. Lanti, M. Rezk, G. Xiao, O. Ozcep, and
R. Rosati. Optique – Zooming In on Big Data Access. IEEE
Computer, 48(3):60–67, 2015.

[16] F. Haag, S. Lohmann, S. Siek, and T. Ertl. QueryVOWL: A
Visual Query Notation for Linked Data. In Proceedings of the
Satellite Events of the 12th European Conference on the Se-
mantic Web (ESWC 2015), volume 9341 of LNCS, pages 387–
402. Springer, 2015.

[17] P. Heim and J. Ziegler. Faceted Visual Exploration of Semantic
Data. In Proceedings of the First IFIP WG 13.7 International
Workshop on Human Aspects of Visualization (HCIV 2009),
volume 6431 of LNCS, pages 58–75. Springer, 2011.

[18] F. Hogenboom, V. Milea, F. Fransincar, and U. Kaymak.
RDF-GL: A SPARQL-Based Graphical Query Language for
RDF. In Emergent Web Intelligence: Advanced Information
Retrieval, Advanced Information and Knowledge Processing,
pages 87–116. Springer, 2010.

[19] J. H. Hwang, Y. Xing, U. Cetintemel, and S. Zdonik. A Cooper-
ative, Self-Configuring High-Availability Solution for Stream
Processing. In Proceedings of the IEEE 23rd International
Conference on Data Engineering (ICDE 2007), IEEE, pages
176–185, 2007.

[20] E. Kharlamov, N. Solomakhina, Ö. L. Özçep,
D. Zheleznyakov, T. Hubauer, S. Lamparter, M. Roshchin,
A. Soylu, and S. Watson. How Semantic Technologies Can
Enhance Data Access at Siemens Energy. In Proceedings
of the 13th International Semantic Web Conference (ISWC
2014), volume 8796 of LNCS, pages 601–619. Springer, 2014.

[21] E. Kharlamov, Y. Kotidis, T. Mailis, C. Neuenstadt, C. Niko-
laou, Ö. Özcep, C. Svingos, D. Zheleznyakov, S. Lamparter,
I. Horrocks, et al. Towards analytics aware ontology based ac-
cess to static and streaming data. In Proceedings of the 15th
International Semantic Web Conference (ISWC 2016), 2016.

[22] M. R. Kogalovsky. Ontology-Based Data Access Systems.
Programming and Computer Software, 38(4):167–182, 2012.

[23] J. Krämer and B. Seeger. Semantics and Implementation of
Continuous Sliding Window Queries over Data Streams. ACM
Transactions on Database Systems, 34(1):4:1–4:49, 2009.

[24] N. C. Krishnan and D. J. Cook. Activity Recognition on
Streaming Sensor Data. Pervasive and Mobile Computing, 10:
138–154, 2014.

[25] D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth.
A Native and Adaptive Approach for Unified Processing of

Linked Streams and Linked Data. In Proceedings of the 10th
International Conference on The Semantic Web (ISWC 2011),
volume 7031 of LNCS, pages 370–388. Springer, 2011.

[26] H. Lieberman, F. Paterno, and V. Wulf, editors. End User De-
velopment, volume 9 of Human-Computer Interaction Series.
Springer, 2006.

[27] G. Marchionini and R. White. Find What You Need, Un-
derstand What You Find. International Journal of Human-
Computer Interaction, 23(3):205–237, 2007.

[28] C. Martinez-Cruz, I. J. Blanco, and M. Amparo Vila. Ontolo-
gies versus relational databases: are they so different? A com-
parison. Artificial Intelligence Review, 38(4):271–290, 2012.

[29] C. Neuenstadt, R. Möller, and Özgür. L. Özçep. OBDA for
Temporal Querying and Streams with STARQL. In Proceed-
ings of the First Workshop on High-Level Declarative Stream
Processing (HiDeSt 2015), volume 1447 of CEUR Workshop
Proceedings, pages 70–75. CEUR-WS.org, 2015.

[30] O. L. Ozcep, R. Moller, and C. Neuenstadt. A Stream-
Temporal Query Language for Ontology Based Data Access.
In The 37th Annual German Conference on Artificial Intel-
ligence (KI 2014), volume 8736 of LNCS, pages 183–194.
Springer, 2014.

[31] D. Pavel, V. Callaghan, and A. K. Dey. Looking Back in Won-
der: How Self-Monitoring Technologies Can Help Us Better
Understand Ourselves. In Proceedings of the 2010 Sixth In-
ternational Conference on Intelligent Environments (IE 2010),
pages 289–294. IEEE Computer Society, 2010.

[32] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenz-
erini, and R. Rosati. Linking data to ontologies. Journal on
Data Semantics X, 10:133–173, 2008.

[33] H. N. M. Quoc, M. Serrano, D. L. Phuoc, and M. Hauswirth.
Super Stream Collider: Linked Stream Mashups for Everyone.
In Proceedings of the Semantic Web Challenge at ISWC2012,
2012.

[34] R. W. Revie, editor. Oil and Gas Pipelines: Integrity and Safety
Handbook. John Wiley & Sons, Inc., 2015.

[35] L. Ruiz-Garcia, L. Lunadei, P. Barreiro, and J. Ignacio Robla.
A Review of Wireless Sensor Technologies and Applications
in Agriculture and Food Industry: State of the Art and Current
Trends. Sensors, 9(6):4728–4750, 2009.

[36] J. F. Sequeda and D. P. Miranker. Ultrawrap: SPARQL Execu-
tion on Relational Data. Web Semantics: Science, Services and
Agents on the World Wide Web, 22:19–39, 2013. .

[37] P. R. Smart, A. Russell, D. Braines, Y. Kalfoglou, J. Bao, and
N. Shadbolt. A Visual Approach to Semantic Query Design
Using a Web-Based Graphical Query Designer. In Proceedings
of the 16th International Conference on Knowledge Engineer-
ing and Knowledge Management (EKAW 2008), volume 5268
of LNCS, pages 275–291. Springer, 2008.

[38] K. Soon Low, W. N. N. Win, and M. Joo Er. Wireless Sen-
sor Networks for Industrial Environments. In Proceedings of
the International Conference on Computational Intelligence
for Modelling, Control and Automation and International Con-
ference on Intelligent Agents, Web Technologies and Inter-
net Commerce (CIMCA-IAWTIC 2006), pages 271–276. IEEE,
2005.

[39] A. Soylu and M. Giese. Qualifying Ontology-based Visual
Query Formulation. In Proceedings of the 11th International
Conference Flexible Query Answering Systems (FQAS 2015),
volume 400 of Advances in Intelligent Systems and Computing,
pages 243–255. Springer, 2015.

A. Soylu et al. / Querying Industrial Stream-Temporal Data: an Ontology-based Visual Approach 19

[40] A. Soylu, P. De Causmaecker, D. Preuveneers, Y. Berbers, and
P. Desmet. Formal modelling, knowledge representation and
reasoning for design and development of user-centric pervasive
software: a meta-review. International Journal of Metadata,
Semantics and Ontologies, 6(2):96–125, 2011.

[41] A. Soylu, F. Wild, F. Mödritscher, P. Desmet, S. Verlinde, and
P. De Causmaecker. Mashups and widget orchestration. In
Proceedings of the International Conference on Management
of Emergent Digital EcoSystems (MEDES 2011), pages 226–
234. ACM, 2011.

[42] A. Soylu, F. Moedritscher, F. Wild, P. De Causmaecker, and
P. Desmet. Mashups by orchestration and widget-based per-
sonal environments: Key challenges, solution strategies, and
an application. Program: Electronic Library and Information
Systems, 46(4):383–428, 2012.

[43] A. Soylu, E. Kharlamov, D. Zheleznyakov, E. Jimenez-Ruiz,
M. Giese, and I. Horrocks. Ontology-based Visual Query For-
mulation: An Industry Experience. In Proceedings of the 11th
International Symposium on Visual Computing (ISVC 2015),
volume 9474 of LNCS, pages 842–854. Springer, 2015.

[44] A. Soylu, M. Giese, E. Jimenez-Ruiz, G. Vega-Gorgojo, and
I. Horrocks. Experiencing OptiqueVQS – a multi-paradigm
and ontology-based visual query system for end-users. Univer-
sal Access in the Information Society, 15(1):129–152, 2016.

[45] A. Soylu, M. Giese, R. Schlatte, E. Jimenez-Ruiz, O. Ozcep,
and S. Brandt. Domain Experts Surfing on Stream Sensor Data
over Ontologies. In Proceedings of the 1st International Work-
shop on Semantic Web Technologies for Mobile and Pervasive
Environments (SEMPER 2016), volume 1588 of CEUR Work-

shop Proceedings. CEUR-WS.org, 2016.
[46] A. Soylu, M. Giese, R. Schlatte, E. Jimenez-Ruiz, O. Ozcep,

and S. Brandt. A Visual Query System for Stream Data Access
over Ontologies. In Proceedings of the Satellite Events of the
13th European Conference on the Semantic Web (ESWC 2016),
volume 9989 of LNCS. Springer, 2016.

[47] A. Soylu, M. Giese, E. Kharlamov, E. Jimenez-Ruiz,
D. Zheleznyakov, and I. Horrocks. Ontology-based End-user
Visual Query Formulation: Why, what, who, how, and which?
Universal Access in the Information Society, in press.

[48] D.-E. Spanos, P. Stavrou, and N. Mitrou. Bringing relational
databases into the Semantic Web: A survey. Semantic Web, 3
(2):169–209, 2012.

[49] B. Suh and B. B. Bederson. OZONE: A Zoomable Inter-
face for Navigating Ontology Information. In Proceedings of
the Working Conference on Advanced Visual Interfaces (AVI
2002), pages 139–143. ACM, 2002.

[50] V. Uren, Y. Lei, V. Lopez, H. Liu, E. Motta, and M. Gior-
danino. The Usability of Semantic Search Tools: A Review.
The Knowledge Engineering Review, 22(4):361–377, 2007.

[51] Y. Yang, X. Wu, and X. Zhu. Combining Proactive and Re-
active Predictions for Data Streams. In Proceedings of the
Eleventh ACM SIGKDD International Conference on Knowl-
edge Discovery in Data Mining (KDD 2005), pages 710–715.
ACM, 2005.

[52] M. M. Zloof. Query-by-example: A Data Base Language. IBM
Systems Journal, 16(4):324–343, 1977.

