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Effects of High Strength Concrete on Progressive Collapse Resistance of 1 

Reinforced Concrete Frame 2 

Xiao-Fang Deng1, Shi-Lin Liang2, Feng Fu3, C.Eng, M.ASCE and Kai Qian4 Ph.D, M.ASCE 3 

ABSTRACT 4 

The application of extreme loads such as impact and blast may lead to progressive collapse and the 5 

robustness of a structure must be considered in this context. Although extensive studies had been 6 

carried out over the past decades to study the load resisting mechanism of reinforced concrete (RC) 7 

frames to prevent progressive collapse, the effects of high-strength-concrete (HSC) on progressive 8 

collapse resistance capacity is still unclear. Therefore, six tests of RC frames with different span-to-9 

depth ratio and concrete strength were conducted in present study. Among them, three are HSC frames 10 

and the remaining are normal strength concrete frames. It was found that the use of HSC could further 11 

enhance the compressive arch action (CAA) capacity, especially for those with low span-to-depth ratio. 12 

On the other hand, HSC can reduce the tensile catenary action (TCA) capacity at large deformation 13 

stage, primarily because of higher bond stress between concrete and rebar, leading to earlier fracture of 14 

the rebar. The analytical results from the model were compared with the test results. It was found that 15 

the refined CAA model could accurately predict the CAA capacity of NSC frames, but not for HSC 16 

frames. Moreover, existing model is hard to predict the CAA capacity of the frames with relatively 17 

small span-to-depth ratio (less than 7) accurately.  18 
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INTRODUCTION 32 

Buildings may subject to initial local damage due to intended or accidental events, such as the loss of 33 

one or a couple of columns. However, in ordinary civilian building design, the column missing is not 34 

well considered in the past design guidelines. Therefore, these buildings may have high risk to 35 

propagate initial local damage disproportionately to a large area of the building or even cause entire 36 

collapse. The terminology of progressive collapse is first proposed after the collapse of Ronan Point in 37 

1968. The collapse of Murrah Federal Building in 1995 and Twin-Tower of World Trade Center in 38 

2001 re-sparkled the interest on progressive collapse in academic and practical engineer’s communities. 39 

Several design codes or guidelines (BS8110 1997; BSI 2006; GSA 2009; ASCE/SEI 7 2010; DoD 40 

2009; ACI-318 2014) were issued for progressive collapse design using so-called explicitly or 41 

implicitly design methods. Among them, Alternate Load Path method is commonly accepted for 42 

evaluation of the capacity of a building to mitigate progressive collapse due to its threat independent 43 

feature.  44 

       Based on Alternate Load Path method, extensive tests had been carried out in the past decades to 45 

understand the capacity of reinforced concrete (RC) frames to resist progressive collapse. These tests 46 

could be categorized into three groups: multi-story tests (Yi et al. 2008; Sasani et al. 2011a; Xiao et al. 47 

2015; Qian and Li 2017; Qian et al. 2019), single-story beam-column or beam-column-slab 48 

subassembly tests (Su et al. 2009; Orton et al. 2009; Qian and Li 2012a; FarhangVesali et al. 2013; Yu 49 

and Tan 2013a; Lew et al. 2014; Valipour et al. 2015a; Qian et al. 2016; Ren et al. 2016; Peng et al. 50 

2017; Qian et al. 2018), and single-story beam-column connections tests (Qian and Li 2012b; Yu et al. 51 

2014). Yi et al. (2008) carried out a 1/3-scaled three-story planar frame test to evaluate the load 52 

resisting mechanism of RC frame subjected to the loss of an interior column. Compressive arch action 53 

(CAA) and tensile catenary action (TCA) were found to be the primary mechanisms in resisting 54 
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progressive collapse at different stages. Sasani et al. (2011a) conducted a real time removal test to 55 

study the dynamic response of an 11-story building, which was planned to be demolished, subjected to 56 

sudden removal of four adjacent ground columns due to explosives. Flexural beam action and 57 

Vierendeel action were identified as the two primary load resisting mechanisms. Xiao et al. (2015) 58 

experimentally investigated the dynamic response of a half-scaled three-story RC building, which is 59 

deliberately built for progressive collapse study, subjected to different column missing scenarios. The 60 

load resisting mechanism shifted from flexural moment resisting to TCA mechanism was observed 61 

when two ground exterior columns were removed simultaneously. Qian and Li (2017) tested a series of 62 

six three-story frames with or without infilled walls to quantify the effects of masonry infilled walls on 63 

load resisting mechanism and capacity of RC frames to resist progressive collapse. It was found that 64 

masonry infilled walls enhance the initial stiffness and increase the first peak load significantly. 65 

Moreover, the crushing of masonry infilled walls will not jeopardize the development of TCA of the 66 

beam at large deformation stage. Qian et al. (2019) also tested another series of five three-story frames 67 

to quantify the efficiency of using steel bracings in strengthening RC frames to mitigate progressive 68 

collapse. Different configurations of steel bracings were applied. It was found that compressive 69 

bracings prone to out-of-plane buckling and have little contribution to the collapse resistance, while 70 

tensile bracings may fracture before the development of TCA.  71 

       Actually, majority of existing tests on progressive collapse investigation were focused on beam-72 

column substructures or beam-column-slab substructures. This is because it is easier to replicate the 73 

boundary conditions and measure the response. Dynamic effects and dynamic load increase factor of 74 

RC frames subjected to sudden column removal scenario were also investigated (Qian and Li 2012b; 75 

Yu et al. 2014; Peng et al. 2017). These literatures documented that the failure mode and resistance of 76 

the specimens were similar to their counterparts tested in a static test manner. Moreover, the behavior 77 

of beam-column connections subjected to different column missing scenarios were evaluated 78 

experimentally by Yap and Li (2011) and Qian and Li (2012c), which could provide sufficient 79 

evidence for the level of confidence in simplification of the boundary conditions in substructure tests.  80 
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        The load resisting mechanisms of bare RC frames subjected to middle column missing scenario 81 

were quantified by pushdown test methods (Su et al. 2009; FarhangVesali et al. 2013; Valipour et al. 82 

2015a). Su et al. (2009) concluded that loading rate has little effect on CAA capacity. FarhangVesali et 83 

al. (2013) reported that longitudinal reinforcement ratio and stirrup configuration have a minor effect 84 

on the CAA. Valipour et al. (2015a) experimentally investigated the effects of concrete strength 85 

(ranging from 18 MPa to 67 MPa) on the CAA of RC beam assemblages. The test results demonstrated 86 

that the concrete strength has significant influence on the peak load capacity (CAA capacity) of the 87 

tested specimens. The stiffness of supports also has significant effects on mobilization of CAA. 88 

Valipour et al. (2015b) filled knowledge gap in progressive collapse response of RC frame using steel 89 

fiber to replace conventional transverse reinforcements, the test results demonstrated that the 90 

replacement had little effects on the development of TCA. The role of slabs, compressive membrane 91 

action (CMA) and tensile membrane action (TMA) developed in RC slabs were evaluated (Qian and 92 

Li 2012a; Qian et al. 2016; Ren et al. 2016). It was found that, the CMA and TMA bring great benefit 93 

to the resistance. The CMA capacity was affected by the stiffness of boundary elements and strength 94 

of concrete significantly while the TMA capacity was mainly affected by the amount of slab 95 

reinforcement in bottom layer (continual).  Moreover, improving CMA of precast concrete slabs to 96 

resist wheel loading using additional transverse confining system (i.e., straps, cross-bracing and a 97 

combination of straps and cross-bracing) was reported by Valipour et al. (2015c). It was found that the 98 

peak load capacity could be enhanced significantly due to considerable restraint provided by the 99 

confining system. Furthermore, the effects of seismic design and detailing on behavior of RC moment 100 

frames to resist progressive collapse were evaluated (Choi and Kim 2011, Qian and Li 2012c, Kim and 101 

Choi 2016, Lu et al. 2017). Choi and Kim (2011) and Kim and Choi (2016) indicated that seismically 102 

designed specimens performed much better than the corresponding non-seismically designed 103 

specimens as seismically designed specimens had higher reinforcement ratio and transverse 104 

reinforcement installed at joint zones, which delayed the failure of exterior joints.  Lu et al. (2017) 105 

found that for normal strength concrete frames, seismically design could increase the beam 106 
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longitudinal reinforcement ratio, which resulted in a much larger resistance in both beam and catenary 107 

action. However, the increase of beam depth could improve the resistance of beam action but not the 108 

catenary action. Moreover, the results from Kim et al. (2011) indicated that rotational friction damper, 109 

which was normally for mitigating seismic or wind load, was also effectively improve the behavior of 110 

RC frames to mitigate progressive collapse.    111 

        Although above studies had deeply improved the understanding on load resisting mechanisms of 112 

RC frames to resist progressive collapse, these studies are mainly focused on normal strength concrete 113 

(NSC). As high strength concrete (HSC) has advantages in load resisting capacity enhancement, 114 

smaller member size, less self-weight etc, HSC is widely used in high-rise buildings in the past 115 

decades. Moreover, the high-rise buildings have higher possibility for terrorism attacks due to their 116 

higher social impact caused by attacks. Thus, it is necessary to evaluate the behavior of reinforced 117 

HSC frames to resist progressive collapse and to identify the effects of HSC on load resisting 118 

mechanism of RC frames. For this purpose, a series of six RC frames, using both HSC and NSC, were 119 

designed and tested under pushdown loading regime. The accuracy of existing analytical models in 120 

predicting CAA and TCA of HSC frames was also evaluated. 121 

DESCRIPTION OF TEST PROGRAM 122 

Experimental specimens 123 

Six half-scaled beam-column sub-assemblages were designed and constructed to evaluate the effects of 124 

HSC on behavior of RC frames to resist progressive collapse. These specimens include three HSC 125 

specimens (HSC-13, HSC-11, and HSC-8) and three NSC specimens (NSC-13, NSC-11, and NSC-8). 126 

The specimens are denoted flows below conventions:  127 

1. ‘HSC’ represents specimens using HSC and ‘NSC’ represents specimens using NSC; 128 

2. Number after hyphen denotes span/depth ratio, which is defined by the ratio of clear beam span 129 

to its depth.  130 
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Fig. 1 shows the dimension and reinforcement details of specimen NSC-11 while Table 1 lists the key 131 

properties of the specimens. As shown in Fig. 1, Specimen NSC-11 was non-seismically designed in 132 

accordance with ACI 318-14 (2014) with clear span of 2750 mm and beam cross-section of 250 133 

mm×150 mm. The bottom rebar is continuous 2T12 reinforcement, while curtailment is considered for 134 

top rebar. The beam transverse reinforcement is R6@100 mm throughout the whole beam without 135 

transverse reinforcements in the joint zone. The clear cover of the concrete for beam and column are 136 

both 15 mm. T12 and R6 herein represent deformed reinforcement with diameter of 12 mm and plain 137 

reinforcement with diameter of 6 mm, respectively. Two beams, one middle column stub, and two 138 

enlarged side column stubs were casted. The enlarged side column has dimension of 400 mm×400 mm 139 

to replicate fixed boundary conditions following previous studies (Orton et al. 2009; Su et al. 2009; Yu 140 

and Tan 2013a).  141 

        As tabulated in Table 1, Specimens NSC-13 and NSC-8 have similar reinforcement ratio and 142 

beam cross-section to Specimen NSC-11 but clear span of 3250 mm and 2000 mm, respectively. 143 

Specimens HSC-13, HSC-11, and HSC-8 have identical dimensions and reinforcement details to NSC 144 

counterparts but high strength concrete is used. According to cylindrical compression tests, at the day 145 

of test, the recorded concrete compressive strength of NSC-13, NSC-11, NSC-8, HSC-13, HSC-11, 146 

and HSC-8 are 30.5 MPa, 31.1 MPa, and 31.7 MPa, 59.3 MPa, 61.2 MPa, and 60.5 MPa, respectively. 147 

Based on tensile splitting tests, the tensile strength of the concrete of NSC-13, NSC-11, NSC-8, HSC-148 

13, HSC-11, and HSC-8 are 2.9 MPa, 3.0 MPa, 2.9 MPa, 6.0 MPa, 6.1 MPa, and 6.1 MPa, respectively. 149 

Moreover, the properties of reinforcement are tabulated in Table 2.   150 

Test Setup and instrumentations 151 

Similar to previous studies (Orton et al. 2009; Su et al. 2009; Yu and Tan 2013a), as shown in Fig. 2a, 152 

fixed boundary condition was replicated at the side column by using two rollers and one bottom pin. 153 

To eliminate the redundant horizontal restraints from the bottom pin, a series of steel rollers were 154 

placed below the pin support. Therefore, the side columns were statically determinate and the 155 
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horizontal and vertical reaction force could be measured directly. It is intentionally designed with no 156 

middle column at ground level due to desired element removal before applying vertical load. The 157 

column removal effect is implemented through a hydraulic jack with a downward stroke of 700 mm. 158 

Displacement-controlled method was adopted with a rate of 0.5 mm/s throughout the tests.  To prevent 159 

out-of-plane failure, a specially designed steel assembly was installed below the hydraulic jack. As 160 

illustrated in Fig. 2b, two load cells were installed above and below the hydraulic jack to measure the 161 

vertical load (average value was used for final test results records hereafter). In addition, load cell was 162 

installed below each pin support to monitor the load redistribution of the columns. 163 

Tension/compression load cell (Item 5 in Fig. 2b) was installed in each horizontal roller to measure the 164 

horizontal reaction force. A series of linear variable displacement transducers (LVDTs) were installed 165 

along the beam (D1 to D7) to monitor the deformation shape during test. LVDTs (H1 and H2) were 166 

also installed horizontally at the side columns to determine the stiffness of the horizontal restraints as 167 

gap allowance was inevitable when installation of the appliance. Strain gauges were mounted along the 168 

length of beam longitudinal reinforcements before casting.     169 

EXPERIMENTAL RESULTS  170 

General behavior  171 

        NSC-series: Fig. 3a shows the vertical load-displacement curve of NSC-series specimens and Fig. 172 

4a shows the development of crack pattern of NSC-11. For NSC-11, first crack occurred at the beam 173 

ends when the middle joint displacement (MJD) reached 9 mm. When the MJD reached 36 mm, the 174 

yield load of 37 kN was obtained. However, the calculated yield strength due to pure bending 175 

resistance was 35 kN, which was less than the measured one. This was mainly because of the inherent 176 

compressive axial force in reality is not taken into consideration in the analytical model. Further 177 

increasing the MJD, the CAA capacity of 52 kN was observed at an MJD of 90 mm, which is called 178 

peak displacement in this study. As shown in Fig. 4a, at this loading stage, concrete crushing was 179 

observed at the beam ends. The ratio of CAA capacity to yield load is about 1.41, which is due to 180 
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strain hardening of reinforcements and the mobilization of CAA. After that, the load resistance began 181 

to drop gradually due to concrete crushing and second-order effects. However, the load resistance 182 

began to re-ascend when the MJD reached 288 mm (about 0.1ln) due to the start of TCA. As shown in 183 

Fig. 4a, penetrated cracks occurred at this stage. Further increasing displacement, more penetrated 184 

cracks were observed which were uniformly distributed along the beam length. The drop of load 185 

resistance was due to fracture of bottom rebar in the region of the beam-middle column interface. The 186 

TCA capacity of 94 kN was obtained at an MJD of 712 mm. After that, the load resistance suddenly 187 

dropped significantly because the complete fracture of the top rebar near the beam-middle column 188 

joint. Fig. 5 shows the failure mode of NSC-11. As shown in the figure, severe concrete crushing 189 

occurred at the beam ends while rebar fracture occurred primarily at beam end near middle joint region. 190 

Penetrated cracks were uniformly distributed along the beam.  191 

        For NSC-13 and NSC-8, similar crack pattern and global behavior were observed. The yield load 192 

of NSC-13 and NSC-8 was 33 kN and 53 kN, respectively. The calculated yield load of NSC-13 and 193 

NSC-8 was 30 kN and 48 kN, respectively based on the analytical model. Similarly, the calculated 194 

yield load is less than the measured one, which is primarily due to ignorance of compressive axial 195 

force. For NSC-13, the CAA capacity of 43 kN was measured at an MJD of 108 mm. However, for 196 

NSC-8, the CAA capacity was 77 kN, which was about 179 % and 148 % of that of NSC-13 and NSC-197 

11, respectively. Moreover, the TCA capacity of NSC-13 and NSC-8 was 81 kN and 88 kN, 198 

respectively whereas the deformation capacity of NSC-13 and NSC-8 was 731 mm and 581 mm, 199 

respectively. Although the TCA capacity of NSC-13 was less than that of NSC-11 and similar 200 

deformation capacity was measured for them as shown in Fig. 3a. The test of NSC-13 was forced to 201 

stop due to limited stroke capacity of the jack, rather than the failure of the specimen. If the jack had 202 

larger stroke capacity, the deformation capacity and TCA capacity of NSC-13 would have been larger. 203 

Figs. 6 and 7 show the failure modes of NSC-13 and NSC-8. In general, the failure mode of NSC-13 204 

was similar to that of NSC-11. However, different to NSC-11 and NSC-13, the diagonal shear cracks 205 
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along the beams of NSC-8 were observed, rather than flexural cracks perpendicular to the beam axis. 206 

This indicated the shear failure in this test.  207 

        HSC-series: Fig. 3b shows the vertical load-middle joint displacement curve of HSC-series 208 

specimens. For HSC-11, first cracks occurred at the beam ends when the MJD reached 15 mm. At an 209 

MJD of 28 mm, yield load of 42 kN, which was 114 % of that of NSC-11, was obtained. Further 210 

increasing MJD to 74 mm, the CAA capacity of 60 kN, which was 115 % of that of NSC-11, was 211 

achieved. The TCA capacity and deformation capacity of HSC-11 were 80 kN and 663 mm 212 

respectively, less than these of NSC-11. The smaller deformation capacity in HSC-11 is mainly due to 213 

high strength concrete resulted in high bond strength between reinforcement and concrete, which led to 214 

stress concentration and rebar fracture in the tests. Fig. 4b shows the crack pattern of HSC-11. 215 

Compared to NSC-11, it can be found that the high strength concrete has little effects on crack 216 

development. The failure mode of HSC-11 is shown in Fig. 8, which is similar to that of NSC-11. As 217 

shown in Fig. 3b and Table 3, due to larger span/depth ratio, HSC-13 only achieved yield load and 218 

CAA capacity about 86 % and 80 % of these of HSC-11. Similar to normal strength concrete, HSC-13 219 

experienced larger deformation. The lower TCA capacity of HSC-13 was caused by the insufficient 220 

stroke capacity during the tests. On the contrast, for HSC-8, its yield load capacity and CAA capacity 221 

were 133 % and 152 % of these of HSC-11. Different to rest specimens, the TCA capacity of HSC-8 is 222 

less than its CAA capacity, which will be further discussed in analytical section of this paper. The 223 

failure mode of HSC-13 and HSC-8 are illustrated in Figs. 9 and 10, respectively. For HSC-13, only 224 

bottom rebar near the middle joint were fractured. For HSC-8, both bottom and top rebar near the 225 

middle joint were fractured. 226 

Horizontal reaction 227 

The horizontal reaction force v.s. middle joint displacement curves are shown in Fig. 11. As shown in 228 

Fig. 11a, the horizontal compressive force increased with the increase of vertical displacement. For 229 

NSC-11, the horizontal compressive force was -70 kN at yield displacement, which explains the reason 230 
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that the calculated yield load is less than the measured one. The maximum horizontal compressive 231 

force was -178 kN at an MJD of 180 mm, which was greater than the corresponding peak displacement.  232 

Then, the horizontal compressive force began to decline with further increase of the displacement. The 233 

horizontal compressive force transferred to horizontal tensile force after the MJD of 356 mm. The 234 

maximum horizontal tensile force of 154 kN was measured at the MJD of 699 mm. Similar behavior 235 

was observed for NSC-13 and NSC-8. The maximum horizontal compressive force of NSC-13 and 236 

NSC-8 were -153 kN and -202 kN, respectively. Thus, when span/depth ratio reduced from 11 to 8, the 237 

maximum horizontal compressive force increased by 13.4 %. Conversely, increasing the span/depth 238 

ratio from 11 to 13, the maximum horizontal compressive force decreased by over 14.0 %. Moreover, 239 

the maximum horizontal tensile force of NSC-13 and NSC-8 were 148 kN and 147 kN, respectively. 240 

Thus, span/depth ratio will not affect the development of horizontal tensile force.  241 

        As shown in Fig. 11b, the maximum horizontal compressive force of HSC-11, HSC-13, and HSC-242 

8 were -259 kN, -233 kN, and -321 kN, respectively. Thus, when span/depth ratio decreased from 11 243 

to 8, the maximum horizontal compressive force was increased by 23.9 %, which was greater than that 244 

of the NSC specimens. For the maximum horizontal tensile force, similar to NSC specimens, the 245 

span/depth ratio will not affect it significantly. 246 

Deflection shape of beams 247 

Fig. 12 shows the beam deflection shape of NSC-11 in accordance with different critical stages: yield 248 

load capacity, CAA capacity, onset of TCA, fracture of rebar, and ultimate deformation. As shown in 249 

the figure, from the beginning of the test, the beams exhibit double-curvature deflection shape. Before 250 

fracture of the first rebar near the middle joint, the beams’ deformation was almost symmetric. Then, 251 

the middle joint continued to rotate and the damage prone to be concentrated in the left side of the 252 

middle joint due to the weld failure between the top of the middle stub and the steel column, which 253 

released the rotational restraints at the middle joint. Moreover, at the final stage of test, the chord 254 

rotation, which is defined as ratio of MJD to beam span, was compared with the beam deformation 255 
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shape. It can be seen that the chord rotation will over-estimate the actual end rotation of the beam end 256 

near the side columns while it could estimate the rotation of the beam end near the middle joint well. 257 

For other specimens, similar results were observed. 258 

Strain gauge results 259 

Figs. 13a and b show the variation of strain gauge readings along beam top and bottom longitudinal 260 

reinforcements of NSC-11, respectively. As shown in the figure, the bottom reinforcement near the 261 

middle joint was first yielded. At CAA stage, plastic hinges were formed at both beam ends. However, 262 

the compressive strain in both top and bottom rebar began to decline after onset of the TCA stage. At 263 

ultimate load stage, no compressive strain was measured at both top and bottom beam longitudinal 264 

reinforcement. As shown in Fig. 14, the strain variation of HSC-11 was quite similar to that of NSC-11. 265 

However, as shown in Fig. 15, at ultimate load stage, considerable compressive strain was still 266 

measured at bottom reinforcement of HSC-8. This could be explained as the high bond between 267 

concrete and rebar as well as low span-depth ratio resulted in earlier fracture of longitudinal rebar and 268 

delayed the development of tensile strain in rebar.  269 

ANALYSIS AND DISCUSSIONS 270 

Dynamic response of tested specimens 271 

As progressive collapse is a dynamic event due to the sudden column removal, it was worthwhile to 272 

evaluate the dynamic capacity of test specimens. Based on the investigation from Qian and Li (2015a, 273 

b) and Tsai (2010), an energy-based simplified single-degree-of-freedom (SDOF) model, first 274 

proposed by Izzuddin et al. (2008), is accurate for dynamic assessment. Thus, in this study, the energy-275 

based model was utilized to assess the dynamic capacity of specimens based on the measured quasi-276 

static load-displacement curves from the tests. The mathematic equations were expressed as:  277 

                                               
0

1
( ) ( )

du

d d NS

d

P u P u du
u

                                                   (1) 278 
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where ( )dP u  and ( )NSP u  are the dynamic capacity and the nonlinear static loading estimated at the 279 

displacement demand u, respectively.  280 

Fig. 16 shows the dynamic response curves of tested specimens. As shown in the figure, the 281 

dynamic ultimate capacity of NSC-13, HSC-13, NSC-11, HSC-11, NSC-8, and HSC-8 were 44 kN, 43 282 

kN, 53 kN, 53 kN, 64 kN, and 78 kN, respectively. Thus, the higher strength concrete has little effects 283 

on dynamic ultimate capacity of the specimens with moderate or large span/depth ratio. This is 284 

primarily because TCA governs the failure. However, for specimens with small span/depth ratio, high 285 

strength concrete could increase the dynamic ultimate capacity significantly as CAA governs the load. 286 

De-composition of the load resistance contribution from axial force and bending moment 287 

To de-composite the resistance contribution from the axial force and bending moments, a series of 288 

analyses were carried out. As shown in Fig. 17, only left bay was extracted for analysis due to 289 

symmetry. The load resistance P could be determined as the summation of the vertical components of 290 

the shear force (V) and axial force (N) at the middle joint when the MJD was δ.  291 

                                                                         s( )cosiP nN V                                       (2) 292 

where   is the rotation of the beam end near the middle joint and can be determined by the vertical 293 

displacements ( 4 34( )
arctan

D D

l


 
  

 
 ); D3 is the vertical displacement measured at the position 294 

with l/4 from the middle joint, and D4 is the MJD; l is beam span length.  295 

As shown in Fig. 17, N and V could be determined by the measured horizontal and vertical 296 

reaction force at the supports: 297 

                                                           ( tan )cosL t bN F H H                                         (3) 298 

( sin ) / cosLV F N                                       (4) 299 
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Therefore, the bending moment at the beam end near the middle column (MM) and the one near 300 

the side column (MS) could be expressed as: 301 

( 0.35) ( 0.35)M L t bM F l H H                                  (5) 302 

0.2 0.35 0.35S L t bM F H H                                           (6) 303 

where Ht and Hb are the horizontal reaction force at the upper roller and bottom roller, respectively; FL 304 

is the vertical reaction force at the left side column. 305 

NSC-11, HSC-11, NSC-8 and HSC-8 were selected to show the de-composition of load resistance, 306 

as shown in Fig. 18. As shown in the figure, initially the contribution from axial force is negative due 307 

to development of compressive force at CAA stage. At this stage, the load resistance mainly attributed 308 

to the shear force. When tensile force mobilized at TCA stage, the contribution of axial force increased 309 

with increase of MJD. However, as shown in the figure, the contribution from shear force is still 310 

significant although the contribution from shear force is decreasing with the increase of MJD. Thus, it 311 

is not correct to assume the load resistance purely provided from tension force of reinforcement at 312 

TCA stage.   313 

Figs. 19a, b, c and d show the variation of bending moment of NSC-11, HSC-11, NSC-8 and 314 

HSC-8, respectively. As shown in the figure, the bending moments were much larger than expected 315 

pure flexural induced bending moments due to compressive force developed in the beams. Moreover, 316 

the maximum bending moment and maximum compressive axial force achieved at the same MJD. For 317 

NSC-11, the maximum bending moments near the middle column and near the side column were 46.7 318 

kN·m and 48.7 kN·m, respectively. Compared with NSC-11, the maximum bending moments of HSC-319 

11 were increased by 36.2 % and 38.8 %, respectively. Similarly, compared to NSC-8, the bending 320 

moment near the middle column and side column of HSC-8 were increased by 34.3 % and 12.2 %, 321 

respectively. 322 
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The measured M-N curves of NSC-11, NSC-8, HSC-11, and HSC-8 were presented in Figs. 20, 323 

21, 22, and 23, respectively. It was found that the M-N curves were similar to the theoretical M-N 324 

curves for both NSC and HSC specimens.  When the bending moment reached its maximum value, the 325 

bending moment began to decrease as the axial force changed from compression to tension at large 326 

deformation stage. As shown in the figure, even the axial force in tension (catenary action kicked in), 327 

the M-N curves agreed with the theoretical ones well.  328 

Assessment of the accuracy of existing CAA models  329 

       As a favorable alternate load path to resist progressive collapse due to its low demand in 330 

deformation, CAA has been widely studied theoretically. Based on plastic theory, Park and Gamble 331 

(2000) proposed a classical model to calculate the CMA in RC slabs. The Park and Gamble (2000)’s 332 

model can be further used to predict CAA capacity in RC beam as the CMA and CAA share similar 333 

merits. As shown in Fig. 24, the CAA capacity P can be given as: 334 

 2
 = 

s m

CAA

M M N
P

L





 
                                     (7) 335 

where Ms and Mm are the bending moments at the beam-column interface; N is the axis force in beam; 336 

L is the total span of the double-bay beam; β is the ratio of the net span to the total span L, which is 0.5 337 

here; δ is the vertical displacement in the middle column stub. After stringent derivation, which can be 338 

found in Park and Gamble (2000) in detail, P can be expressed as: 339 
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where h and b are the beam depth and beam width, respectively; β1 is the ratio of the depth of the 343 

concrete equivalent rectangular stress block to the depth of neutral-axis; ε is the axial strain of the 344 

double-bay beam; t is the axial movement of the side column stub; Ts and Tm are the steel tensile forces 345 

at side beam-column interface and middle beam-column interface, respectively; Ts′ and Tm′ are the 346 

steel compressive forces at side beam-column interface and middle beam-column interface, 347 

respectively; fc' is the concrete cylinder compression strength; h0 is the effective depth of the beam; as 348 

is the distance from the centroid of compressive steel to the concrete compression surface; Ec is the 349 

concrete elastic modulus; K is the lateral stiffness. 350 

To evaluate the accuracy of the model, 45 specimens from existing tests (Su et al.2009, Choi and 351 

Kim 2011, Sasani et al. 2011b, FarhangVesali et al. 2013, Valipour et al. 2015a, Yu and Tan 2013b, 352 

Yu and Tan 2014, Qian et al. 2015, Alogla et al. 2016, Ren et al. 2016) were used for assessment. 353 

Table 4 presents the key parameters and analytical results. As shown in Fig. 25a, the mean value and 354 

standard deviation of the ratio of measured CAA capacity to the calculated one based on Park and 355 

Gamble (2000) were 1.37 and 0.38, respectively. Thus, Park and Gamble (2000)’s model may 356 

underestimate the CAA significantly. Similar conclusions were found by Lu et al. (2018). To reveal 357 

the reasons for this underestimation, the measured peak displacements (corresponding CAA capacity) 358 

were substituted into the model. As shown in Fig. 25b, the mean value and standard deviation of the 359 

ratio of the measured CAA to the calculated one were 1.10 and 0.23, respectively. Therefore, the 360 

underestimation of Park’s model was mainly due to improperly assumption of the peak displacement 361 

as a constant value (δ=0.5h). To improve the accuracy of Park and Gamble (2000)’s model, Lu et al. 362 

(2018) conducted comprehensive parametric studies based on validated finite element model (FEM). A 363 

regression model of δ=0.0005L2/h was proposed by Lu et al. (2018). The calculated peak 364 
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displacements of the specimens are compared with the measured ones in Table 4. As shown in the 365 

table, in general, the measured displacements are larger than the calculated ones, especially for 366 

specimens with span-to-depth ratio less than 7, which could be explained as the regression model was 367 

mainly calculated based on specimens with larger span-to-depth ratio. As shown in Fig. 25c, relied on 368 

Lu et al. (2018)’s model, the mean value and standard deviation of the ratio of the measured CAA to 369 

the analytical one was 1.04 and 0.23, respectively. If only look at the specimens with span-to-depth 370 

ratio less than 7, the mean value was 1.16. Therefore, the regressed equation is more favorable for 371 

specimens with relatively larger span-to-depth ratio (greater than 7).  Moreover, if we only look at 372 

HSC-series specimens in this study, the calculated CAA capacity of HSC-8, HSC-11, and HSC-13 was 373 

112 %, 114 %, and 114 % of the measured one, respectively. Thus, Lu et al. (2018)’s model may 374 

considerably overestimate the CAA capacity for the frames with high strength concrete as the 375 

regression model (δ=0.0005L2/h) did not include the parameter of concrete strength. 376 

Assessment of the accuracy of existing TCA models 377 

       As the last line of defense in resisting progressive collapse, TCA is undoubtedly the most 378 

important mechanism to provide alternate load path. To effectively predict TCA capacity, Yi et al. 379 

(2008), Su et al. (2009), and Yu and Tan (2013b) proposed simplified TCA models. In their models, 380 

progressive collapse was assumed to be resisted by the tensile force in beam rebar. However, the 381 

contribution of beam rebar for TCA capacity is different in different models. In Yi et al. (2008)’s 382 

model, both the top and bottom rebar of beam are deemed to provide resistance. However, in Su et al. 383 

(2009)’s model, only the bottom rebars are considered to provide resistance. Conversely, Yu and Tan 384 

(2013b) assumed that the TCA capacity is purely provided by the top rebars. In this evaluation study, 385 

the deformation capacity of each specimen is assumed to be 10% of the total span of the double-bay 386 

beam, in accordance to DoD (2009). The TCA model of Yi et al. (2008), Su et al. (2009) and Yu and 387 

Tan (2013b) can be expressed as Eqs. 10 -12, respectively. 388 

' = 2 ( )sinTCA st y sb yP A f A f                                    (10) 389 
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' = 2 sinTCA sb yP A f                                                (11) 390 

 = 2 sinTCA st yP A f                                                 (12) 391 

where Ast and Asb are the area of top and bottom rebars, respectively; fy and fy′ are the yield 392 

strength of top and bottom rebars, respectively; ψ is a strain adjustment coefficient, and ψ=0.85; α is 393 

the chord rotation of beam;   is the angle between the connection of top rebar at the side column stub 394 

and bottom rebar at the middle column stub and the horizontal line.  395 

         A database consists of 30 specimens including the tests from literatures (Su et al. 2009, Yu and 396 

Tan 2013b, Yu and Tan 2014, Qian et al. 2015, Alogla et al. 2016, Ren et al. 2016) and tested 397 

specimens in this study was utilized to validate the reliability of the TCA models mentioned above. Fig. 398 

26 shows the comparison of the measured TCA capacity with the calculated one. As shown in the 399 

figure, the mean ratio of the measured TCA capacity to the calculated one based on the models of Yi et 400 

al. (2008), Su et al. (2009), and Yu and Tan (2013b) was 1.06, 1.43 and 1.60, respectively. The 401 

standard deviation was 0.28, 0.42 and 0.53, respectively. Thus, among them, the model of Yi et al. 402 

(2008) gives the best prediction. The model of Su et al. (2009) neglected the contribution from top 403 

rebars resulted in conservative prediction. However, as the model of Yu et al. (2013b) assuming the 404 

bottom rebar was completely fractured, which is not in reality, the model may also underestimate the 405 

resistance of TCA significantly.  406 

         For HSC-series specimens, the mean value of the ratio of measured TCA capacity to calculate 407 

one from the models of Yi et al. (2008), Su et al. (2009), and Yu and Tan (2013b) was 0.94, 1.48 and 408 

1.33, respectively. Therefore, different to the specimens using NSC, Yi et al. (2008)’s model 409 

overestimates the TCA capacity of the specimens using HSC slightly. However, as the test data 410 

collected from HSC specimens are very few and it is necessary to carry out further tests on HSC RC 411 

frames to further support the conclusions.  412 

CONCLUSIONS 413 
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Based on the results of the experimental and analytical investigation presented in this paper, the 414 

following conclusions are drawn: 415 

1. Test results indicated that for normal strength concrete frames, the CAA capacity and TCA 416 

capacity increase by 79.0 % and 8.6 %, respectively, when the span-to-depth ratio decreased 417 

from 13 to 8. For the frames with high strength concrete, the CAA capacity and TCA capacity, 418 

increase by 89.5 % and 13.9 % respectively, when the span-to-depth ratio decreased from 13 to 419 

8. Therefore, the span-depth-ratio has significant effect on CAA capacity but not for TCA 420 

capacity.  421 

2. Based on the test results, high strength concrete could increase the CAA capacity of the frame 422 

with span-to-depth ratio of 8, 11, and 13 by 18. 2 %, 15.4 %, and 11.6 %, respectively. Thus, 423 

high strength concrete is beneficial to enhance CAA capacity, especially for the frames with 424 

low span-to-depth ratio. However, the TCA capacity of specimen HSC-8, HSC-11, and HSC-425 

13 only achieved 93.2 %, 87.2 %, and 88.9 % of that of NSC-8, NSC-11, and NSC-13, 426 

respectively. Thus, the specimens with high strength concrete may detriment the TCA capacity 427 

due to high bond strength between reinforcements and concrete, which prone to premature the 428 

fracture of reinforcements. However, it should be noted that non-seismically designed 429 

specimens were tested. For seismically designed and detailed specimens, more tests should be 430 

carried out on evaluation of the HSC effects.  431 

3. Analytical evaluation indicated that Park’s model will underestimate the CAA capacity 432 

significantly due to improperly assumption of the peak displacement as 0.5h. However, the 433 

agreements could be improved for both NSC and HSC specimens significantly when the peak 434 

displacement assumes to be 0.0005L2/h, in accordance to the study of Lu et al. (2018). 435 

However, the model proposed by Lu et al. (2018) is more suit for RC frames with relatively 436 

larger span-to-depth ratio (larger than 7). And Lu et al. (2018)’s model may overestimate the 437 

CAA capacity of HSC-series specimens significantly due to the regression model did not 438 

included the effects of concrete strength. 439 
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4. Although Yi et al. (2008)’s model produced the best prediction for TCA capacity, it slightly 440 

underestimates the TCA capacity of NSC frames but overestimate that of HSC frames. 441 

Although the models proposed by Yu and Tan (2013b) and Su et al. (2009) underestimate the 442 

TCA capacity, the reason was different. For Su et al. (2009), the contribution of top 443 

reinforcement is ignored, which disagrees with the test observation. However, for Yu and Tan 444 

(2013b), the contribution of bottom reinforcements is neglected, which is over-conservative. In 445 

reality, the bottom reinforcement may not fracture completely when the deformation reached 446 

10 % of the total length of the double-span beams, which is proposed by the guideline of DoD 447 

(2009).  448 

FUTURE RESEARCH 449 

Based on the test results and conclusions, the future research needed was highlighted. The effects of 450 

HSC on seismically designed specimens should be evaluated in the future as the conclusions from non-451 

seismically designed specimens may not be suitable for seismically designed ones. Moreover, the 452 

effects of different boundary conditions (different column missing scenarios) should be quantified. 453 

Furthermore, the effects of HSC on dynamic response of RC moment frame subjected to suddenly 454 

column removal should be investigated.  455 

DATA AVAILABILITY 456 

Some or all data, models, or code generated or used during the study are available from the 457 

corresponding author by request (data related in the measured curves, photos, etc.). 458 
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 571 

FIGURE CAPTIONS 572 
 573 

Fig. 1. Dimension and reinforcement details of Specimen NSC-11: (a) elevation view; (b) cross 574 

sections 575 

Fig. 2. Test setup and instrumentation layout of the tests: (a) photo; (b) schematic view 576 

Fig. 3. Vertical load-displacement history: (a) NSC-series; (b) HSC-series 577 

Fig. 4. Crack pattern: (a) NSC-11; (b) HSC-11 578 

Fig. 5. Failure mode of Specimen NSC-11 579 

Fig. 6. Failure mode of Specimen NSC-13 580 

Fig. 7. Failure mode of Specimen NSC-8 581 

Fig. 8. Failure mode of Specimen HSC-11 582 

Fig. 9. Failure mode of Specimen HSC-13 583 

Fig. 10. Failure mode of Specimen HSC-8 584 

Fig. 11. Horizontal reaction force-displacement curves: (a) NSC series; (b) HSC series 585 

Fig. 12. Deformation shape of the beams of Specimen NSC-11 at various stages 586 

Fig. 13. Strain gauge results of NSC-11: (a) top beam rebar; (b) bottom beam rebar 587 



 25 

 

Fig. 14. Strain gauge results of HSC-11: (a) top beam rebar; (b) bottom beam rebar 588 

Fig. 15. Strain gauge results of HSC-8: (a) top beam rebar; (b) bottom beam rebar 589 

Fig. 16. Dynamic performance of the specimens 590 

Fig. 17. Relationship of internal forces and the load resistance 591 

Fig. 18. Collapse Resistance contributions from axial and shear force: (a) NSC-11; (b) HSC-11; (c) 592 

NSC-8; (d) HSC-8 593 

Fig. 19. Variations of bending moments v.s. deflections at different cross-section: (a) NSC-11; (b) 594 

HSC-11; (c) NSC-8; (d) HSC-8 595 

Fig. 20. M-N relationship at the beam end of NSC-11: (a) nearby the middle column; (b) nearby the 596 

side column 597 

Fig. 21. M-N relationship at the beam end of NSC-8: (a) nearby the middle column; (b) nearby the side 598 

column 599 

Fig. 22. M-N relationship at the beam end of HSC-11: (a) nearby the middle column; (b) nearby the 600 

side column 601 

Fig. 23. M-N relationship at the beam end of HSC-8: (a) nearby the middle column; (b) nearby the side 602 

column 603 

Fig. 24. Internal Force diagram for derivation of the analytical model of CAA 604 

Fig. 25. Comparison of the measured CAA capacity with calculated one: (a) δ=0.5h; (b) measured δ; 605 

(c) δ=0.0005L2/h  606 

Fig. 26. Comparison of the measured TCA capacity with calculated one: (a) Yi et al. (2008); (b) Su et 607 

al. (2009); (c) Yu and Tan (2013b) 608 
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 643 

Table 1-Specimen properties 644 

Test ID 

Beam clear 

span 

(mm) 

Beam longitudinal reinforcement 

Concrete A-A section B-B section 

Top Bottom Top Bottom 

NSC-8 2000  3T12  2T12  2T12  2T12  Normal strength 

NSC-11 2750  3T12  2T12  2T12  2T12  Normal strength 

NSC-13 3250  3T12  2T12  2T12  2T12  Normal strength 

HSC-8 2000 3T12  2T12  2T12  2T12  High strength 

HSC-11 2750  3T12  2T12  2T12  2T12  High strength 

HSC-13 3250  3T12  2T12  2T12  2T12  High strength 

 645 

Table 2-Material properties of reinforcements 646 

Items 

Nominal 

diameter 

(mm)  

Yield 

strength 

(MPa) 

Ultimate 

strength 

(MPa) 

Elongation 

(%) 

Transverse reinforcement R6 6  348 486 25.4 

Longitudinal 

Reinforcements 

T12 12  438 577 16.6 

T16 16  442 605 16.0 
Note: R6 represents plain bar of with diameter of 6 mm; T12 and T16 represent deformed rebar with diameter of 12 mm and 16 mm, respectively. 647 

 648 

 649 
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Table 3-Test results 650 

Test ID 

Critical displacements 

(mm) 

Critical loads 

(kN)  
MHCF 

(kN) 

MHTF 

(kN) 
YL CAA  TCA YL CAA  TCA 

NSC-8 25  79  581  53  77  88  -202 147 

NSC-11 36  90  712  37 52  94  -178  154 

NSC-13 45  108  731  33 43 81  -153 148 

HSC-8 16  80  547  56  91  82  -321 145 

HSC-11 28  74  663  42 60  80  -259 142 

HSC-13 35  104  701  36 48  72  -233 150 
Note: YL means yielding load capacity; CAA represents CAA capacity; TCA represents TCA capacity; MHCF means maximum horizontal compressive 651 
force; and MHTF means maximum horizontal tensile force. 652 

 653 
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 654 

 655 

Table 4-Summary of key parameters and analytical results of CAA 656 

Test ID 

Lateral 

stiffness 

(kN/m) 

Total 

length       

(mm) 

Span to 

depth 

ratio 

Beam section Beam rebar Material properties Test results Calculated results 

h×b 

(mm×mm)      

Top 

(mm) 

Bottom 

(mm) 

fc'  

(MPa)  

fy 

(MPa)  

Δ 

(mm)  

P   

(kN)  

ΔL 

(mm) 

PδM 
*

 

(kN)  

PδL
# 

(kN)  

Pδp
$

     

(kN)  

This Test NSC-8 1×105  4250  8.0 250×150  3Φ12 2Φ12 31.7  438  78.6  69.2  36.1 69.3  79.2  57.1   

 NSC-11 1×105  5750  11.0 250×150  3Φ12 2Φ12 31.1 438  89.8  46.3  66.1 48.4 52.5   42.2 

 NSC-13 1×105  6750  13.0 250×150  3Φ12 2Φ12 30.5  438  108.1 36.3  91.1 38.1  40.5     35.7 

 HSC-8 1×105  4250  8.0 250×150  3Φ12 2Φ12 60.5  438  80.4  87.6  36.1 84.5 98.2  70.8 

 HSC-11 1×105  5750  11.0 250×150  3Φ12 2Φ12 61.2  438  90.3  56.8  66.1 59.2  65.0  52.3  

 HSC-13 1×105  6750  13.0 250×150  3Φ12 2Φ12 59.3  438  103.8 43.6  91.1 46.6  49.6   43.7  

Su et al. (2009)  A1 1×106  2700  4.1 300×150  2Φ12 2Φ12 25.8  350  48.9  168.0  12.2 130.3  145.3  82.3  

 A2 1×106  2700  4.1 300×150  3Φ12 3Φ12 28.2  350  56.4  221.0  12.2 159.5  180.3 109.9  

 A3 1×106  2700  4.1 300×150  3Φ14 3Φ14 31.2  340  76.4  246.0  12.2 180.3  215.1  138.3  

 A4 1×106  2700  4.1 300×150  2Φ12 1Φ14 23.0  350  65.0  147.0  12.2 104.6  126.7  68.0  

 A5 1×106  2700  4.1 300×150  3Φ12 2Φ12 26.5  350  70.7  198.0  12.2 132.7  160.3  93.9  

 A6 1×106  2700  4.1 300×150  3Φ14 2Φ14 28.6  340  69.2  226.0  12.2 159.5  188.0  116.8  

 B1 1×106  4200  6.6 300×150  3Φ14 3Φ14 18.6  340  100.0  125.0  29.4 91.3  107.6  80.8  

 B2 1×106  5700  9.1 300×150  3Φ14 3Φ14 19.3  340  102.0  82.9  54.2 64.6  75.7   60.0  

 B3 1×106  5700  9.1 300×150  3Φ14 2Φ14 21.1  340  85.5  74.7  54.2 63.0  68.6 51.8  

 C1 1×106  2700  6.1 200×100  2Φ12 2Φ14 15.9  350  33.7  60.9  18.2 44.5  46.7   35.7  

 C2 1×106  2700  6.1 200×100  2Φ12 2Φ12 16.8  350  33.5  64.9  18.2 45.3  47.5 36.0  

 C3 1×106  2700  6.1 200×100  2Φ12 2Φ12 16.3  350  28.7  68.6 18.2 45.6  47.1   35.8 

Choi et al. (2011) 5S N/A 3315  6.7 225×150  5Φ10 2Φ10 17.0  493  103.0  39.9  24.4 57.6  71.7   57.2 

 5G N/A 3325  8.2 185×150  2Φ10 2Φ10 17.0  493  84.5  22.8  29.9 30.6  48.2   30.3  

 8S N/A 3315  7.7 195×140  5Φ10 3Φ10 30.0  493  59.3  54.1  28.2 70.0  76.6   61.6  

 8G N/A 3325  9.4 160×125  2Φ10 2Φ10 30.0  493  59.0  23.7  34.5 29.4  33.4     26.3  

Sasani et al. (2011)  P1 N/A 4170  10.4 190×190  5Φ9.5 2Φ9.5 41.0  516  41.0  71.8  45.8 44.9   60.7    44.1  

Yu and Tan (2013b) S1 1.06×105  5750  11.0 250×150  
2Φ10 

1Φ13 
2Φ10 31.2  511  78.0  41.6  66.1 47.9  50.0    39.8  

 S2 1.06×105  5750  11.0 250×150  3Φ10 2Φ10 31.2  511  73.0  38.4  66.1 45.7  46.9   36.7  

 S3 4.29×105  5750  11.0 250×150 3Φ13 2Φ10 38.2  511  74.4  54.5  66.1 59.8  61.7   48.1  

 S4 4.29×105  5750  11.0 250×150  3Φ13 2Φ13 38.2  494  81.0  63.2  66.1 64.9  68.3    54.8  

 S5 4.29×105  5750  11.0 250×150  3Φ13 3Φ13 38.2  494  74.5  70.3  66.1 75.4  77.4    63.8  

 S6 4.29×105  5750  11.0 250×150  3Φ16 2Φ13 38.2  494  114.4  70.3  66.1 66.8  78.0    64.4  

 S7 4.29×105  4550  8.6 250×150  3Φ13 2Φ13 38.2  494  74.4  82.8  41.4 84.5  94.4    69.1  
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 S8 4.29×105  3350  6.2 250×150  3Φ13 2Φ13 38.2  494  45.9  121.3  22.4 128.3  136.6  93.4  

Yu and Tan (2014)  
F1-CD 4.29×105  5750  11.0 250×150  3Φ13 2Φ13 27.5  488   87.0  51.1  66.1 56.8  60.5    50.3 

F2-MR 4.29×105  5750  11.0 250×150  3Φ13 2Φ13 27.5  488  51.0  62.8  66.1 63.1  60.5   50.3  

FarhangVesali et al. 

(2013) 

1 N/A 4400  11.7 180×180  2Φ10 2Φ10 30.5  620  49.0  40.5  53.8 36.9  36.0     29.4  

2 N/A 4400  11.7 180×180  2Φ10 2Φ10 27.0  620  44.0  35.7  53.8 35.7  34.4     28.5  

 3 N/A 4400  11.7 180×180  2Φ10 2Φ10 30.0  620   50.0  41.4  53.8 36.5  35.8     29.3  

 4 N/A 4400  11.7 180×180  3Φ10 3Φ10 26.0  620  54.0  40.1  53.8 38.6  38.7     32.9  

 5 N/A 4400  11.7 180×180  3Φ10 3Φ10 29.5  620  54.0  41.6  53.8 40.3  40.3      33.9  

 6 N/A 4400  11.7 180×180  3Φ10 3Φ10 30.0  620  52.0  39.4  53.8 40.9  34.1     34.0  

Qian et al. (2015)  P1 N/A 4000  10.5 180×100  2Φ10 2Φ10 19.9  437  35.8  31.6  44.4 24.6  23.8     19.5  

 P2 N/A 2800  9.3 140×80  2Φ10 2Φ10 20.8  437 32.9  35.5  28.0 21.0  21.4     17.7  

Valipour et al. 

(2015a) 

No. 1 N/A 4400 11.7 180×180 3Φ10 2Φ10 67.0 480 59.0 51.3 53.8 48.8 47.2 38.0 

No. 2 N/A 4400 11.7 180×180 2Φ10 2Φ10 67.0 480 54.8 42.5 53.8 46.4 43.3 34.1 

No. 3 N/A 4400 11.7 180×180 3Φ10 2Φ10 48.0 480 55.4 47.4 53.8 43.2 41.3 33.4 

No. 4 N/A 4400 11.7 180×180 2Φ10 2Φ10 48.0 480 56.3 38.5 53.8 39.1 37.4 29.5 

Ren et al. (2016) 
B2 N/A 4000  9.5 175×85  

2Φ8 

1Φ6 
2Φ8 35.2  450  33.0  34   40.0 23.6  22.0     16.6  

 B3 N/A 4000  
10.9 

200×85  
2Φ8 

1Φ6 
2Φ8 35.2  450  33.3     41.0  45.7 30.7     29.7        20.6  

Alogla et al. (2016) SS1 N/A 5750  11.1 250×150  3Φ10 2Φ10 19.4  510  101.0   34.0  66.1 35.1     39.1        32.4   

 SS2 N/A 5750  11.1 250×150  3Φ10 2Φ10 19.4  510  96.8     37.9   66.1 35.6     39.1        32.4  

 SS3 N/A 5750  11.1 250×150 3Φ10 2Φ10 19.9  510  86.8     37.2   66.1 37.1     39.5        32.6   

 SS4 N/A 5750  11.1 250×150  3Φ10 2Φ10 19.9  510  91.4     36.7   66.1 36.5     39.5        32.6   

Note: ΔL represents peak displacement proposed by Lu et al. (2018); PδM 
*, PδL

#, and Pδp
$ represent the calculated CAA capacity in accordance with the measured peak 657 

displacement, peak displacement proposed by Lu et al. (2018), and peak displacement proposed by Park and Gamble (2000), respectively. 658 
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