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ARTICLE

Multi-trait genome-wide association study
identifies new loci associated with optic
disc parameters
Pieter W.M. Bonnemaijer et al.#

A new avenue of mining published genome-wide association studies includes the joint

analysis of related traits. The power of this approach depends on the genetic correlation of

traits, which reflects the number of pleiotropic loci, i.e. genetic loci influencing multiple traits.

Here, we applied new meta-analyses of optic nerve head (ONH) related traits implicated in

primary open-angle glaucoma (POAG); intraocular pressure and central corneal thickness

using Haplotype reference consortium imputations. We performed a multi-trait analysis of

ONH parameters cup area, disc area and vertical cup-disc ratio. We uncover new variants;

rs11158547 in PPP1R36-PLEKHG3 and rs1028727 near SERPINE3 at genome-wide significance

that replicate in independent Asian cohorts imputed to 1000 Genomes. At this point, vali-

dation of these variants in POAG cohorts is hampered by the high degree of heterogeneity.

Our results show that multi-trait analysis is a valid approach to identify novel pleiotropic

variants for ONH.

https://doi.org/10.1038/s42003-019-0634-9 OPEN

*email: Cornelia.vanDuijn@ndph.ox.ac.uk. #A full list of authors and their affiliations appears at the end of the paper.
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G laucoma is the most common cause of irreversible
blindness in the world1. Primary open angle glaucoma
(POAG) is the most prevalent type of glaucoma

accounting for 74% of all glaucoma cases2,3. Intraocular pressure
(IOP) and the morphology of the optic nerve head (cup area
(CA), disc area (DA), and vertical cup–disc ratio (VCDR)) are
important features of the glaucomatous process. For each of these
traits, twin studies showed a high heritability (h2CA= 0.75,
h2DA= 0.72, h2IOP= 0.55, and h2VCDR= 0.48)4. Central corneal
thickness (CCT) is also a highly heritable trait (h2CCT=
0.68–0.95)5, which is most likely non-physiologically associated
with POAG, but rather biases IOP measurement, the major risk
factor of POAG6,7. CA, DA, and VCDR, are significantly corre-
lated both at the genetic level8. The high genetic correlation found
between the optic nerve head (ONH) traits (Rg= 0.31–0.83)
raises the question whether multi-trait analyses will improve the
statistical power of the individual GWAS and will find variants
with pleiotropic effects9.

For this study, we generated new data on these 5 quantitative
traits by imputing 12 European ancestry cohorts from the Inter-
national Glaucoma Genetic Consortium (IGGC) (nMAX= 31,269)
to haplotype reference consortium (HRC) release 1 imputation
panel, which includes over 39 million variants10. A meta-analysis
of these 12 European ancestry studies served as a discovery cohort
in the analyses. Replication was performed in five Asian ancestry
cohorts that were part of the IGGC. The cohorts of Asian descent
were imputed to 1000 Genomes as there is little gain in HRC
imputation in this ancestry group because there are no additional
Asian samples included in HRC (http://www.haplotype-reference-
consortium.org/participating-cohorts)11. We evaluated the added
value of multi-trait analyses using two programs: CPASSOC and
multi-trait analysis of GWAS (MTAG). Both use aggregated
GWAS results. Whereas CPASSOS performs a meta-analysis
assuming homogeneous and heterogeneous effects across traits by
applying a inter-trait correlation matrix, MTAG basically increases
the power of a single trait analyses by incorporating the GWAS
findings of correlated traits.

By multi-trait analysis we identified two novel loci associated
with the ONH at rs11158547 in-between PPP1R36 and PLEKHG3
and at rs1028727 near SERPINE3 in those of European descent.
These loci replicated in the Asian replication sample. Findings for
these loci were consistent using a distinct multi-trait approach,
MTAG, in both the European and Asian cohorts. This study
emphasis that multi-trait analysis in GWAS pleiotropic traits is an
effective approach to identify variants harboring correlated traits

Results
Replication of previous CA, DA, VCDR, IOP, and CCT GWAS
results. As a validation we first confirmed previously identified
loci for CA, DA, VCDR, IOP, and CCT by Springelkamp et al.8

(nCA= 22,489; nDA= 22,504; nVCDR= 23,899; nIOP= 37,930)
and Iglesias et al.12 (n= 17,803) based on 1000 Genomes impu-
tation. Supplementary Fig. 1 and Supplementary Datas 1 and 2
show the per trait comparison of our meta-analysis of all Eur-
opean ancestry discovery cohorts using the HRC imputation with
the results of the meta-analysis by Springelkamp8 and Iglesias12

based on 1000 Genomes. Out of 113 (95%), 107 available variants
in HRC replicated at a Bonferroni significance level.

Optic nerve head parameters. In the single trait meta-analyses of
ONH traits (CA, DA, and VCDR) in those of European descent
(nCA= 24,493, LDSC interceptca= 1.024 (SE= 0.0083); nDA=
24,509, LDSC interceptDA= 1.041 (SE= 0.0071); nVCDR=
25,180, LDSC interceptVCDR= 1.029 (SE= 0.0081) Supplemen-
tary Data 3), 59 loci showed genome-wide significant association

with at least one of the traits (Fig. 1a–c, Supplementary Data 4).
The ONH analyses yielded six loci not previously reported
(Table 1, Supplementary Data 5), however, none of these novel
variants replicated in the Asian replication sample comprising
five Asian studies. As the correlation analysis between the ONH
traits showed significant correlations at the genetic and pheno-
type level (Fig. 2), we applied multi-trait analysis to uncover
pleiotropic effects. Using multi-trait approach CPASSOC13, we
identified three new loci at p < 5 × 10−8 by CPASSOC’s SHom
(KIF6, EPB41L3, PPP1R36-PLEKHG3) (Fig. 1d, Supplementary
Data 6). This method assumes that genetic effects are homo-
genous across traits and cohorts. Two additional new loci were
identified by SHet (ZAK, SERPINE3) (Fig. 1e, Supplementary
Data 6), which assumes the genetic effects are heterogenous.
Locuszoom plots for these novel variants a depicted in Supple-
mentary Fig. 2. Using an alternative approach (MTAG)14, the loci
emerged consistently as genome-wide significant: rs9471130 near
KIF6 in the DA analysis (p= 2.63 × 10−08), rs11158547 near
PPP1R36-PLEKHG3 in the CA analysis (p= 2.13 × 10−08) and
rs1028727 near SERPINE3 in the DA analysis (p= 4.50 × 10−09)
(Supplementary Data 7). rs11158547 (PPP1R36-PLEKHG3) and
rs1028727 (SERPINE3) displayed nominally significant associa-
tion in the multi-trait analysis (CPASSOC and MTAG) in indi-
viduals of Asian ancestry (Supplementary Datas 6 and 7). Both
variants were not in LD (r2 < 0.1) with neighboring known var-
iants near SIX6, DDHD1, and DLCK1.

IOP and CCT. Next, we conducted a single trait meta-analysis for
IOP and for CCT, the two traits that are not likely physiologically
related. For IOP, we meta-analyzed a total of 31,269 participants
(LDSC intercept= 1.028; SE= 0.0078, Supplementary Data 4)
and identified 9 genome-wide significant regions of which two
were novel in the HRC-based imputations and had not been
uncovered in the IGGC 1000 Genomes analyses before (Table 1,
Supplementary Data 5). The lead single-nucleotide polymorph-
isms (SNPs) in these genomic regions were a common variant
rs9853115 near DGKG on 3q27.3 and a rare variant rs150202082
[T] (frequency 0.03) near TCF4 on 18q21.2. rs9853115 failed
replication in the Asians (p= 0.9315) and rs150202082 could not
be examined since this variant was monoallelic in the Asian
individuals. A GWAS by Choquet et al.15 also identified
rs9853115 as new variant associated with IOP in multiethnic
cohort of predominately (83%) European ancestry. The same
study also identified a novel variant near TCF4, rs11659764,
approximately 300 kb upstream of rs150202082 which was in
relatively weak LD (r2= 0.4). In a recent study from the
UKbiobank by Khawaja et al.16 the same variant near DGKG
showed genome-wide significant association with similar effect-
size, however, rs150202082 near TCF4 could not be validated in
this study.

In the meta-analysis of CCT, a total of 16,204 participants were
included (LDSC intercept= 0.989; SE= 0.0082). We identified 31
independent genome-wide significant signals of which three were
novel (Table 1 and Supplementary Data 5), including a variant,
rs34869, near CDO1. Again, none of the three new variants
replicated at a nominal significance level in the Asian samples.
Multi-trait analysis by CPASSOC identified four novel variants
(Supplementary Datas 8 and 9). In contrast to ONH cross trait
analyses, also these could not be replicated in the Asian.

In silico analysis. To investigate the functional and regulatory
potential, we annotated the variants in linkage disequilibrium
(European LD, r2 ≥ 0.8) with the lead SNPs at the two new and
replicated ONH variants, rs11158547 and rs1028727, using a
combination of bioinformatics tools (see Method section). A total
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of 70 variants in LD with the 2 novel variants were queried. None
of the examined variants were predicted to damage protein
structure by SIFT, Polyphen, or alternative splicing using
Ensembl’s Variant Effect Predictor. As all queried variants are
noncoding, we reviewed the possible regulatory annotation of
these SNPs in experimental epigenetic evidence, including DNAse
hypersensitive sites, histone modifications, and transcription

factor-binding sites in human cell lines and tissues from the
ENCODE17 and ROADMAP EPIGENOMICS18 projects, inte-
grated in Haploreg19. Annotations of chromatin states indicated
that the two novel variants were located in, or in LD with, an
active chromatin state region from at least one of the tissues
investigated (Supplementary Data 10 and Figs. 3 and 4 for
chromatin states in brain tissue). Next, we evaluated the overlaps
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Fig. 1 Manhattan plot of single trait analysis for cup area (a), disc area (b), and vertical cup–disc ratio (c). Manhattan plot for multi-trait analysis of the
optic nerve head (ONH) SHom (d) and SHet (e).
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of cis-expression quantitative trait loci (eQTL) in several data-
bases (see Methods). In both novel loci PPP1R36-PLEKHG3 and
SERPINE3, variants were found to be eQTL’s and based on
Regulome DB-scores both ONH loci contained variants that were
likely to alter binding (Supplementary Data 10).

Gene prioritization, pathway analysis, and gene expression. We
explored possible tissue expression and biological functions by
pathway analysis for the two novel SNPs. We annotated these
SNPs to genes by positional gene mapping, eQTL mapping and
chromatin interaction mapping strategies implemented in
FUMA20 (see Method section). For, rs11158547 (PPP1R36-
PLEKHG3) 9 genes were assigned to this locus and for
rs1028727 (SERPINE3) 21 genes were mapped to this locus
(Supplementary Data 11). Pathway analysis based on enrichment
of gene-set terms (MsigDB21 and Wikipathways22) found 5 and
11 Bonferroni significant gene-sets comprising genes mapped to
SERPINE3 locus and PPP1R36-PLEKHG3 locus respectively.
These pathways were in particular involved in immune response
and cancer development (Supplementary Data 12 highlighted
gene-sets).

As expression in eye tissues is not available in GTex23, we
assessed the Ocular Tissue Database24. For 26 out of the 30 genes
mapped to either rs11158547 or rs1028727 expression data were
present in the Ocular Tissue Database (Supplementary Data 11).
The highest levels of expression in the optic nerve was found for
HSPA2, a gene associated to rs11158547 via lung, tibial nerve and
fibroblasts eQTL’s and chromatin interaction mapping (Supple-
mentary Fig. 3).

From endophenotypes to glaucoma. We also investigated the
translational potential of these two loci to POAG by carrying out
a meta-analysis of three POAG studies, NEIGHBOR, South-
ampton and UK Biobank Eye and Vision Consortium
(Ncase= 9450; Ncontrol= 436,824), from European origin. For
rs1028727 a negative effect on the VCDR in the present study
predicts a decreased risk of POAG which was seen in NEIGH-
BOR study and the UKBiobank but not in the Southampton study
(Supplementary Data 13). rs11158547 in PPP1R36-PLEKHG3 is
predicted to be associated with increased POAG risk based on the
positive effect of VCDR. Indeed in all three POAG studies the
effect of the SNP is also positive. Pooling the studies based on a
fixed effect analysis yields an OR 1.28 (95% CI: 1.15–1.39;
p= 4.83 × 10−8) and showed Bonferroni significance (p= 0.025).
Given the high degree of heterogeneity of effects at this locus a
random effect meta-analysis was carried out which could
not confirm this finding in POAG (Supplementary Data 14).
Thus the findings were partly but not consistently replicated,
awaiting larger and more homogeneous data sets for the final
replication.

Discussion
Our results implicate two novel loci, one downstream SERPINE3
and one other in-between PPP1R36 and PLEKHG3, both
associated with ONH morphology via CPASSOC multi-trait
analysis. SERPINE3 belongs to the clade E family of extracellular
serpins. Family members have been described to play a role in
other neurodegenerative diseases such as Alzheimer’s disease25.
Recent studies in glaucomatous human postmortem samples and
in rat models identified oxidative inactivation of serpins (neuro-
serpin) as a molecular mechanism of increased plasmin activity
leading to neurodegeneration in high ocular pressure condi-
tions26. In the trabecular meshwork, serpins (plasminogen acti-
vator inhibitor) may mediate the inhibition of matrix
metaloprotienase (MMPs) activity induced by transformingT
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growth factor-beta enhancement27,28. Inactivity of MMPs were
found to increase aqueous humor outflow resistance leading to
rising IOP29. rs11158547 downstream the PLEKHG3 gene, a
pleckstrin homology domain containing protein, is also a rela-
tively unknown gene. It contains a guanide nucleotide exchange
factor (GEF) domain which is important for Rho-dependent
signal transduction30. In mice PLEKHG3 knockout is associated
with an abnormal anterior chamber depth of the eye (IMPC
release 3.2 http://www.mousephenotype.org/data/experiments?
geneAccession=MGI:2388284). The other gene close to this
locus, PPP1R36, is less likely a candidate gene for ONH.
PPP1R36, has been described in connection with autophagy
during spermatogenesis. PPP1R36 encodes a regulatory subunit of
protein phosphatase 1 which is involved in multiple cellular
functions such as metabolism, immune response, apoptosis,
meiosis, mitosis, cytoskeletal reorganization, and synthesis.
However, its function to the eye has not been characterized.

A general insight from this study was that the strength of genetic
correlation is an important condition for investigating the pleio-
tropic effect of genetic variants on traits. The high genetic and
phenotypic correlation observed between the ONH traits enabled
multi-trait analyses and yielded plausible and replicable results. We
validated these novel variants identified by CPASSOC with another
multi-trait analysis method MTAG, which also uses summary sta-
tistics as input. The main difference between both methods is that
CPASSOC test whether a SNP is not associated with any of the
traits under the null hypothesis. MTAG, on the contrary produces
trait-specific effect estimates for each SNP. The variants discovered
in the European CPASSOC analysis that replicated in the Asian
CPASSOC analysis also replicated in the MTAG analysis. Sensitivity
analysis excluding the Rotterdam studies showed a high correlation
of the Shom and Shet statistic with the SHom/SHet statistic from
the full analysis including the Rotterdam studies (r= 0.71, p < 2.2 ×
10−16; r= 0.68, p < 2.2 × 10−16, respectively). The correlation in
MTAG for CA, DA, and VCDR was considerably low yet very
significant (rCA= 0. 31, p < 2.2 × 10−16; rDA= 0.56, p < 2.2 × 10−16,
rvcdr= 0.17).

In contrast, the multi-trait analysis between IOP and CCT
could not uncover robust new variants. A reason for this obser-
vation might be the moderate magnitude of the genetic correla-
tion between IOP and CCT. Also, clinical research has shown that
this relation is largely driven by measurement errors in

Goldmann applanation tonometry, rather than a pathophysiolo-
gical process31,32.

A potential limitation of this study is the application of a dif-
ferent imputation panel for the discovery and replication phase.
The European studies were all imputed to the HRC panel which
has a beneficial imputation quality compared to 1000 Genomes.
By contract the Asian replications set, was imputed to 1000
Genomes since a recent publication showed that HRC imputa-
tions perform less adequate in Asians11. Variants associated with
cup area and other endophenotypes at genome-wide significance
in the European single trait analysis could not be replicated in the
Asian replication sample. The use of different imputation panels
may be a source bias hampering replication. A theoretical
shortcoming, is that the various studies used different methods
and equipment to assess ONH parameters among studies. This
has most likely reduced the power of the study and has generated
most probably false negative rather than false-positive results. To
prevent false-positive findings using novel methods, we aimed to
replicate the findings of the primary CPASSOC analyses by
another analyses using MTAG. The variants discovered in the
CPASSOC analysis could also be replicated in MTAG. As both
methods are mathematically distinct we concluded that our
results are rather robust and independent of the statistical
approach. This underscores the strength of the association as it is
consistently found by two independent approaches.

We have no doubt that association of the variants to ONH are
of interest to the biology community. To evaluate the implications
of our findings in the context of glaucoma we studied three
independent POAG studies. Up until now we are not able to link
our finding to POAG. Although fixed effect meta-analysis showed
Bonferroni significance (p = 0.025) for rs11158547 in PPP1R36-
PLEKHG3, random effect meta-analysis that takes into account
the heterogeneity could not confirm this finding in POAG. The
source of the high variability in estimates is unknown and may
involve clinical variability and ethnic differences. It is important
to realize that the identification of POAG genes is far from
complete and work in progress.

In conclusion, we conducted single and multi-trait meta-ana-
lysis of five endophenotypes of glaucoma based on HRC impu-
tations in European ancestral populations. The HRC single trait
analyses in those of European descent did not yield new loci that
could be replicated in Asians. We identified two novel loci for

CA

DA

DA

Phenotype correlation in rotterdam study I Genetic correlation (Rg) in the IGGC HRC
meta-analyses

VCDR

VCDR

IOP

IOP CCT DA VCDR IOP CCT

CA

DA

VCDR

IOP0.21

0.6 0.89 0.08 0.8 0.98

0.65

0.11

0.06

0.47

0.1

0.01

0.11 –0.09

0.32 –0.02

–0.07

–1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

–1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

–0.08

–0.05

–0.1

a b

Fig. 2 Phenotype (a) and genetic (b) correlations between cup area, disc area, vertical cup–disc ratio, intraocular pressure, and central corneal thickness.
a Partial pearson correlation coefficient s between cup area (CA), disc area (DA), vertical cup–disc ratio (VCDR), intraocular pressure (IOP), and central
corneal thickness (CCT) adjusted for age and sex in the Rotterdam study I. b Genetic correlation coefficient (Rg) for CA, DA, VCDR, IOP, and CCT
calculated by LD score regression; *p < 0.05, **p < 0.0001.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0634-9 ARTICLE

COMMUNICATIONS BIOLOGY |           (2019) 2:435 | https://doi.org/10.1038/s42003-019-0634-9 |www.nature.com/commsbio 5

http://www.mousephenotype.org/data/experiments?geneAccession=MGI:2388284
http://www.mousephenotype.org/data/experiments?geneAccession=MGI:2388284
www.nature.com/commsbio
www.nature.com/commsbio


ONH in-between PPP1R36-PLEKHG3 at chromosome 14q23.3
and near SERPINE3 at chromosome 13q14.3 by multi-trait ana-
lysis in those of European descent that could be replicated in
Asians using CPASSOC. Findings for these loci were consistent
using MTAG. The present study underscores that multi-trait
analysis in GWAS of true pleiotropic traits in relatively small

sample sizes is a powerful approach to identify variants harboring
correlated traits. Although these novel loci could not be directly
associated with POAG it is likely that the genes in these regions
mediate the glaucomatous process by their effect on the optic
nerve morphology. For instance the PLEKHG3 gene identified in
this study is involved in the Rho signaling cascade, this pathway is
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known to play a crucial role in POAG pathophysiology and is
currently targeted for new therapies for POAG33. Our bioinfor-
matic analyses suggests that both the PPP1R36-PLEKHG3 and
SERPINE3 variants are eQTL’s opening avenues to counteract the
problem by RNA interference. Further research including exome
sequencing and functional studies are needed to further define
these genes in the mechanism of POAG.

Methods
Study design. We performed a meta-analysis of European origin GWAS’s imputed
to HRC reference panel release 1. We analyzed five outcomes: CA, DA, VCDR,
IOP, and CCT. The CA phenotype was adjusted for DA in all analyses since these
phenotypes are clearly correlated (Pearson correlation coefficient 0.6). Subse-
quently, we performed multi-trait analysis for CA, DA, VCDR, IOP, and CCT.
Replication was carried out for the single trait as well as the multi-trait analysis in a
meta-analysis of 5 Asian cohorts imputed to 1000 genomes. We also tested sig-
nificance of lead SNPs in three independent POAG cohorts.

Study samples, phenotyping, and genotyping. All studies included in this meta-
analysis are part of the International Glaucoma Genetics Consortium (IGGC). A
description of the details of all cohorts participating in this study can be found in
Supplementary Note and Supplementary Tables 1–6. The mean IOP, VCDR, CCT,
CA, and DA of both eyes was used for the analyses. In case of missing or unreliable
data for one eye, the measurement of the other eye was used instead. For subjects
who received IOP-lowering medication, the measured IOP was multiplied by a
factor of 1.3. The total number of individuals in the meta-analysis was 24,493 for
CA, 24,509 for DA, 25,180 for VCDR, 31,269 for IOP, and 16,204 for CCT. All
studies were performed with the approval of the local institutional review board
(Supplementary Note) and written informed consent was obtained from all par-
ticipants in accordance with the Declaration of Helsinki.

Genotyping was performed using commercially available Affymetrix or
Illumina genotyping arrays (Supplementary Table 7). Quality control was
executed independently for each study. To facilitate meta-analysis, each
cohort performed genotype imputation using either the Sanger imputation
service (https://imputation.sanger.ac.uk) or the Michigan imputation server
(https://imputationserver.sph.umich.edu) with reference to the HRC panel,
version 1 or 1.134.
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Association analysis in discovery cohorts. Within each discovery cohort, each
genotyped or imputed variant was tested for association with each of the traits,
assuming an additive genetic model. The measurements were adjusted for sex, age,
and five principal components in all cohorts and if necessary also for cohort-
specific covariates (Supplementary Table 8). Family-based studies were adjusted for
family structure. Given the clear correlation of CA with DA (Pearson’s correlation
r= 0.59 in Rotterdam Study I), the CA GWAS was adjusted for DA in all discovery
cohorts prior to meta-analysis. Linear regression was employed for studies with
unrelated individuals, and linear mixed effects models were used to account for
family structure in the family-based studies.

Centralized quality control. Before meta-analysis, a centralized quality control
procedure implemented in EasyQC was applied to individual study association
summary statistics to identify outlying studies35. We included variants with
imputation quality ≥ 0.3 (e.g., Minimac R2) and expected minor allele count >6.
Additional checks for quality control were applied on the already filtered datasets
including review of P–Z-plots, allele frequency plots and calculation of genomic
inflation factor λ.

Meta-analysis of discovery cohorts. The association results of all studies were
combined in a fixed effect inverse variance meta-analysis in METAL36, since there
was no sample overlap or cryptic relatedness as checked by LD score regression
(see methods genetic overlap). This tool also applies genomic control by correcting
the test statistics to account for small amounts of population stratification or
unaccounted relatedness. We also assessed heterogeneity by calculating I2 values
and Cochrans Q-test for heterogeneity as implemented in METAL. After meta-
analyses of all available variants, we excluded the variants that were not present in
at least three studies. This resulted in 11,830,838 variants for CA, 11,764,957 for
DA, 11,901,698 variants for VCDR, 12,426,120 for IOP, and 9,249,813 variants for
CCT. The remaining variants per trait were used to create Manhattan plots and
QQ-plots, see Supplementary Figs. 4 and 5. The meta-analysis resulted in 1918
SNPs with a p value less than 5 × 10−8 for CA, 2029 for DA, 2473 for VCDR, 156
for IOP, and 1288 for CCT. Re-running the meta-analysis excluding TEST-BATS
study to show that the significantly younger mean age in this study did not dis-
torted our findings showed nearly perfect correlation between effect estimates from
the full analysis and the effect estimates from in the analysis excluding TEST-BATS
(CA r= 0.99; DA r= 0.99; VCDR= 0.99; IOP= 0.99). Furthermore, the mean
differences between effect estimates found in the full analysis and the effect esti-
mates found in the analysis excluding TEST-BATS were zero (CA mean
difference= 0, SD= 0.00; DA mean difference= 0, SD= 0.00; VCDR mean
difference= 0, SD= 0.01; IOP mean difference= 0, SD= 0.06), this also suggests
that the younger age in the TEST-BATS study has not biased the results.

Selection of independent variants. We examined whether multiple independent
variants at a given locus influenced a trait and if they were independent of previous
findings, we used the genome-wide complex trait analysis software (GCTA)37. This
tool performs a stepwise selection procedure to select multiple associated SNPs by a
conditional and joint (–CoJo) analysis approach using summary-level statistics
from a meta-analysis and LD corrections between SNPs. The three Rotterdam
Study cohorts (N= 5815), imputed with the HRC reference panel version 1, were
used as the reference to calculate the LD, because it represents the largest discovery
studies. LD was calculated between pairwise SNPs, but any SNP further than 10Mb
apart were assumed to not be in LD. All autosomal chromosomes were analyzed,
with MAF restricted to ≥0.01 estimated from the three Rotterdam Study cohorts.
The independent variants were annotated by Haploreg19, see Supplementary
Table 9.

Identification of potential novel variants. Previously, Springelkamp et al.8,38,39,
Iglesias et al.12, Hysi et al.40, and Lu et al.41 identified various loci associated with
CA, CCT, DA, IOP, and VCDR by GWAS with the HapMap and 1000 Genomes as
a reference panel for imputations. To identify new variants, we investigated if any
of the independent variants were within 1Mb of a known loci identified for the
same trait by Springelkamp et al.8,38,39, Iglesias et al.12, Hysi et al.40, and Lu et al.41.
We created locuszoom plots and forest plots of all potential novel variants, see
Supplementary Figs. 5 and 6. Variants showing significant association with a trait
and are within 1Mb of a previous identified locus were annotated to the known
variant.

Multi-trait analysis. For multi-trait genome-wide association analysis we applied
the CPASSOC package developed by Zhu et al.13. We used CPASSOC for two
analyses to combine the association results from CA, DA, VCDR, and from IOP
and CCT. CPASSOC generates two statistics, SHom and SHet. SHom is similar to
the fixed effect meta-analysis method but accounts for the correlation of summary
statistics because of the correlated traits. SHom uses the sample size of a trait as a
weight instead of variance, so that it is possible to combine traits with different
measurement scales. SHet is an extension of SHom, but power can be improved
when the genetic effect sizes are different for different traits. To compute statistics
SHom and SHet, a correlation matrix is required to account for the correlation
among traits or induced by overlapped or related samples from different cohorts.

We followed the approach previously described by Park et al.42, to calculate this
correlation matrix. Briefly, we used all independent SNPs (r2 < 0.2) present in
datasets that were not associated with any of the traits (−1.96 > Z score < 1.96), and
took the Pearson’s correlation of their Z-scores13. For both tests QQ-plots were
created (Supplementary Fig. 8). Novel loci identified by CPASSOC (p < 5 × 10−8)
that were not implicated in the single-trait analysis were validated using a second
multi-trait method, MTAG. Similarly, MTAG also utilizes summary statistics as
input, but performs LD score regression to estimate the genotypic and phenotypic
variance-covariance matrices. In contrast to CPASSOC, MTAG performs asso-
ciation tests for each individual trait by boosting the power of a signal and pro-
viding an estimation of the underlying association via the multi-trait variance-
covariance structure. We applied MTAG to SNPs MAF > 0.01 for combing the
analysis of CA, DA, and VCDR, and the analysis of IOP and CCT. For the Eur-
opean sample we used the 1000Genomes European pre-calculated LD scores and
for the Asians the 1000Genomes East-Asian pre-calculated LD scores (https://data.
broadinstitute.org/alkesgroup/LDSCORE/). We then validated each of the genome-
wide significant signals identified by CPASSOC in the MTAG results.

Replication in Asian cohorts imputed to 1000Genomes. All independent SNPs
identified with p < 5 × 10−8 in the discovery stage (single and multi-trait analysis)
were carried forward for replication in Asians. For single-trait analyses, we vali-
dated these signals in fixed effect meta-analyses previously reported by Spring-
elkamp et al. (CA, DA, VCDR, and IOP) and Iglesias et al. (CCT). Similar as in the
discovery stage, we also performed a multi-trait CPASSOC and MTAG analysis of
CA, DA, VCDR, and IOP, CCT in the Asians using the 1000Genomes summary
statistics. Association replication was sought at nominal (p < 0.05) levels. A brief
description of the cohorts participating in this study can be found in the Supple-
mentary Note. Descriptive statistics, phenotyping methods, genotype, and 1000
Genomes phase I version 3 (March 2012) imputation quality and control has been
described previously in Springelkamp et al.8 and Iglesias et al.10.

Validation in POAG case–control studies. To evaluate whether SNPs identified
in the European HRC discovery stage (p < 5 × 10−8) that replicated at nominal
significance (p < 0.05) in Asians 1000Genomes have a shared component with
primary open-angle glaucoma we validated these SNPs in three POAG
case–control studies from NEIGBOHR/MEEI, Southampton and UK Biobank Eye
and Vision Consortium. Phenotyping and genotyping methods are provided in
Supplementary Note 1.3 and Supplementary Table 9. For the queried SNPs sum-
mary statistics from NEIGBOHR/MEEI and Southampton were combined in a
fixed-effect and random-effect meta-analysis as implemented in Metasoft43. Sta-
tistical significant level was corrected for the number of queried SNPs by the
Bonferroni method.

The genetic overlap between CA, DA, VCDR, IOP, and CCT. To further
investigate the genetic overlap among CA, DA, VCDR, CCT, and IOP we used the
LD Score regression implemented in LDSC44 to examine the pattern of genetic
correlations. The LD score for each SNP measures the amount of pairwise LD(r2)
with other SNPs within 1-cM (centimorgan) windows based linkage dis-
equilibrium. Bivariate LD score regression can estimate the extent to which two
phenotypes share genetic variance.

Summary statistics of the five meta-analysis were formatted to LDSC input files,
we followed quality control as implemented by the LDSC software package (https://
github.com/bulik/ldsc). We used pre-calculated LD scores provided by the
developers for each SNP using individuals of European ancestry from the 1000
Genomes project that are suitable for LD score analysis in European populations.
SNP heritability estimates for all traits and genetic correlations were then calculated
between the traits, see Supplementary Data 3 and Fig. 2.

Bioinformatical annotation. Using the software HaploReg (version 4.1)19 and
RegulomeDB v1.145, we annotated the potential regulatory functions of the repli-
cated GWAS SNPs and their proxies (r2 > 0.8, 1000 genomes CEU) based on
epigenetic signatures. We examined whether these variants (GWAS SNPs and
variants in LD with the GWAS SNPs) overlapped with regulatory elements
including DNAse hypersensitive sites, histone modifications, and transcription
factor-binding sites in human cell lines and tissues from the ENCODE Project and
the Epigenetic Roadmap Project. We then used the RegulomeDB score to assess
their potential functional consequence, as described previously46.

Pathway analysis. We applied FUMA, which uses a three way gene-mapping
strategy, to assign genome-wide significant SNPs to genes of interest. For positional
mapping, SNPs in LD with the independent SNPs were mapped to genes using a
window of 10 kb. eQTL mapping was performed by mapping SNPs to genes up to
1 Mb (cis-eQTL). eQTLs from all tissues available in GTEx v623, Blood eQTL
browser47, BIOS eQTL browser48, and BRAINEAC49 were selected for the map-
ping. Chromatin interaction was based on GSE87112 (Hi-C) database as imple-
mented in FUMA. We explored possible biological functions by pathway analysis
for all variants that reached genome wide significance in the discovery stage and
were nominal significant in the Asian replication set. These 55 associated variants
(ONH= 32, IOP= 3, CCT= 20) were assigned to genes by FUMA mapping
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strategies. Prioritized genes for ONH traits were highly overlapping and were
combined to form a set of 295 unique genes for further functional annotation in
FUMA. For IOP and CCT 11 and 116 genes were prioritized respectively. We
further investigated the FUMA-mapped genes for enrichment using hypergeo-
metric enrichment tests on pre-defined gene-sets derived from MsigDB and
WikiPathways. p Values were corrected based on Bonferroni method for the
number of tested gene-sets.

Statistics and reproducibility. Software used for the data analysis of this study:
METAL (https://genome.sph.umich.edu/wiki/METAL), EasyQC (www.genepi-
regensburg.de/easyqc), GCTA (http://cnsgenomics.com/software/gcta/), FUMA
(https://fuma.ctglab.nl/), LDSC (https://github.com/bulik/ldsc), CPASSOC (http://
hal.case.edu/zhu-web/), and MTAG (https://github.com/omeed-maghzian/mtag).
In the single trait analyses and the multi-trait analyses variants surpassing a p value
less than 5 × 10−8 were considered genome-wide significant and followed up for
replication in the Asian replication sample. Replication was defined as variants
surpassing nominal significance level p value < 0.05. Variants were only considered
novel when located >1Mb away from a previously reported variant.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The genome-wide summary statistics that support the findings of this study will be made
available via the NHGRI-EBI GWAS Catalog website (https://www.ebi.ac.uk/gwas/
downloads/summarystatistics) upon publication.

Code availability
No previously unreported custom computer code or mathematical algorithm was used to
generate results central to the conclusions.
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