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Abstract In this paper, 4-point bending 

tests of six prestressed Reactive Powder 

Concrete (RPC) sound barrier panel units 

were performed, the flexural behavior, 

deflection and failure modes of both in 

situ and prefabricated panels were 

studied. The results show that the major 

failure modes for in situ panels were 

bending failure. Prestressing the panels 

can effectively increase the cracking 

loads and improve stiffness of the in situ 

panels, but it cannot improve the ultimate 

flexural capacities. The ductility of the in 

situ panels decreased with the increase of 

prestressing degree. The stiffness of the 

prefabricated panels was improved by 

prestressing. Increasing the thickness of 

back and front plates, the ductility of the 

panels decreased accordingly, and the 

ductility of the prefabricated panels 

decreased more obviously than that of in 

situ panels. Based on the test results, 

considering tensile strength of RPC and 

prestressing stress, a modified formula 
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for flexural capacity of in situ panels was 

established. In the meantime, considering 

the "bridge" effect of steel fiber, the 

formulae to calculate the crack width and 

deflection at service limit state were also 

developed for future design. 

Keywords: reactive powder concrete, 

sound barrier panels, prestress, bending 

performance 

 

 

 

Notation 

Bs  is the calculated short-term stiffness panel 

c   is the concrete cover thickness, 

cf   is the coefficient of internal force of the member, 

deq  is the equivalent diameter of reinforcement in the tension zone, 

Ec   is the elastic modulus of concrete, 

Eel   is the elastic energy, 

Es   is the elastic modulus of steel bar, 

f    is the calculated deflection of panel, 

I0    is the moment of inertia of conversion section, 

k    is the coefficient of the equivalent stress distribution map of the tension zone, 

reference [1], k=βtλf, 

l     is the calculated span of panel, 

lc     is the average spacing of cracks, 

lf/df   is the ratio of length to diameter of steel fiber, 

M    is the bending moment of panel under the short-term combination of loads, 

   M0   is the flexural capacity of prestressed panels 

P    is the load on panel, 

Uin   is the energy consumption, 

W0     is the elastic resistance moment of prestressed tension edge of conversion 

section of bending member, 

Wtot   is the sum of energy consumption and elastic energy, 

xt     is the equivalent height of tension zone of the section，reference [2]，xt=h-

x/β1， 

α1 and β1 are the coefficients of the equivalent stress distribution map of the 

compression zone，for reactive powder concrete, reference [3], α1 takes 0.85, β1 

takes 0.7, 

αcr     is the coefficient of force characteristics of the member 

βB     is the influence coefficient of steel fiber on short-term stiffness of bending 

member，βB takes 0.354, 

βt      is the influence coefficient of steel fiber on tensile strength of RPC, for 

bending member, βt takes 1.3, 

γ      is the influence coefficient of section resistance moment，according to the 

Chinese concrete structure design specification, γ takes 1.35, 

Δu     is the ultimate deflection of unit panel, 

Δy     is the yield deflection of unit panel, 

κcr     is the ratio of cracking moment Mcr to maximum bending moment Mk, 

λ      is the prestressing degree, 
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λf     is the characteristic parameter of steel fiber, λf =ρf·lf/df, 

μin       is the energy dissipation factor, 

μΔ     is the coefficient of deflection ductility, 

ρf      is the volume ratio of steel fiber， 

ρte      is the reinforcement ratio of tensile reinforcement, 

σ'p0     is the stress of prestressed steel bar when concrete normal stress is equal 

to zero at all joints of longitudinal prestressing steel bar A'p in the compression zone, 

σpc      is the pre-compression stress of concrete of tensile edge of prestressed 

flexural member,  

σsc    is the effective prestress to the edge tensile stress under the short-term effect 

of external load, 

σsk    is the equivalent stress of longitudinal tensile reinforcement when the loads 

are calculated by using a standard combination, 

ψ      is the uneven coefficient of strain of longitudinal steel in the crack of the 

concrete member, 

1. Introduction 

Due to the increasing speed of high-speed train, the sound barriers on both sides of the 

railway undergo higher than ever aerodynamic wind pressure when trains passing 

through. The ordinary concrete sound barriers are prone to crack or even break due to 

their low tensile strength. Therefore, their sound proof ability will be greatly 

deteriorated. Reactive Powder Concrete [4-7] (RPC) is a new environmentally friendly 

material with excellent properties such as high strength, high toughness and high 

durability. It can improve the crack resistance of the sound barrier by replacing ordinary 

concrete with reactive powder concrete. During the transportation and installation 

process, and under the effect of aerodynamic wind pressure of the train and wind load, 

the unit panel is prone to cracks due to the hollow structure of the RPC sound barrier 

unit panel and the relatively thin front and back panel. In order to control the occurrence 

and development of cracks, prestressing is applied by directly stretching the 

longitudinal reinforcement to improve the crack resistance of the unit panel. Homma et 

al [8 ] proposed an electromagnetically controlled swingable sound barrier to prevent 

excessive deformation. G. R. Watts et al [9] studied the effects of different cap shapes, 

wind speeds and wind directions on the noise reduction of sound barriers. Studies had 

shown that the T-shaped and multi-edge caps for sound-absorbing structures had the 

best noise reduction effect. Zhang et al [10] carried out fatigue tests on four prestressed 

concrete cantilever panels under repeated bending. The results show that fatigue 

performance under bending was better than that under axial loads. The effective 

prestress loss is between 3% and 6% due to fatigue loading. Lv et al [11] studied seismic 

behavior of uni-section and tapered section curved prestressed in situ concrete sound 

barriers. The results show that the hysteresis behavior is excellent. He et al [12] carried 

out the bending test of the GRC sound barrier panels and verified that the calculation 

theory of the flexural capacity of conventional concrete was suitable for GRC concrete 

sound barrier panels.  

Although a large number of experimental and theoretical studies have been carried out 

on concrete sound barriers, little research has been done on the prestressed reactive 

powder concrete sound barrier. In this paper, the flexural capacity tests of the in situ 

and prefabricated RPC sound barrier with different prestressing degrees are carried out 

to analyze the flexural behavior of the prestressed RPC sound barrier unit panels. 
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2. Experimental program 

2.1 Test specimens 

4-point bending tests were performed for three in situ RPC sound barrier panels and 

three prefabricated RPC sound barrier panels. The detailed diagrams of in situ and 

prefabricated panels are shown respectively in Fig. 1 and 2. The test method is to apply 

a load to the front plate. The main parameters of each panel are shown in Table 1. 

  
（a）The loading diagram of in situ panels 

 

（b）Schematic section diagram of the in situ panel  

Figure 1 The detailed diagrams of in situ unit panels 

Back plate

Longitudinal reinforcement

500

1
4

0

Sound absorbing rock wool

Front plate

Web plate
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（a）The loading diagram of prefabricated unit panels 

 

（b）Schematic Section diagram of the prefabricated panels 

Figure 2 The detailed diagrams of prefabricated unit panels 

 
Span 

(mm) 

Width 

(mm) 

Overall 

thickness 

(mm) 

Thickness of 

front 

panel(mm) 

Thickness of 

back 

panel(mm) 

Whether to 

apply 

prestress 

Type of 

specimens 

B1 

1960 500 

140 

25 25 No 
In situ unit 

panels 
B2 25 25 Yes 

B3 25 25 Yes 

B4 

120 

30 25 Yes 
Prefabricated 

unit panels 
B5 30 25 No 

B6 20 20 No 

Table 1 The key parameter of each unit panel 

2.2 Test material 

In this test, the RPC concrete mix ratio for cement, fine sand, medium sand, coarse sand, 

silica fume, water reducer and water is 1:0.2:0.8:0.2:0.3:0.02:0.23, steel fiber is used 

with dosage of 2%, the preparation procedure of RPC is as follows. In accordance to 

test method in the reference [13]，[14] and [15], the mechanical properties of RPC are 

shown in Table 2. 

Back plate

Longitudinal reinforcement

Sound absorbing rock wool

Front plate

Channel iron

500

1
2
0
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Figure The preparation procedure of RPC 

Cube compressive 

strength fcu(MPa) 

Axial compressive 

strength fc(MPa) 

Splitting tensile 

strength fts(MPa) 

Axial tensile 

strength ft(MPa)
 

142.6 123.6 7.1 5.3 

Table 2 The test value of mechanical properties of RPC 

NB：Reference [16], ft=0.75fts. 

The yield strength and ultimate strength of steel bars are shown in Table 3. 

 
 

 Diameter(mm) Yield Strength (MPa) Ultimate Strength (MPa) 

HRB400 6 466 560 

Table 3 The test value of mechanical properties of steel bars 

2.3 Prestressing the panels 

As it shown in Figure 3, the two ends of the HRB400 steel bars with a diameter of 6mm 

are processed into threads, which are passed through a pre-made steel plate with holes, 

and the steel bar is tensioned by tightening the nut. The pre-tension method is used to 

apply the prestressing force, and the steel bar is stretched at one end. The strain of the 

steel bar is measured by the DHDAS dynamic signal acquisition and analysis system. 

From the reinforcement tensioning to the completion of the unit board maintenance, the 

collection of the reinforcement strain data has been maintained to determine the tensile 

control stress and effective prestressing of each reinforcement. The manufacturing 

process of the prestressed unit plate is: laying a rubber plate with convex teeth → 

supporting form → tensioning panel steel reinforcement → pouring panel concrete → 

placing sound-absorbing rock wool → tensioning backing plate steel reinforcement → 

pouring backing plate concrete → curing → releasing prestressed reinforcement. 

Add quartz sand
Stir evenly Sift  steel fibers

evenly into  mixer

Stir for 4 minutes
Add cement and

silica fume

Stir for 4 minutes

Add water and water

reducing agent

Stir for 6 minutes
Discharge

Vibration molding

After 1 day
Demolding

Conservation

After 28 days
RPC
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Figure 3 The schematic diagram of steel bar tension 

The prestress degree λ represents the degree of prestress applied to the prestressed 

concrete member. The prestress degree λ is defined as the ratio of the depressurizing 

bending moment M0 determined by the magnitude of the prestressing force to the 

bending moment M generated by the external load. It can also be expressed as the ratio 

of the prestressed concrete edge compressive stress σpc generated by the effective 

prestress to the edge tensile stress σsc generated under the short-term effect of external 

load. The degree of prestressing is calculated using formula (1a) and (1b).  

                       MM /0=
                                 

(1a) 

pc sc/  =                                  
(1b) 

The prestressed flexural capacity can be calculated by formula (2). 

                   
0 pc 0M W=                                  

(2) 

Where, σpc is the prestressed stress at the tension fiber of the panel ；W0 is the equivalent 

elastic moment capacity. 

The calculation results of prestressing degree of prestressed panels are shown in Table 

4. 

 σpc(MPa) 
0 (kN mM  ） ）mkN( M    

B2 1.92 2.40 16.45 0.146 

B3 2.40 3.00 16.47 0.182 

B4 1.22 1.52 10.60 0.143 

Table 4 The prestressing degree of prestressed unit panels 

3. Experimental results and analysis 

3.1 Cracking load and ultimate load 

The cracking load and ultimate load of each unit panel are shown in Table 5. 

 

Overall 

thickness 

(mm) 

Thickness of 

front 

panel(mm) 

Thickness of 

back 

panel(mm) 

λ 

Cracking load（kN） Ultimate 

load

（kN） 

Back 

panel 

Front 

panel 

Web 

panel 

B1 140 25 25 0 28.1 26.6 32.1 77.0 

Steel bar

screw nut

Steel plate

Steel bar

screw nut
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B2 25 25 0.146 32.1 — 37.5 73.1 

B3 25 25 0.182 43.4 39.0 43.4 73.2 

B4 

120 

30 25 0.143 23.0 19.1 — 35.3 

B5 30 25 0 21.1 16.7 — 37.4 

B6 20 20 0 19.1 14.6 — 26.5 

Table 5 The cracking loads and ultimate loads of unit panels 

In can be seen from Table 5 that, for the in situ unit panels, when the prestressing 

degrees increases from 0 to 0.146 and 0.182, the cracking loads of back plates are 

increased by 14.2% and 54.5%, and the cracking loads of web plates are increased by 

16.8% and 35.2%, indicating that the prestressing can effectively increase the cracking 

loads of the panel units. For the prefabricated panels, the cracking load of back plate of 

B4 is increased by 9.0% compared with B5, and the cracking load of front plate of B4 

is increased by 14.4% compared with B5, indicating that prestressing can increase the 

cracking load on the unit panel. The cracking load of back plate of B5 is increased by 

10.5% compared with B6, and the cracking load of front plate of B5 is increased by 

14.4% compared with B6, indicating that increasing the thickness of the back and front 

plate can increase the cracking load on the panels.  

For the in situ panels, the ultimate loads of the three panels are almost the same, 

indicating that increasing the prestressing degree cannot increase the ultimate bearing 

capacity of the panels. For the prefabricated unit panels, the ultimate bearing capacity 

of B5 is not much different from that of B4, indicating that the application of prestress 

does not improve the ultimate bearing capacity of the panel. The ultimate load of B5 is 

increased by 41.1% compared with B6, indicating that the ultimate load of the panel is 

greatly increased by increasing the thickness of the panel. 

3.2 Failure modes 

As it shown in Figure 4, for the in situ unit panels, the failure modes of the non-

prestressed panel and the prestressed panels are basically the same. The main cracks 

are located in the pure bending zone, the cracks in web panels are vertical upwards, and 

most of cracks of the web panels are connected to the cracks of the back panels, and 

only a small part of the cracks appear in the curved shear section. The height of the 

cracks in the web of the panels is the highest in test B1 and B3 is the lowest, indicating 

that the prestress force can effectively control development of concrete cracks. It can 

be concluded that, the greater the prestressing degree, the better the effect of limiting 

crack development. 

 

（a）Back plateof B1 
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（b）Web plate of B1 

 

（c）Back plate of B2 

 

（d）Web plate of B2 

 

（e）Back plate of B3 

 

（f）Web plate of B3 

Figure 4 Crack development and failure characteristics of the in situ unit panels 

For the prefabricated panels, the failure modes of the prestressed panel and the non-

prestressed panels are basically the same, which are partial damage of the front plates. 

The reason is mainly that the rigidity of the channel embedment at the front plates is 

large, which reduces the deflection of the panel. As it shown in Figure 5, The area of 

the front plate marked in red is the contact area between the front plate and the channel 

embedments, the thick black lines indicate the cracks in Fig. 5. 
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（a）Back plate of B4 

 

（b）Front plate of B4 

 

（c）Back plateof B5 

 

（d）Front plate of B5 

 

（e）Back plateof B6 
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（f）Front plate of B6 

Figure 5 Crack development and failure characteristics of the prefabricated unit 

panels 

3.3 Deflection of the panels 

 

NB: О indicates the cracking load Fcr, Δ indicates the ultimate load Fu. 

Figure 6 The mid-span load-deflection curve of the in situ unit panels 
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NB: О indicates the cracking load Fcr, Δ indicates the ultimate load Fu. 

Figure 7 The mid-span load-deflection curve of the prefabricated unit panels 

It can be seen from Fig. 6 that in the elastic phase, the relationship between the elastic 

flexural capacity in situ panels is B3>B2>B1, indicating that the increase of the 

prestressing degree can increase the cracking load of the unit panel. The slope of the 

load-deflection curve of the in situ panels in the elastic stage is B3>B2>B1, that is, the 

stiffness of B3 is the largest, the stiffness of B1 is the smallest, indicating that the 

increase of the prestressing degree can increase the stiffness of the panel. 

It can be seen from Fig. 7 that in the elastic phase, the elastic flexural capacity of the 

prefabricated panels is B4>B5>B6, indicating that the prestressing can significantly 

increase the cracking load, and increasing the thickness of the back plate and front plate 

can also slightly increase the cracking load. The slope of the load-deflection curve of 

the prefabricated panels is B4>B5>B6, indicating that the prestressing can significantly 

increase the stiffness, and increasing the thickness of the back plate and front plate can 

also slightly increase the stiffness. 

It can be seen from Fig. 6 and Fig. 7 that the deflection of the in situ panel is smaller 

than that of the prefabricated panel, because the in situ panel has larger flexural rigidity. 

The residual deformation of the in situ panel is obviously smaller than the prefabricated 

panel due to the channel embedments in the prefabricated unit panel. 

3.4 Ductility of the panels 

3.4.1 The coefficient of deflection ductility [17] 

The coefficient of ductility can be calculated according to formula (3). 

 

u
Δ

y


 =

  

（3） 

Where，μΔ is ductility coefficient, Δu is the ultimate deflection；Δy is the 

deflection at yield. 

The coefficient of ductility reflects the change of the mid-span displacement of the 

simply supported beam in the two stages which are the yield state and the ultimate 

state. The larger the value of the coefficient of ductility, the better the ductility of the . 

panel. 
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Figure 8 The coefficients of deflection ductility of the unit panels 

It can be seen from Fig. 8 that for the in situ unit panels, the relationship of the 

coefficients of ductility is B1>B2>B3, and the coefficients of ductility of B2 and B3 

are reduced by 12.6% and 18.7%, indicating that increasing the degree of prestress will 

reduce the ductility of the unit panel. The reason is that the application of the pre-stress 

increases the rigidity of the panel, the development of the deflection of the panel is 

limited, thereby the ductility of the unit panel is reduced. For the prefabricated panel, 

the coefficient of deflection ductility of B4 is reduced by 36.1% compared with B5, 

indicating that the application of prestress obviously reduces the ductility of the panel. 

The coefficient of ductility of B6 is reduced by 4.8% compared with B5, indicating that 

reducing the thickness of the back plate and front plate slightly reduces the ductility of 

the panel 

3.4.2 The energy dissipation factor [18] 

The energy dissipation factor can be calculated according to formula (4). 

                     tot el in
in

tot tot

W -E U
μ = =

W W                    

（4） 

Where, Wtot is the total energy, Eel is the elastic energy, Uin is dissipated energy  

The energy dissipation factor is also one of the criteria for evaluating the ductility of 

the member. The energy dissipation factor of the member is obtained by calculating the 

energy consumption of the members. 
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Figure 9 The energy dissipation factors of the unit panel 

It can be seen from Fig. 9 that for the in situ unit panels, the relationship of the energy 

dissipation factors is B1>B2>B3, and the energy dissipation factors of B2 and B3 are 

reduced by 2.2% and 12.6% compared with B1, indicating that the increase of 

prestressing degree will reduce the ductility of the unit panel. For the prefabricated unit 

panels, the energy dissipation factor of B4 is reduced by 47.3% compared with B5, 

indicating that prestressing will obviously reduce the ductility of the unit panel. And 

the energy dissipation factor of B6 is reduced by 5.1% compared with B5, indicating 

that reducing the thickness of the back and front plate will slightly reduce the ductility 

of the unit panel. In addition, after the pre-stress is applied, the energy dissipation factor 

of the prefabricated unit panel is reduced to a greater extent than that of the in situ panel. 

It is due to the enhanced rigidity of the channel embedments of the prefabricated panel, 

the overall energy dissipation capability is not as good as that of the in situ unit panel. 

The energy dissipation of the prefabricated unit panel is suddenly reduced after the 

application of prestressing, and the ductility loss is very obvious. 

4. Formula to Calculate the flexural capacity of the in situ panels 

4.1 Simplified section of the in situ panels 

The in situ panel consists a back plate, a front plate and a web plate, the cross-section 

of the panel can be simplified into an I-shaped section as shown in Fig. 10[19]. 

 
(a) Actual section of the unit panel 

(1-the front panel,2-the back panel) 
(b) Simplified section of the unit panel 

Figure 10 Simplified diagram of section of the unit panel 

4.2 Moment at crack for in situ unit panels 

Under the bending load, the cracking loads of the panels are mainly determined by the 

tensile strength of RPC and the pre-stressing value. The cracking moment of the panels 

can be calculated according to formula (5). 
                           

cr t pc 0( )M f W = +                           

（5） 

Where, 
c

crM  is the cracking movement ,γ is the safety factor , taken as 1.35 according 

to Chinese design code [22] 

Table 6 shows the comparison of 
c

crM   based on formula (5) and the actual 

cracking moment 
t

crM  from the tests. 

   
the calculated value

mkN/c

cr M
 

the experimental value

mkN/t

cr M  
t

cr

c

cr / MM  

1

2b

h

b

h
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B1 0 8.15 8.43 0.9663 

B2 0.146 10.61 9.63 1.1026 

B3 0.182 11.52 13.02 0.8841 

Average value 0.9844 

Standard deviation 0.0901 

Coefficient of variation 0.0916 

Table 6 The comparison between the calculated and experimental values of 

the cracking moment of the panels  

It can be seen from Table 6 that the calculated and experimental values of the cracking 

moment of the panels increase with the increase of the prestressing degree, and the 

calculated values is in good agreement with the experimental values. Therefore, 

formula (5) can be used as a calculation formula for the cracking moment of the in situ 

prestressed RPC sound barrier panels.  

4.3 Flexural capacity of the in situ panels 

Unlike the ordinary concrete, the tensile strength of reactive powder concrete is higher. 

After the member is cracked, the concrete at the crack can still bear a certain tensile 

stress due to the presence of steel fiber. Therefore, it cannot be ignored when calculating 

the flexural capacity. As it shown in Figure 11, by calculating the section type of the 

panels, it is concluded that the section type of the panels belongs to the second type of 

I-shaped section.  

 
Figure 11 Schematic diagram of the height of compression zone of the I-shaped 

section 

Considering the boundary damage, the prestressed steel bars of the tension zone reach 

the design value, and the concrete on the compression edge of the section is crushed. In 

the case of failure, the prestressed steel bars placed in the compression zone do not 

reach yield strength regardless of tension or compression, and approximately σ'p=σ'p0-

f'py is used to simplify the calculation.  
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(a) Actual stress distribution map    (b) equivalent stress distribution map 

Figure 12 Section stress block 

According to the stress block shown in Figure 12, the flexural capacity is calculated 

using:  

)2/()(-2/)(

)-)2/()/2-

ffftttp0ppy0p

s0syf0ffc10c1u

ahhbbkfaxbxkfahAf

ahAfhhhbbfxhbfMM

t −−−−−−−

+−−+=

）（）（

（（）（




 （6） 

and: 

fftt

ppy0pppysysyffc1c1

hbbkfbxkf

AfAfAfAfhbbfbxf

t ）（

）（）（

−++

−++−=−+ 
     （7） 

The calculated value of the ultimate capacity is compared with the experimental value. 

The results are shown in Table 7. 

 

 the calculated value c

uM /kN·m the experimental value t

uM /kN·m 
c t

u u/M M  

B1 18.30 17.33 1.0562 

B2 16.69 16.45 1.0133 

B3 18.29 16.47 1.1106 

Average value 1.0600 

Standard deviation 0.0398 

Coefficient of variation 0.0376 

Table 7 The comparison between the calculated and experimental values of the 

ultimate bending moment of the unit panels 

It can be seen from Table 7, the calculated values are larger than the experimental values, 

which is due to the special structural form of the sound barrier unit panels, but the 

difference is not large 

4.4 Calculations of crack width and deflection for in situ panels 

4.4.1 Calculation of maximum crack width 

With reference [15] to the concrete structure design specification, the maximum crack 

f yAs

f pyAp

(σ'p0-f 'py)A'p

f 'yA's

f c

M u

f yAs

f pyAp

(σ'p0-f 'py)A'p

f 'yA's

α1f c

xt

M u

kf t

x

xt
x0

f t
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width is calculated according to formula (8).  

                          

（8） 

The nature of the crack width of the flexural member is the relative strain difference 

between the steel bar and the concrete. The incorporation of steel fiber is an effective 

measure to control the cracking of concrete. The crack width of the unit panel is related 

to the volume ratio, the aspect ratio and the bonding property of the steel fiber. 

Therefore, the formula (8) needs to be modified. The effect of steel fiber on the 

maximum crack width is now discussed. 

4.4.1.1 The coefficient of force characteristics αcr 

The coefficient of force characteristics includes the influence of four parameters, 

which can be modified according to formula (9). 
                                

c321cr  =                                 （9）

 

τ1 is the coefficient of long-term effect, according to the Chinese concrete 

structure design specification, τ1 takes 1.5, τ2 is the ratio of maximum crack width to 

average crack width, reference [20], τ2 takes 1.6,τ3 is the coefficient of working 

conditions of the concrete member，for bending member, τ3 takes 1.0,αc is the 

influence coefficient of average strain of concrete in the tension zone，according to 

the Chinese concrete structure design specification, αc approximately takes 0.77. 

4.4.1.2 Stress of tensile reinforcement 

Due to the high strength of RPC and the incorporation of steel fiber, the stress of 

the rebar in the panel will decrease with the increase of the strength of the matrix and 

the increase of the dosage of the steel fiber. The formula (8) has been modified to the 

formula (10) in the reference [21]. 
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βcw is mainly related to the type of steel fiber, reference [22], for shearing straight 

fibers, βcw takes 0.35.
 

In summary, formula (11) is the modified formula for calculating the maximum 

crack width of the unit panel. 
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As shown in Fig. 13, the calculated values of maximum crack width are compared 

with the experimental values.  
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（a）B1 

 

（b）B2 

 

（c）B3 

Figure 13 Contrast curves between calculated values and experimental values of 

maximum crack width of the unit panels 

It can be seen from Fig. 13 that when the flexural capacity is in the range of 0.6 Mu 
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to 0.95 Mu, the formula (11) can relatively accurately calculate the maximum crack 

width under each load. After the crack occurs in the panel, the crack propagation is in 

a relatively stable stage due to the bonding of the steel fiber at the crack. At this stage, 

the maximum crack width value of the panel can be calculated accurately. When the 

steel bar reaches the yield strength, the crack develops rapidly, the crack width increases 

significantly, and the steel fiber at the crack is continuously pulled out or broken, 

resulting that the inaccuracy of formula (11).  

4.4.2 Calculation of deflection  

Since the prestressing stress applied to the concrete by the prestressing bars in the 

back plate and the front plate are substantially the same, the prestressed concrete 

flexural members that allow cracks to occur, the short-term stiffness Bs can be 

calculated according to formula (12)[15]. 

                       
 ）（ crcr

0c
s

1

85.0

−+
=

IE
B

                        

（12） 

The aspect ratio, shape and type of steel fiber will affect the stiffness of the bending 

members after cracking. Under the normal circumstance, steel fiber can increase the 

stiffness of the members by 10%~40% after cracking. Considering the test results, the 

reference [23] uses data regression for simplified calculations.  

                         ）（ fBs

c

s 1 += BB
                          

（13） 

According to the calculation method of the deflection deformation of the simply 

supported bending members in the material mechanics, the deflection of the unit panel 

is calculated by the formula (14).  
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（14） 

As shown in Fig. 14, the calculated values of deflection are compared with the 

experimental values. 
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（a）B1 

 

（b）B2 

 

（c）B3 

Figure 14 Comparison between calculated values and experimental values of 

deflection deformation of the unit panels 
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to be consistent with the deflection curve from the tests. Before cracking, the stiffness 

of the unit panel changes little, so the calculated deflection curve agrees well with the 

experimental results. After cracking, compared with B2 and B3, the calculated 

deflection curve of B1 has a larger error. The reason is that B2 and B3 are prestressed 

panels, the crack widths are smaller than B1, and the stiffness changes are more stable 

than B1. Therefore, their calculated values of the deflection are in good agreement with 

the experimental values.  

5. Conclusion 

1. Prestressing can effectively improve the cracking loads of the in situ and 

prefabricated unit panels, but it cannot increase the ultimate flexural capacity of the unit 

panels. For the prefabricated panels, increasing the thickness of the back and front plate 

can increase the cracking load and ultimate load. 

2. For the in situ panels, the bending failure occurs in each unit panel. Increasing 

the prestressing degree can increase the rigidity of the unit panel, but it will reduce the 

ductility of the unit panel. For the prefabricated unit panels, due to the rigidity 

enhancement of the channel embedments, the flexural deflection of the panel is smaller, 

resulting in partial damage of the front plate of each unit panel. Prestressing or 

increasing the thickness of the back and front plate can increase the rigidity of the unit 

panel, but it will reduce the ductility of the unit panel. 

3. By modifying the existing calculation method of the conventional prestressed 

concrete flexural members, the calculation formula for the panels is obtained. The 

calculated values of the cracking moment are in good agreement with the experimental 

values, and the calculated values of ultimate bending moment are larger than the 

experimental values due to the special structural form of the unit panels. 

4. Based on the test results, considering the "bridge" effect of steel fiber, the formula 

to calculate the crack width and deflection in service limit stage are developed. The 

calculated values of the prestressed panels are in good agreement with the experimental 

values. 
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