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Abstract: Many recent approaches of distributed control over networks of dynamical agents
rely on the assumption of identical agent dynamics. In this paper we propose a systematic
method for removing this assumption, leading to a general approach for distributed-control
stabilization of networks of non-identical dynamics. Local agents are assumed to share a minimal
set of structural properties, such as input dimension, state dimension and controllability indices,
which are generically satisfied for parametric families of systems. Our approach relies on the
solution of certain model-matching type problems using local state-feedback and input matrix
transformations which map the agent dynamics to a target system, selected to minimize the joint
control effort of the local feedback-control schemes. By adapting a well-established distributed
LQR control design methodology to our framework, the stabilization problem for a network of
non-identical dynamical agents is solved. The applicability of our approach is illustrated via a
simple UAV formation control problem.

Keywords: Model-matching, distributed LQR, non-identical systems, networked control.

1. INTRODUCTION

Multi-agent networks have attracted a lot of attention of
the control community in recent years. In such schemes,
each agent is represented by a dynamical system and has
the ability to communicate with certain of its counter-
parts within the network. The interactions established
among agents determine the network topology and define
a distributed communication and control pattern, often
modelled as a graph, the nodes of which represent agents
exchanging information through the links (edges) of the
graph. The need for forming networks of systems typi-
cally arises from the consideration that some problems are
not easily resolved at the individual system level. Mili-
tary applications, transport networks and supply chains
are typical paradigms which indicate that difficult tasks
may be accomplished cooperatively (Jacoby and Chang
(2008)). In other cases, the topology of the network may
be imposed by physical links, such as in power systems
where the agents take the role of power generators and the
interconnections are represented by power transmission
lines (Andreasson et al. (2012)).

Network stabilization is the most challenging problem in
multi-agent network control (Olfati-Saber (2006); Fax and
Murray (2002)). In typical situations the mere complexity
of the system makes centralized control schemes either
impossible or undesirable. Hence, distributed cooperative
control is typically needed to ensure stable network opera-
tion. In cases where networks are composed of sufficiently
small number of agents, the interconnections among the
systems may not be limited and fully-centralized cooper-
⋆ This work was supported by a City University scholarship held by
Eleftherios Vlahakis.

ative controllers can be established. Nevertheless, band-
width limitations as well as cost factors are the main
reasons for imposing restrictions to network’s communica-
tion capacity, resulting in sparsity of interactions among
individual agents.

Two complementary distributed LQR methods have been
proposed in Borrelli and Keviczky (2008) and Deshpande
et al. (2012). The first is a top-down approach (Borrelli
and Keviczky (2008)) in which the centralized optimal
LQR controller is approximated by a distributed con-
trol scheme whose stability is guaranteed by the stability
margins of LQR control. The second (Deshpande et al.
(2012)) consists of a bottom-up approach in which optimal
interactions between self-stabilizing agents are defined so
as to minimize an upper bound of the global LQR crite-
rion. A limitation of both methods is the assumption that
networks are formed by identical systems, which is often
unrealistic in applications. The motivation for this work
is to remove this major assumption, thereby generalizing
the approaches in Borrelli and Keviczky (2008) and Desh-
pande et al. (2012) with certain modifications.

In this paper, rather than assuming identical models for
all agents, we consider a general class of models which
share the same characteristics in terms of input and state
dimensions and other structural properties (e.g. control-
lability, controllability indices). State-feedback and input
transformations are used to solve several model-matching
type-problems and compensate for the mismatch among
the models of the agents. In the present context the def-
inition of ”model-matching” (in contrast to other ”exact
model matching” problems defined in the literature) gives
us considerable flexibility as the output matrices of the



mapped systems are required to be square and invertible
but are otherwise arbitrary. Here the model of each agent
matches the input-to-state part of a target system via
state-feedback control and input matrix scaling. The selec-
tion of the target model is specified such that the pertur-
bations in the agents’ models produced by state-feedback
controllers are minimal in a sense which is clearly defined.
Existence conditions for the proposed model-matching
schemes are established. Single-input plants are first inves-
tigated and then the multi-input case is analyzed assuming
identical controllability indices for the agents’ dynamical
models. The definition of the target’s model is achieved by
minimizing a measure of the joint model-matching control
effort. This allows closed-loop network performance to
depend predominantly on the LQR optimality criterion,
defined and optimized in the second stage of our approach.
This adapts the state-feedback distributed control scheme
presented in Borrelli and Keviczky (2008), leading to the
solution of the stabilization problem for networks with
non-identical agent dynamics. The formation control for
a network of experimental UAV’s with widely different
parameters is finally used as design study to demonstrate
the effectiveness of the method.

The rest of the paper is organized in four sections. In sec-
tion 2 a few preliminaries on graph theory are presented.
The main results of our work are presented in section
3, where model-matching type problems are solved for
various classes of systems along with optimization tech-
niques for specifying the target’s model. The extension of
the distributed scheme presented in Borrelli and Keviczky
(2008), followed by a numerical example are included in
the fourth section. The fifth section presents the main
conclusions of the work where a discussion of the main
results and suggestions for future work are given.

2. PRELIMINARIES

A graph G is defined as G = (V,E), where V is the set
of nodes (or vertices) V = {1,⋯,N} and E ⊆ V × V the
set of edges (i, j) with i ∈ V, j ∈ V. The degree dj of a
graph vertex j is the number of edges which start from
j. Let dmax(G) denote the maximum vertex degree of the
graph G. We denote by A(G) the (0, 1) adjacency matrix
of the graph G. Let Ai,j ∈ R be its i, j element, then
Ai,j = 1 if (i, j)∈ E , ∀i, j = 1,⋯,N , i ≠ j. Let j ∈ Ni

represent the neighbourhood of the ith node if (i, j)∈ E
and i ≠ j. The adjacency matrix A(G) of undirected
graphs is symmetric. We define the Laplacian matrix as
L(G) = D(G) −A(G) where D(G) is the diagonal matrix
of vertex degrees di (also called the valence matrix).Let
S(L(G)) = {λ1(L(G)),⋯, λN(L(G))} be the spectrum of
the Laplacian matrix L associated with an undirected
graph G arranged in nondecreasing semi-order.

3. MODEL-MATCHING PROBLEMS WITH
OPTIMAL SELECTION OF TARGET SYSTEM

In this section, a specific type of model-matching problem
is solved for various general classes of systems via state-
feedback and input matrix transformations, as the first
stage of the solution to the problem of stabilizing a network
of non-identical agents via distributed LQR control, which
is implemented in the second stage of the design. The
plants representing the dynamical agents of the network
are assumed to belong to a family of systems sharing

certain structural properties, such as system size, input
dimension, controllability indices, etc; these are defined
precisely later in the section. It is shown that under
these transformations the open-loop agent dynamics can
be mapped to a pre-specified target model. This effec-
tively gives all agents identical input-to-state dynamics
(and, in general, a different invertible output matrix for
each agent). We also show that the target system can be
selected so that the joint control effort of this scheme is
minimized in a specific sense also made precise later. We
impose this objective because we wish to use the ”mini-
mum amount of feedback” in the first stage of the design,
so that the overall performance and stability properties
of the closed-loop system are effectively defined by the
weighting matrices of the quadratic performance index of
the LQR problem solved in the second stage. Although
local stabilization by state feedback is not necessary, it is
possible to impose it as an additional constraint to the
problem of joint control-effort minimization. This offers
the design integrity and autonomous stable operation of
individual agents when communication with neighbouring
agents is disrupted in the final distributed control scheme
(although of course this is at the expense of an increase of
the index of joint local control effort). The main assump-
tions used are summarized in Table 1.

Table 1. Assumptions, structural properties.

Single-input case Multi-input case

Agent
models

ẋi = Aixi + biui
yi = xi, i = 1,⋯,N (1)

ẋi = Aixi +Biui

yi = xi, i = 1,⋯,N (2)

Target
model

ẋ = Adx + bdu
y = x (3)

ẋ = AN+1x +BN+1u

y = x (4)

Assumptions

{(Ai, bi)} ∪ {(Ad, bd)}
have same dimensions
and are controllable with
Ai ∈ Rn×n, bi ∈ Rn.

{(Ai,Bi)}, i = 1,⋯,N+1
have identical
controllability indices
{µj}mj=1, ∑m

j=1 µj = n.

3.1 Single-input case

The first class of agent models is defined as the set of
single-input controllable plants with fixed state dimension
and is summarized in the first column of Table 1. Consider
a network formed of N single-input linear systems with
state size equal to n and state-space represented by (1).
Let (Ad, bd) be the target system, chosen from the same
system class. It can be easily shown that there are always
uniquely defined state-feedback gain-vectors fi, i = 1,⋯,N
such that

Ti(sI −Ai − bif
T
i )

−1bi = Td(sI −Ad)
−1bd, i = 1,⋯,N (5)

Here the Ti’s and Td are appropriate similarity transforma-
tions that bring the state-space form of the ith plant and
the target system, respectively, into controllable canonical
forms. Note that there is always a similarity transforma-
tion that matches the state-space forms of two controllable
single-input linear systems as long as they have the same
state-dimension and common poles. The same argument
is also true for N such systems. Therefore, the model-
matching of N linear systems with a target model will
affect only their characteristic polynomial. Thus, the state
coordinate system to be employed for control purposes
depends on either the designer’s choice or even the phys-
ical meaning of the system variables themselves. In this
respect, our goal here is to find the target characteristic
polynomial of Ad, p(s, d) = sn + dn−1s

n−1 + ⋯ + d1s + d0



that minimizes a cost function J(⋅) which penalizes joint
control effort. This cost function is defined next.

We now give the solution to the model-matching prob-
lem for the single-input case of finding appropriate fi for
i = 1,⋯,N that satisfy (5) without setting any constraint
on the polynomial p(s, d). Let aiT = [ain−1 a

i
n−2 ⋯ ai0] and

dT = [dn−1 dn−2 ⋯ d0] be row vectors representing the
coefficients of the characteristic polynomial of the ith agent
model and the target system, respectively. Let also, Ti =
(ΓciHai)

−1 for i = 1,⋯,N where Γci = [bi Aibi ⋯ An−1i bi]
and Hai represent the controllability matrix and the Han-
kel matrix formed by the coefficients of the characteris-
tic polynomial, respectively, of the ith plant (Antsaklis
and Michel (2005)). The state-feedback gain-vector which
matches the characteristic polynomial of the ith system
with p(s, d) is given uniquely by

fi = (ΓciHai)
−T

(ai − d) = TTi (ai − d) (6)

Since Ti and ai are fixed, the freedom to select state-
feedback gains relies only on d. Consider the following
cost function which penalizes joint state-feedback control
effort: J1(⋅) = ∑

N
i=1 ∥fi∥

2. This can be written as a func-

tion of d: J1(d) = dT (∑
N
i=1 TiT

T
i )d − 2(∑

N
i=1 TiT

T
i a

i)T d +

∑
N
i=1 ∥T

T
i a

i∥2. Note that J1(d) is strictly convex and thus
the unique minimum for d∗ is attained as:

∂J1
∂d

= 0⇒ d∗ = (
N

∑
i=1
TiT

T
i )

−1
(
N

∑
i=1
TiT

T
i a

i
) (7)

Optimal state-feedback gains in the above least-squares
sense are obtained by substituting d∗ to (6). An alternative
cost function penalizing worst-case control effort among
the N agents can be defined as the following discrete
minimax problem to derive optimal d:

min
d∈R1×n

φ(d), with φ(d) = max
i=[1∶N]

Mi, where Mi = ∥fi∥
2 (8)

and fi is given by (6). Since φ(d) is continuous and convex
by the continuity and convexity of the Mi, i = 1,⋯,N
and its sub-level sets are bounded the minimizing solution
exists and is unique. Efficient ε-approximation algorithms
described in Dem’yanov and Malozemov (2014) can be
employed to calculate the optimal solution.

As mentioned earlier in many cases it makes sense to
add an additional constraint to the problem, namely the
stability of the target polynomial d(s). Of course, the
distributed LQR controller which is synthesized at the sec-
ond stage of the design will guarantee closed-loop network
stability, however local stabilization in many cases is still
desirable as it ensures that stable operation is maintained
if communication with neighbouring agents is disrupted
(possibly at poor levels of performance). Since the opti-
mization in the single-input case is carried out over the
coefficients of the target polynomial, the extra constraints
are derived from the Routh-Hurwitz stability criterion.
Unfortunately these are highly nonlinear so they can be
used effectively only for low-dimensional problems. An al-
ternative approach is to enforce ”local” stability conditions
by specifying a nominal target polynomial and calculating
the maximum region in coefficient space around the nomi-
nal coefficients in which the perturbed polynomial remains
stable. This can be achieved by specifying the maximum
stability radius r(do) of a nominal Hurwitz polynomial
po(s, d

o) = sn +don−1s
n−1 +⋯+do1s+d

o
0, e.g. defined via the

Euclidian or infinity norms of the coefficient vector. First

we illustrate the application of Routh-Hurwitz conditions
via a small numerical example.

Example 1. Let the state-space form of two unstable sys-
tems ẋi = Aixi+e3ui, i = 1,2 is given in controllable canon-

ical form, with A1 =

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0
0 0 1
1 −3 1

⎤
⎥
⎥
⎥
⎥
⎦

, A2 =

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0
0 0 1
1 −2 1

⎤
⎥
⎥
⎥
⎥
⎦

, e3 =

⎡
⎢
⎢
⎢
⎢
⎣

0
0
1

⎤
⎥
⎥
⎥
⎥
⎦

. We

seek the best target Hurwitz characteristic polynomial in
the sense that minimizes the joint state-feedback control
effort (f1, f2). The constrained optimization problem is:

min
d∈R1×3

2

∑
i=1

∥ai − d∥2 s.t. d1 > 0, d3 > 0 and d3d2 > d1 (9)

where ai represents the coefficients of the characteristic
polynomial of Ai, i = 1,2. The infimizing solution was
obtained in MatLab using the fmincon function and the
coefficient vector d∗ of the best target polynomial is:
d = [0 2.5 0]. Note that two poles of the optimal solution
lie on the imaginary axis which defines the boundary of
the constrained set. This may be rectified, if desired, by
redefining the stable region.

In order to formulate the constrained optimization prob-
lem for the second case, we give an explicit formula for the
distance ρ of a Hurwitz polynomial from the set of non-
Hurwitz polynomials in the coefficient space via Propo-
sition 1 which can originally be found in Hinrichsen and
Pritchard (1988). For a Hurwitz polynomial p(s, a) this
distance determines the largest ρ for which the open cube
in Rn with center a and radius ρ > 0 the set {p(s, b) ∶ ∣bi −
ai∣ < ρ for i = 1,⋯, n} only consists of Hurwitz polynomi-
als.

Proposition 1. If p(s, a), a ∈ Rn is a Hurwitz poly-
nomial, p(s, a) = p1(−s

2) + sp2(−s
2) where pj(−s

2),
j = 1,2 are real polynomials in −s2, then ρ(a) =

min{a0, [maxω2∈R+ f(ω
2)]−1/2} where f(ω2) equals

1 + ω4 +⋯ + ω2n−4

p21(ω
2) + p22(ω

2)
if n is even. If n is odd, f(ω2

) =

(1 + ω4 +⋯ + ω2n−6)(1 + ω4 +⋯ + ω2n−2)

p21(ω
2)(1 + ω4 +⋯ + ω2n−6) + p22(ω

2)(1 + ω4 +⋯ + ω2n−2)

The optimization problem is now outlined. Let a Hurwitz
polynomial po(s, d

o) be specified a priori and have max-
imum stability radius ro = ρ given by Proposition 1. Let
also S ⊆ Rn be such that δ ∈ S if and only if ∣doi −δi∣ < ρ for
all i. Consider N non-identical single-input systems with
state-dimension equal to n and given as in (1). Then the
state-feedback gain-vectors fi which are defined in (6) and
match all the characteristic polynomials of the N systems
with a Hurwitz polynomial with coefficient vector d∗ ∈ S
with minimum joint effort in the least-squares sense can
be obtained by solving

inf
d∈S

N

∑
i=1

∥fi∥
2
= inf
d∈S

N

∑
i=1

∥TTi (ai − d)∥2 (10)

where Ti, i = 1,⋯,N is the similarity transformation which
brings the ith state-space agent model in controllable
canonical form and ai represents the coefficient vector
of the characteristic polynomial of the ith system. Note
that for nontrivial problems S is bounded, so constraining
the problem on the closure of S will result in a unique
solution via standard Quadratic Programming algorithms.
Similarly, defining a worst-case control effort problem of
the form:



inf
d∈S

max
i∈{1,2,...,N}

∥TTi (ai − d)∥ (11)

involves the minimization of a continuous convex function
over a compact set and therefore a unique minimum exists
which can be calculated efficiently with the algorithms
described in Dem’yanov and Malozemov (2014).

3.2 Multi-input case

The class of systems to be considered in this paragraph
consists of multi-input linear systems with fixed controlla-
bility indices {µj} and is summarized in the second column
of Table 1. Recall that ∑

m
j=1 µj = n where m stands for the

number of inputs and n the state dimension. Note that the
controllability indices define completely the class without
the need for specifying input and state sizes. The following
Lemma is standard and is included without proof.

Lemma 1. Given (A,B) controllable, then (P (A+BF )P −1,
PBG) has the same controllability indices, up to reorder-
ing, for any P , F and G (det(P ) ≠ 0, det(G) ≠ 0) of
appropriate dimensions.

Let the pair (A, B) be controllable with controllability
indices {µj} where A ∈ Rn×n and B ∈ Rn×m. There
is always similarity transformation P (see Antsaklis and
Michel (2005) for how to construct matrix P ) such that the
pair can be reduced to controller canonical form, namely,
(Ac, Bc) where

Ac = Āc + B̄cAm, Bc = B̄cBm (12)

with Am ∈ Rm×n and Bm ∈ Rm×m being free. The
pair (Āc, B̄c) is called the Brunovsky canonical form
(Antsaklis and Michel (2005)) and is unique (up to
reordering) for the class of pairs (Ai, Bi) with com-
mon controllability indices. The matrices (Āc, B̄c) =

(diag(Ā11,⋯, Āmm),diag(B̄11,⋯, B̄mm)) where

Ājj =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
⋮ Iµj−1
0
0 0⋯0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Rµj×µj , B̄jj =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
⋮
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Rµj for j = 1,⋯,m.

Consider now a set of N+1 systems arbitrarily chosen from
the class defined by the controllability indices {µj}. Their
state-space equations are:

ẋi = Aixi +Biui, yi = xi for i = 1, . . . ,N + 1 (13)

where Ai ∈ Rn×n, Bi ∈ Rn×m. The (N + 1)th index
corresponds to a target system the state-space form of
which is assumed to be in controllable canonical form.
There are similarity transformations Pi such that the
state-space representation of the ith plant in the set can
be reduced to canonical form with dynamics and input
matrices being given as in (12). The state-space equations
of the N plants in the new coordinates (xci = Pixi) are:

ẋci = Acixci +Bciui, yi = P
−1
i xci for i = 1,⋯,N (14)

with the pairs (Aci, Bci) and (AN+1, BN+1) having
identical Brunovsky forms (Āc, B̄c). The N plants can
match the input-to-state part of the target by applying
state-feedback and input transformations ui = Fixi +Givi
with the corresponding matrices (F , G) being given as

Fci = Bm
−1
i (AmN+1 −Ami), Gi = Bm

−1
i BmN+1 (15)

where the state-feedback gain in the original coordinates
can be recovered by Fi = FciPi. The state-space equations
of the closed-loop systems take the following form

ẋci = (Aci +BciFci)xci +BciGivi, yi = P
−1
i xci (16)

with Aci + BciFci = AN+1 and BciGi = BN+1 which
are identical to the corresponding matrices of the target
system. Since all the N closed-loop systems have the
same dynamics and input matrices with the target in the
transformed coordinates, the state-space equations can be
rewritten in the form

ξ̇ = AN+1ξ +BN+1v, xi = P
−1
i ξ for i = 1,⋯,N. (17)

Possible selection of the canonical form of the target (N +

1)th system is given next. Let BmN+1 be the identity

matrix Im and J3 = ∑
N
i=1 ∥Fi∥

2
F = ∑

N
i=1 ∥Bm

−1
i (Ām −

Ami)Pi∥
2
F be cost function that measures the joint effort

of the model-matching control, where all the matrices are
as given earlier and Ām represent the free term in (12).
Then, the unique optimal solution Ām of min(J3) can
be calculated using Kronecker products and vectorization
arguments. Due to lack of space details are omitted. The
target’s state-space form becomes: (AN+1,BN+1) = (Āc +
B̄cĀm, B̄cIm) and the optimal state-feedback gains and
the input transformations are respectively given by

F̄i = Bm
−1
i (Ām −Ami)Pi, Ḡi = Bm

−1
i Im, i = 1,⋯,N. (18)

4. DISTRIBUTED CONTROL DESIGN

In this section a generalization of the distributed LQR
method proposed in Borrelli and Keviczky (2008) is an-
alyzed and applied to networks formed of systems which
belong to the classes of linear systems examined earlier.

4.1 Network-based LQR problem

First the analysis of a network-based LQR problem de-
fined in Borrelli and Keviczky (2008) is briefly presented
here. Let NL identical linear agents (A,B) constitute a
network described by a complete graph (i.e., the graph
with all possible interconnections) which has the ability to
exchange state information between any two nodes. Since
the systems in the original method are considered identical
the collective state-space form of the network shown next
is obtained from augmenting the individual systems using
Kronecker products:

˙̃x = (I ⊗A)x̃ + (I ⊗B)ũ, x̃0 = [xT1 (0),⋯, xTNL
(0)]T (19)

where x̃ = [xT1 ,⋯, x
T
NL

]T and ũ = [uT1 ,⋯, u
T
NL

]T . Consider
now a performance index that couples the dynamical
behavior of the individual systems:

J(ũ, x̃0) = ∫
∞

0

NL

∑
i=1

(xTi Qiixi + u
T
i Rui

+
NL

∑
j≠i

(xi − xj)
TQij(xi − xj))dτ (20)

with Qii ≥ 0, Qij ≥ 0 and R > 0 or, written in a

more compact form: J(ũ, x̃0) = ∫
∞
0 ∑

NL

i=1 (x̃T Q̃x̃+ũT R̃ũ)dτ
where

Q̃ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Q̃11 ⋯ Q̃1NL

⋮ ⋱ ⋮

Q̃NL1 ⋯ Q̃NLNL

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, R̃ = INL
⊗R (21)

with Q̃ii = ∑
NL

k=1Qik and Q̃ij = −Qij . Let Qii = C
T
iiCii and

Qij = C
T
ijCij . Under the assumption that (A,B) is control-

lable and all pairs (A,Cii) and (A,Cij) are observable, the
following network-based LQR problem

min
ũ
J(ũ, x̃0) s.t. ˙̃x = (I ⊗A)x̃ + (I ⊗B)ũ, x̃0 (22)



leads to the networked state-feedback gain K̃ = −R̃−1B̃T P̃
where the Lyapunov function P̃ is the unique symmet-
ric positive definite solution to the (large scale) ARE:

ÃT P̃ + P̃ Ã − P̃ B̃R̃−1B̃T P̃ + Q̃ = 0 where Ã = INL
⊗A and

B̃ = INL
⊗B. Let now Qii = Q1 and Qij = Q2 with Q1 ≥ 0

and Q2 ≥ 0 then

P̃ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

P − (NL − 1)P̃2 P̃2 ⋯ P̃2

⋮ ⋱ ⋮ ⋮

P̃2 ⋯ ⋯ P − (NL − 1)P̃2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(23)

where P is the unique symmetric positive definite solution
to the single-node ARE: ATP +PA−PBR−1BTP +Q1 = 0.
Since K̃ = −R̃−1B̃T P̃ the structure of P̃ is also preserved
in the networked state-feedback gain K̃. For more details
see Borrelli and Keviczky (2008).

4.2 Distributed LQR for networks of non-identical systems

Consider N interconnected, non-identical and dynamically
decoupled linear systems (Ai,Bi), i = 1,⋯,N character-
ized by the same controllability indices {µj}. The collective
state-space form of the network is given by

˙̃x = diag(A1,⋯,AN)x̃+diag(B1,⋯,BN)ũ, x̃(0) = x̃0 (24)

where x̃ = [xT1 ,⋯, x
T
N ]T and ũ = [uT1 ,⋯, u

T
N ]T . A stabilizing

distributed control scheme is described next.

Theorem 1. Consider N non-identical linear agents in a
network with state-space form given by (24) and topology
specified by a graph with Laplacian matrix L and maxi-
mum vertex degree dmax. Assume that the agents share the
same controllability indices and therefore according to (18)
Fi and Gi, i = 1,⋯,N can be found such that the control-
lable canonical form of the closed-loop systems is identical
and given by (17). Consider reduced-order networked LQR
problem (22) for NL = dmax +1 identical plants defined by
(AN+1,BN+1) = (Pi(Ai + BiFi)P

−1
i , PiBiGi) where Pi is

similarity transformation that bring the ith system into
controllable canonical form. Specify P and P̃2 according
to (23) and let M = aL where a > NL

λ2(L) . Construct the

(large-scale) state-feedback gain

K̂ = IN ⊗K1 +M ⊗K2 (25)

where K1 = −R−1BTN+1P and K2 = R−1BTN+1P̃2. Let Ni
represent the neighbourhood of the ith agent. Then the
state-space equation

ẋi = [Ai +Bi(Fi +GiK1P
−1
i )]xi

+ aBiGi ∑
j∈Ni

K2(P
−1
i xi − P

−1
j xj) (26)

is asymptotically stable for all i = 1,⋯,N .

The proof is omitted due to lack of space. Fig. 1 shows
a schematic representation of the distributed scheme pre-
sented in Theorem 1 at local level i.

4.3 Numerical Example

A formation control problem of four non-identical UAV’s is
now solved to demonstrate the applicability of our method.
The linearized model of a low-speed experimental UAV
known as X-RAE1 is utilized here and detailed description
of the aircraft can be found in Tomic et al. (2016) and

ẋi xi

xj

⋮ ⋮

xk

⋯⋯

⋯

Gi Σ Bi Σ ∫

Ai

Fi

P −1
iK1Σ

−P −1
jaK2Σ Σ

−P −1
kΣaK2

Fig. 1. Closed-loop configuration of the ith agent.

Elgayar (2013). For a straight, steady, symmetric and hor-
izontal flight at constant velocity VT0 = 30ms−1 the state-
space form of the linearized model for the longitudinal
motion of the ith aircraft takes the form

ẋi = Aixi +Biui, xi(0) = xi0 (27)

where xi = [ui wi qi θi]
T

and ui = [ni δTi]
T

. The state
vector represents the deviation of the forward velocity,
the downward velocity, the pitch angular velocity and the
pitch angle while the input vector the deviation of the
elevator and the thrust from the operating point. Let four
non-identical X-RAE1’s move at a nominal height and
exchange information about their states according to the
interconnection topology shown in Fig. 2. The correspond-
ing connected graph has maximum vertex degree dmax = 2.

1 2

3 4

Fig. 2. Interconnection topology of the four X-RAE1’s.

Table 2. Dynamics and input matrices (A,B).

X-RAE1 Ai Bi

agent-1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.142 −0.227 2.493 −9.771
−1.033 −4.476 28.639 0.837
−0.042 −2.744 15.351 −0.134

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1.136 1.444
−13.060 0
−137.157 −2.036

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

agent-2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.125 −0.155 2.264 −9.773
−0.963 −4.053 28.780 0.758
−0.022 −2.836 15.383 −0.122

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.928 1.3032
−11.811 0
−137.399 −2.036

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

agent-3

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.163 −0.317 2.717 −9.764
−1.120 −5.002 28.468 0.915
−0.059 −2.636 15.315 −0.147

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1.392 1.619
−14.605 0
−136.867 −2.036

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

agent-4

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.175 −0.370 2.826 −9.760
−1.171 −5.314 28.367 0.954
−0.065 −2.573 15.294 −0.153

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1.545 1.724
−15.525 0
−136.670 −2.036

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

The four UAV’s of the formation differ from each other
with respect to their mass and symmetry about the xz
plane of their body axes. The mismatch of the four X-
RAE1’s in the corresponding matrices of the linear models
is shown in Table 2. The formation is represented by:

˙̃x = diag(A1,A2,A3,A4)x̃ + diag(B1,B2,B3,B4)ũ (28)

where x̃ = [xT1 , x
T
2 , x

T
3 , x

T
4 ]T , ũ = [uT1 , u

T
2 , u

T
3 , u

T
4 ]T and

x̃(0) = x̃0. The main control objective is to stabilize the
formation in the presence of impulsive disturbances.

Since (Ai,Bi) for i = 1,2,3,4 have the same controllability
indices, the model-matching approach proposed earlier



can be applied. Let Pi be similarity transformation which
brings the ith linearized system to controllable canonical
form given in (12). Minimize the cost function∑

N
i=1 ∥Fi∥

2
F =

∑
N
i=1 ∥Bm

−1
i (Ām − Ami)Pi∥

2
F and construct Fi and Gi as

in (18). Let (Ā, B̄) = (P −1
i (Ai + BiFi)Pi, P

−1
i BiGi) be

the target system. Consider the following LQR problem
presented in 4.1 with performance index J̃ having the same
structure as in (20) for NL = dmax + 1 = 3:

min
K̃

J̃(v, ξ0) s.t. ξ̇ = (I3 ⊗ Ā)ξ + (I3 ⊗ B̄)v, ξ(0) = ξ0 (29)

with weighting matrices being given as Qii = 10I4, Qij =
100I4 and R = diag(1,100) for i = 1,2,3,4 and j = 1,2,3,4.
The solution of the above LQR problem leads to the
structured Lyapunov function P̃ and the distributed state-
feedback control ũ = K̂x̃ which stabilizes (28) is:

K̂ =diag(F1, F2, F3, F4)+

diag(G1,G2,G3,G4)(−I4 ⊗R
−1B̄TP+

M ⊗R−1B̄T P̃2)diag(P −1
1 , P −1

2 , P −1
3 , P −1

4 ) (30)

where P = P̃1 + 2P̃2, M = aL with a = 1.7 reflects the
structure of the graph with Laplacian matrix

L =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and P̃ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

P̃1 P̃2 P̃2

P̃2 P̃1 P̃2

P̃2 P̃2 P̃1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

The simulations depict forward and downward velocity
response in the presence of non-uniform wind field which
is approximated by arbitrary impulse acceleration along
the vertical axis of each UAV. Fig. 3 and Fig. 4 show
the recovery of the nominal values. Note that only the
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Fig. 3. Forward velocity deviation in the presence of
impulse acceleration along the vertical axis.
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Fig. 4. Downward velocity deviation in the presence of
impulse acceleration along the vertical axis.

state-deviation from the nominal values is stabilized but
otherwise the initial formation is not recovered along the
horizontal and the vertical axis after the occurrence of
disturbances. The longitudinal deviation along the x and
z axes can be regulated, if required, by additional integral
action. The robustness of the method have been tested by
numerous simulations which are omitted due to limitation
of space.

5. CONCLUSION

We have extended an established technique for solving
stability problems for networks formed of non-identical
agents which belong to certain general classes of linear
systems. The first stage of the method solves model-
matching problems and defines the synthesis of local state-
feedback controllers which match all the systems in the
network with a target which is selected such that the joint
control effort is minimized in a pre-specified sense. It has
been shown how existing distributed schemes proposed for
networks of identical agents can be appropriately adjusted
and applied to solve stabilization problems on networks of
non-identical dynamics. Further work is needed, however,
to extend the method to more generic classes of systems
which can be implemented successfully in practical appli-
cations.
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