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The multi-population replicator dynamics (RD) is
a dynamic approach to coevolving populations
and multi-player games, and is related to Cross’
learning. In general, not every equilibrium is a
Nash equilibrium (NE) of the underlying game,
and convergence is not guaranteed. In particular,
no interior equilibrium can be asymptotically stable
in the multi-population RD, resulting, e.g., in cyclic
orbits around a single interior NE. We introduce
a new notion of equilibria of RD, called mutation
limits, based on a naturally arising, simple form
of mutation, which is invariant under the specific
choice of mutation parameters. We prove the existence
of mutation limits for a large class of games, and
consider a particularly interesting subclass, called
attracting mutation limits. Attracting mutation limits
are approximated in every (mutation-)perturbed RD,
hence, offering approximate dynamic solution of the
underlying game, even if the original dynamic is not
convergent. Thus, mutation stabilises the system in
certain cases and makes attracting mutation limits
near-attainable. Hence, attracting mutation limits are
relevant as a dynamic solution concept of games. We
observe that they have some similarity to Q-learning
in multi-agent reinforcement learning. Attracting
mutation limits do not exist in all games, however,
raising the question of their characterization.
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1. Introduction
Evolutionary game theory has contributed significantly to our understanding of a wide range of
biological, e.g., [1,2], and social phenomena, as shown by the vast research into the evolution
of cooperation and eusociality, e.g., [3], or the problem of collective action, e.g., [4]. The
evolutionary game theoretic approach, formulated in [1], initially assumed a single population
with intrapopulation interaction and competition for reproduction, resulting in the concept of
the evolutionarily stable strategy (ESS), a refinement of the Nash equilibrium concept, where a
strategy is said to be evolutionarily stable if it outperforms any other newcomer strategy in a
population consisting almost entirely of players playing the former.

While the intuition underlying the notion of an ESS is dynamic, its main definition is usually
given in static terms. In an effort to capture the dynamic intuition of the ESS concept, the
continuous time replicator dynamics (RD), provided by [5], relates the ESS to certain stationary
points, [6], albeit lacking a complete characterization. In its usual formulation, it captures the
single population setting with pairwise intrapopulation interactions. However, just as the concept
of an ESS has been extended to the multi-population, or multi-species, setting, e.g., [7], so has RD
been formulated and analysed in the multi-population setting with intrapopulation competition
(for reproduction) but interpopulation interactions (determining reproductive advantage), e.g.,
[8]. Forms of multi-population RD have been employed in the analysis of coevolutionary systems,
such as mutualism [9], antagonistic coevolution of host-parasite systems [10,11], of institutional
ecosystems [12], of the evolution of a population’s sex ratio [13], or the coevolution of social
behaviour and recognition [14]. It has further been linked to Cross’ learning, a simple type of
reinforcement learning [15].

In the context of potentially very large systems, e.g., complex ecosystems or multi-agent
systems, multi-population RD is of special interest because a population’s composition evolves
exclusively depending on the payoffs from interactions, but independent of any information
about the other populations’ payoffs, their compositions, or indeed their very existence. The latter
specifics affect a population’s composition only through their effect on its payoffs. Borrowing the
term from [16], we call this property of RD its uncoupledness.

In spite of RD leading to payoff-improving or even equilibrium states in certain cases, there are
intuitively simple games, for which neither an ESS exists nor RD reaches any Nash equilibrium,
exhibiting periodic limit or general non-convergent behaviour instead: In the usual rock-paper-
scissors (RPS) game, RD has exclusively periodic orbits in the single population case and the only
Nash equilibrium, an interior point, is not approached from any initial state, e.g., [2], and a range
of (un)-stable situations can result [17]. Further, the two population setting results in periodic
orbits, as well, and therefore does not reach the interior Nash equilibrium either. An analogue
result holds for the matching pennies game, e.g., [8]. Indeed, it has been shown in [16] that no
uncoupled dynamics, in particular RD, can be converging to a Nash equilibrium for all possible
games. For our understanding of actual biological populations, this periodicity is not necessarily
problematic. On the contrary, periodic population dynamics similar to the single-population RPS
case have been observed in nature, e.g., in the common side-blotched lizard (Uta stansburiana) [18].
For our understanding of the conditions of behavioural convergence in multi-agent systems and
their ability to solve large-scale problems such periodic behaviour is less desirable.

Although RD is intended to capture the idea of evolutionary selection, and thus is inspired
by evolution, it treats mutation, an arguably central process of evolution and one of the main
generators of the diversity on which selection operates, as an extremely rare event, to the degree
that it is actually absent from the formulation of the dynamics, especially in the case of multiple
populations, e.g., [8]. Approaches which include mutation mainly focus on the single population
case [19–26], consider a payoff-adjusted RD, or a discrete time process [27], or a single discrete
population [28,29], while we are not aware of an analysis of continuous-time multi-population
RD with mutation, apart from [30] where certain approximations to multi-population RD are
considered, with a different focus however and not linked to mutation.
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We demonstrate that accounting for mutation in multi-population RD can fundamentally
change the properties of the dynamics, i.e., preclude any periodicity in certain cases and,
furthermore, guarantee convergence to states close to Nash equilibria, which would not be
reachable under standard RD. Note that the non-existence result in [16] does not directly apply to
such mutation dynamics, as it only considers Nash-convergence.

Our main interest, therefore, lies with the derivation of an uncoupled dynamics, which, on
the one hand, explicitly considers mutation and, on the other hand, is as close as possible to
standard RD, and with the analysis of how this mutation mechanism affects the position and
stability of equilibria compared to the standard (multi-population) RD. The resulting mutation
mechanism with spontaneous mutations from one type to another is of course not appropriate
for all biological mutation processes. In a biological population, such spontaneous mutation
between a finite number of types occurs, e.g., for single nucleotide polymorphisms, where alleles
differ by only one nucleotide, with the number of possible single nucleotide polymorphisms at
that position restricted to four. Furthermore, such point mutations are known to occur with a
non-negligible probability [31,32] and can be significant factors in diseases, [32,33], e.g., sickle
cell anaemia, [34,35], which also interacts with malaria parasites, [36], cystic fibrosis, [37], or β
thalassemia, [38,39], and further in human cancer cells, [40,41]. There is further evidence that
in Drosophila most such nonsynonymous point mutations are deleterious, while the rest are
slightly deleterious, near-neutral, or weakly beneficial, [42], suggesting that a weak selection
assumption as we employ can be reasonable for persisting polymorphisms. Considered as a
learning dynamics, modifications of multi-population RD have been shown to be linked to so-
called Q-learning, a more sophisticated reinforcement learning algorithm, [43]. In particular, the
resulting modification can be interpreted as a mutation-like term.

The inclusion of mutation should not only further our understanding of coevolutionary multi-
population systems, such as ecosystems. Its ability in certain cases to stabilise equilibria for any
non-zero mutation rate, and thereby make them approachable under an uncoupled dynamics,
should also be useful in the study of game theoretical solution concepts, such as ε-Nash equilibria,
[44], and the formulation of conditions for the convergence of learning in multi-agent systems.

We proceed by introducing the standard multi-population RD, i.e., without mutation, and
recounting some stability properties of its equilibria and their relation to game theoretic concepts,
such as Nash equilibria and evolutionary stability.

We then introduce mutation and give a heuristic derivation of the specific form of mutation we
consider, defining a replicator-mutator dynamics (RMD), the equilibria of which we call mutation
equilibria. For fixed mutation parameters, we prove the existence of equilibria of RMD, their ε-
Nash property, and their uniqueness and asymptotic stability under very high mutation.

We proceed by defining the concept of limits of mutation equilibria for vanishing mutation,
which we call mutation limits. Mutation limits and their properties are independent of any choice
of specific mutation parameters. We prove the existence of mutation limits for all systems with
continuously differentiable fitness functions and give a sufficient condition for a Nash equilibrium
to be a mutation limit.

In order to address the question of reachability of mutation limits, we define the notion of an
attracting mutation limit based on the asymptotic stability of the mutation equilibria by which it
is approximated. Such attracting mutation limits are reachable in the sense that for any choice of
mutation parameters there is an asymptotically stable mutation equilibrium arbitrarily close to
the mutation limit.

We further provide a sufficient condition for a Nash equilibrium to be an attracting mutation
limit. In particular, all evolutionarily stable states are attracting mutation limits, but not all
attracting mutation limits are evolutionarily stable, showing the notion to be a strictly weaker
property than evolutionary stability. We conclude by giving a necessary condition for attracting
mutation limits, ruling out hyperbolic interior equilibria.
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2. Multi-population Replicator Dynamics
In the following we consider the situation where we have a finite set of populations I “

t1, 2, . . . , Nu and each population i consists of a finite number of types which we enumerate and
denote by Si “ t1, 2, . . . , niu. Note that types are population-specific and numbers do not identify
types across populations. The composition of a population i is then given as a vector xi such that
xih ě 0 gives the frequency of a type h P Si in population i. Thus, the set of possible compositions
of population i is given as:

∆i “

$

&

%

xi PRniě0

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

hďni

xih “ 1

,

.

-

For convenience, we denote the Cartesian product of the∆i (i“ 1 . . . N ) by∆, i.e.,∆“
Ś

iďN ∆i,
and denote by∆˝ the interior of∆, i.e., @iďN,hď ni : xih ą 0. Furthermore, we set S “ tpi, hq|i P
I and h P Siu, such that ∆ĂRS , where RS denotes the set of tuples of reals indexed by S. The
state of the multi-population model then is a description of the frequencies of the different types
in the populations, i.e., it is given by some x P∆.

We assume that for each population i P I and each type in that population h P Si we have
a function fih P C1

pU,Rq, for U Ą∆ open, describing the reproductive rate or fitness fihpxq
of that type in a given state x P∆ and we define population i’s average fitness as f̄ipxq “
ř

hďni
xihfihpxq. It should be noted that fitness is frequency-dependent in replicator dynamics

models and not affected by population sizes. We further assume that there is no intraspecific
interaction affecting fitness in a type-specific manner, i.e., the fitness values of types in population
i are independent of the composition of population i or B

Bxik
fihpxq “ 0 (i P I, h, k P Si) in keeping

with the classic normal-form game settings.1 The standard multi-population replicator dynamics,
based on [45] and developed later, e.g., [8], is given by the following system of differential
equations:

9xih “ φihpxq :“ xih
`

fihpxq ´ f̄ipxq
˘

pi P I, h P Siq (RD)

We denote by Φ : Rˆ∆Ñ∆ the flow of (RD), i.e., for x P∆, Φp¨, xq : RÑ∆, t ÞÑΦpt, xq is a
solution of (RD) with Φp0, xq “ x. Due to our continuity assumption on f , the existence and
uniqueness of Φ is clear, e.g., [46, Thm 6.1].

(a) Stationary points of the replicator dynamics
We give a short recount of some well-known properties of (RD) with regards to game theory,
beginning with the main concept of game theory:

Definition 2.1 (Nash equilibrium). We call a state x˚ P∆ a Nash equilibrium if

@i P I, zi P∆iztx
˚
i u : f̄ipx

˚
q ě f̄ipx

˚
´i, ziq,

where px˚´i, ziq denotes the state such that

rx˚´i, zisjk “

#

zik if j “ i,

x˚jk otherwise
.

We call x˚ P∆ a strict Nash equilibrium if all inequalities in the Nash equilibrium condition are
strict.

Remark. It is clear that x˚ P∆ is a Nash equilibrium if and only if

@i P I, hď ni : gihpx
˚
q :“ fihpx

˚
q ´ f̄ipx

˚
q ď 0.

Note that gihpxq is exactly the coefficient of xih in (RD). Therefore, we can denote the set of
Nash equilibria by E “ tx P∆ | gpxq ď 0u, where the inequality is component-wise. A strict Nash
1Note that this assumption is not essential for all results.
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equilibrium x˚ P∆ in particular is a state where each population consists of exactly one type, i.e.,
for each population i P I there is exactly one type hi such that x˚ihi “ 1.

The following results on Nash equilibria and stationary points of (RD) are straight-forward
and well-known, e.g., [8, p. 173]:

Proposition 2.2. If x P∆ is a Nash equilibrium, then x is a stationary point of (RD), i.e., φpxq “ 0.

Proposition 2.3. If x P∆˝ is a stationary point of (RD), then x is a Nash equilibrium.

(i) Stability properties of equilibria

Our special interest lies with the attainability of Nash equilibria. Therefore, we restate a few
stability properties of Nash equilibria and stationary points of (RD) respectively.

Definition 2.4. We call a stationary point x P∆ stable, if for every neighbourhood U of x there
is a neighbourhood V ĂU such that ΦpRě0, V q ĂU . We further call a stationary point x P∆
asymptotically stable if x is stable and there is a neighbourhood V of x such that for all y P V we
have Φpt, yqÑ x for tÑ8.

For stable stationary points we have the following:

Proposition 2.5. If x P∆ is a stable stationary point of (RD), then x is a Nash equilibrium.

A proof of this statement can be found in [8, Thm 5.2]. Note that this further characterization is
interesting if x P B∆, as stationary points on the boundary of∆ are not necessarily Nash equilibria.
Furthermore, it implies that stationary points that are not Nash equilibria must be unstable and
thus are harder to attain under (RD). However, note that Nash equilibria do not have to be stable.
We have the following stronger characterization of asymptotically stable stationary points (with
a proof in, e.g., [8, Prop. 5.13]):

Proposition 2.6. A stationary point x P∆ is asymptotically stable under (RD) if and only if x is a strict
Nash equilibrium.

For completeness, we would like to mention the relationship between stationary points of
(RD) and evolutionarily stable states, where we define evolutionary stability as in [8, p. 166],
equivalently to [7], as follows:

Definition 2.7 (Evolutionary Stability). We call a state x˚ P∆ evolutionarily stable if for all y P∆
(y‰ x˚) there is some ε̄y ą 0 such that for all ε P p0, ε̄yq and w“ εy ` p1´ εqx˚ we have some
i P I with f̄ipxi, w´iq ą f̄ipyi, w´iq.

It is well known that in the multi-population case the concept of evolutionary stability is
equivalent to that of a strict Nash equilibrium, e.g., [8, Prop. 5.1]:

Proposition 2.8. x P∆ is evolutionarily stable if and only if x is a strict Nash equilibrium.

Therefore, we have that strict Nash equilibria are exactly the evolutionarily stable states and
exactly the asymptotically stable stationary points of (RD). The dynamics (RD) will therefore
not have any asymptotically stable points if the underlying game does not have any strict Nash
equilibria. Furthermore, no mixed Nash equilibrium can be asymptotically stable, such that there
is no guarantee that any Nash equilibrium will be approached under (RD) if the game has only
mixed Nash equilibria.
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3. Introducing mutation
We consider the effect of mutation for two reasons. First, the idea of evolution is intricately linked
with mutation and mutation does not seem to be an extraordinary event but is to be expected.
Second, a central idea in the proof that the dynamics (RD) has no interior asymptotically stable
states relies on the fact that (RD) is divergence free (after suitable modification) and therefore
volume preserving, [6]. However, some games, such as the matching pennies game and the
standard rock-paper-scissors game, have only interior equilibria, while describing biologically
relevant interspecies interactions such as host-parasite systems. The kind of mutation we consider
results quite clearly in a dynamics with negative divergence. Of course, this does not guarantee
asymptotically stable interior equilibria, but it opens up the possibility of such equilibria.

We will first give a motivational heuristic derivation of our specific replicator-mutator
dynamics from a more general form. Afterwards, we will consider the properties of our specific
dynamics and of its equilibria.

(a) Replicator-Mutator Dynamics

General mutation

In the standard replicator dynamics (RD), we assume that the offspring of individuals of some
type inherit that same type. In contrast, we consider mutation as a process by which the offspring
of a certain individual changes into another type (of the same population) with some probability.
More precisely, we assume that the offspring of an h-type in population i mutates to a k-type in
the same population with some probability µikh ą 0, with

ř

kďni
µikh “ 1 for all populations i,

and therefore:

µihh “ 1´
ÿ

k‰h

µikh

In order to represent overall mutation more clearly, we introduce relative mutation probabilities cikh
and an overall mutation rate µi such that µikh “ µicikh (h‰ k) and thus:

µihh “ 1´ µi
ÿ

k‰h

cikh

Here, µi controls the overall strength of mutation, such that for µi “ 0 there is no mutation at
all, without affecting relative probabilities. We derive our specific dynamics from the general
multi-population replicator-mutator dynamics as given in, e.g., [23],

9xih “
ÿ

kďni

µihkxikfikpxq ´ xihf̄ipxq (3.1)

yielding after substitution:

9xih “ xihpfihpxq ´ f̄ipxqq ` µi
ÿ

kďni

pcihkxikfikpxq ´ cikhxihfihpxqq (3.2)

This formulation emphasizes the similarity to the standard replicator dynamics (RD) and how µi
determines the extent to which (3.1) deviates from (RD).

Weak selection-weak mutation limit

Recall that (RD) is invariant under the addition of a background fitness for all types of a
population, a property which (3.1) does not have. We therefore derive a version which is invariant
under the addition of a constant background fitness. For convenience, let si´1 denote some
background fitness, where si can be seen as representing the selection pressure on that particular
trait. Formulating (3.1) with a modified fitness function f̃ih : x ÞÑ fihpxq ` si

´1 and suitable
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substitution yields a dynamics with explicit background fitness:

9xih “ φihpxq `
µi
si

ÿ

kďni

`

si pcihkxikfikpxq ´ cikhxihfihpxqq ` cihkxik ´ cikhxih
˘

Analogous to [6], we consider a weak selection-weak mutation limit, where the background
fitness tends to infinity, i.e., the selection pressure goes to zero siÑ 0, and mutation occurs on
the same order as selection, i.e., µiÑ 0, such that overall:

µi
si
ÑMi ą 0

This yields the following weak selection-weak mutation limit of (3.1), which is invariant under
addition of background fitness,

9xih “ xihpfihpxq ´ f̄ipxqq `Mi

ÿ

kďni

pcihkxik ´ cikhxihq (3.3)

where we refer to Mi as the mutation rate in population i. Note that (3.3) can also be derived from
a discrete selection-mutation equation, [6]. Additionally, we assume that mutation is memoryless,
i.e., cihk “ cihl pk, l‰ hq, akin to Kingman’s house-of-cards model [19], so we can write cih instead
of cihk and that the mutation rate is the same for every population, replacingMi withM , resulting
in the following: 2

Replicator-Mutator Dynamics

For some fixed c P∆˝ and M ě 0, the replicator-mutator dynamics (RMD) is given by:

9xih “ φ
M
ih pxq :“ xihpfihpxq ´ f̄ipxqq `Mpcih ´ xihq (RMD)

It is clear that we obtain (RD) for M “ 0. We denote by ΦM : Rˆ∆Ñ∆ the flow of (RMD),
i.e., for x P∆, ΦM p¨, xq : RÑ∆, t ÞÑΦM pt, xq is a solution of (RMD) with ΦM p0, xq “ x.

Remark. Note thatΦM also depends on our choice of c. Throughout this section, we will consider
some arbitrary but fixed c P∆˝ and the defined concepts will depend on that choice. However, we
will proceed to properties of (RMD) which are invariant under the choice of c later on.

Definition 3.1. We call x P∆ with φM pxq “ pφMih pxqqpi,hqPS “ 0 a mutation equilibrium for M . For
shortness, we call xM a mutation equilibrium if it is a mutation equilibrium for M .

Definition 3.2. We call a sequence pxnqnPN Ă∆ a sequence of mutation equilibria if there is a
sequence pMnqnPN ĂRą0 with

i) MnÑ 0 for nÑ8

ii) and xn is a mutation equilibrium for Mn, i.e., φMnpxnq “ 0, for all n PN.

For ease of notation, we write such a sequence as pxM qMą0.

Under suitable assumptions, such sequences represent the change of a coevolutionary system
under decreasing mutation rates, and we will be especially interested in the limits of such
sequences of mutation equilibria and in their properties.

(b) Existence of stationary points with mutation
Lemma 3.3. For all M ą 0 and c P∆˝ there is x P∆˝, such that x is a stationary point of the replicator-
mutator dynamics (RMD), i.e., φM pxq “ 0.
2Note that we can choose Mi such that

ř

hďni
cih “ 1 holds. Although we consider M as independent of the population,

population-dependent mutation parametersMi are mostly compatible with the present arguments, but would render proofs
overly technical.
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Proof. Note that the vector field φM points towards the interior of ∆ for all x P B∆. We thus have
that for all x P B∆ and all tą 0, ΦM pt, xq P∆˝, and thus ∆ is forward-invariant under the flow
ΦM , in particular, ΦM pRą0,∆q Ă∆

˝. Furthermore, it is clear that ∆ is nonempty, convex and
compact. Using Brouwer’s fixed point theorem, we can now use that if a nonempty, convex
compact set is forward-invariant under a flow, then it contains a fixed point, e.g., [46, Lemma
6.8]. With ΦM pRą0,∆q Ă∆

˝, we have that the fixed point has to be in ∆˝.

The following definition, e.g., as given by [44], will be useful in our later investigation:

Definition 3.4 (ε-Equilibrium). For some εą 0, we call a state xε P∆ an ε-equilibrium if

@i P I, hď ni : fihpx
ε
q ´ f̄ipx

ε
q ď ε .

In relation to ε-equilibria we state the following property:

Lemma 3.5. Let xM be a mutation equilibrium, then xM is an ε-equilibrium of the underlying game for
ε“M , and in particular @i P I, hď ni : fihpx

M
q ´ f̄ipx

M
q ăM .

Proof. For pi, hq P S, we have that

0“ φMih px
M
q “xMih pfihpx

M
q ´ f̄ipx

M
qq `Mpcih ´ x

M
ih q ą x

M
ih pfihpx

M
q ´ f̄ipx

M
qq ´MxMih

and thus, with xM P∆˝, we have fihpx
M
q ´ f̄ipx

M
q ăM .

Together with the continuity of f , we have the following:

Corollary 3.6. Let pxM qMą0 be a sequence of mutation equilibria and x˚ an accumulation point for
MÑ 0. Then x˚ is a Nash equilibrium.

(c) Mutation equilibria for high mutation rates
We consider some specific properties under high mutation rates which illustrate the effect of
mutation on the number and stability of equilibria through its effect on the Jacobian of the
replicator dynamics. Note that all equilibria of (RMD), irrespective of the specific choice ofM ą 0,
lie in the interior of ∆ and that φM points inward on B∆. We can therefore consider (RMD)
as a dynamics on ∆˝. We can further, for all populations i, replace xini with p1´

ř

kăni
xikq,

and thus proceed to the resulting reduced system φ̃M (with an analogous procedure to obtain
φ̃ from φ), which is then defined on the Cartesian product of the pni ´ 1q-simplices. For ease of
notation, we will still use ∆ to denote this reduced space. Thus, questions regarding the stability
of a mutation equilibrium xM P∆˝ can be treated by considering the eigenvalues of the Jacobian
Dφ̃M . In particular, due to the Hartman-Grobman theorem, e.g., [46,47], we have the following
useful characterization:

Remark 3.7. Let xM be a hyperbolic equilibrium of (RMD), and of the reduced system φ̃M

equivalently, i.e., all eigenvalues ofDφ̃M pxM q have non-zero real part. Then xM is asymptotically
stable if and only if all eigenvalues of Dφ̃M pxM q have negative real part, e.g., [46, Thm 6.10]. In
particular, all eigenvalues of Dφ̃M pxM q have negative real part, if and only if all eigenvalues of
Dφ̃pxM q have real part smaller thanM , due toDφ̃M “Dφ̃´M ¨ I , where I is the identity matrix.

With this observation, we obtain the following:

Lemma 3.8. There is M ě 0 such that for all M ąM the stationary points of the replicator-mutator
dynamics (RMD) are asymptotically stable. In particular, Dφ̃M is invertible everywhere on ∆.
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Proof. Note that all eigenvalues of Dφ̃ are bounded on ∆, in particular the real parts of the
eigenvalues are bounded, as well. Then let M be an upper bound on all real parts of the
eigenvalues of Dφ̃ on ∆˝, i.e.:

M “ sup t<pλq | λ P σpDφ̃pxqq, x P∆u

Let xM P∆˝ be a mutation equilibrium for some M ąM . As noted, the Jacobian of φ̃M satisfies
Dφ̃M pxq “Dφ̃pxq ´M ¨ I for all x P∆. In particular, for all eigenvalues λM P σpDφ̃M pxM qq we
have that λM `M P σpDφ̃pxM qq and hence <pλM q `M ďM , and thus <pλM q ă 0. Therefore,
all eigenvalues of Dφ̃M pxM q have strictly negative real parts and with remark 3.7, xM is
asymptotically stable.

Remark. Note that that the M in the previous lemma 3.8 is independent of the choice of c P∆˝,
thus giving a lower bound on the mutation rate above which all equilibria are asymptotically
stable independent of c P∆˝.

Uniqueness of mutation equilibria for high mutation rates

For very high mutation (M ąM ) we further obtain that mutation equilibria are unique and that
there is a continuously differentiable function mapping mutation rates to mutation equilibria. We
first consider the following lemma (proven in the appendix as corollary A.4):

Lemma 3.9. Let c P∆˝ andM from lemma 3.8. Let xM be a mutation equilibrium for someM ąM . Then
there is a unique function M : pM,8qÑ∆ such that MpMq “ xM and for all m P pM,8q, Mpmq is a
mutation equilibrium for m. In particular, M is continuously differentiable and Mpmq

mÑ8
ÝÑ c.

Note that this does not guarantee any uniqueness of equilibria, yet, only the uniqueness of
functions passing through a given equilibrium. The uniqueness of mutation equilibria for high
mutation rates is then obtained in the next step from the fact that we have uniqueness at least for
some mutation rate (proven in the appendix as proposition A.5):

Proposition 3.10. Let c P∆˝ and M from lemma 3.8. For all M ąM , the replicator-mutator dynamics
(RMD) has a unique mutation equilibrium. The unique map M :M ÞÑ xM is continuously differentiable
on pM,8q.

Remark 3.11. Note that the main achievement of proposition 3.10 is to extend the uniqueness
of equilibria beyond any Lipschitz constant of φ̃ to pM,8q, i.e., to the interval where Dφ̃M

is guaranteed to be invertible. Furthermore, if Dφ̃M pxM q is invertible for all M P pa,8q and
corresponding mutation equilibria xM then the uniqueness extends to pa,8q. In fact, if a“ 0

then there is a unique sequence of mutation equilibria pxM qMą0 for c P∆˝ since it is induced by
the function M.

For a fixed c P∆˝ and a sufficiently high mutation rate, the unique mutation equilibrium will
be arbitrarily close to c. Therefore, if we were interested in finding the mutation equilibrium for
a sufficiently high mutation rate, we could choose an initial point close to c and the dynamics
(RMD) would converge to the asymptotically stable mutation equilibrium. The uniqueness on
pM,8q further enables us to lower the mutation rate almost to M without losing uniqueness and
asymptotic stability.

4. Mutation limits
In our previous considerations, we assumed fixed relative mutation probabilities c P∆˝. In
particular, certain effects could depend on the specific choice of c, e.g., if we picked c to coincide
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with a Nash equilibrium x˚ P E of the underlying game. However, we are interested in properties
that are independent of the specific choice of c. To this end, we introduce the following definition:

Definition 4.1 (Mutation Limit). We call a connected compact set X Ă E a mutation limit, if for all
c P∆˝ there is a sequence of mutation equilibria pxM qMą0 Ă∆ that converges to an element ofX
for MÑ 0 and X contains no proper subset with these properties. We call x P∆ a mutation limit
point if the singleton set txu is a mutation limit.

(a) General existence of mutation limits
A question that arises from the definition is that of the existence of mutation limit points. While
we have shown that for any fixed c P∆˝ and any mutation rate M ą 0 there is a corresponding
mutation equilibrium and therefore the Bolzano-Weierstrass theorem guarantees the existence of
a limit for vanishing mutation, this limit need not be independent of the choice of c, and indeed it
could be possible that there is no mutation limit at all, neither a singleton set nor otherwise. The
question, therefore, is whether every game has at least one mutation limit point. To this question,
we can give a negative answer, as the following example shows:

Example 4.2. Consider a two-player game with the following payoff structure:

C1 C2

R1 1, 0 0, 1
R2 0, 1 1, 0
R3 0, 1 1, 0

It is clear that any Nash equilibrium of the game has the form
``

1
2 ,

t
2 ,

1´t
2

˘

,
`

1
2 ,

1
2

˘˘

with t P r0, 1s,
where we give the strategy of the row player first. Excluding a few special choices of c P∆˝, for
any generic c given as ppcR,1, cR,2, cR,3q, pcC,1, cC,2qq, every sequence of mutation equilibria will
converge to a Nash equilibrium of the above form with t“ cR,2

`

cR,2 ` cR,3
˘´1. It is therefore

evident that this game has no mutation limit point, i.e., there is no Nash equilibrium that is
approached by mutation equilibria for all choices c P∆˝. However, for any Nash equilibrium
x of the above form with t P p0, 1q there is a c P∆˝ such that x is approached by a sequence of
mutation equilibria. Therefore, the set of Nash equilibria is indeed a mutation limit.

In the above example, the set of all Nash equilibria turns out to be a mutation limit. However
in general, the set of Nash equilibria need not be connected. In this context, the following result
answers the question about the general existence of mutation limits (proven in appendix B):

Proposition 4.3. For every f P C1
pU Ą∆,RSq there is a mutation limit X Ă E .

Note that this result does not require that there is no intraspecies interaction, i.e., it does not
require B

Bxik
fihpxq “ 0 (@i P I, h, k P Si, x P∆). In fact, the proof can be quite easily generalized to

other, not necessarily replicator dynamics. From proposition 4.3, we obtain the following existence
result for dynamics with only a finite number of Nash equilibria:

Corollary 4.4. Let f P C1
pU Ą∆,RSq such that the set of Nash equilibria, E , is finite. Then all mutation

limits are mutation limit points and there is at least one mutation limit point.

Note that the finiteness condition is particularly important for fitness functions that are not
derived from finite normal-form games.
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A sufficient condition for mutation limits

We can further guarantee that regular Nash equilibria, introduced in [48], cf. also [49], are
mutation limit points, where we employ the following equivalent definition, [30]:

Definition 4.5. We call a Nash equilibrium x P∆ a regular equilibrium if the reduced Jacobian of
(RD) at x, Dφ̃pxq, is invertible.

In particular, all strict Nash equilibria are regular, [49, Cor. 2.5.3].

Lemma 4.6. Let x˚ be a regular equilibrium. Then x˚ is a mutation limit, i.e., for all c P∆˝, there is a
sequence of mutation equilibria, pxM qMą0, such that xM Ñ x˚ for MÑ 0.

Proof. Note that Dφ̃px˚q is invertible and therefore, by the implicit function theorem, for every
c P∆˝, there is a continuously differentiable µ : p´ε, εqÑRN for some εą 0, such that for M P

p´ε, εq we have that φ̃M pµpMqq “ 0. Of course, negative values of M are not interpretable as
mutation rates and we consider them here only for technical reasons of differentiability at 0.

If x˚ P∆˝, then it is clear that we can choose ε such that µpr0, εsq Ă∆, and therefore a sequence
of mutation equilibria pxM qMą0 Ă∆ with xM Ñ x˚ for MÑ 0.

Suppose that x˚ P B∆ and for some pi, hq P S we have x˚ih “ 0. Note that µ is continuously
differentiable and therefore for M P p´ε, εq,

0“
d

dM
φMih pµpMqq “

d

dM

ˆ

µihpMqgihpµpMqq

˙

`
d

dM

ˆ

Mpcih ´ µihpMqq

˙

“ gihpµpMqq
d

dM
µihpMq ` µihpMq

d

dM
gihpµpMqq ` pcih ´ µihpMqq ´M

d

dM
µihpMq

and hence for M “ 0,

0“
d

dM
φMih pµpMqq

ˇ

ˇ

M“0
“ gihpµp0qq

d

dM
µihp0q ` µihp0q

d

dM
gihpµp0qq ` pcih ´ µihp0qq ´ 0

“ gihpx
˚
q
d

dM
µihp0q ` x˚ih

loomoon

“0

d

dM
gihpx

˚
q ` pcih ´ x˚ih

loomoon

“0

q “ gihpx
˚
q
d

dM
µihp0q ` cih

ą gihpx
˚
q
d

dM
µihp0q .

Thus, with x˚ being a Nash equilibrium, we have gihpx
˚
q ď 0 and therefore d

dM µihp0q ě 0.
Because of the strict inequality, we even have gihpx

˚
q ă 0 and d

dM µihp0q ą 0. Therefore, we can
choose ε such that µpr0, εqq Ă∆ and a sequence of mutation equilibria converging to x˚.

Remark. It should be noted that the proof of the above result shows that there is a continuously
differentiable function mapping mutation rates to mutation equilibria and that this function is
unique. In other words, given a c P∆˝, the sequence approaches x˚ in a unique manner.

(b) Attracting Mutation Limits
Up to this point we have considered equilibria (or sets of equilibria) of (RD) such that for any
c P∆˝ and mutation rateM ą 0 a mutation equilibrium of the respective (RMD) would be located
arbitrarily close, depending on M . We have so far ignored the stability properties of the mutation
equilibria arising nearby. If the mutation equilibrium arising nearby happens to be asymptotically
stable for some mutation rate M ą 0 and some c P∆˝, then under suitable initial conditions
the system will converge to a state close to the mutation limit. However, as with the notion of
mutation equilibria, such behaviour of the system is mostly of interest if it does not depend on a
lucky choice of c, in particular if nearby mutation equilibria turn out to be asymptotically stable
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for every choice of c. In this case, the mutation limit would be approximated arbitrarily close in
all (RMD) only depending on M ą 0. This idea motivates the following formal definition:

Definition 4.7 (Attracting Mutation Limit). We call a mutation limit X Ă∆ attracting if for every
c P∆˝ and every sequence of mutation equilibria pxM qMą0 that converges to an element of X ,
there is mą 0 such that for all M ăm, xM is asymptotically stable. We call x P∆ an attracting
mutation limit point if the singleton set txu is an attracting mutation limit.

A sufficient condition for attracting mutation limits

It is known that if x˚ is a strict Nash equilibrium, then Dφ̃px˚q has only real, strictly negative
eigenvalues, e.g., [30, Lemma 1], and x˚ is therefore regular and thus a mutation limit.
Furthermore, we can show that x˚ is an attracting mutation limit:

Lemma 4.8. Let x˚ be a strict Nash equilibrium. Then x˚ is an attracting mutation limit.

Proof. With the previous note, it is clear that x˚ is a mutation limit. It remains to show that the
mutation equilibria pxM qMą0 converging to x˚ for any c P∆˝ are asymptotically stable. Since
all eigenvalues of the Jacobian at x˚ have strictly negative real parts, and in fact are real, [30],
we have that the eigenvalues of Dφ̃pxq have strictly negative real parts in a neighbourhood of
x˚, as the roots of a polynomial vary continuously with its coefficients, e.g., [50], and Dφ̃ is
continuous. Therefore, in a neighbourhood of x˚, all eigenvalues of the Jacobian of φ̃M , with
Dφ̃M pxq “Dφ̃pxq ´M ¨ I , have strictly negative real parts for any M ě 0, and thus the xM are
asymptotically stable, e.g., [47].

Remark 4.9. Since the strict Nash equilibria are exactly the asymptotically stable equilibria of
(RD), this ensures that all asymptotically stable equilibria are also attracting mutation limits,
including evolutionary stable equilibria.

The following example shows that attracting mutation limits are not necessarily strict
Nash equilibria, and hence that the concept of attracting mutation limits is also weaker than
evolutionary stability:

Example 4.10. Consider the 2-by-2 matching pennies game given by the payoffs:
˜

p1, 0q p0, 1q

p0, 1q p1, 0q

¸

The strategy profile pp 1
2 ,

1
2 q, p

1
2 ,

1
2 qq is a Nash equilibrium but not strict and hence not

asymptotically stable. However, it is an attracting mutation limit: The eigenvalues of the
Jacobian Dφ̃ are given by λ1,2 “˘

a

p1´ 2xq2p1´ 2yq2 ´ 4xp1´ xqyp1´ yq. At p 1
2 ,

1
2 q, the

radicand is negative and the eigenvalues purely imaginary. Hence, the radicand is negative in
a neighbourhood and the eigenvalues purely imaginary. Then the eigenvalues of Dφ̃M have real
part ´M in that neighbourhood due to remark 3.7 and for M sufficiently small all mutation
equilibria are asymptotically stable with corollary 3.6, and hence pp 1

2 ,
1
2 q, p

1
2 ,

1
2 qq is an attracting

mutation limit point. This also holds for the general matching pennies game, which we prove in
a forthcoming article.

A necessary condition for attracting mutation limits

The observation that not all Nash equilibria are attracting mutation limits relies on the following:

Lemma 4.11. Let x˚ P∆ be an attracting mutation limit. Then all eigenvalues of the Jacobian Dφ̃px˚q
have nonpositive real parts.
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Proof. Suppose there is an eigenvalue of Dφ̃px˚q with a strictly positive real part. Then there is
εą 0 and a neighbourhood U of x˚ such that Dφ̃pxq has an eigenvalue λ with <pλq ą ε for all
x PU . Let pxM qMą0 be a sequence of mutation equilibria converging to x˚ for some c P∆˝. Then
there is ε1 such that xM PU for M ă ε1. In particular, we can choose ε1 ă ε. Then the Jacobian
Dφ̃M pxM q, withDφ̃M pxM q “Dφ̃pxM q ´M ¨ I , has an eigenvalue with strictly positive real part,
and xM is not asymptotically stable, as it is not even stable, e.g., [51]. Therefore, x˚ is not an
attracting mutation limit.

This result, together with the following example, then demonstrates that not all Nash equilibria
are attracting mutation limits:

Example 4.12. Consider the 2-by-2 coordination game given by:
˜

p1, 1q p0, 0q

p0, 0q p1, 1q

¸

The strategy profile pp 1
2 ,

1
2 q, p

1
2 ,

1
2 qq is a Nash equilibrium, but its Jacobian has eigenvalues 1

2 and
´ 1

2 and therefore it is not an attracting mutation limit.

5. Discussion
We have shown that a very simple form of mutation leads to qualitative changes in the multi-
population replicator dynamics. Furthermore, these changes do not depend on the specific choice
of parameters but are of a general character. Not only do mutation limits exist for all continuously
differentiable fitness functions, mutation can also cause the dynamics to approximate equilibria
that would not be approximated without mutation, again independently of the choice of specific
mutation parameters, which is due to asymptotically stable equilibria arising close to an original
equilibrium, as in the matching pennies game. The closest results to our approach that we are
aware of are presented in [30], and if considered as an approximation to RD, certain aspects of
RMD are clarified by those results, as indicated. The results presented here differ in that they
show robustness in a system of families of approximations which are not related to perturbed
normal-form game payoffs and in that they focus on the effects on the stability of equilibria,
independent of the choice of the specific approximation.

With respect to periodic behaviour in biological populations it should be noted that the
degree of stabilisation of RD depends on the mutation rate, resulting in a very slow approach
of an asymptotically stable mutation equilibrium and seemingly periodic behaviour if mutation
is low. In an empirical situation this can lead to difficulties in distinguishing dynamics with
truly periodic behaviour from ones with only seemingly periodic behaviour if measuring on
a (relatively) small time scale. Furthermore, in small populations stochastic effects will play a
significant role. Therefore, under very low mutation, empirical findings of periodic fluctuations
can be consistent with our results if measured in small populations on a small time scale, such
that any stabilising effects of mutation will be more apparent in large populations on large time
scales, or with sufficiently fast reproduction.

On the one hand, given the potential health impacts of even slight mutations on organisms
and the fact that such mutations occur with a non-negligible probability, as mentioned earlier,
and given further its role as a generator of variety on which evolutionary selection operates, it is
clear that it is worth including mutation mechanisms in the study of populations, and one should
expect results that deviate potentially significantly from models without mutation.

On the other hand, given that the multi-population replicator dynamics has been shown
to be related to learning dynamics and that mutation-like terms have been shown to arise in
formulations of Q-learning algorithms, it is worth noting that our results show that replicator-
mutator dynamics have more desirable convergence properties than the pure replicator dynamics,
while remaining arbitrarily close to a Nash equilibrium. Therefore, attracting mutation limits



14

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

resulting from a replicator-mutator dynamics can be considered a more suitable class of dynamic
solution approaches for games than the pure multi-population replicator dynamics.

As shown, attracting mutation limits do not exist for all games, and the characterization of their
existence is therefore an open problem. We will address this problem partially in forthcoming
results on attracting mutation limits in the matching pennies game, which can be considered a
model of antagonistic coevolution. Furthermore, we have considered a specific form of mutation,
and therefore the question of which properties carry over to more complicated and more realistic
mutation mechanisms remains.
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A. Proof of proposition 3.10
The proof of proposition 3.10 relies on the implicit function theorem, which we restate for
convenience, e.g., as in [52, Thm 3.3.1]:

Theorem A.1 (Implicit Function). Let W ĂR, X ĂRn be open and let ρ :W ˆXÑRn, pw, xq ÞÑ
ρpw, xq be a continuously differentiable function. Let further pw1, x1q PW ˆX be such that ρpw1, x1q “ 0

and the nˆ n matrix B
Bxρpw

1, x1q be invertible.
Then there exist an open neighbourhood WF ĂW of w1, an open neighbourhood XF ĂX of x1, and a

continuously differentiable function F :WF ÑXF such that @w PWF : ρpw,F pwqq “ 0. Furthermore,
for all pw, xq PWF ˆXF we have that ρpw, xq “ 0 if and only if x“ F pwq, i.e., F is unique.

For the proof of proposition 3.10 we will need a consequence of the implicit function theorem,
based on the following statement that we can extend an implicitly defined function if the
conditions of the implicit function theorem hold on the boundary of its domain:

Lemma A.2. Let ρ :W ˆXÑRn be as given in A.1 and let R :WRÑXR be continuously
differentiable, with open and convex WR ĂW and open XR ĂX , such that:

i) @v PWR : ρpv,Rpvqq “ 0;
ii) @pv, xq PWR ˆXR : ρpv, xq “ 0ô x“Rpvq.

If for some sequence pvnqnPN ĂWR with vnÑ v1 P BWR XW and an accumulation point x1 PX of
pRpvnqqnPN, the matrix B

Bxρpv
1, x1q is invertible, then there is a unique continuously differentiable

extension of R with the above properties whose domain is open and a proper superset of WR. In particular,
pRpvnqqnPN is convergent with limit x1.

Proof. Let pvnqnPN ĂWR with vnÑ v1 P BWR XW and let x1 PX be an accumulation point of
pRpvnqqnPN, such that the matrix B

Bxρpv
1, x1q is invertible. Due to the continuity of ρ on W ˆX ,

we have that ρpv1, x1q “ 0. With the implicit function theorem, there are open neighbourhoods
W 1

ĂW of v1, where we can requireW 1 to be convex, andX 1 ĂX of x1 and a unique continuously
differentiable function S :W 1

ÑX 1 with the corresponding properties i) and ii).
We will show that there is N such that pRpvnqqněN ĂX 1: As x1 is an accumulation point

of pRpvnqqnPN, there are infinitely many n PN with Rpvnq PX
1, in particular let RpvN q PX 1.

Note that we can assume pvnqněN ĂW 1 as v1 PW 1 is the limit of that sequence. Assume that
there is some N 1 ąN with RpvN 1q RX 1 and let N 1 be minimal. W.l.o.g. let N 1 “N ` 1 and
define v : r0, 1sÑW 1, t ÞÑ p1´ tqvN ` tvN 1 . Then vpr0, 1sq ĂW 1 due to convexity. Consider that
RpvN q PX

1, with X 1 open. Therefore, there is some εą 0 with Rpvpr0, εsqq ĂX 1. However, with
our assumption, Rpvp1qq “RpvN 1q RX 1. Then, with the complement of X 1 being closed, there is
a minimal t̄ such that Rpvpt̄qq RX 1. Then R ˝ v“ S ˝ v on r0, t̄q, but due to their continuity we
then also have Rpvpt̄qq “ Spvpt̄qq and thus Rpvpt̄qq PX 1, in contradiction to Rpvpt̄qq RX 1. Thus,
RpvN 1q “Rpvp1qq PX 1, in contradiction toRpvN 1q RX 1. Overall, we then have pRpvnqqněN ĂX 1,
and further RprvN , v1qq ĂX 1 (assuming vN ă v

1). This implies that R“ S on WR XW
1 and

T :“RY S is a proper, continuously differentiable extension of R, satisfying properties i) and
ii). In particular, due to pRpvnqqněN “ pT pvnqqněN , pRpvnqqnPN is convergent with limit x1.

The following lemma states that there is an implicitly defined function whose domain is such
that the points at the boundary do not satisfy the conditions of the implicit function theorem:

Lemma A.3. Let ρ :W ˆXÑRn be as given in A.1 and pw, xwq PW ˆX such that ρpw, xwq “ 0

and the matrix B
Bxρpw, x

w
q is invertible. Then there exist open neighbourhoods W˚

ĂW of w, with W˚

convex, and X˚ ĂX of xw , and a continuously differentiable function R˚ :W˚
ÑX˚ such that:

i) @v PW˚ : ρpv,R˚pvqq “ 0;
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ii) @pv, xq PW˚
ˆX˚ : ρpv, xq “ 0ô x“R˚pvq;

iii) for all pvnqnPN ĂW˚ with vnÑ v1 P BW˚
XW and every accumulation point x1 PX of

pR˚pvnqqnPN, the matrix B
Bxρpv

1, x1q is singular.

In particular, R˚ is a maximally defined such function.

Proof. Let R be the set of all continuously differentiable functions Rα :WαÑXα, with Wα Ă

W convex and Xα ĂX being open neighbourhoods of w and xw , respectively, such that Rα
satisfies i) and ii). Due to ρ being continuously differentiable, B

Bxρ is invertible in a convex, open
neighbourhood of pw, xwq. With the implicit function theorem, R is not empty. We define a partial
order on R by the set inclusion on the graphs of the functions Rα PR.

Let O be a non-empty completely ordered chain in R. Consider the function R1 defined by the
graph:

Γ pR1q “
ď

RαPO
tpv,Rαpvqq | v PWαu

Then W 1
“
Ť

RαPOWα ĂW and X 1 “
Ť

RαPOXα ĂX are open neighbourhoods of w and
xw and R1 :W 1

ÑX 1 is a continuously differentiable function. Furthermore, tWα |Rα POu is
completely ordered by set inclusion as well and therefore,W 1 is convex. It is clear thatR1 satisfies
i) as all Rα satisfy i). Let pv, xq PW 1

ˆX 1. Then there is Rα PO with v PWα, x PXα, and R1pvq “
Rαpvq. Then, asRα satisfies ii), we have ρpv, xq “ 0ô x“Rαpvq “R

1
pvq, and thusR1 satisfies ii).

Therefore, R1 PR, and with Zorn’s Lemma, R contains a maximal element R˚ :W˚
ÑX˚, such

that R˚ satisfies i) and ii).
For iii), let pvnqnPN ĂW

˚ with vnÑ v1 P BW˚
XW and let x1 PX be an accumulation point of

pR˚pvnqqnPN. Assume that the matrix B
Bxρpv

1, x1q is invertible. With the previous lemma there is a
proper extension of R˚ and R˚ is not maximal, a contradiction. Thus, B

Bxρpv
1, x1q is singular.

In order to apply the above lemma, for M ą 0, we rewrite (RMD) as

ρ : RˆXÑRS , pw, xq ÞÑwφpxq ` pc´ xq (A 1)

with w“M´1. It is clear that ρpM´1, xq “M´1φM pxq and therefore ρpM´1, xq “ 0ô φM pxq “

0 and that ρ is continuously differentiable on RˆX with some X Ą∆ open and bounded,
depending on φ. Then we obtain lemma 3.9 as a corollary:

Corollary A.4. Let c P∆˝ and M be as in lemma 3.8. Let xM be a mutation equilibrium for some M ą

M . Then there is a unique function M : pM,8qÑ∆ such that MpMq “ xM and for all m P pM,8q,
Mpmq is a mutation equilibrium for m. In particular, M is continuously differentiable and Mpmq

mÑ8
ÝÑ

c.

Proof. Consider that for mąM , Dφm is invertible everywhere on ∆ due to lemma 3.8, and that
for w“m´1 with ρ from (A 1), the matrix B

Bxρpw, xq is invertible whenever Dφmpxq is. Then let
w“M´1 and w“M´1 for some M ąM . Then applying the previous lemma to w, xM and ρ

yields a continuously differentiable function R :W Ñ∆ with W ĂR and w PW . Furthermore,
the previous lemma guarantees that r0, wq ĂW because B

Bxρpv, xq is invertible @v P r0, wq, x P∆.
Thus, M : pM,8qÑ∆ with m ÞÑRpm´1

q is continuously differentiable and is as desired.

With this we can prove proposition 3.10:

Proposition A.5 (3.10). Let c P∆˝ and M as in lemma 3.8. For all M ąM , the replicator-mutator
dynamics (RMD) has a unique mutation equilibrium. The unique map M :M ÞÑ xM is continuously
differentiable on pM,8q.

Proof. As φ is Lipschitz, let Lφ be the best Lipschitz constant for φ. Since φ is differentiable and
∆ is convex, we further have that Lφ “ }Dφ}8,∆ :“ supxP∆ }Dφpxq} ěM with M from lemma
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3.8. Choose M 1
ąLφ and consider for c P∆˝ and some są 0 the function FM 1,c :∆Ñ∆ with

rFM 1,cpxqsih “ xih ` s
`

φihpxq `M
1
pcih ´ xihq

˘

. Then, we have that

rFM 1,cpxqsih ´ rFM 1,cpyqsih “ p1´ sM
1
qpxih ´ yihq ` s pφihpxq ´ φihpyqq

and thus

}FM 1,cpxq ´ FM 1,cpyq} ď|1´ sM
1
|}x´ y} ` s}φpxq ´ φpyq}

ď|1´ sM 1
|}x´ y} ` sLφ}x´ y} “ p|1´ sM

1
| ` sLφq}x´ y} .

Choosing s such that sM 1
ď 1, we have that:

|1´ sM 1
| ` sLφ “ 1´ sM 1

` sLφ “ 1` spLφ ´M
1
q ă 1

Hence, FM 1,c is a contractive mapping and has a unique fixed point xM
1

P∆˝. Then every
function M from corollary A.4 satisfies MpM 1

q “ xM
1

and thus all such functions are identical,
yielding the uniqueness of mutation equilibria for all M ąM .

B. Proof of proposition 4.3
In order to prove proposition 4.3, we need to extend (RMD) slightly, such that we can allow more
general mutation to occur. Recall that gihpxq “ fihpxq ´ f̄ipxq and that then E “ tx P∆ | gpxq ď 0u

is the set of Nash equilibria, where the inequality is component-wise. Then let H “ C1
p∆,RSą0q,

and define for c PH , M ą 0:

rFM,cpxqsih “ xih ` s
´

xihgihpxq `M
´

cihpxq ´ xih
ř

kďni
cikpxq

¯¯

where i P I , h P Si. Note that for all są 0, the fixed points of FM,c are the stationary points of
a suitably generalized (RMD). In particular, if c PH is constant on ∆, then the fixed points are
exactly the mutation equilibria of (RMD) for a suitably chosen M̃ . It is clear that for a choice of
c PH , we can choose są 0 such that for all M P p0, εsq, we have FM,cp∆q Ă∆ and thus the set of
fixed points is non-empty. Therefore, we assume a suitable choice of są 0 (possibly depending on
c). For convenience, let us denote by F pFM,cq the set of fixed points of FM,c for c PH andM ą 0:

F pFM,cq “ tx P∆ |FM,cpxq “ xu.

From the definition of a mutation limit, we extract the main property and say that a set X Ă∆
has the property pAq if

pAq for all c P∆˝, there is a sequence of mutation equilibria pxM qMą0 Ă∆ that converges to
an element of X .

We extend this notion to FM,c and say that a set X Ă∆ has the property pA1q if

pA1q for all c PH and open U ĄX , there is M ą 0 such that F pFM,cq X U ‰H.

Remark. It is clear that a set X has the property pA1q if and only if for every c PH there is a
sequence pxM qMą0 Ă∆ such that pxM qMą0 converges to an element of X and every xM in the
sequence satisfies xM PF pFM,cq. With this it is also clear that a set has the property pAq if it has
property pA1q, due to c P∆˝ being equivalent to a constant function in H .

The proof of proposition 4.3 will proceed as follows: We first show that E has the property
pA1q. Next, we show that a set with the property pA1q contains a minimal set with that property,
and that an analog but slightly modified result holds for the property pAq. We then show that
a minimal set with the property pA1q is connected, based on a proof by Kinoshita [53]. Thus, we
have that E contains a minimal set with the property pA1q, which must be contained in a connected
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component of E . Finally this set is connected and in particular has the property pAq and hence
contains a minimal connected set with the property pAq, proving proposition 4.3.

Existence. We show first that any minimal set with the property pA1qmust be contained in E :

Lemma B.1. Let X Ă∆ be minimal with the property pA1q. Then X Ă E and E has the property pA1q.

Proof. Assume that X Ć E . Let c PH and pMnqnPN ĂRą0 be a null sequence, and pxMnqnPN Ă
∆ convergent with limit x˚ with xMn PF pFMn,cq for all n PN. From our earlier note on the
possibility of a constant choice of są 0 for all n PN, and from the continuity of g and c, we have
that for all i P I , h P Si, x˚ihgihpx

˚
q “ 0 holds.

We now show that x˚ P E : If x˚ P∆˝, then for all i P I , h P Si, x˚ihgihpx
˚
q “ 0 implies

gihpx
˚
q “ 0, i.e., x˚ P E . If x˚ P B∆, then let some pi, hq P S be such that x˚ih “ 0, and let c̃i “

sup
!

ř

kďni
cikpxq |x P∆

)

. Then c̃i ă8 and for M ą 0:

xMih “ rFM,cpx
M
qsih “ x

M
ih ` s

´

xMih gihpx
M
q `M

´

cihpx
M
q ´ xMih

ÿ

kďni
cikpx

M
q

¯¯

ą xMih ` s
´

xMih gihpx
M
q ´MxMih

ÿ

kďni
cikpx

M
q

¯

ě xMih ` sx
M
ih

´

gihpx
M
q ´Mc̃i

¯

Therefore, we have for all M ą 0:

0ą sxMih

´

gihpx
M
q ´Mc̃i

¯

ô 0ą gihpx
M
q ´Mc̃i ô Mc̃i ą gihpx

M
q

Therefore, with MÑ 0, we have gihpx
˚
q ď 0, and overall x˚ P E . Thus X X E has the property

pA1q andX is not minimal, a contradiction. From x˚ P E , it is clear that E has the property pA1q.

Minimality. We first show that the existence of a set with the property pA1q implies the existence
of a minimal such set, where the proof is fairly standard and adapted from [54, Thm 7.3]:

Lemma B.2. Let a compact set X Ă∆ have the property pA1q. Then it contains a minimal compact set
with the property pA1q.

Proof. The proof is based on Zorn’s lemma. Let C be the set of compact subsets of X with the
property pA1q, i.e., C “

 

K ĂX |K ‰H and K is compact and has the property pA1q
(

, and order
C by reverse inclusion Ą. Let OĂC be completely ordered. Then O has the finite intersection
property, as it is completely ordered by reverse inclusion and its elements are compact. Therefore,
K8 :“

Ş

O‰H and K8 is compact.
It remains to show that K8 has the property pA1q: Assume K8 does not have the property

pA1q. Then there is a c PH and an open neighbourhood V of K8 such that no FM,c (M ą 0) has
a fixed point in V . For L PO, we have LĆ V because L has the property pA1q. Then O1 :“ tLzV :

L POu is a completely ordered collection of compact sets (L is compact and V is open) with the
finite intersection property, inherited from the reverse inclusion ordering of O. Therefore, it has a
nonempty intersection K18 ĂK8 Ă V but K18 X V “H, which is a contradiction. Thus, K8 has
the property pA1q and therefore K8 PC is an upper bound of O. With Zorn’s lemma then, C has
a maximal element, which is a minimal compact subset of X with the property pA1q.

For the existence of a mutation limit we will have to make a similar step, however preserving
connectedness:

Lemma B.3. Let a connected compact set X Ă∆ have the property pAq. Then it contains a minimal
connected compact set with the property pAq.
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Proof. Let C be the set of all compact connected (non-empty) subsets of X with the property pAq,
partially ordered byĄ andO a completely ordered chain inC. ThenK8 “

Ş

KPOK is non-empty,
compact and has the property pAq by an argument completely analogous to the previous lemma.

It remains to show that K8 is connected: Assume that K8 is not connected. Then, there are
open disjoint sets U1, U2, with K8 ĂU1 Y U2 “:U and K8 X U1 ‰H, K8 X U2 ‰H, and U

open in X . X and all K PO are compact and, with X being Hausdorff, also closed. Thus XzK
is open in X for K PO. Then, with

Ť

KPOXzK “Xz
Ş

KPOK “XzK8, we have that tUu Y
tXzK|K POu is an open cover of X , and there is a finite subcover tUu Y tXzKi|Ki PO, 1ď
iď nu, as X is compact. Thus X “U Y

Ť

1ďiďnXzKi “U YXz
Ş

1ďiďnKi. As O is completely
ordered by inclusion, we can assume that Ki ĄKn (1ď iď n) and we have that X “U YXzKn.
Thus Kn ĂU “U1 Y U2, and hence Kn is not connected, a contradiction. Therefore, K8 is
connected and K8 PC. With Zorn’s lemma the statement of the lemma follows.

Connectedness. We gain connectedness as a necessary property of minimal sets with the
property pA1q, where the main idea of the proof is based on a proof by Kinoshita [53] and relies
on the “convexity” of H :

Lemma B.4. If K Ă∆ has the property pA1q and K “ pK1 Y . . .YKsq with the Kj disjoint and
compact, then someKj has the property pA1q. IfK is minimal with the property pA1q, thenK is connected.

Proof. Let K Ă∆ have property pA1q and K “K1 Y . . .YKs with the Kj disjoint and compact.
Assume that no Kj has the property pA1q. Then there are c1, . . . , cs PH and neighbourhoods
U1, . . . , Us of K1, . . . ,Ks with disjoint closures such that for all M ą 0, F pFM,cj q X Uj “

H. Let further V1, . . . , Vs be strictly smaller neighbourhoods, i.e., V j ĹUj , and let U0 be a
neighbourhood of ∆zpU1 Y . . .Y Usq whose closure is disjoint from the V1, . . . , Vs, and c0 any
function in H . Then tU0, U1, . . . , Usu is an open cover of ∆ and with ∆ being a compact subset
of a topological vector space, there is a C8-partition of unity π0, π1, . . . , πs such that πjpxq “ 0

(@x P∆zUj ), and
řs
j“0 πjpxq “ 1 (@x P∆), e.g., [54, Thm 6.2]. The convex combination, c̄, with

c̄ : x ÞÑ
řs
j“0 πjpxqcjpxq, is an element of H . Considering FM,c̄, we then have that FM,c̄pxq “

FM,cj pxq for x P Vj . Thus F pFM,c̄q X Vj “H for 1ď j ď s for all M ą 0. Therefore, FM,c̄ has no
fixed points in pV1 Y . . .Y Vsq ĄK for any M ą 0. This is a contradiction to the assumption that
K has the property pA1q. In particular, if K is minimal, then K is connected.

Overall, this proves the following:

Proposition B.5. There is a mutation limit X Ă E .

Proof. With lemma B.1, E has the property pA1q. With E being compact due to g P Cp∆,RSq and
E Ă∆, and with lemma B.2, there is a minimal compact set X 1 Ă E with the property pA1q.
Furthermore, with lemma B.4, X 1 is connected. With the property pA1q, X 1 also has the property
pAq. With lemma B.3,X 1 contains a minimal connected compact subset X ĂX 1 with the property
pAq. By definition, X is a mutation limit.
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