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ABSTRACT: We provide a time-dependent Dyson map and metric for the two dimensional harmonic
oscillator with a non-Hermitian ixy coupling term. This particular time-independent model exhibits
spontaneously broken PT -symmetry and becomes unphysical in the broken regime, with the spectrum
becoming partially complex. By introducing an explicit time-dependence into the Dyson map, we provide
a time-dependent metric that renders the model consistent across the unbroken and broken regimes.

1 Introduction

The central defining quantities in quantum mechanics are the Hamiltonian, H and the quantum wave-
function, ϕ. These objects are important for describing the behaviour of any quantum system, but they
are only fully defined when associated with a Hilbert space. This statement is true for both Hermi-
tian and non-Hermitian Hamiltonians. In addition, the associated Hilbert space requires a well defined
metric, which in the Hermitian case is usually chosen in a very suggestive way, but is nonetheless se-
lected. In the non-Hermitian case the choice is less obvious and even allows for the possibility to choose
a time-dependent metric [1, 2, 3].

When this non-Hermitian Hamiltonian is time-dependent, then a time-dependent metric seems quite
suggestive, but is also possible when the non-Hermitian Hamiltonian is time-independent. This allows for
the interesting possibility of starting with a time-independent non-Hermitian Hamiltonian and relating
it to a time-dependent Hermitian Hamiltonian via a well defined, time-dependent metric. Furthermore,
this construction can even hold when the non-Hermitian Hamiltonian is in its broken regime [4, 5]. This
regime is usually discarded as the energy eigenvalues become complex [6, 7, 8, 9]

In this paper we demonstrate how a time-independent, non-Hermitian Hamiltonian with sponta-
neously broken PT -symmetry can be consistently associated to a Hilbert space across all regimes by
using a time-dependent metric. We begin by defining two Hamiltonian systems, one being non-Hermitian
and time-independent H† 6= H, and the other being Hermitian and time-dependent, h (t)† = h (t) to-
gether with their associated wavefunctions. We therefore have both Hamiltonians satisfying their own
time-dependent Schrödinger equation (TDSE)

i~∂tψ (t) = Hψ (t) , i~∂tφ (t) = h (t)φ (t) . (1.1)

Next we make the proposition that the wavefunctions are related by the time-dependent Dyson map η (t)

φ (t) = η (t)ψ (t) . (1.2)

Substituting the expression for φ (t) into the Schrödinger equation, we arrive at the time-dependent Dyson
equation (TDDE) [10, 11, 12, 13, 14]

h (t) = η (t)Hη−1 (t) + i~∂tη (t) η−1η (t) . (1.3)

We construct the metric from the Dyson map % (t) = η (t)† η (t). The calculation of % (t) allows one to root
the non-Hermitian theory in a Hilbert space, meaning one can define the inner product as well calculate
observables [6, 7, 8]. In what follows we set ~ = 1.
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Time-dependent metric for the 2D, non-Hermitian coupled oscillator

2 2D non-Hermitian coupled harmonic oscillator

In this paper we analyse a popular time-independent, two dimensional, non-Hermitan, PT -symmetric
Hamiltonian that exhibits spontaneous symmetry breaking.

H =
1

2m

(
p2x + p2y

)
+

1

2
m
(
Ω2
xx

2 + Ω2
yy

2
)

+ iλxy λ,Ωx,Ωy,m ∈ R, (2.1)

This Hamiltonian has energy eigenvalues

En1,n2 =

(
n1 +

1

2

)
ωx +

(
n2 +

1

2

)
ωy, (2.2)

with

ω2
x,y =

1

2m

(
mΩ2

+ ±
√
m2Ω4

− − 4λ2
)
, (2.3)

and Ω2
± = Ω2

y±Ω2
x. This system has been studied in detail in the time-independent regime [5, 15, 16] and

it is clear from the energy eigenvalues that the PT -symmetry is spontaneously broken when |mΩ2
−| < 2|λ|

as they become complex. We show in this paper that by using a time-dependent metric, we can mend
the broken regime and return a physical meaning to this regime.

We wish to express the Hamiltonian (2.1) in terms of a closed algebra. This allows us to formulate
our Ansatz for η in terms of the generators of the algebra and guarantees that the resulting Hermitian
Hamiltonian will also be expressible in terms of these generators. The algebra for our Hamiltonian is
comprised of the ten Hermitian generators

Kz
± =

1

2

(
p2z ± z2

)
, Kz

0 =
1

2
{z, pz}, J± =

1

2
(xpy ± ypx) , I± =

1

2
(xy ± pxpy) , (2.4)

where z = x, y. The commutation relations for these generators are[
Kz

0 ,K
z
±
]

= 2iKz
∓,

[
Kz

+,K
z
−
]

= 2iKz
0 ,

[
Kx
µ ,K

y
ν

]
= 0, (2.5)

[Kx
0 , J±] = −iJ∓, [Ky

0 , J±] = iJ∓, [Kz
0 , I±] = −iI∓, (2.6)[

Kx
±, J+

]
= ±iI∓,

[
Ky
±, J+

]
= ±iI∓ (2.7)[

Kx
±, J−

]
= ∓iI±,

[
Ky
±, J−

]
= ±iI± (2.8)[

Kx
±, I+

]
= ±iJ∓,

[
Ky
±, I+

]
= −iJ∓, (2.9)[

Kx
±, I−

]
= ∓iJ±,

[
Ky
±, I−

]
= −iJ±, (2.10)

[J+, J−] =
i

2
(Kx

0 −K
y
0 ) , [I+, I−] = − i

2
(Kx

0 +Ky
0 ) , (2.11)

[J+, I±] = ± i
2

(
Kx
∓ +Ky

∓
)
, [J−, I±] = ∓ i

2

(
Kx
± −K

y
±
)
, (2.12)

(2.13)

with µ, ν = +,−, 0. As is clear, this is a rich algebra containing many closed sub-algebras contained
within. We can rewrite the Hamiltonian (2.1) as

H =
∑
z,σ=±

ΛzσK
z
σ + iλ (I+ + I−) , (2.14)

where Λz± = 1
2m

(
1±m2Ω2

z

)
. As the generators are all Hermitian, the Hamiltonian is non-Hermitian due

to the contribution from the last term. With our Hamiltonian expressed in this form we are now able to
proceed with solving the time-dependent Dyson equation using the Baker-Campbell-Hausdorff formula to
evaluate the adjoint action of η on the Hamiltonian and solving the resulting differential equations. These
equations arise when we enforce the condition of Hermiticity on the resulting Hamiltonian. However, we
first recall the solution to time-independent Dyson equation [5] in order to emphasise that the mapping
and the metric breaks down as the PT -symmetry is spontaneously broken in the absence of time.
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3 Time-independent Dyson map

In the time-independent case, the TDDE (1.3) reduces to a similarity transformation and is solved with
[5]

η = eθJ− , tanh 2θ =
2λ

mΩ2
−
. (3.1)

This mapping is only valid for |mΩ2
−| > 2|λ| which matches the results from [15, 16]. The resulting

Hermitian Hamiltonian is

h =
1

2m

(
p2x + p2y

)
+

1

2
m
(
ω2
xx

2 + ω2
yy

2
)
, (3.2)

ω2
x =

Ω2
x cosh2 θ + Ω2

y sinh2 θ

cosh 2θ
, ω2

y =
Ω2
x sinh2 θ + Ω2

y cosh2 θ

cosh 2θ
. (3.3)

In this time-independent setting, when the PT -symmetry is broken we cannot construct a metric % = η†η
and therefore cannot make sense of the broken regime. To progress, we must acknowledge that our choice
for η, and therefore %, is not restricted to be time-independent. Introducing an explicit time-dependence
into these parameters means we are led to solve the TDDE resulting in a time-dependent Hermitian
Hamiltonian.

4 Time-dependent Dyson map

We now use a time-dependent Dyson map of the form

η (t) = eα−(t)L−eθ+(t)J+eα+(t)L+eθ−(t)J− , L+ =
1

2
(I+ + I−) , L− =

1

2
(I+ − I−) . (4.1)

The quantities α+, α−, θ+ and θ− are real. This Ansatz is of course is not the most general choice.
We could use all ten generators in our Ansatz and use complex coefficients. However, it is well known
that η is not unique [17] and so we are content here to find a solution. We choose (4.1) to be comprised
of the interaction generators between the two dimensions as this produces a comprehensible solution.
Substituting η into the TDDE (1.3), the imaginary terms and eliminated when the following differential
equations hold

α̇− =− 2

m
sin θ+,

θ̇+ =
1

4m
α−
(
2m2Ω2

+ − α2
+

)
sec θ+ −

α+

m
,

α̇+ =
1

2m

(
2m2Ω2

+ − α2
+

)
tan θ+ +mΩ2

− sinh θ− − 2λ cosh θ−,

θ̇− =
α−
(
2λ sinh θ− −mΩ2

− cosh θ−
)

2 cos θ+ + α+α−
,

(4.2)

with the overdot denoting the time-derivative. We solve these coupled differential equations by differen-
tiating the first equation three times and at each stage substituting in the expressions for θ̇+, θ̇−, α̇+ and
α̇−

α̈− =
1

2m2
α+ (4 cos θ+ + α+α−)− Ω2

+α−,

...
α− =

1

m2

(
mΩ2

− sinh θ− − 2λ cosh θ−
)

(2 cosα+ + α+α−) +
4Ω2

+

m
sinα+,

....
α − = −2Ω2

+

[
1

2m2
α+ (4 cos θ+ + α+α−)− Ω2

+α−

]
−
(

Ω4
− − 4

λ2

m2

)
α−.

(4.3)

In the final, fourth order equation we can clearly substitute in α̈− to obtain a fourth order equation solely
in terms of α− ....

α − + 2Ω2
+α̈− + δα− = 0, (4.4)
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where δ = Ω4
− − 4 λ2

m2 . The solution to equation (4.4) allows us to go back and calculate θ+, θ− and α+

using the equations (4.2) and (4.3) in terms of α− together with its derivatives.

θ+ = − arcsin
mα̇−

2
, α+ =

−
√

4−m2α̇2
− ± β

α−
, θ− = log

[
m2γ ±m

√
m2γ2 + δβ2

β
(
mΩ2

− − 2λ
) ]

, (4.5)

where β =
√

4 + 2m2Ω2
+α

2
− −m2

(
α̇2
− − 2α−α̈−

)
and γ = 2Ω2

+α̇−+
...
α−. Solving equation (4.4) therefore

completes the solution for the Dyson map.
We can solve (4.4) without consideration to the sign of δ and obtain a valid solution. However,

we wish to preserve the reality of α− in order to prevent η from being a simple gauge transformation.
Therefore we must consider three separate regimes arising from the time-independent analysis, these are:
the unbroken regime where |mΩ2

−| > 2|λ| (δ > 0), the spontaneously broken regime with |mΩ2
−| < 2|λ|

(δ < 0) and the exceptional point where |mΩ2
−| = 2|λ| (δ = 0). These regimes must be treated separately

as they lead to qualitatively different solutions. In all three cases α− ∈ R as required.
For δ > 0, the solution is

α− = c1 cos (∆+t) + c2 sin (∆+t) + c3 cos (∆−t) + c4 sin (∆−t) , (4.6)

where c1,2,3,4 are constants of integration. The number of constants reflects the number of first order
differential equations we started with in (4.2), and so we get four as expected. The frequencies are

∆± =

√
Ω2
+ ± 2

√
Ω2
xΩ2

y +
λ2

m2
. (4.7)

The term in the inner square root is always postive. The condition for ∆− to be real is δ > 0, so in the
unbroken regime both ∆± are real. When δ < 0, ∆− becomes imaginary and so solving (4.4) in broken
regime must be considered separately.

For δ < 0, the solution is

α− = c̃1 cos
(

∆̃+t
)

+ c̃2 sin
(

∆̃+t
)

+ c̃3 cosh
(

∆̃−t
)

+ c̃4 sinh
(

∆̃−t
)

(4.8)

with c̃1,2,3,4 being the constants of integration and

∆̃± =

√
2

√
Ω2
xΩ2

y +
λ2

m2
± Ω2

+. (4.9)

We have both ∆̃± being real when δ < 0. Therefore even in the broken regime, we obtain a real solution
for α− and consequently for η.

Finally, for δ = 0 the solution is

α− = ĉ1 cos
(√

2Ω+t
)

+ ĉ2 sin
(√

2Ω+t
)

+ ĉ3t+ ĉ4, (4.10)

where ĉ1,2,3,4 are the constants of integration.
We have obtained a real solution for α− for all values of δ. This means we have a real, well-defined

metric, % (t) = η (t)† η (t), for all values of Ωx, Ωy, λ and m

% (t) = eθ−(t)J−eα+(t)L+eθ+(t)J+e2α−(t)L−eθ+(t)J+eα+(t)L+eθ−(t)J− . (4.11)

Thus importantly we have a time-independent, non-Hermitian system exhibiting spontaneously broken
PT -symmetry that ordinarily only has a well-defined metric in the unbroken regime. However, we have

4
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shown that by introducing time-dependence into this metric, the system becomes well-defined over the
entire parameter set, including the broken regime.

The resulting Hermitian Hamiltonian is

h (t) = hx,− (t) + hy,+ (t) , (4.12)

where

hz,± (t) =
1

2M± (t)
p2z +

1

2
M± (t)ω± (t)2 z2 ± g (t) {z, pz}, (4.13)

are Swanson type [18] Hamiltonians with time-dependent mass and frequency. The time-dependent terms
can be expressed in terms of the Dyson map parameters.

M± (t) = m
[
cos θ+ +mα2

−Γ±
]−1

, (4.14)

ω± (t)2 =
4Γ∓
M±

, (4.15)

g (t) =
α−Θ sin θ+

4
, (4.16)

where

Θ (t) =
2λ sinh θ− −mΩ2

− cosh θ−
2 cos θ+ + α+α−

, Γ± (t) =
1

16m
sec θ+

(
2m2Ω2

+ − α2
+

)
± Θ cos θ+

4
. (4.17)

We can recover the time-independent solution by setting θ+ (t) = α− (t) = α+ (t) = 0. In this case
M± (t) = m, ω− (t) = ωx, ω+ (t) = ωy and g (t) = 0. Finally θ− (t) = θ.

As the resulting Hermitian Hamiltonian h (t) is decoupled, we can solve each system separately fol-
lowing [19]. Therefore for hz,± (t) we have

φz,± (t) =
eiαn,±(t)√
ρ± (t)

exp

[
iM± (t)

(
i

M± (t) ρ± (t)2
+
ρ̇± (t)

ρ± (t)
∓ 2g (t)

)
z2

2

]
Hn

[
z

ρ± (t)

]
, (4.18)

with

αn,± (t) = −
(
n+

1

2

)∫ t 1

M± (s) ρ± (s)2
ds, (4.19)

and ρ± obeys the dissipative Ermakov-Pinney equation

ρ̈± +
Ṁ±
M±

ρ̇± +

(
ω2
± ∓ 2ġ − 4g2 ∓ 2g

Ṁ±
M±

)
ρ± =

1

M2
±ρ

3
±
. (4.20)

The final solution for h (t) is therefore

φ (t) = φx,− (t)φy,+ (t) . (4.21)

5 Conclusion

We have calculated a well defined Dyson map η (t) and metric % (t) for the two dimensional, non-
Hermitian, PT -symmetric, coupled oscillator. This Hamiltonian is time-independent and is meaningless
without an associated metric. We recalled that a time-independent metric is not valid in the broken
regime and then went on to show that a time-dependent metric is valid at the exceptional point, in the
broken and unbroken regimes.
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This leads once again to the new interpretation of the placement of time-dependence in quantum
mechanics, the metric representation [1, 20], whereby the time-dependence is shifted from the operator to
the metric. This is in addition to the Heisenberg and Schrödinger representation in which the time depen-
dence is shifted between the operators and the states. The metric representation allows one to calculate
observables for systems previously discarded as unphysical and opens up a wide range of possibilities for
non-Hermitian Hamiltonians.

We have demonstrated that the TDDE can be solved for a complex system comprised of ten Hermitian
generators. In this case we were not required to take the most general form of η (t) for our ansatz and so
there may exist a more general solution if were to explore the entire algebra.
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