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Abstract—The removal of background noise from speech audio
is a problem with high practical relevance. A variety of deep
learning approaches have been applied to it in recent years, most
of which operate on a magnitude spectrogram representation
of a noisy recording to estimate the isolated speaking voice.
This work investigates ways to include phase information, which
is commonly discarded, firstly within a convolutional neural
network (CNN) architecture, and secondly by applying capsule
networks, to our knowledge the first time capsules have been used
in source separation. We present a Circular Loss function, which
takes into account the periodic nature of phase. Our results show
that the inclusion of phase information leads to an improvement
in the quality of speech separation. We also find that in our
experiments convolutional neural networks outperform capsule
networks at speech separation.

Index Terms—Speech Separation, Speech Enhancement, Cap-
sules, Phase, Convolutional Neural Networks

I. INTRODUCTION

Source separation is the task of identifying and separating

multiple sound sources from each other in a single mixed

signal. Within this domain, speech separation (also referred

to as speech enhancement or de-noising) focuses specifically

on separating human voices from background noise, and has

many modern-day applications, especially in the telecom-

munications and personal technology sectors. We focus on

monaural audio, as in telephone signals, where one cannot

take advantage of differing spatial origins of the sources.

The majority of existing work on this problem operates

in the time-frequency domain to estimate the magnitude

spectrogram of the isolated speech, which is then combined

with the phase spectrogram of the original mixed signal.

Estimation of the phase of an isolated source is difficult, not

least because of the periodic nature of phase, but it is known

to play an important role in source separation in the human

auditory system [1] and has been demonstrated to aid with

computational source separation in several pieces of recent

work [2]–[5].

This work explores the estimation of a complete spectro-

gram in the time-frequency domain without computation with

complex numbers, giving the advantage of being easily imple-

mentable with standard deep learning frameworks. Within an

existing neural network architecture we directly estimate both

magnitude and phase and/or the real and imaginary parts of

the complex spectrogram. We also apply capsule networks; an

approach which is motivated both by the parallel between the

vector nature of a complex number and the vector output of a

capsule, and by the previously demonstrated ability of capsule

networks to identify overlapping characters in images [6].

The contributions of this work are:

1) A novel Circular Loss function for periodic variables.

2) The first application, to our knowledge, of capsule net-

works to auditory phase modelling.

3) Empirical evidence of improvement in speech separation

by using phase information in various architectures.

II. RELATED WORK

It was demonstrated by [2] that retaining phase information

can lead to a reduction in artefacts (interference introduced

by the separation process) in a musical source separation

task, and [3] showed that combining the estimated magnitude

with isolated rather than mixed signal phase results in better

separation quality.

In another musical separation task, [4] include phase infor-

mation from the mixed signal. They use the mixture phase

to reconstruct the audio, giving positive results for some

instrumental sources, but only a small improvement for voice,

which is our target.

In [7], a deep neural network is trained to produce ideal ratio

masks (IRMs) of the real and imaginary parts of the complex

spectrogram, with some improvement over the magnitude

estimation approach. [8] developed algorithmic components

which work directly on the complex spectrogram and apply

these in a Deep Complex Convolution LSTM network to

speech separation on the TIMIT speech corpus, achieving a

2.3% improvement. However, their results are given in terms of

mean squared error, which gives little indication of the audible

quality of the results.

To address the periodicity of phase, [5] model the estima-

tion as a classification problem by discretising phase values.

This approach shows positive results when compared to a

baseline model, which attempts to directly estimate phase as

a continuous variable. Recently, [9] proposed the use of the

instantaneous frequency for phase modelling, reaching an SDR

value of 11.37 on the CHiME dataset.

We address periodicity with a novel loss function which

supports a deep learning model to efficiently learn to estimate



periodic variables, such as phase, by regression. With this ap-

proach we investigate the performance of a number of different

architectures to estimating the full complex spectrogram of the

isolated speech signal.

We also explore the use of capsules, groups of neurons

which produce a vector output, which have recently been

developed for image processing tasks. In [6] they outper-

form a convolutional neural network (CNN) at identifying

overlapping handwritten digits. This problem is analogous to

separating the overlapping signals in a spectrogram, which

motivates us to investigate the application of capsules to

speech separation, the first time this has been attempted.

III. METHOD

A. Data and Evaluation Measures

The CHiME 3 dataset [10] consists of voice recordings

made in a sound booth, and mixtures of these recordings with

background noise from four different environments (a cafe, a

bus, a pedestrian area and beside a busy road junction). The

training set consists of 7138 utterances from 83 speakers, with

an average length of 7.6 seconds, in total 15 hours of audio.

The validation and test set contain 1620 and 1320 utterances

by four other speakers each.

All models are evaluated using the standard source separa-

tion metrics defined in [11], using the implementation of [12].

Source to Distortion Ratio (SDR) measures all noise in the

separated signal, Source to Artefact Ratio (SAR) measures the

noise introduced by the separation and Source to Interference

Ratio (SIR) measures noise from the original recording which

has not been removed. We also report Normalised SDR

(NSDR):

NSDR(sm, sr, se) = SDR(se, sr)− SDR(sm, sr) (1)

where sm, sr, and se are the mixed, reference and estimated

sources, respectively. For all of these measures a higher score

is better. The calculation of these metrics requires both source

signals, but noise signals for specific mixes are not included in

CHiME 3. We thus created mixes of the speech with random

segments of the noise signals provided with CHiME 3.

B. Pre-Processing

The audio data has a sample rate of 16kHz and is converted

to the time-frequency domain by short-time Fourier transform

(STFT), with a window size of 1024 and a hop length of 256.

Each utterance is then split into overlapping patches of 256

time frames (approximately four seconds) with a hop of 128,

resulting in 50% overlap. The upper half of each spectrum

is removed giving 512 frequency bins by 256 time periods.

Magnitude is linearly re-scaled to a range of [0,1].

C. The Baseline Model

As a baseline we use the U-Net described in [13], a CNN

model which showed state of the art performance in a musical

source separation task, and is itself based on the original U-Net

developed for medical image segmentation in [14]. It consists

of a convolutional encoder and a transposed convolutional

Fig. 1: The Circularity of Phase - The red line shows the

direction of optimisation with a standard L1 loss function,

where ŷ is the estimate of target value y. The green line shows

the direction of optimisation with the Circular Loss function.

decoder, with corresponding layers in each connected by

concatenation of their outputs. Layers in the encoder employ

ReLu activation, while the decoder uses Leaky ReLu with 0.2

leakiness. Batch normalisation is employed throughout.

When presented with a mixed signal magnitude spectrogram

X , the model estimates a ratio mask, which is multiplied

element-wise with the input to provide the estimated mag-

nitude of the isolated voice Ŷ :

Ŷ = f(X,Θ)⊙X (2)

where f(X,Θ) is the mask produced by the network with

parameters Θ, when applied to X .

During training, the L1 norm of the difference between the

masked input and the target defines the loss. Formally, the

magnitude loss, Lm(X,Y ; Θ), of the network with parameters

Θ is defined as:

Lm(X,Y ; Θ) = ‖f(X,Θ)⊙X − Y ‖1 (3)

D. Circular Loss for Periodic Variables

Applying L1 loss directly to a periodic variable such as

phase is problematic, due to the discontinuity in the value

which is being learned. Fig. 1 illustrates how a standard loss

function, which assumes the error to be the target value minus

the estimate, can lead to learning which adjusts the estimate

in the direction away from the target on the unit circle. This is

particularly problematic when the values are close to +/− π.

To address this issue we introduce the Circular Loss (Lc)

which produces a suitable error signal by taking the error at

each element of the estimated phase spectrogram as the lesser

of the absolute value of the difference between the network

output mask applied to the mixed input element xij and the

target values yij , yij+2π (i.e. forward one cycle), and yij−2π
(i.e. backward one cycle):

Lc(X,Y ; Θ) = ‖P‖1 (4)



Where P is an i× j matrix where each element is defined by:

pij = min(|f(xij ,Θ)⊙ xij − yij |,

|f(xij ,Θ)⊙ xij − (yij + 2π)|,

|f(xij ,Θ)⊙ xij − (yij − 2π)|)

(5)

E. Data Representations

1) Magnitude: As a baseline, the network estimates a

magnitude spectrogram mask, and the phase of the original

mixture is used to estimate the isolated speech. We then

attempt several alternative methods to incorporate the complex

spectrogram information into the process. We evaluate differ-

ent representations including redundant ones, to find which

make the learning process more effective.

2) Phase Masking: Here magnitude and phase are encoded

as a two channels (i.e. the input has shape [256, 512, 2]). The

network produces an output of the same shape which is trained

using Lm on the first channel and Lc on the second channel.

The total loss is calculated as:

L =
Lm(X,Y ; Θ) +WcLc(X,Y ; Θ)

2
, (6)

where the hyper-parameter Wc weights the Circular Loss.

The circular and magnitude losses are of very different

magnitude; a Wc of 0.005 results in Lm and Lc being roughly

equal at the outset of training.

3) Phase Difference: In this approach the data is presented

in the same way, but the network is trained to estimate

the phase difference between mixture and isolated voice;

essentially an additive phase mask in the second channel. To

accomplish this, a variation Lpd of Circular Loss is used:

Lpd(X,Y ; Θ) = ‖f(X,Θ)−D‖1 (7)

where D is an i× j matrix and

dij = min(|xij − yij |,

|xij − (yij + 2π)|,

|xij − (yij − 2π)|)

(8)

4) Real and Imaginary: Here the two channels of the input

data consist of the real and imaginary parts of the spectrogram

and the network is trained to produce masks of the real and

imaginary parts. For each channel L1 loss is used and the real

and imaginary parts are weighted equally.

5) Magnitude, Real and Imaginary: Here, we use a redun-

dant representation with three channels for the network input

and output. The real and imaginary output channels are used

to calculate the phase. The loss is then calculated in the same

way as for phase masking models.

6) Magnitude, Phase, Real and Imaginary: All four rep-

resentations are provided to the network. The output has two

channels, magnitude and phase, and the loss is calculated using

equation 6.

7) Real and Imaginary to Magnitude and Phase: We use

real and imaginary parts as in III-E4, but the output is a

magnitude and phase mask as in subsection III-E2, so that the

network models the relationship between real and imaginary

values, and magnitude and phase.

TABLE I: Summary of Data Types - The input data repre-

sentation and trained output for the data types described in

III-E.

# Input Output

1 Magnitude Magnitude mask

2 Magnitude & phase Magnitude & phase masks

3 Magnitude & phase Magnitude mask & phase
difference

4 Real & imaginary Real & imaginary masks

5 Magnitude, real & imaginary Magnitude & phase masks

6 Magnitude, phase, real &
imaginary

Magnitude & phase masks

7 Real & imaginary Magnitude & phase masks

F. Capsule Models

We developed three capsule based architectures for speech

separation; a simple proof of concept similar to the original

capsule network in [6] and [15]’s baseline model, a CapsUNet,

and a No-ConvCapsUNet. We use the Locally Constrained

Dynamic Routing algorithm, developed for SegCaps in [15]

for medical image segmentation to cope with the increased

computation and memory costs caused by our data and net-

work sizes compared to [6].

The Basic Capsule Network (BCN) consists of a single 128

filter convolutional layer, followed by two layers of capsules.

For comparison against this model we also use a simple CNN,

with three layers, each with same number of neurons as the

BCN, but arranged and trained as a standard CNN.

The CapsUNet consists of a convolutional layer and four

convolutional capsule layers in the encoder, with four decon-

volutional capsule layers and three deconvolutional layers in

the decoder, with skip connections (concatenations) between

the layers on either side of the network.

The No-ConvCapsUNet is similar to the CapsUNet but the

two channel input of real and imaginary parts is treated with

a layer of capsules, rather than a convolutional layer.

G. Training Procedure

All models are trained using the ADAM optimiser [16] with

an initial learning rate of 0.0001. U-Net models use a batch

size of 50, but due to GPU memory constraints the simple

capsule model uses a batch size of 10, and the CapsUNet

and No-ConvCapsUNet use a batch size of five. An epoch

is defined as one pass through the entire training set, and all

models are trained for eight epochs. Training these models

has significant computational cost, and stopping at this point

allows experimentation with a wide range of parameters. Early

experiments showed that validation set loss is stable by this

point, and Circular Loss reaches a minimum after only two

epochs.

For each data representation described above, apart from

Magnitude and Real & Imaginary, U-Net models are trained

using seven different Wc values, as shown in Table II. Each

experiment was run three times and the results provided are

the means of the three runs. Across all experiment settings

there was a mean standard deviation in NSDR over the three

runs of 1.1%.



TABLE II: Varying data representation with U-Nets. All results are means over three experiments. Green cells indicate a grater

than 1% improvement relative to the baseline model. Red cells indicate a greater than 1% deterioration.

# Data Type
Circular Loss

Weighting (Wc)

Separation Metrics Change Relative to Baseline (#1)

SDR SIR SAR NSDR SDR SIR SAR NSDR

1 Magnitude - 11.811 17.149 13.648 8.135 - - - -

2 Phase Mask

0.5 11.757 15.978 14.165 8.081 -0.46% -6.83% 3.79% -0.66%

0.05 11.861 16.539 13.994 8.185 0.42% -3.56% 2.54% 0.61%

0.005 11.961 17.150 13.836 8.285 1.27% 0.01% 1.38% 1.84%

0.0005 12.086 17.000 14.073 8.410 2.33% -0.87% 3.12% 3.38%

0.00005 11.950 16.832 13.979 8.274 1.18% -1.85% 2.43% 1.71%

0.00001 12.047 16.902 14.064 8.371 2.00% -1.44% 3.05% 2.90%

0.000005 12.075 16.892 14.120 8.398 2.23% -1.50% 3.46% 3.24%

3 Phase Difference

0.5 11.891 16.369 14.134 8.215 0.68% -4.55% 3.56% 0.98%

0.05 11.986 16.767 14.055 8.310 1.48% -2.23% 2.99% 2.15%

0.005 12.076 17.128 13.990 8.399 2.24% -0.12% 2.51% 3.25%

0.0005 11.980 16.721 14.076 8.304 1.43% -2.49% 3.14% 2.08%

0.00005 12.013 16.679 14.144 8.337 1.71% -2.74% 3.64% 2.48%

0.00001 11.999 16.932 13.992 8.323 1.59% -1.27% 2.53% 2.31%

0.000005 11.894 16.610 14.009 8.218 0.70% -3.15% 2.65% 1.02%

4 Real & Imaginary n/a 11.619 19.074 12.709 7.943 -1.63% 11.22% -6.88% -2.36%

5 Magnitude, Real & Imaginary

0.5 11.165 15.449 13.626 7.489 -5.47% -9.91% -0.16% -7.94%

0.05 11.927 17.076 13.808 8.251 0.98% -0.43% 1.17% 1.42%

0.005 11.959 17.188 13.790 8.283 1.25% 0.22% 1.04% 1.81%

0.0005 11.905 17.051 13.781 8.229 0.79% -0.58% 0.98% 1.15%

0.00005 11.805 16.841 13.755 8.128 -0.06% -1.80% 0.78% -0.08%

0.00001 11.912 16.801 13.916 8.262 0.85% -2.03% 1.96% 1.56%

0.000005 11.861 17.057 13.728 8.185 0.42% -0.54% 0.59% 0.62%

6 Magnitude, Phase, Real & Imaginary

0.5 11.773 16.218 14.067 8.097 -0.33% -5.43% 3.07% -0.47%

0.05 12.072 17.331 13.891 8.396 2.21% 1.06% 1.78% 3.21%

0.005 11.978 17.164 13.855 8.302 1.41% 0.09% 1.52% 2.05%

0.0005 12.021 17.008 13.967 8.345 1.77% -0.82% 2.34% 2.58%

0.00005 11.961 17.275 13.767 8.285 1.27% 0.73% 0.87% 1.84%

0.00001 11.995 17.181 13.857 8.319 1.56% 0.18% 1.53% 2.26%

0.000005 11.956 17.383 13.703 8.280 1.22% 1.36% 0.41% 1.78%

7 Real & Imaginary to Magnitude
& Phase

0.5 11.834 16.471 13.985 8.158 0.19% -3.95% 2.47% 0.28%

0.05 12.024 17.247 13.856 8.348 1.80% 0.57% 1.52% 2.62%

0.005 11.973 17.022 13.894 8.297 1.37% -0.74% 1.80% 1.99%

0.0005 11.895 16.788 13.911 8.219 0.71% -2.11% 1.93% 1.02%

0.00005 11.986 16.780 14.053 8.310 1.48% -2.15% 2.97% 2.15%

0.00001 12.020 16.979 13.982 8.344 1.77% -1.00% 2.45% 2.57%

0.000005 11.945 17.144 13.813 8.269 1.14% -0.03% 1.21% 1.65%

IV. RESULTS AND EVALUATION

A. Data Representation Experiments

Table II details the speech separation quality achieved by

each of the data representations and Circular Loss weightings

investigated. All five methods where Wc was varied showed

a statistically significant improvement in NSDR over the

baseline approach when Wc 6 0.05, providing strong evidence

that the inclusion of phase information does improve the

quality of speech separation by deep learning. Significance was

determined by a two sample t-test at the 5% confidence level

between the three baseline experiments and 18 experiments for

each data type. However, in most cases, overweighting phase

with a Wc value of 0.5 led to a decrease in performance.

Phase masking with a phase loss weight of 0.0005 provided

the strongest results in terms of SDR and NSDR, with im-

provements of 2.33% and 3.38%, respectively. All Phase Mask

and Difference models improved SAR, but that improvement

came at a cost of worsened SIR in most cases, which changed

by between 0.01% and -3.15%. However, according to [11],

interferences tend to have less of an impact on perceived sound

quality than artefacts and the overall effect as captured in

SDR and NSDR is one of improvement in almost all models

with phase. The converse of this is demonstrated by the Real

& Imaginary model, where an 11.22% increase in SIR is

observed against a SAR decrease of 6.88%. Although the

NSDR only deteriorates by 2.36%, when listening to the output

of these models the result is subjectively worse. The redundant

inputs introduced in Magnitude, Phase, Real & Imaginary

models led to slightly less improvement in SDR than Phase

Mask and Difference models, but showed a better balance

between SIR and SAR, in particular with Wc = 0.05, which

is the only experiment with an improvement of over 1% in all

metrics. Magnitude, Real & Imaginary and Real & Imaginary

to Magnitude & Phase models both showed improvement in

SAR and SDR, but not as strongly as other approaches.



TABLE III: Capsule Network Results

Model Architeture Data Type
Separation Metrics

SDR SIR SAR NSDR

U-Net Magnitude 11.811 17.149 13.648 8.135

Caps U-Net Magnitude 6.437 6.708 20.183 2.761

Caps U-Net Phase Mask 6.279 6.680 18.398 2.603

BCN Magnitude 7.317 10.924 10.674 3.641

Basic CNN Magnitude 8.838 12.516 12.455 5.162

No-Conv Caps U-Net Real & Imaginary 3.667 3.673 38.408 -0.009

No-Conv Caps U-Net Real & Imaginary to Magnitude & Phase 4.561 4.876 19.695 0.885

B. Capsule Network Experiments

Both the BCN and CapsUNet architectures do show some

success in speech separation and as far as we are aware this

is the first time this has been demonstrated, but they do not

perform at a level comparable to convolutional networks. The

basic capsule network achieves a NSDR of 3.641, compared to

5.162 achieved by the basic CNN model. When the complexity

of the model is increased in the CapsUNet results deteriorate

further, with a NSDR of 2.761 failing even to match that of

the simpler capsule model, reflecting the results of [17], which

found limited improvement when adding complexity to the

original capsule architecture. The No-ConvCapsUNet showed

little ability to learn, with NSDRs close to zero indicating

that the convolutional layer at the start of the network is a

key element, and that capsules acting directly on the vector

representation of the complex spectrogram is not effective.

Capsule networks take far longer to train than standard

neural networks, and are also far slower at test time. When

combined with their relatively poor performance this indicates

that significant further work is required if they are to provide

a practical alternative to, or improvement on, existing deep

convolutional networks for source separation.

V. CONCLUSION

In this study we have evaluated a number of neural network

architectures for the estimation of full complex spectrograms

in speech separation and demonstrated that the estimation of

phase leads to improved results in separating speech from

background noise, when compared to the traditional approach

of estimating only the isolated magnitude. A Circular Loss

function for the estimation of periodic variables was intro-

duced, which produces suitable error signals for periodic

variables. We have also successfully demonstrated the first

application of capsule networks to source separation, although

the results do not match those of CNNs.

We propose further work in the area with subjective testing

on human listeners to gain a more robust understanding of the

perceived quality of the models’ outputs, and an evaluation

of Deep Complex Networks [8] that would enable a direct

comparison to our results.
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