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Ambiguous images are widely recognized as a valuable tool for probing
human perception. Perceptual biases that arise when people make judgements
about ambiguous images reveal their expectations about the environment.
While perceptual biases in early visual processing have been well established,
their existence in higher-level vision has been explored only for faces, which
may be processed differently from other objects. Here we developed a new,
highly versatile method of creating ambiguous hybrid images comprising
two component objects belonging to distinct categories. We used these hybrids
to measure perceptual biases in object classification and found that images of
man-made (manufactured) objects dominated those of naturally occurring
(non-man-made) ones in hybrids. This dominance generalized to a broad
range of object categories, persisted when the horizontal and vertical elements
that dominate man-made objects were removed and increased with the real-
world size of the manufactured object. Our findings show for the first time
that people have perceptual biases to see man-made objects and suggest
that extended exposure to manufactured environments in our urban-living
participants has changed the way that they see the world.
1. Introduction
Vision is famously underconstrained, and how we interpret what we see can shed
light on both perceptual and cognitive processes. For example, inferences regard-
ing the 3-dimensional (3D) environment from 2D retinal images seem to be
largely accurate and effortless [1]. The most natural solutions to ‘inverse problems’
like 3D shape from 2D projections are Bayesian computations, in which sensory
measurements (‘likelihoods’) are combined with a priori expectations (‘priors’).

Prior expectations about the environment can be manipulated in the labora-
tory. For example, Körding & Wolpert [2] trained participants to learn a lateral
displacement of the visual feedback they received on their finger position while
they reached for a target in a virtual-reality set-up. Following training, when
participants had to reach for a target without feedback, their reach-point was
biased in the direction opposite to, and by the magnitude of, the displacement
they had learnt. On the other hand, some priors seem to have arisen on a longer,
evolutionary time scale. For example, the tuning and distribution of neurons in
the primary visual cortex (V1) seem to have been optimized for encoding the
cardinal orientations (i.e. horizontal and vertical) that are predominant in
everyday scenes [3,4].

It is known that the impact of these priors can increase when the stimulus
is degraded or when the sensory measurements are noisy. In such cases, we
rely more on our expectations to guide our perception [5]. For example, a
prior that favours cardinal orientations can make ambiguously tilted stimuli
appear to have less tilt away from the cardinal axes [6,7], or a prior for
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light coming from above (and slightly to the left) biases the
interpretation of ambiguous images towards being perceived
as lit from above rather than from below [8]. However, the
aforementioned biases were measured for attributes that
vary along simple feature dimensions such as orientation
using artificial stimuli (e.g. Gabor patches). More recently,
biases have also been examined for more complex and
meaningful attributes using natural images like human
faces [9,10]. For example, prior expectations are believed to
bias observers to report that a face appears to be gazing at
them when the eyes are difficult to see [9] or that ambiguous
facial morphs appear as masculine [10]. Nonetheless,
faces represent a unique object category that is encoded in
dedicated neural areas (e.g. fusiform face area) and is con-
sidered distinct from other object categories (hereafter
‘objects’), even those that we could become experts in classi-
fying (see [11] for a review). To our knowledge, it remains
unclear if perceptual biases also extend to the categorical
attribute of non-social objects that we may encounter in
everyday life.

Man-made objects are more frequent in urban scenes
(e.g. city centres, house interiors) and non-man-made objects
are more frequent in non-man-made scenes (e.g. mountains,
forests). Greene [12] demonstrated this by quantifying the
frequency of hand-labelled objects in a large database of
scenes. Participants are also aware of these frequencies
[13,14]. For example,when required to estimate object frequency
by freely listing objects or rating the likelihood of objects fre-
quently/never occurring in man-made and non-man-made
scenes, participants demonstrated high consistency and
reliability, and tended to overestimate frequency [14]. From a
Bayesian point of view, our knowledge of object frequency stat-
istics should lead people who have lived extensively in urban
areas to perceive ambiguous images as what they most expect
to encounter in their urban areas (e.g. man-made objects).

To test whether our visual experience manifests as percep-
tual biases towards frequently encountered categories of
object identity, in experiment 1 we developed a novel, highly
versatile method of creating ambiguous ‘hybrid’ images
(figure 1c) by superimposing two component images from
distinct categories. This allowed us to measure biases for categ-
orical attributes of natural images while controlling for the
visibility of the separate components, bypassing confounds
that may arise due to differences in people’s contrast sensitivity
to spatial frequency content. Our aim was to create ambiguous
stimuli with two image categories competing for classification,
while ensuring they are equally visible when the hybrid is
highly ambiguous. To achieve this, we minimized the overlap
of spatial frequency content between component images of a
hybrid, by filtering one to largely retain orientations near the
cardinal axes (‘near-cardinal’) and the other to largely retain
orientations near the intercardinal axes (45° and 135° clockwise
of vertical; ‘near-intercardinal’).

Accordingly, in experiment 1, we used animals and flow-
ers as non-man-made categories, and houses and vehicles as
man-made categories, to create hybrids and measure categ-
orical biases. It is known that people detect animal images
faster than any other category [15], but these studies did
not manipulate visibility per se. Fast detection is generally
inferred from reaction time measures of behavioural
responses (i.e. key presses or saccades). Nonetheless, if ani-
mals do have an advantage, they would clearly dominate
visibility in briefly flashed hybrids, and participants would
be biased to classify a hybrid with an animal and a non-
animal more frequently as an animal. In experiment 1, we
found a bias towards man-made objects (houses and
vehicles). However, since most man-made objects in exper-
iment 1 were larger in real-world size than non-man-made
objects, a bias for larger objects could easily be misinterpreted
as a bias for man-made objects. Therefore, experiment 2
extends the findings of experiment 1 to a broader range of
man-made objects, covering a wider range of sizes.
2. Methods and results
(a) General methods
(i) Participants and apparatus
Ten participants from Queen Mary University of London (United
Kingdom) took part in each of the two main experiments reported
below. All participants had normal or corrected-to-normal vision
and have lived in man-made environments for at least 10 years
preceding the experiment. Written informed consent was obtained
prior to participation.

Participants were seated in a dimly lit room. A chinrest was
used to maintain a distance of 0.57 m from the 1600 Dell CRT
monitor (1024 × 768 pixels, 60 Hz refresh rate) upon which the
stimuli were presented. At this distance, each pixel subtended
1.8 min of visual angle. Experimental programs were written in
MATLAB, using the Psychophysics Toolbox [16,17].

(b) Experiment 1 methods: filtered hybrids
(i) Stimuli
Prior to the experiment, from an initial pool of 500 images
obtained from the ImageNet database [18], we created a 100-
image set ‘C’, within which each image was unambiguously
recognizable as an animal after application of the cardinal filter
described below; see electronic supplementary material, §S1 for
details on image selection. Next, we created a 100-image set ‘I’,
within which each image was unambiguously recognizable as
an animal after application of the intercardinal filter described
below. Some images appeared in both sets. We then repeated
this process, creating a set C and a set I for flowers, houses
and vehicles. Consequently, sets C and I contain unfiltered
images that can be filtered during the experiment using a cardi-
nal and an intercardinal filter, respectively. Example images from
all four categories appear in figure 1a.

Hybrids were created using randomly selected (unfiltered)
component images from sets C and I in two of the four available
categories (e.g. house from set C and flower from set I). The C
component was filtered to retain near-cardinal orientations by
multiplying its amplitude spectrum with a cardinal filter. The I
component was filtered to retain near-intercardinal orientations
by multiplying its amplitude spectrum with an intercardinal
filter. The cardinal filter’s pass-band was the sum of two
wrapped Gaussian functions, one peaking at 0° (horizontal)
and the other peaking at 90° (vertical). Each Gaussian had a
half-width at half height of 23.6°. The intercardinal filter was
rotated 45° but otherwise identical to that of the cardinal
filter. The amplitude of each component’s spatial frequency
content was adjusted so that the two components would have
the desired sum (fixed at 1.33 × 108) and ratio (an independent
variable) of notionally visible energies. Notionally visible
energy (hereafter ‘visible energy’) is defined as the dot product
between an orientation-filtered image’s power spectrum and a
‘window of visibility’ (WV) that we created, based on Watson
& Ahumada [19]. (Further details of image processing are
available in electronic supplementary material, §§S1–S3 and
figure S1).
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Figure 1. Experiment 1. (a) A representative sample of images from each category. For each category, unfiltered images are in the left-hand column and the same
images after applying a cardinal ( for set C) or an intercardinal filter ( for set I) are in the right-hand column. (b) Timeline of an experimental trial. (c) Examples of
hybrid images. (d ) Bar plots showing biases in each hybrid condition (left-hand and middle columns; positive values indicate biases towards the cardinal com-
ponent) and categorical biases estimated irrespective of filtering (right-hand column; positive values indicate biases for the specific category) for each participant.
Unfilled blue bars represent biases that significantly differed from zero. Error bars represent 95% confidence intervals. (Online version in colour.)
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Calculating the visible energy of components using the WV
gives us an index of the effective contrast of an image after
taking into account non-uniformities in contrast sensitivity of
spatial frequency and orientation channels in the early stages
of visual processing (e.g. V1). Therefore, when the two hybrid
components’ amplitude spectra are adjusted to have equal visible
energy (i.e. at a log-ratio of 0), we can assume that the two com-
ponents are roughly equated for visibility. We also created a
unique mask for every hybrid image by phase-scrambling the
hybrid. This was achieved by adding the phase spectrum of a
white-noise pattern (300 × 300 pixels with a uniform distribution
of pixel intensities between 0 and 1) to the phase spectrum of a
hybrid. A unique white noise pattern was generated for each
hybrid we created.
(ii) Procedure
There were eight different conditions, characterized by either the
cardinal or the intercardinal component of the hybrid. In four
conditions, we fixed the cardinal component’s category as the
animal (CA), flower (CF), house (CH) or vehicle (CV), with the
intercardinal component randomly chosen from the remaining



Table 1. Group statistics on biases from each condition in experiment 1 and experiment 2. Single asterisks denote significance at the level of p < 0.05 and
double asterisks denote significance at the level of p < 0.01.

experiment 1 experiment 2

condition mean bias t-statistic Cohen’s d condition mean bias t-statistic Cohen’s d

cardinal animal

CA –0.46 –3.97** –1.25 BA-BM –0.37 –2.97* –0.94

CF –0.89 –5.94** –1.88 BA-SM –0.30 –2.81* –0.89

CH +0.43 +4.21** +1.33 SA-BM –0.51 –5.35** –1.69

CV +0.29 +4.26** +1.35 SA-SM –0.50 –3.76** –1.19

intercardinal animal

IA +0.43 +4.08** +1.29 BA-BM +0.79 +6.00** +1.90

IF +0.51 +3.81** +1.20 BA-SM +0.25 +1.67 +0.53

IH –0.49 –3.77** –1.19 SA-BM +0.42 +5.85** +1.85

IV –0.35 –3.31** –1.07 SA-SM –0.05 –0.61 –0.19
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three categories. In the remaining four conditions, we fixed the
intercardinal component to be the animal (IA), flower (IF),
house (IH) or vehicle (IV), and the cardinal component was ran-
domly chosen from the three remaining categories.

Within each condition the log ratio between visible energies
of (cardinal and intercardinal) components was selected at
random (without replacement) from the set containing eight
copies of 11 values (−3.66, –2.20, –1.39, –0.41, –0.20, 0, +0.20, +
0.41, +1.39, +2.20, +3.66) identified in exploratory pilot exper-
iments as likely to provide constraint for the psychometric
functions described below. The eight different conditions were
randomly interleaved within each 704-trial session. In each
trial, the participant’s task was to report the category of the
hybrid’s most visible component.

The experimental procedure is shown in figure 1b. Each trial
began with presentation of a white fixation dot (0.3° diameter)
centred on a uniform grey background for 1.00 s. This was fol-
lowed by a hybrid image that was shown for 0.10 s,
immediately followed by a mask for 0.20 s. Hybrid and mask
were presented in the centre of the screen within a hard-edged
circular window (9.4° diameter). After the mask, four circular
labels (3.8° diameter) of each image category appeared, and the
participant responded using one of four keys (‘4—top left’, ‘5—
top right’, ‘1—bottom left’, ‘2—bottom right’), which mapped
to the screen position of the category label. The position of a
given category listed in one of the four labels was randomized
on every trial.
(c) Experiment 1 results: filtered hybrids
Using the Psignifit 4 toolbox [20], we obtained estimates of each
participant’s bias (− μ), in each of the eight conditions, by maxi-
mum-likelihood fitting the four parameters (μ, σ, γ, λ) defining a
cumulative normal distribution to the psychometric function map-
ping log visible energy ratio (between cardinal and intercardinal
components) to the proportion of trials on which the cardinal com-
ponent was selected (electronic supplementary material, figure
S2a). An unbiased observer would select either component with
equal frequency (50% point of a psychometric function) when
the two components have equal visible energy (i.e. at log-ratio =
0), and would therefore have a bias of 0. However, if the observer
is biased, then their 50% point would map to a log-ratio different
from 0 and its sign (e.g. the direction of shift) will determine which
component dominates perception. Accordingly, positive (negative)
biases indicate a tendency for the cardinal (intercardinal)
component to dominate perception.

For each estimate of bias, we evaluated the null hypothesis
that the bias does not differ from zero (using a generalized likeli-
hood-ratio test). For this, we fit the data in each condition again
with a constrained psychometric function that forced the bias to
be zero. We compared the criterion α = 0.05 to the value 1− F(−
2 ln L), where F is the cumulative χ2 distribution with 1 degree
of freedom and L is the ratio of likelihood of the constrained fit
to the unconstrained fit. If the value is less than α, the bias is sig-
nificantly different from zero. Figure 1d shows the number of
participants who had positive or negative biases that were signifi-
cantly different from zero using this likelihood-ratio test. For any
given condition, we also conducted two-tailed one-sample t-tests
to determine if the bias across all participants (mean bias) was
significantly different from zero (table 1).

Figure 1d (left hand and middle columns) plots the biases
from each condition for each participant. It is clear from figure 1d
and table 1 that classification biases were dependent on the cat-
egory of images that formed the hybrid’s components. In
general, when the cardinal component contained an animal or
flower the biases were negative, whereas when the intercardinal
component contained them, biases were positive (figure 1d ).
When the cardinal component contained houses or vehicles
biases were positive, whereas when the intercardinal component
contained them biases were negative (figure 1d ).

For most observers, animals and flowers required more vis-
ible energy than the other component of the hybrid to be
equally likely to be selected in the hybrid, whereas houses and
vehicles required relatively less visible energy than the other
component. Purely categorical biases were estimated by fitting
a cumulative normal distribution to the function mapping log
visible energy ratio between the categorical (e.g. animal) and
non-categorical (e.g. flower, house or vehicle) component to the
proportion of trials on which a specific category was selected
(i.e. irrespective of filtering; electronic supplementary material,
figure S2b). This involved pooling data from conditions in
which a specific category was fixed as either the cardinal or inter-
cardinal component. For example, data from conditions CA and
IA were pooled to plot the proportion of choosing the animal
component as dominant against the log-ratio of visible energy
between the animal and the non-animal components. Individual
biases for each image category are given in the right-hand
column in figure 1d. As summarized in electronic supplementary
material, figure S13 and table 2, group biases were significantly



Table 2. Group statistics on biases for each category in experiment 1 and each category pair in experiment 2. Single asterisks denote significance at the level
of p < 0.05 and double asterisks denote significance at the level of p < 0.01. The p-value for the SA-SM categorical pair in experiment 2 was approaching
significance ( p = 0.081).

experiment 1 experiment 2

category mean bias t-statistic Cohen’s d category pair mean bias t-statistic Cohen’s d

animal –0.39 –6.06** –1.92 BA-BM –0.55 –5.27** –1.67

flower –0.62 –4.31** –1.36 BA-SM –0.33 –3.39** –1.07

house +0.44 +5.29** +1.67 SA-BM –0.50 –6.92** –2.19

vehicle +0.34 +5.68** +1.80 SA-SM –0.23 –1.96 –0.62

averaged –0.37 –6.41** –2.03
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negative for animals and flowers, whereas they were significantly
positive for houses and vehicles.

We conducted a repeated-measures analysis of variance
(ANOVA) with image category as a within-subjects factor and
found a significant difference between mean categorical biases,
F3,27 = 25.83, p < 0.001. Pairwise comparisons revealed that mean
biases for houses and vehicles were significantly more positive
than those for animals and flowers ( p < 0.01; electronic supplemen-
tary material, table S1). There was no difference in mean biases
between houses and vehicles or between those for animals and
flowers (electronic supplementary material, table S1).

(d) Experiment 2 methods: differences in
real-world size

(i) Stimuli
We created new sets C and I (with 100 images in each set) for
four different object categories, as in experiment 1. The new cat-
egories were based on the approximate real-world size (big or
small) of the man-made object/animal in the category (figure 2a):
big animal (BA), big man-made (BM), small animal (SA), small
man-made (SM). Each image category contained a range of
object classes: BA (e.g. camel, elephant, rhinoceros, whale), BM
(e.g. bed, cupboard, bicycle, car), SA (e.g. fish, cat, butterfly,
frog) and SM (e.g. cup, watch, key, laptop). All images were
obtained from ImageNet [18] and POPORO [21] databases.
Some of these images had artificial (often uniform) backgrounds
while others were taken in their naturally occurring back-
grounds. Unique hybrids and masks were created in the same
way as in experiment 1, except that to minimize blurring of
edges near the image boundaries resulting from windowing
the image (see electronic supplementary material, §S2), we
zero-padded the image with a 50-pixel pad before applying
the window. Although the hybrids were created from
zero-padded component images, they were still presented to
participants within a hard-edged circular window of 9.4° diam-
eter, thus maintaining identical on-screen stimulus size across
all experiments.

(ii) Procedure
We had four unique pairings of categories, namely BA–BM, BA–
SM, SA–BM and SA–SM. In four experimental conditions, the
first of each pair was fixed to be the cardinal component, while
the second was fixed as the intercardinal component. In four
additional conditions, the first of the pair was fixed to be the
intercardinal component and the second was fixed as the cardi-
nal component, resulting in a total of eight conditions. Other
aspects of the procedure were identical to those used in exper-
iment 1, with the exception that sessions were expanded to 880
trials each (each session contained 10 copies of the 11 log-ratios
in each of the eight conditions).
(e) Experiment 2 results: differences in real-world size
For each participant we obtained maximum-likelihood estimates
of the bias for the eight hybrid conditions (figure 2b left and
middle panels). Generalized likelihood-ratio tests were used to
determine the number of observers whose biases significantly
differed from zero, and two-tailed one-sample t-tests were used
to determine if the mean bias across observers was significantly
different from zero (table 1). As evident from mean bias values
(electronic supplementary material, figure S14; table 1), we
found large negative biases for all four conditions when the car-
dinal component contained an animal. When the intercardinal
component contained an animal, we found large positive
biases for BA–BM and SA–BM, a weak positive bias for
BA–SM, and no bias for SA–SM. Taken together, most biases
were again towards man-made objects.

We also obtained biases for each unique category pair in the
same manner as in experiment 1, whereby a negative bias indi-
cates that the man-made and animal components were chosen
with equal frequency when the man-made component had rela-
tively less visible energy than the animal component (figure 2b,
right panel). In general, biases were negative for any given pair.
As revealed by two-tailed one-sample t-tests (table 2), mean bias
was negative and significantly different from zero for BA–BM,
BA–SM and SA–BM, and was approaching significance for SA–
SM. When collapsed across category pairs, biases were found
towards man-made objects (table 2): 7/10 individual biases
were significant at the level of p < 0.001 and 1/10 was
significant at p < 0.05.

To further evaluate the role of real-world object size and fil-
tering on biases, we conducted a 2 × 2 × 2 repeated measures
ANOVA on the ‘man-made biases’, with animal size (big and
small), man-made size (big and small) and filtering (cardinal
and intercardinal) as factors. We found no main effects of filter-
ing (F1,9 = 0.53, p = 0.486) and animal size (F1,9 = 1.66, p = 0.230).
There was a main effect of man-made size, with larger man-
made objects producing larger biases (F1,9 = 11.58, p = 0.008).
The interaction between filtering and man-made size was signifi-
cant (F1,9 = 19.83, p = 0.002). Pairwise comparisons further
analysing this interaction revealed that, although man-made
biases were larger for big compared to small man-made objects,
this was only significant ( p < 0.001) when man-made objects
retained near-cardinal orientations. We also found a significant
interaction between filtering and animal size (F1,9 = 9.95, p =
0.012). Pairwise comparisons revealed that cardinally filtered ani-
mals, compared with intercardinally filtered animals, produced
larger man-made biases for big animals ( p = 0.002) but not for
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represent 95% confidence intervals. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20191492

6

small animals. Further, big animals produced larger man-made
biases compared with small animals when the animals were fil-
tered intercardinally ( p = 0.006), but not cardinally (see electronic
supplementary material, table S2 for additional statistics).
3. Discussion
We examined biases in people’s classification of different
types of natural images. In experiment 1, we found that
when an ambiguous hybrid image was formed of structures
from two different image categories, classification was
biased towards the man-made categories (houses and
vehicles) rather than towards the non-man-made categories
(animals and flowers). This ‘man-made bias’ is not a bias
towards any specific spatial frequency content. Additional
experiments (see electronic supplementary material, §S5)
revealed that the bias is (1) common across urban-living par-
ticipants in different countries, and (2) not simply a response
bias. The results of experiment 2 replicated and extended the
results of experiment 1 to demonstrate that the bias was
affected by the real-world size of man-made objects (but
not animal size), with a stronger bias for larger man-made
objects. Reduced biases for small man-made objects may be
explained by shared feature statistics (e.g. curvature) between
small (but not large) man-made objects and both small and
large animals [22]. However, we highlight that the bias is
not only for larger man-made objects, because we still
obtained man-made biases even when small man-made
objects were paired with animals. We propose that this
man-made bias is the result of expectations about the world
that favour the rapid interpretation of complex images as
man-made. Given that the visual diet of our urban partici-
pants is rich in man-made objects, our results are consistent
with a Bayesian formulation of perceptual biases whereby
ambiguous stimuli result in biases towards frequently
occurring attributes [5].

We stress that the man-made bias is not merely a mani-
festation of the relative insensitivity to tilted (i.e. neither
vertical nor horizontal) contours, commonly known as the
‘oblique effect’ [23,24]. Our participants exhibited biases in
favour of man-made objects even when cardinal orientations
had been filtered out of them. This occurred despite the fact
that the power spectra of houses and vehicles were largely
dominated by cardinal orientations, whereas those of
animals and flowers were largely isotropic (electronic sup-
plementary material, §S6 and figure S6). Whereas the
oblique effect was established using narrow-band luminance
gratings on otherwise uniform backgrounds, it cannot be
expected to influence the perception of broad-band, natural
images, such as those used in our experiments. Indeed, if
anything, detection thresholds for cardinally oriented struc-
ture tend to be higher than those for tilted structure, when
those structures are superimposed against broad-band
masking stimuli [25].
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We note however that we do not claim that intercardinal fil-
tering removes all easily detectable structures from the images
in man-made categories. Indeed, houses and vehicles almost
certainly contain longer, straighter and/or more rectilinear con-
tours than flowers and animals. Therefore, we also performed a
detection experiment to examine if increased sensitivity to
structural features that might dominate man-made categories
could account for the man-made biases bymeasuring detection
thresholds (see electronic supplementary material, §S7). It
revealed that houses and vehicles did not have lower detection
thresholds (i.e. the minimum root mean square contrast
required to reliably detect images from each category) than
images from the non-man-made categories. This finding pro-
vides strong ammunition against any sensitivity-based model
of the man-made bias. Whatever structure is contained in the
unfiltered images of houses and vehicles, that structure
proved to be, on average, no easier to detect than the structure
contained in unfiltered images of animals and flowers.

The lack of a bias for animals and a difference in sensi-
tivity between image categories appears to contradict past
findings from Crouzet et al. [15], who report that the detec-
tion of animals precedes that of vehicles using a saccadic
choice task. However, comparing contrast sensitivity (detec-
tion) to saccadic reaction (decision) is problematic,
especially with high contrast stimuli [26]. Secondly, the differ-
ence could be attributed to the background of images that
must be classified. While Crouzet et al. [15] controlled contex-
tual masking effects on image category by presenting images
occurring in both man-made and natural contexts, our
images in the detection experiment were embedded in
white noise with the same amplitude spectrum as the
image (electronic supplementary material, figure S7). As
Hansen & Loschky [27] report, the type of mask used (e.g.
using a mask sharing only the amplitude spectrum with
the image versus one sharing both amplitude and phase
information with the image) affects masking strength. It is
still unclear which type of masks work best across different
image categories [27].

Although we carefully controlled the spatial frequency
content of our stimuli in experiments 1 and 2, it is conceivable
that the bias towards man-made objects arises at a level inter-
mediate between the visual system’s extraction of these
low-level features and its classification of stimuli into semantic
categories. To investigate whether any known ‘mid-level’ fea-
tures might be responsible for the bias towards man-made
objects, we repeated experiments 1 and 2 with HMAX, a com-
puter-based image classifier developed on the basis of the
neural computations mediating object recognition in the ven-
tral stream of the visual cortex [28,29], allowing it to exploit
mid-level visual features in its decision processes (see elec-
tronic supplementary material, §§S4 and S10). We also
classified hybrids from experiment 2 with the AlexNet Deep
Convolutional Neural Network (DNN), which could poten-
tially capture more mid-level features [30] (see electronic
supplementary material, §S9). Results indicate that human
observers’ bias for man-made images seems not to be a
simple function of the lower and mid-level features exploited
by conventional image-classification techniques.

However, we must concede that HMAX and AlexNet do
not account for all possible intermediate feature differences
between object categories, for instance 3D viewpoint [31]. If
we are frequently exposed to different viewpoints of man-
made but not non-man-made objects, this might lead to a
man-made bias too. Therefore, more experiments where cat-
egorical biases can be measured after equating object
categories for intermediate features are needed to pinpoint
the level at which the man-made bias occurs. Indeed, the
bias for man-made objects might have nothing to do with
visual features at all. It may stem from (non-visual) expec-
tations that exploit regularities of the visual environment
[6]. To be clear: we are speculating that the preponderance
of man-made objects in the environment of urban partici-
pants could bias their perception such that it becomes
efficient at processing these types of stimuli.

Whenmight such a bias develop?Categorical concepts and
dedicated neural mechanisms for specific object categories
seem to develop after birth, with exposure [32–34]. This
suggests that expectations for object categories are likely to
develop with exposure too. However, if expectations occur at
the level of higher-level features associated with object cat-
egories, we cannot discount the possibility that expectations
may be innate. For instance, prior expectations for low-level
orientation has been attributed to a hardwired non-uniformity
in orientation preference of V1 neurons [6]. Similarly, we may
have inhomogeneous neural mechanisms for higher-level
features too. Recently identified neuralmechanisms selectively
encoding higher-level features of objects (e.g. uprightness [35])
add to this speculation. It remains to be determined when and
howman-made biases arise andwhether they are adaptable to
changes in the environment. Further, the perceptual bias that
we demonstrate may be altered by testing conditions, which
limit its generalizability. For instance, low spatial frequency
precedence in image classification is altered by the type of
classification that must be performed (e.g. classifying face
hybrids for its gender versus expression) [36].

Ethics. All experimental procedures were approved by the Research
Ethics committee of Queen Mary University of London (approval
code: QMREC1376c) and the Science and Engineering Research
Ethics committee of University of Nottingham Malaysia (approval
code: AMHI070319).

Data accessibility. All raw behavioural data and MATLAB codes (for gen-
erating stimuli, running the experiment and analysing raw data)
are available from the Dryad Digital Repository: https://doi.org/
10.5061/dryad.q3j21m8 [37].

Authors’ contributions. All four authors developed the concept and con-
tributed to the study design. A.M.H.I. performed data collection.
A.M.H.I., J.A.S. and I.M. were involved in the analysis and interpret-
ation of results. A.M.H.I. wrote the manuscript and J.A.S., M.H. and
I.M. edited it. All authors gave final approval for publication.
Competing interests. We declare we have no competing interests.

Funding. We received no funding for this study.
References
1. Kersten D, Mamassian P, Yuille A. 2004 Object perception
as Bayesian inference. Annu. Rev. Psychol. 55, 271–304.
(doi:10.1146/annurev.psych.55.090902.142005)
2. Körding KP, Wolpert DM. 2004 Bayesian integration
in sensorimotor learning. Nature 427, 244–247.
(doi:10.1038/nature02169)
3. Furmanski CS, Engel SA. 2000 An oblique effect in
human primary visual cortex. Nat. Neurosci. 3,
535–536. (doi:10.1038/75702)

https://doi.org/10.5061/dryad.q3j21m8
https://doi.org/10.5061/dryad.q3j21m8
https://doi.org/10.5061/dryad.q3j21m8
http://dx.doi.org/10.1146/annurev.psych.55.090902.142005
http://dx.doi.org/10.1038/nature02169
http://dx.doi.org/10.1038/75702


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20191492

8
4. Li BW, Peterson MR, Freeman RD. 2003 Oblique
effect: a neural basis in the visual cortex.
J. Neurophysiol. 90, 204–217. (doi:10.1152/jn.
00954.2002)

5. Knill DC, Kersten D, Yuille A. 1996 Introduction:
a Bayesian formulation of visual perception.
In Perception as Bayesian inference (eds DC Knill,
W Richards), pp. 1–21. Cambridge, UK: Cambridge
University Press.

6. Girshick AR, Landy MS, Simoncelli EP. 2011 Cardinal
rules: visual orientation perception reflects
knowledge of environmental statistics. Nat.
Neurosci. 14, 926–932. (doi:10.1038/nn.2831)

7. Tomassini A, Morgan MJ, Solomon JA. 2010
Orientation uncertainty reduces perceived obliquity.
Vision Res. 50, 541–547. (doi:10.1016/j.visres.2009.
12.005)

8. Stone JV, Kerrigan IS, Porrill J. 2009 Where is the
light? Bayesian perceptual priors for lighting
direction. Proc. R. Soc. B 276, 1797–1804. (doi:10.
1098/rspb.2008.1635)

9. Mareschal I, Calder AJ, Clifford CWG. 2013 Humans
have an expectation that gaze is directed toward
them. Curr. Biol. 23, 717–721. (doi:10.1016/j.cub.
2013.03.030)

10. Watson TL, Otsuka Y, Clifford CWG. 2016 Who are
you expecting? Biases in face perception reveal prior
expectations for sex and age. J. Vis. 16, 5. (doi:10.
1167/16.3.5)

11. McKone E, Kanwisher N, Duchaine BC. 2007 Can
generic expertise explain special processing for
faces? Trends Cogn. Sci. 11, 8–15. (doi:10.1016/j.
tics.2006.11.002)

12. Greene MR. 2013 Statistics of high-level scene context.
Front. Psychol. 4, 777. (doi:10.3389/fpsyg.2013.00777)

13. Friedman A. 1979 Framing pictures: the role of
knowledge in automatized encoding and memory
for gist. J. Exp. Psychol. Gen. 108, 316–355. (doi:10.
1037/0096-3445.108.3.316)

14. Greene MR 2016 Estimations of object frequency are
frequently overestimated. Cognition 149, 6–10.
(doi:10.1016/j.cognition.2015.12.011)

15. Crouzet SM, Joubert OR, Thorpe SJ, Fabre-Thorpe M.
2012 Animal detection precedes access to scene
category. PLoS ONE 7, e51471. (doi:10.1371/journal.
pone.0051471)
16. Brainard DH. 1997 The psychophysics toolbox. Spat.
Vis. 10, 433–436. (doi:10.1163/156856897X00357)

17. Pelli DG. 1997 The VideoToolbox software for visual
psychophysics: transforming numbers into movies.
Spat. Vis. 10, 437–442. (doi:10.1163/1568568
97X00366)

18. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. 2009
ImageNet: a large-scale hierarchical image database.
Paper presented at the IEEE-Computer-Society
Conference on Computer Vision and Pattern
Recognition Workshops, Miami Beach, FL, 20–25 June
2009.

19. Watson AB, Ahumada AJ. 2005 A standard model
for foveal detection of spatial contrast. J. Vis. 5, 6.
(doi:10.1167/5.9.6)

20. Schütt HH, Harmeling S, Macke JH, Wichmann FA.
2016 Painfree and accurate Bayesian estimation of
psychometric functions for ( potentially)
overdispersed data. Vision Res. 122, 105–123.
(doi:10.1016/j.visres.2016.02.002)

21. Kovalenko LY, Chaumon M, Busch NA. 2012 A pool
of pairs of related objects (POPORO) for
investigating visual semantic integration: behavioral
and electrophysiological validation. Brain Topogr.
25, 272–284. (doi:10.1007/s10548-011-0216-8)

22. Long B, Yu CP, Konkle T. 2018 Mid-level visual
features underlie the high-level categorical
organization of the ventral stream. Proc. Natl Acad.
Sci. USA 115, E9015–E9024. (doi:10.1073/pnas.
1719616115)

23. Appelle S. 1972 Perception and discrimination as a
function of stimulus orientation—oblique effect in
man and animals. Psychol. Bull. 78, 266. (doi:10.
1037/h0033117)

24. Berkley MA, Kitterle F, Watkins DW. 1975 Grating
visibility as a function of orientation and retinal
eccentricity. Vision Res. 15, 239–244. (doi:10.1016/
0042-6989(75)90213-8)

25. Essock EA, DeFord JK, Hansen BC, Sinai MJ. 2003
Oblique stimuli are seen best (not worst!) broad-
band stimuli: a horizontal effect. Vision Res. 43,
1329–1335. (doi:10.1016/S0042-6989(03)00142-1)

26. Carpenter RHS. 2004 Contrast, probability, and
saccadic latency: evidence for independence of
detection and decision. Curr. Biol. 14, 1576–1580.
(doi:10.1016/j.cub.2004.08.058)
27. Hansen BC, Loschky LC. 2013 The contribution of
amplitude and phase spectra-defined scene
statistics to the masking of rapid scene
categorization. J. Vis. 13, 21. (doi:10.1167/13.13.21)

28. Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T.
2007 Robust object recognition with cortex-like
mechanisms. IEEE Trans. Pattern Anal. Mach. Intell.
29, 411–426. (doi:10.1109/TPAMI.2007.56)

29. Theriault C, Thome N, Cord M. 2012 Extended
coding and pooling in the HMAX model. IEEE Trans.
Image Process. 22, 764–777. (doi:10.1109/TIP.2012.
2222900)

30. Krizhevsky A, Sutskever I, Hinton GE. 2012 Imagenet
classification with deep convolutional neural
networks. In Advances in neural information
processing systems, pp. 1097–1105.

31. Robinson L, Rolls ET. 2015 Invariant visual object
recognition: biologically plausible approaches. Biol.
Cybern. 109, 505–535. (doi:10.1007/s00422-015-
0658-2)

32. Bornstein MH, Arterberry ME. 2010 The
development of object categorization in young
children: hierarchical inclusiveness, age, perceptual
attribute, and group versus individual analyses. Dev.
Psychol. 46, 350–365. (doi:10.1037/a0018411)

33. Spelke ES. 1990 Principles of object perception.
Cogn. Sci. 14, 29–56.

34. Gomez J, Natu V, Jeska B, Barnett M, Grill-Spector K.
2018 Development differentially sculpts receptive
fields across early and high-level human visual
cortex. Nat. Commun. 9, 788. (doi:10.1038/s41467-
018-03166-3)

35. Hussain Ismail AM, Solomon JA, Hansard M,
Mareschal I. 2016 A tilt after-effect for images of
buildings: evidence of selectivity for the orientation
of everyday scenes. R. Soc. open sci. 3, 160551.
(doi:10.1098/rsos.160551)

36. Schyns PG, Oliva A. 1999 Dr Angry and Mr Smile:
when categorization flexibly modifies the
perception of faces in rapid visual presentations.
Cognition 69, 243–265. (doi:10.1016/S0010-
0277(98)00069-9)

37. Hussain Ismail AM, Solomon JA, Hansard M,
Mareschal I. 2019 Data from: A perceptual bias for
man-made objects in humans. Dryad Digital
Reposition. (doi:10.5061/dryad.q3j21m8)

http://dx.doi.org/10.1152/jn.00954.2002
http://dx.doi.org/10.1152/jn.00954.2002
http://dx.doi.org/10.1038/nn.2831
http://dx.doi.org/10.1016/j.visres.2009.12.005
http://dx.doi.org/10.1016/j.visres.2009.12.005
http://dx.doi.org/10.1098/rspb.2008.1635
http://dx.doi.org/10.1098/rspb.2008.1635
http://dx.doi.org/10.1016/j.cub.2013.03.030
http://dx.doi.org/10.1016/j.cub.2013.03.030
http://dx.doi.org/10.1167/16.3.5
http://dx.doi.org/10.1167/16.3.5
http://dx.doi.org/10.1016/j.tics.2006.11.002
http://dx.doi.org/10.1016/j.tics.2006.11.002
http://dx.doi.org/10.3389/fpsyg.2013.00777
http://dx.doi.org/10.1037/0096-3445.108.3.316
http://dx.doi.org/10.1037/0096-3445.108.3.316
http://dx.doi.org/10.1016/j.cognition.2015.12.011
http://dx.doi.org/10.1371/journal.pone.0051471
http://dx.doi.org/10.1371/journal.pone.0051471
http://dx.doi.org/10.1163/156856897X00357
http://dx.doi.org/10.1163/156856897X00366
http://dx.doi.org/10.1163/156856897X00366
http://dx.doi.org/10.1167/5.9.6
http://dx.doi.org/10.1016/j.visres.2016.02.002
http://dx.doi.org/10.1007/s10548-011-0216-8
http://dx.doi.org/10.1073/pnas.1719616115
http://dx.doi.org/10.1073/pnas.1719616115
http://dx.doi.org/10.1037/h0033117
http://dx.doi.org/10.1037/h0033117
http://dx.doi.org/10.1016/0042-6989(75)90213-8
http://dx.doi.org/10.1016/0042-6989(75)90213-8
http://dx.doi.org/10.1016/S0042-6989(03)00142-1
http://dx.doi.org/10.1016/j.cub.2004.08.058
http://dx.doi.org/10.1167/13.13.21
http://dx.doi.org/10.1109/TPAMI.2007.56
http://dx.doi.org/10.1109/TIP.2012.2222900
http://dx.doi.org/10.1109/TIP.2012.2222900
http://dx.doi.org/10.1007/s00422-015-0658-2
http://dx.doi.org/10.1007/s00422-015-0658-2
http://dx.doi.org/10.1037/a0018411
http://dx.doi.org/10.1038/s41467-018-03166-3
http://dx.doi.org/10.1038/s41467-018-03166-3
http://dx.doi.org/10.1098/rsos.160551
http://dx.doi.org/10.1016/S0010-0277(98)00069-9
http://dx.doi.org/10.1016/S0010-0277(98)00069-9
http://dx.doi.org/10.5061/dryad.q3j21m8

	A perceptual bias for man-made objects in humans
	Introduction
	Methods and results
	General methods
	Participants and apparatus

	Experiment 1 methods: filtered hybrids
	Stimuli
	Procedure

	Experiment 1 results: filtered hybrids
	Experiment 2 methods: differences in  real-world size
	Stimuli
	Procedure

	Experiment 2 results: differences in real-world size

	Discussion
	Ethics
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	References


