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  19 

Abstract 20 

Language has a complex grammatical system we still have to understand 21 

computationally and biologically (Hauser et al., 2002; Yang, 2013). However, 22 

some evolutionarily ancient mechanisms have been repurposed for grammar 23 

(Dehaene & Cohen, 2007; Endress, Cahill, et al., 2009; Endress, Nespor, et al., 24 

2009; Fitch, 2017) so that we can use insight from other taxa into possible circuit-25 

level mechanisms of grammar. Drawing upon recent evidence for the importance 26 

of disinhibitory circuits across taxa and brain regions (Chevalier & Deniau, 1990; 27 

Letzkus et al., 2015; Hangya et al., 2014; Xu et al., 2013; Goddard et al., 2014; 28 

Mysore & Knudsen, 2012; Koyama et al., 2016; Koyama & Pujala, 2018), I 29 

suggest a simple circuit that explains the acquisition of core grammatical rules 30 

used in 85% of the world’s languages (Rubino, 2013): grammatical rules based on 31 

sameness/difference relations. This circuit acts as a sameness-detector. Different 32 

items are suppressed through inhibition, but presenting two identical items leads 33 

to inhibition of inhibition. The items are thus propagated for further processing. 34 

This sameness-detector thus acts as a feature detector for a grammatical rule. I 35 

suggest that having a set of feature detectors for elementary grammatical rules 36 

might make language acquisition feasible based on relatively simple 37 

computational mechanisms.  38 

 39 

Keywords: Language Acquisition; Rule Learning; Perceptual or Memory 40 

Primitives; Disinhibition; Circuit Motifs; Reduplication 41 

42 
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A simple, biologically plausible feature detector for language 43 

acquisition 44 

Language acquisition is fast, largely based on positive evidence (or 45 

sometimes no evidence at all; Goldin-Meadow & Mylander, 1998; Senghas et al., 46 

2004), goes far beyond what learners hear or see in their environment (Chomsky, 47 

1959; Pinker, 1984) and results in a uniquely complex grammatical system that 48 

stands out in the animal kingdom (Hauser et al., 2002; Yang, 2013). Even 49 

seemingly straightforward “memory” problems such as learning the meanings of 50 

words hide complexities that call for human-specific grammatical adaptations 51 

(Medina, Snedeker, Trueswell, & Gleitman, 2011; Pinker & Jackendoff, 2005). 52 

Unsurprisingly, we know very little about the underlying computational 53 

mechanisms at the circuit level.  54 

However, some linguistic mechanisms are evolutionarily ancient and have 55 

been repurposed for linguistic use (Dehaene & Cohen, 2007; Endress, Cahill, et 56 

al., 2009; Endress, Nespor, et al., 2009; Fitch, 2017). In such cases, it might be 57 

possible to identify core linguistic mechanism whose systems-level 58 

implementation might be tractable due to its evolutionary history. 59 

Here, I use sameness/difference relations as a case in point. I will first 60 

show that many grammatical rules are based on such relations, especially in 61 

morphology and phonology, but that similar relations are critical in many other 62 

domains and animals, suggesting that they reflect a linguistic core mechanism 63 

with evolutionarily ancient roots. I will then suggest that such relations can be 64 

computed using an ubiquitous processing motif: disinhibition among neurons or 65 

neural populations.  66 
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Sameness/difference relations in language and other domains and animals  67 

Sameness/difference relations are critical for many aspects of linguistic 68 

structure, especially in phonology and morphology. For example, some 85% of 69 

the world’s languages use some form of reduplication (Rubino, 2013). Among 70 

many other uses, reduplications can signal changes in word class (e.g., from noun 71 

to verb, as in the Marshallese contrast between “takin – sock” and “takinkin – to 72 

wear socks”; Moravcsik, 1978), attenuation (as in the Alabama contrast between 73 

“kasatka – cold” and “kássatka – cool”; Hardy & Montler, 1988) or 74 

intensification; they can mark differences in number (e.g., singular vs. plural), 75 

tense (e.g., past vs. present), aspect (e.g., continued vs. repeated occurrence or 76 

temporary vs. permanent), size or case (see Rubino, 2013, and references therein).  77 

Phonological processes also often appeal to sameness/difference relations, 78 

with some processes requiring some features to be identical within a relevant 79 

constituent, and others requiring them to be different. Processes that require 80 

identical features include vowel harmony and assimilation. Specifically, in 81 

languages with vowel harmony, vowels within words (or smaller domains) need 82 

to have one or more features in common (Rose & Walker, 2011). For example, 83 

Hungarian words generally have either only back vowels or only front vowels; 84 

grammatical suffixes thus come in two varieties, one with back vowels and one 85 

with front vowels. Accordingly, the dative suffix is –nak for words like “ablak – 86 

window” (resulting in forms like “ablaknak”) and –nek for words like “bíró – 87 

judge” (resulting in forms like “bírónek”; Hayes & Londe, 2006). Likewise, in 88 

languages with consonant assimilation, consonants must share a feature with other 89 

surrounding consonants. For example, in English, “football” might be pronounced 90 
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as “foopball” because the place of articulation of the [t] at the end of [foot] gets 91 

assimilated to the place of articulation of the [b] at the start of “ball”; in contrast, 92 

in French, “football” might be pronounced as “foodball” because the voicing 93 

feature of the [t] (but not the place feature) gets assimilated to the following [b] 94 

(Darcy, Ramus, Christophe, Kinzler, & Dupoux, 2009). Both vowel harmony and 95 

assimilation thus introduce sameness relations among phonemes. Listeners use 96 

these sameness relations not only in word recognition (Darcy et al., 2009; Mitterer 97 

& Blomert, 2003; Suomi, McQueen, & Cutler, 1997), but also as cues to learn 98 

new words (Vroomen, Tuomainen, & de Gelder, 1998). Further, sameness 99 

relations in the form of vowel harmony often interact with other area of grammar, 100 

such as stress assignment or morphology (Rose & Walker, 2011). 101 

While vowel harmony and assimilation require sameness relations among 102 

phonemic features, other phonological processes impose difference relations. 103 

Such processes include the Obligatory Contour Principle (Frisch, Pierrehumbert, 104 

& Broe, 2004; McCarthy, 1986). Initially, the Obligatory Contour Principle was 105 

proposed to account for the observation that, in certain tone languages, tones 106 

cannot be repeated within words, but it also applies to other phonological 107 

phenomena. For example, in Semitic languages like Arabic and Hebrew, the basic 108 

meaning of verbs is given by their consonantal root; roots like /k t b/ are then 109 

transformed into surface forms such as “kataba – he wrote” and “kutiba – it was 110 

written” (Frisch et al., 2004). The OCP prevents consonantal roots from having 111 

repeated consonants, while other morphological processes can create (rather than 112 

prevent) sameness relations among consonants (Frisch et al., 2004; McCarthy, 113 

1986). Such rules might also interact with other areas of grammar (Yip, 1988) and 114 
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speakers apply them even when presented with novel non-sense words (e.g., 115 

Berent & Shimron, 1997; Frisch & Zawaydeh, 2001). 116 

Sameness relations are also important during language acquisition. 117 

Reduplications are prominent in child-directed speech across languages 118 

(Ferguson, 1964) and children themselves “invent” forms with reduplicated 119 

syllables; these reduplicated forms might be important for acquiring multisyllabic 120 

words (Schwartz, Leonard, Wilcox, & Folger, 1980) and syllable-final consonants 121 

that would otherwise be lost (Fee & Ingram, 1982).  122 

More generally, sameness relations have been critical for defining the 123 

computational complexity of phonological rules (Culy, 1985; Manaster-Ramer, 124 

1986), and, in developmental psychology, rules based on sameness relations have 125 

been the most prominent assay for studying rule-learning in human infants 126 

(Marcus et al., 1999), to the extent that in a recent meta-analysis of “rule-127 

learning” in infancy, rule-learning was treated as synonymous with the learning of 128 

sameness relations (Rabagliati, Ferguson, & Lew-Williams, 2019). 129 

Sameness relations are also important for other forms of language use. Not 130 

only are rhymes and alliterations important in poetry (Fabb, 2015), but many 131 

language games that spontaneously arise in children also make extensive use of 132 

sameness relations in the form of reduplications (Bagemihl, 1995). For example, 133 

in the Chinese May-ka language game, syllables are duplicated and then the 134 

vowel of the first duplicate is replaced by “ay” and the consonant of the second 135 

duplicate by “k”; ma (mother) thus becomes may-ka (Bao, 1990; Yip, 1982). 136 

Despite their simplicity, sameness relations thus appear to be a core part of 137 

the language faculty. 138 
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However, sameness/difference rules are clearly not specific to language. 139 

They are crucial for many other aspects of cognition, including motor learning 140 

(Brooks, 1986), any comparison of sensory input to predictions or internal state 141 

(e.g., novelty detection in the hippocampus; Kumaran & Maguire, 2007) and 142 

short-term memory tasks such as delayed-match to sample tasks (Cope et al., 143 

2018; Engel & Wang, 2011). Accordingly, grammar-like rules based on 144 

sameness/difference relations can be learned in many non-linguistic domains in 145 

humans (Dawson & Gerken, 2009; Endress, Dehaene-Lambertz, & Mehler, 2007; 146 

Marcus, Fernandes, & Johnson, 2007; Saffran, Pollak, Seibel, & Shkolnik, 2007) 147 

and by many non-human animals (de la Mora & Toro, 2013; Hauser & Glynn, 148 

2009; Martinho & Kacelnik, 2016; Murphy, Mondragon, & Murphy, 2008; 149 

Neiworth, 2013; Pepperberg, 1987; Smirnova, Zorina, Obozova, & Wasserman, 150 

2015; Versace, Spierings, Caffini, Ten Cate, & Vallortigara, 2017; but see 151 

Heijningen, Visser, Zuidema, & Cate, 2009; Hupé, 2017; Langbein & Puppe, 152 

2017), possibly through a specialized sameness-detector (Endress, 2013; Endress 153 

et al., 2007) that might exist from birth (Antell, Caron, & Myers, 1985; Gervain, 154 

Berent, & Werker, 2012; Gervain, Macagno, Cogoi, Peña, & Mehler, 2008). The 155 

computations underlying sameness/difference relations thus reflect a core 156 

linguistic mechanism whose systems-level implementation might be tractable due 157 

to its evolutionary history. 158 

Disinhibition-based computations  159 

Here, drawing upon recent evidence stressing the importance of 160 

disinhibitory circuits (neurons that inhibit other inhibitory neurons) across a 161 

variety of taxa and brain regions (Chevalier & Deniau, 1990; Goddard et al., 162 
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2014; Hangya et al., 2014; Koyama et al., 2016; Mysore & Knudsen, 2012; Xu et 163 

al., 2013), I suggest a simple circuit that acts as a sameness-detector. Disinhibition 164 

has been observed in a variety of brain areas (Chevalier & Deniau, 1990; Letzkus 165 

et al., 2015), and some interneuron populations specifically inhibit other 166 

inhibitory interneurons (Hangya et al., 2014; Xu et al., 2013). Critically, some 167 

interneuron types receive both local and long-range input; such interneurons have 168 

been found to inhibit other inhibitory interneurons in auditory (Pi et al., 2013), 169 

visual (Pfeffer, Xue, He, Huang, & Scanziani, 2013), somatosensory (Lee, 170 

Kruglikov, Huang, Fishell, & Rudy, 2013) and prefrontal cortex (Pi et al., 2013), 171 

from where they can exert spatially remarkably specific disinhibition on other 172 

populations (Zhang et al., 2014). Accordingly, Hangya et al. (2014) argued that 173 

this disinhibitory circuit might be a cortical circuit motif. Other authors suggested 174 

a more local disinhibitory circuit motif with mutual inhibition among inhibitory 175 

neurons (Goddard et al., 2014; Koyama et al., 2016; Koyama & Pujala, 2018; 176 

Mysore & Knudsen, 2012).  177 

Disinhibitory circuits have been proposed to account for a variety of 178 

cognitive phenomena, including attentional selection (van Der Velde & de 179 

Kamps, 2001; Zhang et al., 2014), gain control (Fu et al., 2014), sequential 180 

discriminations of stimulus strength of stimuli (Machens, Romo, & Brody, 2005; 181 

Miller & Wang, 2006; but see Barak, Sussillo, Romo, Tsodyks, & Abbott, 2013) 182 

categorization of stimuli (Goddard et al., 2014; Kusunoki, Sigala, Nili, Gaffan, & 183 

Duncan, 2010; Mysore & Knudsen, 2012), behavioral response selection (Jovanic 184 

et al., 2016; Zhao et al., 2019), associative learning (Letzkus et al., 2011), 185 

plasticity (Fu, Kaneko, Tang, Alvarez-Buylla, & Stryker, 2015) and social 186 
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behavior (Marlin, Mitre, D’amour, Chao, & Froemke, 2015; Owen et al., 2013). 187 

Here, I suggest that the same biological mechanisms might provide a circuit-level 188 

mechanism for a core grammatical computation based on sameness vs. difference 189 

computations. 190 

Models of sameness/difference relations 191 

A number of models of how sameness-relations might be computed have 192 

been proposed in the literature (Arena et al., 2013; Carpenter & Grossberg, 1987; 193 

Cope et al., 2018; Engel & Wang, 2011; Hasselmo & Wyble, 1997; J. S. Johnson, 194 

Spencer, Luck, & Schöner, 2009; Ludueña & Gros, 2013; Wen, Ulloa, Husain, 195 

Horwitz, & Contreras-Vidal, 2008). The underlying principles and assumptions 196 

vary substantially across models. Some rely on the fact that repeatedly activated 197 

representations suffer some form of neural “fatigue” (Grill-Spector, Henson, & 198 

Martin, 2006; Kumaran & Maguire, 2007), others on circuitry where the 199 

combined input from some form of memory and from sensory representations 200 

matching (or mismatching) the memory representations must be sufficiently 201 

strong (Carpenter & Grossberg, 1987; Hasselmo & Wyble, 1997; Wen et al., 202 

2008) or where the difference between input from memory and from sensory 203 

representations is the critical variable (Engel & Wang, 2011). Still other models 204 

detect reduced levels inhibition for novel compared to previously encountered 205 

items (Cope	et	al.,	2018;	J.	S.	Johnson	et	al.,	2009). I discuss these models in 206 

more detail in Supplementary Material 1, where I show that they fall short on at 207 

least one of two criteria of grammar learning: they either do not generalize to 208 

unseen exemplars or they require labeled counter-examples. 209 

To better illustrate the computational principles underlying the current 210 
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dishibition-based circuit, I will first present a version of the model that can detect 211 

sameness relations in sequentially presented stimuli. Following this, I will sketch 212 

a version of the model that can detect sameness relations in spatially distributed, 213 

simultaneously presented stimuli, and finally a model that can detect sameness 214 

relations in both simultaneously presented stimuli and sequentially presented 215 

stimuli. 216 

Results 217 

Sameness detection for sequential stimuli 218 

Figure 1a shows a possible disinhibition-based architecture of how 219 

sameness might be detected for sequentially presented items. (Model equations 220 

are given in Appendix A; an R implementation is available online). The model 221 

comprises two populations of neurons (hereafter “layers”) that encode features of 222 

items (e.g., frequency, color and so on; in Figure 1, the features are represented as 223 

geometric shapes). 224 

The source layer receives input; input can be sensory or non-sensory, 225 

depending on where this circuit is located in the brain. Units in the copy layer 226 

receive excitatory one-to-one input from units in the source layer that code for the 227 

same feature. However, they also receive feature-specific tonic inhibition from an 228 

inhibition layer (which might consist of interneurons); tonic inhibition has been 229 

observed in a variety of brain regions, and might subserve functions such as 230 

maintaining an appropriate level of excitability or the suppression of undesirable 231 

motor programs (Benjamin, Staras, & Kemenes, 2010; Farrant & Nusser, 2005; 232 

Semyanov, Walker, Kullmann, & Silver, 2004). 233 

Due to the inhibition from the inhibition layer to the copy layer, input 234 
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from the source layer is not propagated to the copy layer with a single stimulation. 235 

The critical aspect of this circuit is that each feature in the source layer also 236 

inhibits the corresponding feature in the inhibition layer, which, in turn, reduces 237 

inhibitory input to the copy layer for that feature. A similar phenomenon has been 238 

observed in auditory fear conditioning, where inhibition of (inhibitory) 239 

parvalbumin-positive interneurons allowed for associations between sounds and 240 

aversive stimuli to be formed (Letzkus et al., 2011). 241 

Accordingly, once the inhibitory input to the copy layer ceases, there will 242 

be a time window during which the excitatory input from the source layer can 243 

drive the corresponding units in the copy layer. As a result, only repeated items 244 

will be propagated to the copy layer. Any readout mechanism for the copy layer 245 

(e.g., a population of thresholded neurons) could thus act as a sameness-detector.1  246 

 247 

248 

  
1

 While I model disinhibition across different neural populations, the same computational 
principles could be implemented using reciprocal inhibition among inhibitory neurons as in earlier 
models of stimulus selection and categorization (Goddard, Mysore, Bryant, Huguenard, & 
Knudsen, 2014; Koyama et al., 2016; Koyama & Pujala, 2018; Mysore & Knudsen, 2012). To do 
so, one would simply replace the inhibitory connections from the source layer to the inhibition 
layer with inhibition in the source layer that is itself subject to lateral inhibition. 
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Figure 1: A disinhibition-based sameness-detector for (a) sequentially (b) simultaneously 250 

presented identical items. The geometric shapes (squares and triangles) stand for 251 

populations of neurons that encode features of the items (e.g., frequency, shape etc.); filled 252 

shapes are currently active while empty shapes are currently inactive. (a) Units in the source 253 

layer (bottom gray box) receive (sensory or other) input. Units in the copy layer (top gray 254 

box) receive one-to-one excitatory input from the source layer. Critically, units from the 255 

inhibition layer (right gray box) exert tonic inhibition on the copy layer. (a, left) Upon initial 256 

presentation of a feature (represented here as a square), all units in the inhibition layer are 257 

active. As a result, excitatory input from the source layer is not propagated to the copy layer. 258 

(a, right, top) Feature-specific inhibition from the source layer to the corresponding units in 259 

the inhibition layer shuts down the inhibitory input to the copy layer. If the same item is 260 

presented again during the time window of reduced inhibition, input from the source layer is 261 

propagated to the copy layer. (a, right, bottom) If a new, non-identical item is presented, the 262 

source layer cannot drive the copy layer because the corresponding units in the inhibition 263 

layer have not been inhibited. Sameness-detection thus proceeds by reading out the copy 264 

layer, as only repeated items are propagated to the copy layer. (b) Sameness-detection in 265 

simultaneously presented, spatially arranged items. The source layer consists of populations 266 

of neurons coding for features (arranged in the y-direction), but these units encode space as 267 
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well (arranged in the x-direction). Tonically active inhibitory (inter-)neurons (small gray box 268 

on the right) prevent activation in the copy layer (top gray box). Critically, they receive 269 

inhibitory input from those units in the source layer that code for the same feature, and 270 

excitatory input from units coding for other features. For example, units representing 271 

squares in the input layer inhibit all units representing squares in the inhibition layer, and 272 

excite all other units. (b, left) If the stimuli consist of two identical items (squares), the 273 

combined inhibitory input from the identical items in the source layer shuts down the 274 

corresponding units in the inhibition layer, which lets identical items “pass through” to the 275 

copy layer (b, right) In contrast, when the stimuli consist of two different items, these 276 

singleton features are insufficient to drive the copy population due to inhibition from the 277 

inhibition layer. 278 

279 
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I simulated this model at various levels of noise; at each noise level, I ran 280 

50 simulations, representing 50 virtual participants. Figure 2 (left) shows that, in 281 

the copy layer, activation for repeated features is high, while activation for non-282 

repeated features is low. Repeated items are thus highly discriminable from non-283 

repeated items. This result is robust to the simulated noise level. A simple 284 

disinhibition-based circuit can thus act as a sameness-detector that discriminates 285 

repeated features from not repeated features. 286 

While the primary goal of this model is to detect when two temporarily 287 

adjacent items are identical, whether or not it can detect the sameness of two 288 

objects with intervening material depends on the time constants of the 289 

disinhibitory effects. If disinhibition is sufficiently long-lasting, the model will 290 

also detect the sameness of two non-adjacent items (e.g., of the two A’s in the 291 

sequence ABA). If so, it would predict that, the further two items are separated (in 292 

terms of the amount of intervening time and/or the number of intervening items, 293 

which might or might not have separable effects), the harder it should become to 294 

detect the sameness of the two items. At least in infants, it might be harder to 295 

detect non-adjacent repetitions compared to adjacent repetitions (S. P. Johnson et 296 

al., 2009; Kovács & Mehler, 2008, 2009). 297 

That being said, the separation of two items is unlikely to be the only 298 

determinant of how it easy it is to detect whether they are the same. For example, 299 

in a longer sequence like ABCDEDFGA, the two A’s are further apart than the 300 

two D’s. Still, it might easier to detect the sameness of the two A’s than of the two 301 

D’s despite their greater distance because initial and final items are more salient 302 

than medial items (Benavides-Varela & Mehler, 2015; Endress, Scholl, & Mehler, 303 
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2005). As a result, the representations of initial items are likely stronger than 304 

those of medial items and thus create stronger and longer-lasting disinhibition. 305 

However, the goal of the current model is just to show that a simple and 306 

ubiquitous mechanism such as disinhibition can serve as the basis of a sameness 307 

detector, while more detailed predictions require a biophysically more realistic 308 

model.  309 

310 
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Figure 2: Activation of repeated or non-repeated items in the copy layer. The noise level is 313 

the standard deviation of normally distributed noise centered at zero. In each curve, the 314 

middle line shows the average activation across 50 simulations, representing 50 participants. 315 

The shaded areas represent standard errors from the mean. (Top) Activation in the models 316 

shown in Figure 1 that detect either sequentially (Figure 1a) or simultaneously presented 317 

(Figure 1b) identical items. (Left). In the sequential sameness-detector (Figure 1a), the 318 



Page 17 of 44 

activity of repeated items is highly discriminable from that from non-identical items even for 319 

high noise levels. (Right). In the simultaneous sameness-detector (Figure 1b), the activity of 320 

repeated items is highly discriminable from that of non-repeated items even for high noise 321 

levels. 322 

 323 

324 
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Sameness detection for simultaneous stimuli 325 

In its current stage, the model can detect the sameness of sequentially presented 326 

stimuli, but not of spatially distributed, simultaneously presented stimuli, simply 327 

because space is not represented. Figure 1b shows a version of the model where 328 

items are presented simultaneously rather than sequentially. Again, there is a 329 

source layer, a copy layer, and an inhibition layer. The model differs from the 330 

sequential model in three critical aspects. First, all layers now represent space. In 331 

Figure 1b, the vertical axis represents the features as before, while the horizontal 332 

axis represents the spatial locations of the items (though space is presumably 333 

represented in some topological order in real neuronal populations). This change 334 

is necessary so that two simultaneously presented identical objects can be 335 

represented.  336 

Second, the connectivity between the source layer and the inhibition layer 337 

has been changed. Units in the source layer send (i) inhibitory input to all units in 338 

the inhibition layer that code for the same feature across all locations and (ii) 339 

excitatory input to all units in the inhibition layer that code for different features; 340 

in other words, there is center-surround disinhibition among features. This ensures 341 

that, in the copy layer, different-feature input from the source layer stays 342 

inhibited, while same-feature input is disinhibited.  343 

Third, the sequential model needs to update the activation of the copy 344 

layer before that of the inhibition layer; if the inhibition layer were updated first, a 345 

single presentation of a feature would be sufficient to produce disinhibition. In 346 

contrast, the simultaneous model needs to update the inhibition layer before the 347 

copy layer; if the copy layer were updated first, there would be no disinhibition 348 
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for identical features.  349 

I simulated this architecture using 50 virtual participants. As shown in 350 

Figure 2, identical items are highly discriminable from non-identical items even at 351 

high levels of noise. A simple, disinhibition-based circuit can thus detect 352 

sameness relations among simultaneously presented identical objects. 353 

A combined model of sameness detection for simultaneous and sequential stimuli 354 

While the main differences between the sequential and the simultaneous 355 

circuit are simply due to how stimuli are presented (i.e., spatial representations 356 

and lateral inhibition among features could be added to the sequential model, but 357 

are not necessary), the different update orders raise the question of whether a 358 

combined model can be developed that detects both sequential and simultaneous 359 

sameness relations. Practically speaking, sequential and simultaneous presentation 360 

might not be as different as they seem. For example, if observers attend 361 

simultaneously presented items one after the other (Liu & Becker, 2013; Vogel, 362 

Woodman, & Luck, 2006; but see Mance, Becker, & Liu, 2012), we need a 363 

sequential model to account for simultaneous sameness-detection; conversely, if 364 

sequential items are placed in some kind of (short-term) memory before being 365 

compared, we need a simultaneous model for sameness-detection in sequentially 366 

presented items. As such, a combined sequential/simultaneous model might be 367 

neither necessary nor desirable.  368 

Be that as it might, such a combined model is shown in Figure 3.  369 
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Figure 3: Combined disinhibition-based sameness-detector for both sequential and 372 

simultaneous sameness relations. As in the simultaneous circuit from Figure 1b, the source 373 

layer (bottom left gray box) consists of populations of neurons coding for features (arranged 374 

in the y-direction) and spatial locations (arranged in the x-direction). Tonically active units 375 

in the inhibition layer (top right gray box) prevent activation in the copy layer (top left gray 376 

box). Units in the inhibition layer receive (i) inhibitory input from the source layer for units 377 

coding for the same feature and (ii) excitatory input for units coding for other features, 378 

leading to center-surround disinhibition among features and, in the copy layer, to inhibition 379 
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for different-feature input and disinhibition for same-feature input. Critically, and in 380 

contrast to the simultaneous model from Figure 1b, units in the source layer do not inhibit 381 

units in the inhibition layer that code for features at their own spatial location; they 382 

disinhibit features only at other locations. To obtain disinhibition at the spatial location of a 383 

given unit, a self-inhibition layer (bottom right gray box) was added that receives one-to-one 384 

input from the source layer, and that specifically inhibits units in the inhibition layer that 385 

code for the same feature at the same spatial location. This delays same-feature/same-location 386 

disinhibition to prevent a single sequential presentation of a feature from disinhibiting that 387 

feature. 388 

389 
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This “combined” sameness-detector is similar to the simultaneous 390 

sameness-detector in that it comprises a source layer, a copy layer and an 391 

inhibition layer, and that the copy layer receives excitatory input from the source 392 

layer. However, (dis-)inhibition is organized differently. The copy layer still 393 

receives tonic inhibition from those units in the inhibition layer that code for the 394 

same feature and spatial position. Further, each feature of the input layer inhibits 395 

the corresponding feature in the inhibition layer across spatial positions (i.e., it 396 

disinhibits this feature in the copy layer), and excites all other features. 397 

The critical difference is that disinhibition of features at the same location 398 

is delayed. To do so, I removed direct connections between the source layer and 399 

the inhibition layer that coded for the same feature at the same location (while 400 

keeping the center-surround disinhibition at other locations). Instead, I added a 401 

self-disinhibition layer where each unit (i) receives excitatory input from the 402 

corresponding feature and location in the source layer and (ii) sends inhibitory 403 

input to all units coding for the same feature (across locations) in the inhibition 404 

layer. (While these modifications might seem to some extent ad-hoc, as 405 

mentioned above, it is not clear if a combined sequential/simultaneous model is 406 

necessary or desirable in the first place.) 407 

As shown in Figure 4, identical items were highly discriminable from non-408 

identical items in the simultaneous situation across noise levels; in contrast, in the 409 

sequential situation, discriminability suffered as noise increased.  410 
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 411 

Figure 4: Activation in the copy layer of the combined sequential/simultaneous sameness-412 

detector (Figure 3). (Left) In the combined sequential/simultaneous sameness-detector, 413 

repeated features can be repeated either at the same location or at a different location. While 414 

activation of (same or different location) repeated items is highly discriminable from 415 

activation for non-repeated items for moderate noise levels, discriminability becomes much 416 

poorer at high noise levels, when the standard deviation of the noise reaches about 15% of 417 

the activation level of active neurons. (Right) The combined sequential/simultaneous 418 
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sameness-detector (Figure 3) shows that the activation in the copy layer is highly 419 

discriminable between simultaneously repeated items and non-repeated items, even for high 420 

noise levels. 421 

Discussion 422 

The current results thus show that a simple and biologically realistic 423 

circuit can support a core grammatical computation that is used in more than 80% 424 

of the world’s languages: grammatical rules based on sameness/difference 425 

relationships. In this circuit, non-identical items are filtered out through tonic 426 

inhibition as well as center-surround inhibition. In contrast, when identical items 427 

are presented sequentially or simultaneously, inhibition is inhibited; this 428 

disinhibition of identical items then allows them to be propagated for further 429 

processing. 430 

Unlike previous models of sameness-detection (Arena et al., 2013; 431 

Carpenter & Grossberg, 1987; Cope et al., 2018; Engel & Wang, 2011; Hasselmo 432 

& Wyble, 1997; Johnson, Spencer, Luck, & Schöner, 2009; Ludueña & Gros, 433 

2013; Wen, Ulloa, Husain, Horwitz, & Contreras-Vidal, 2008; see Supplementary 434 

Material 1), the model satisfies critical criteria of grammar acquisition: (1) It 435 

generalizes to unseen stimuli and (2) does not require any labeled 436 

counterexamples for learning, simply because this circuit architecture does not 437 

require any learning at all. 438 

Once such a sameness-detector is available, it can be used for building 439 

more complex grammatical rules. For example, after exposure to syllable 440 

sequences such as dubaba, seven-month-olds notice that the last two syllables are 441 

identical, and generalize this sameness-relation to new items (Marcus et al., 442 
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1999). Critically, they do not only have to detect the sameness relation between 443 

the last two syllables, but also have to associate it with the correct serial position 444 

(Endress et al., 2007; Gervain et al., 2012). Once a sameness-detector is available, 445 

it can form associations with representations of sequential positions or other 446 

stimuli (Kabdebon & Dehaene-Lambertz, 2019), allowing learners to acquire 447 

more complex, composite rules, which is one of the hallmarks of complex 448 

cognition (Corballis, 2014; Dehaene, Meyniel, Wacongne, Wang, & Pallier, 2015; 449 

Fitch & Martins, 2014; Hauser & Watumull, 2017).  450 

This, in turn, suggests a fundamentally new view on language acquisition. 451 

Learners might be equipped with a potentially large number of potentially 452 

complex detectors for a variety of rules that act as feature detectors for 453 

grammatical rules (Endress, Nespor, et al., 2009). Learning then involves 454 

combining these features, potentially through the use of associative mechanisms. 455 

This would be consistent with results from formal language theory, where suitable 456 

pre-processing (e.g., through feature detectors) can reduce the complexity of the 457 

required computational mechanism. For example, a finite state automaton 458 

operating on trees can recognize context-free languages (Morgan, 1986) and even 459 

humble rules based on sameness relations can be shown to be beyond the reach of 460 

even context-free grammars (Culy, 1985; Manaster-Ramer, 1986).  461 

Feature detectors for elementary grammatical rules might thus expand the 462 

range of grammars that even simple learning mechanisms (such as associative 463 

mechanisms) can learn, which, in turn might make language acquisition feasible 464 

using relatively simple computational machinery. 465 

466 
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Appendix A: Model equations 799 

A.1 Sequential model 800 

The feature f is encoded in the source layer, the inhibition layer and the 801 

copy layer; the corresponding activations, are Sf (t) for a unit encoding feature f in 802 

the source layer, If (t) for such a unit in the inhibition layer and (3) Cf (t) such for a 803 

unit in the copy layer. Ef (t) is the external input, N (µ,σ) is a random value drawn 804 

from a normal distribution with mean µ and standard deviation σ.  805 

Before stimulation, the activation in the source layer and in the copy layer 806 

are initialized to zero (plus noise), while the activation in the inhibition layer is 807 

initialized to some value aI (here arbitrarily set to 1): 808 

 809 

 (1)  
Sf (t = 0) ~ N (0,σ activation )
Cf (t = 0) ~ N (0,σ activation )
I f (t = 0) ~ N (aI ,σ activation )

 810 

 811 

The connection weights between units in the different layers are indicated 812 

by w: wI,S from the source layer to the inhibition layer, wC,S from the source layer 813 

to the copy layer and wC,I from the inhibition layer to the copy layer. A connection 814 

between a source layer unit coding for feature f and a copy layer unit coding for 815 

feature f’ is indicated by wC,S
f’,f. The weights are given as follows: 816 

 817 
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 (2) 

wf ', f
C,S ~

N (1,σ weight ) f = f '

0 f ≠ f '

⎧
⎨
⎪

⎩⎪

wf ', f
C,I ~

N (−1,σ weight ) f = f '

0 f ≠ f '

⎧
⎨
⎪

⎩⎪

wf ', f
I ,S ~

N (−1,σ weight ) f = f '

0 f ≠ f '

⎧
⎨
⎪

⎩⎪

 818 

 819 

At each time step, the activations in the different layers are then updated 820 

as follows; as mentioned in the main text, the update order is critical. 821 

 822 

 (3) 

Sf (t) = Ef (t)+ N (0,σ activation )

Cf (t) = wf
C,SS f (t)+wf

C,I I f (t)+N (0,σ activation )

I f (t) = N (aI ,σ activation )+wf
I ,SS f (t)

 823 

 824 

At the end of each update cycle, the activations are curtailed to be between 825 

zero and one. 826 

A.2. Simultaneous model 827 

In the simultaneous model, units represent both features and spatial 828 

locations. Sf,l (t) is thus the activation of a unit in the source layer that encodes 829 

feature f at location l, If,l (t) is the corresponding activation in the inhibition layer 830 

and (3) Cf,l (t) is the corresponding activation in the copy layer. Ef,l (t) is the 831 

external input. 832 

Before stimulation, the activation in the source layer and in the copy layer 833 

are initialized to zero (plus noise), while the activation in the inhibition layer is 834 
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initialized to some value aI (here arbitrarily set to 1): 835 

 836 

 (4)  
Sf ,l (t = 0) ~ N (0,σ activation )
Cf ,l (t = 0) ~ N (0,σ activation )
I f ,l (t = 0) ~ N (aI ,σ activation )

 837 

 838 

Connection weights now carry indices for both features and spatial 839 

locations. For example, a connection between a source layer unit coding for 840 

feature f at location l and a copy layer unit coding for feature f’ at location l’ is 841 

indicated by wC,S
f’,f,l’,l. The weights are given as follows: 842 

 843 

 (5) 

wf ', f ,l ',l
C,S ~

N (1,σ weight ) f = f ', l = l '

0 otherwise    

⎧
⎨
⎪

⎩⎪

wf ', f ,l ',l
C,I ~

N (−1,σ weight ) f = f '

0 f ≠ f '

⎧
⎨
⎪

⎩⎪

wf ', f ,l ',l
I ,S ~

N (−1,σ weight ) f = f '

N (1,σ weight ) f ≠ f '

⎧
⎨
⎪

⎩⎪

 844 

 845 

At each time step, the activations in the different layers are then updated 846 

as follows; as mentioned in the main text, the update order is critical. 847 

 848 

 (6) 

Sf ,l (t) = Ef ,l (t)+N(0,σ activation )

I f ,l (t) = N(aI ,σ activation )+ wf ,l, fS ,ls
I ,S S fS ,lS (t)

fS ,lS

∑

Cf ,l (t) = wf ,l, fS ,ls
C,S S fS ,lS (t)

fS ,lS

∑ + wf ,l, fI ,lI
C,I I fI ,lI (t)

fI ,lI

∑ + N(0,σ activation )

 849 
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 850 

At the end of each update cycle, the activations are curtailed to be between 851 

zero and one. 852 

A.3. Combined model 853 

The combined sequential/simultaneous model is similar to the 854 

simultaneous model in that it comprises a source layer, a copy layer and an 855 

inhibition layer and that the copy layer receives excitatory input from the source 856 

layer as well as tonic inhibition from those units in the inhibition layer that code 857 

for the same feature and spatial position. Further, each feature of the input layer 858 

inhibits the corresponding feature in the inhibition layer across spatial positions 859 

and excites all other features. The critical difference between the simultaneous 860 

and the combined model is that there are no connections between the source layer 861 

and the inhibition layer that code for the same feature at the same location (while 862 

disinhibition occurs for other locations), and that same-location disinhibition of 863 

features proceeds through a self-disinhibition layer where each unit (1) receives 864 

excitatory input from the corresponding feature and location in the source layer 865 

(2) sends inhibitory input to all units coding for the same feature (across 866 

locations) in the inhibition layer.  867 

The symbols for the activation in the source, inhibition and copy layers are 868 

the same as in the simultaneous model; activation in the self-disinhibition layer 869 

for a unit coding for feature f at location l is designated as Df,l (t) and is initialized 870 

using random values around zero. 871 

The symbols for the connection weights are similar to those in the 872 

simultaneous model, but the weights reflect the changes above: 873 
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 874 

 (7) 

wf ', f ,l ',l
C,S ~

N (1,σ weight ) f = f ', l = l '

0 otherwise

⎧
⎨
⎪

⎩⎪

wf ', f ,l ',l
D,S ~

N (1,σ weight ) f = f ', l = l '

0 otherwise

⎧
⎨
⎪

⎩⎪

wf ', f ,l ',l
C,I ~

N (−1,σ weight ) f = f '

0 f ≠ f '

⎧
⎨
⎪

⎩⎪

wf ', f ,l ',l
I ,S ~

N (−1,σ weight ) f = f ', l ≠ l '

0 f = f ', l = l '
N (1,σ weight ) f ≠ f '

⎧

⎨
⎪⎪

⎩
⎪
⎪

wf ', f ,l ',l
I ,D ~

N (−1,σ weight ) f = f '

0 f ≠ f '

⎧
⎨
⎪

⎩⎪

 875 

 876 

At each time step, the activations in the different layers are then updated 877 

as follows; again, the update order is critical. 878 

 879 

 (8) 

Sf ,l (t) = Ef ,l (t)+N(0,σ activation )

I f ,l (t) = N(aI ,σ activation )+ wf ,l, fS ,ls
I ,S S fS ,lS (t)

fS ,lS

∑ + wf ,l, fD ,lD
I ,D DfD ,lD

(t)
fD ,lD

∑

Cf ,l (t) = wf ,l, fS ,ls
C,S S fS ,lS (t)

fS ,lS

∑ + wf ,l, fI ,lI
C,I I fI ,lI (t)

fI ,lI

∑ + N(0,σ activation )

Df ,l (t) = wf ,l, fS ,ls
D,S S fS ,lS (t)

fS ,lS

∑ + N(0,σ activation )

 880 

 881 

At the end of each update cycle, the activations are curtailed to be between 882 

zero and one.  883 


