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Abstract
The Strahler number of a rooted tree is the largest height of a perfect binary tree that is its minor.
The Strahler number of a parity game is proposed to be defined as the smallest Strahler number
of the tree of any of its attractor decompositions. It is proved that parity games can be solved in
quasi-linear space and in time that is polynomial in the number of vertices n and linear in (d/2k)k,
where d is the number of priorities and k is the Strahler number. This complexity is quasi-polynomial
because the Strahler number is at most logarithmic in the number of vertices. The proof is based on
a new construction of small Strahler-universal trees.

It is shown that the Strahler number of a parity game is a robust, and hence arguably natural,
parameter: it coincides with its alternative version based on trees of progress measures and—
remarkably—with the register number defined by Lehtinen (2018). It follows that parity games can
be solved in quasi-linear space and in time that is polynomial in the number of vertices and linear
in (d/2k)k, where k is the register number. This significantly improves the running times and space
achieved for parity games of bounded register number by Lehtinen (2018) and by Parys (2020).

The running time of the algorithm based on small Strahler-universal trees yields a novel trade-off
k · lg(d/k) = O(logn) between the two natural parameters that measure the structural complexity of
a parity game, which allows solving parity games in polynomial time. This includes as special cases
the asymptotic settings of those parameters covered by the results of Calude, Jain Khoussainov, Li,
and Stephan (2017), of Jurdziński and Lazić (2017), and of Lehtinen (2018), and it significantly

extends the range of such settings, for example to d = 2O
(√

lg n
)
and k = O

(√
lgn
)
.
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1 Context

Parity Games. Parity games are a fundamental model in automata theory and logic [8, 32, 17,
2], and their applications to verification, program analysis, and synthesis. In particular, they
are intimately linked to the problems of emptiness and complementation of non-deterministic
automata on trees [8, 32], model checking and satisfiability of fixpoint logics [9, 2], and
evaluation of nested fixpoint expressions [1, 18]. It is a long-standing open problem whether
parity games can be solved in polynomial time [9].

The impact of parity games goes well beyond their home turf of automata theory, logic,
and formal methods. For example, an answer [14] of a question posed originally for parity
games [31] has strongly inspired major breakthroughs on the computational complexity of
fundamental algorithms in stochastic planning [12] and linear optimization [15, 16].

Strahler Number. The Strahler number has been proposed by Horton (1945) and made
rigorous by Strahler (1952), in their morphological study of river networks in hydrogeology.
It has been also studied in other sciences, such as botany, anatomy, neurophysiology, physics,
and molecular biology, where branching patterns appear. The Strahler number has been
identified in computer science by Ershov [10] as the smallest number of registers needed to
evaluate an arithmetic expression. It has since been rediscovered many times in various areas
of computer science; see the surveys of Knuth [23], Viennot [30], and Esparza, Luttenberger,
and Schlund [11].

Related Work. A major breakthrough in the quest for a polynomial-time algorithm for
parity games was achieved by Calude, Jain, Khoussainov, Li, and Stephan [3], who have
given the first quasi-polynomial algorithm. Other quasi-polynomial algorithm have been
developed soon after by Jurdziński and Lazić [20], and Lehtinen [24]. Czerwiński, Daviaud,
Fijalkow, Jurdziński, Lazić, and Parys [4] have introduced the concepts of universal trees and
separating automata, and argued that all the aforementioned quasi-polynomial algorithms
were intimately linked to them.

By establishing a quasi-polynomial lower bound on the size of universal trees, Czerwiński et
al. have highlighted the fundamental limitations of the above approaches, motivating further
the study of the attractor decomposition algorithm due to McNaughton [27] and Zielonka [32].
Parys [28] has proposed an ingenious quasi-polynomial version of McNaughton-Zielonka
algorithm, but Lehtinen, Schewe, and Wojtczak [26], and Jurdziński and Morvan [21] have
again strongly linked all quasi-polynomial variants of the attractor decomposition algorithm
to universal trees.

Among several prominent quasi-polynomial algorithms for parity games, Lehtinen’s
approach [24] has relatively least attractive worst-case running time bounds. Parys [29] has
offered some running-time improvements to Lehtinen’s algorithm, but it remains significantly
worse than state-of-the-art bounds of Jurdziński and Lazić [20], and Fearnley, Jain, de
Keijzer, Schewe, Stephan, and Wojtczak [13], in particular because it always requires at least
quasi-polynomial working space.

Our Contributions. We propose the Strahler number as a parameter that measures the
structural complexity of dominia in a parity game and that governs the computational
complexity of the most efficient algorithms currently known for solving parity games. We
establish that the Strahler number is a robust, and hence natural, parameter by proving
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that it coincides with its version based on trees of progress measures and with the register
number defined by Lehtinen [24].

We give a construction of small Strahler-universal trees that, when used with the progress
measure lifting algorithm [19, 20] or with the universal attractor decomposition algorithm [21],
yield algorithms that work in quasi-linear space and quasi-polynomial time. Moreover, usage
of our small Strahler-universal trees allows to solve parity games in polynomial time for
a wider range of asymptotic settings of the two natural structural complexity parameters
(number of priorities d and the Strahler/register number k) than previously known, and
that covers as special cases the k = O(1) criterion of Lehtinen [24] and the d < lgn and
d = O(logn) criteria of of Calude et al. [3], and of Jurdziński and Lazić [20], respectively.

Proofs. Proofs of some of our technical results can be found in the long version of this
extended abstract available on arXiv [7].

2 Dominions, Attractor Decompositions, and Their Trees

Strategies, Traps, and Dominions. A parity game [8] G consists of a finite directed
graph (V,E), a partition (VEven, VOdd) of the set of vertices V , and a function π : V →
{ 0, 1, . . . , d } that labels every vertex v ∈ V with a non-negative integer π(v) called its
priority. We say that a cycle is even if the highest vertex priority on the cycle is even;
otherwise the cycle is odd. We say that a parity game is (n, d)-small if it has at most n
vertices and all vertex priorities are at most d.

For a set S of vertices, we write G ∩ S for the substructure of G whose graph is the
subgraph of (V,E) induced by the sets of vertices S. Sometimes, we also write G \ S to
denote G ∩ (V \ S). We assume throughout that every vertex has at least one outgoing
edge, and we reserve the term subgame to substructures G ∩ S, such that every vertex in the
subgraph of (V,E) induced by S has at least one outgoing edge.

A (positional) Steven strategy is a set σ ⊆ E of edges such that:
for every v ∈ VEven, there is an edge (v, u) ∈ σ,
for every v ∈ VOdd, if (v, u) ∈ E then (v, u) ∈ σ.

For a non-empty set of vertices R, we say that a Steven strategy σ traps Audrey in R if
w ∈ R and (w, u) ∈ σ imply u ∈ R. We say that a set of vertices R is a trap for Audrey [32]
if there is a Steven strategy that traps Audrey in R. Observe that if R is a trap in a game G
then G ∩R is a subgame of G. For a set of vertices D ⊆ V , we say that a Steven strategy σ
is a Steven dominion strategy on D if σ traps Audrey in D and every cycle in the subgraph
(D,σ) is even. Finally, we say that a set D of vertices is a Steven dominion [22] if there is a
Steven dominion strategy on it.

Audrey strategies, trapping Steven, and Audrey dominions are defined in an analogous
way by swapping the roles of the two players. We note that the sets of Steven dominions and
of Audrey dominions are each closed under union, and hence the largest Steven and Audrey
dominions exist, and they are the unions of all Steven and Audrey dominions, respectively.
Moreover, every Steven dominion is disjoint from every Audrey dominion.

Attractor Decompositions. In a parity game G, for a target set of vertices B (“bullseye”)
and a set of vertices A such that B ⊆ A, we say that a Steven strategy σ is a Steven
reachability strategy to B from A if every infinite path in the subgraph (V, σ) that starts
from a vertex in A contains at least one vertex in B.

ICALP 2020
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For every target set B, there is the largest (with respect to set inclusion) set from which
there is a Steven reachability strategy to B in G; we call this set the Steven attractor to B
in G [32]. Audrey reachability strategies and Audrey attractors are defined analogously. We
highlight the simple fact that if A is an attractor for a player in G then its complement V \A
is a trap for them.

If G is a parity game in which all priorities do not exceed a non-negative even number d then
we say that H = 〈A, (S1,H1, A1), . . . , (S`,H`, A`)〉 is a Steven d-attractor decomposition [5,
6, 21] of G if:

A is the Steven attractor to the (possibly empty) set of vertices of priority d in G;
and setting G1 = G \A, for all i = 1, 2, . . . , `, we have:

Si is a non-empty trap for Audrey in Gi in which every vertex priority is at most d− 2;
Hi is a Steven (d− 2)-attractor decomposition of subgame G ∩ Si;
Ai is the Steven attractor to Si in Gi;
Gi+1 = Gi \Ai;

and the game G`+1 is empty. If d = 0 then we require that ` = 0.
The following proposition states that if a subgame induced by a trap for Audrey has a

Steven attractor decomposition then the trap is a Steven dominion. Indeed, a routine proof
argues that the union of all the Steven reachability strategies, implicit in the attractors listed
in the decomposition, is a Steven dominion strategy.

I Proposition 1 ([32, 5, 21]). If d is even, R is a trap for Audrey in G, and there is a Steven
d-attractor decomposition of G ∩R, then R is a Steven dominion in G.

Attractor decompositions for Audrey can be defined in the analogous way by swapping the
roles of players as expected, and then a dual version of the proposition holds routinely.

The following theorem implies that every vertex in a parity game is either in the largest
Steven dominion or in the largest Audrey dominion—it is often referred to as the positional
determinacy theorem for parity games.

I Theorem 2 ([8, 27, 32, 21]). For every parity game G, there is a partition of the set of
vertices into a trap for Audrey WEven and a trap for Steven WOdd, such that there is a Steven
attractor decomposition of G ∩WEven and an Audrey attractor decomposition of G ∩WOdd.

Ordered Trees and Their Strahler Numbers. Ordered trees are defined inductively; the
trivial tree 〈〉 is an ordered tree and so is a sequence 〈T1, T2, . . . , T`〉, where Ti is an ordered
tree for every i = 1, 2, . . . , `. The trivial tree has only one node called the root, which is a
leaf; and a tree of the form 〈T1, T2, . . . , T`〉 has the root with k children, the root is not a
leaf, and the i-th child of the root is the root of ordered tree Ti.

Because the trivial tree 〈〉 has just one node, we sometimes write ◦ to denote it. If T is an
ordered tree and i is a positive integer, then we use the notation T i to denote the sequence
T, T, . . . , T consisting of i copies of tree T . Then the expression

〈
T i
〉

= 〈T, . . . , T 〉 denotes
the tree whose root has i children, each of which is the root of a copy of T . We also use
the · symbol to denote concatenation of sequences, which in the context of ordered trees
can be interpreted as sequential composition of trees by merging their roots; for example,〈〈
◦3〉〉 · 〈◦4, 〈〈◦〉〉2

〉
=
〈〈
◦3〉 , ◦4, 〈〈◦〉〉2

〉
= 〈〈◦, ◦, ◦〉 , ◦, ◦, ◦, ◦, 〈〈◦〉〉 , 〈〈◦〉〉〉.

For an ordered tree T , we write height (T ) for its height and leaves (T ) for its number of
leaves, which are defined by the following routine induction: the trivial tree 〈〉 = ◦ has 1 leaf
and its height is 1; the number of leaves of tree 〈T1, T2, . . . , T`〉 is the sum of the numbers of
leaves of trees T1, T2, . . . , T`; and its height is 1 plus the maximum height of trees T1, T2,
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. . . , T`. For example, the tree
〈〈
◦3〉 , ◦4, 〈〈◦〉〉2

〉
has 9 leaves and height 4 We say that an

ordered tree is (n, h)-small if it has at most n leaves and its height is at most h.
The Strahler number Str (T ) of a tree T is defined to be the largest height of a perfect

binary tree that is a minor of T . Alternatively, it can be defined by the following structural
induction: the Strahler number of the trivial tree 〈〉 = ◦ is 1; and if T = 〈T1, . . . , T`〉
and m is the largest Strahler number of trees T1, . . . , T`, then Str (T ) = m if there is a
unique i such that Str (Ti) = m, and Str (T ) = m + 1 otherwise. For example, we have
Str
(〈〈
◦3〉 , ◦4, 〈〈◦〉〉2

〉)
= 2 because Str (◦) = Str (〈〈◦〉〉) = 1 and Str

(〈
◦3〉) = 2.

I Proposition 3. For every (n, h)-small tree T , we have Str (T ) ≤ h and Str (T ) ≤ blgnc+1.

Trees of Attractor Decompositions. The definition of an attractor decomposition is in-
ductive and we define an ordered tree that reflects the hierarchical structure of an attractor
decomposition. If d is even and H = 〈A, (S1,H1, A1), . . . , (S`,H`, A`)〉 is a Steven d-attractor
decomposition then we define the tree of attractor decomposition H [6, 21], denoted by TH, to
be the trivial ordered tree 〈〉 if ` = 0, and otherwise, to be the ordered tree 〈TH1 , TH2 , . . . , TH`

〉,
where for every i = 1, 2, . . . , `, tree THi

is the tree of attractor decomposition Hi. Trees of
Audrey attractor decompositions are defined analogously.

Observe that the sets S1, S2, . . . , S` in an attractor decomposition as above are non-empty
and pairwise disjoint, which implies that trees of attractor decompositions are small relative
to the number of vertices and the number of distinct priorities in a parity game. The following
proposition can be proved by routine structural induction.

I Proposition 4 ([6, 21]). If H is an attractor decomposition of an (n, d)-small parity game
then its tree TH is (n, dd/2e+ 1)-small.

We define the Strahler number of an attractor decomposition H, denoted by Str (H), to
be the Strahler number Str (TH) of its tree TH. We define the Strahler number of a parity
game to be the maximum of the smallest Strahler numbers of attractor decompositions of
the largest Steven and Audrey dominions, respectively.

3 Strahler Strategies in Register Games

This section establishes a connection between the register number of a parity game defined
by Lehtinen [24] and the Strahler number. More specifically, we argue that from every Steven
attractor decomposition of Strahler number k, we can derive a dominion strategy for Steven
in the k-register game. Once we establish the Strahler number upper bound on the register
number, we are faced with the following two natural questions:

I Question 5. Do the Strahler and the register numbers coincide?

I Question 6. Can the relationship between Strahler and register numbers be exploited
algorithmically, in particular, to improve the running time and space complexity of solving
register games studied by Lehtinen [24] and Parys [29]?

This work has been motivated by those two questions and it answers them both positively
(Lemma 7 and Theorem 8, and Theorem 26, respectively).

For every positive number k, a Steven k-register game on a parity game G is another
parity game Rk(G) whose vertices, edges, and priorities will be referred to as states, moves,
and ranks, respectively, for disambiguation. The states of the Steven k-register game on G
are either pairs (v, 〈rk, rk−1, . . . , r1〉) or triples (v, 〈rk, rk−1, . . . , r1〉 , p), where v is a vertex

ICALP 2020
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in G, d ≥ rk ≥ rk−1 ≥ · · · ≥ r1 ≥ 0, and 1 ≤ p ≤ 2k + 1. The former states have rank 1 and
the latter have rank p. Each number ri, for i = k, k − 1, . . . , 1, is referred to as the value
of the i-th register in the state. Steven owns all states (v, 〈rk, rk−1, . . . , r1〉) and the owner
of vertex v in G is the owner of states (v, 〈rk, rk−1, . . . , r1〉 , p) for every p. How the game is
played by Steven and Audrey is determined by the available moves:

at every state (v, 〈rk, rk−1, . . . , r1〉), Steven picks i, such that 0 ≤ i ≤ k, and resets
registers i, i − 1, i − 2, . . . , 1, leading to state

(
v,
〈
r′k, . . . , r

′
i+1, r

′
i, 0, . . . , 0

〉
, p
)
of rank p

and with updated register values, where:

p =
{

2i if i ≥ 1 and max (ri, π(v)) is even,
2i+ 1 if i = 0, or if i ≥ 1 and max (ri, π(v)) is odd;

r′j = max(rj , π(v)) for j ≥ i+ 1, and r′i = π(v);
at every state (v, 〈rk, rk−1, . . . , r1〉 , p), the owner of vertex v in G picks an edge (v, u)
in G, leading to state (u, 〈rk, rk−1, . . . , r1〉) of rank 1 and with unchanged register values.

For example, at state (v, 〈9, 6, 4, 4, 3〉) of rank 1, if the priority π(v) of vertex v is 5 and Steven
picks i = 3, this leads to state (v, 〈9, 6, 5, 0, 0〉 , 7) of rank 2i+ 1 = 7 because max(r3, π(v)) =
max(4, 5) = 5 is odd, r′4 = max(r4, π(v)) = max(6, 5) = 6, and r′3 = π(v) = 5.

Observe that the first components of states on every cycle in game Rk(G) form a (not
necessarily simple) cycle in parity game G; we call it the cycle in G induced by the cycle
in Rk(G). If a cycle in Rk(G) is even (that is, the highest state rank on it is even) then the
induced cycle in G is also even. Lehtinen [24, Lemmas 3.3 and 3.4] has shown that a vertex v
is in the largest Steven dominion in G if and only if there is a positive integer k such that a
state (v, r), for some register values r is in the largest Steven dominion in Rk(G). Lehtinen
and Boker [25, a comment after Definition 3.1] have further clarified that for every k, if a
player has a dominion strategy in Rk(G) from a state whose first component is a vertex v in G,
then they also have a dominion strategy in Rk(G) from every state whose first component
is v. This allows us to say without loss of rigour that a vertex v in G is in a dominion
in Rk(G).

By defining the (Steven) register number [24, Definition 3.5] of a parity game G to be the
smallest number k such that all vertices v in the largest Steven dominion in G are in a Steven
dominion in Rk(G), and by proving the 1 + lgn upper bound on the register number of every
(n, d)-small parity game [24, Theorem 4.7], Lehtinen has contributed a novel quasi-polynomial
algorithm for solving parity games, adding to those by Calude et al. [3] and Jurdziński and
Lazić [20].

Lehtinen [24, Definition 4.8] has also considered the concept of a Steven defensive dominion
strategy in a k-register game (for brevity, we call it a k-defensive strategy): it is a Steven
dominion strategy on a set of states in Rk(G) in which there is no state of rank 2k + 1.
Alternatively, the same concept can be formalized by defining the defensive k-register game
Dk(G), which is played exactly like the k-register game Rk(G), but in which Audrey can also
win just by reaching a state of rank 2k + 1. Note that the game Dk(G) can be thought of
as having the winning criterion for Steven as being a conjunction of a parity and a safety
criteria, and the winning criterion for Audrey as a disjunction of a parity and a reachability
criteria. Routine arguements allow to extend positional determinacy from parity games to
such games with combinations of parity, and safety or reachability winning criteria.

We follow Lehtinen [24, Definition 4.9] by defining the (Steven) defensive register number
of a Steven dominion D in G as the smallest number k such that Steven has a defensive
dominion strategy in Rk(G) on a set of states that includes all (v, 〈rk, . . . , r1〉) for v ∈ D, and
such that rk is an even number at least as large as every vertex priority in D. We propose
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to call it the Lehtinen number of a Steven dominion in G to honour Lehtinen’s insight that
led to this—as we argue in this work—fundamental concept. We also define the Lehtinen
number of a vertex in G to be the smallest Lehtinen number of a Steven dominion in G that
includes the vertex, and the Lehtinen number of a parity game to be the Lehtinen number of
its largest Steven dominion. We also note that the register and the Lehtinen numbers of a
parity game nearly coincide (they differ by at most one), and hence the conclusions of our
analysis of the latter also apply to the former.

I Lemma 7. The Lehtinen number of a parity game is no larger than its Strahler number.

The arguments used in our proof of this lemma are similar to those used in the proof of
the main result of Lehtinen [24, Theorem 4.7]. Our contribution here is to pinpoint the
Strahler number of an attractor decomposition as the structural parameter of a dominion
that naturally bounds the number of registers used in Lehtinen’s construction of a defensive
dominion strategy.

Proof of Lemma 7. Consider a parity game G and let d be the least even integer no smaller
than any of the priority in G. Consider a Steven d-attractor decomposition H of G of
Strahler number k. We construct a defensive k-register strategy for Steven on Rk(G). The
strategy is defined inductively on the height of TH, and has the additional property of being
G-positional in the following sense: if ((v, 〈rk, . . . , r1〉) , (v, 〈r′k, . . . , r′1〉 , p)) is a move then
the register reset by Steven only depends on v, not on the values in the registers. Similarly,
if ((v, 〈rk, . . . , r1〉 , p) , (u, 〈rk, . . . , r1〉)) is a move and v is owned by Steven, u only depends
on v and not on the values of the registers or p.

Strategy for Steven. If H = 〈A, ∅〉, then G consists of the set of vertices of priority d and
of its Steven attractor. In this case, Steven follows the strategy induced by the reachability
strategy in A to the set of vertices of priority d, only resetting register r1 immediately after
visiting a state with first component a vertex of priority d in G. More precisely, the Steven
defensive strategy is defined with the following moves:

((v, 〈r1〉) , (v, 〈r1〉 , 1)) if v is not a vertex of priority d in G;
((v, 〈r1〉) , (v, 〈r′1〉 , 2)) if v is a vertex of priority d in G and r′1 = max(r1, d) is even;
((v, 〈r1〉) , (v, 〈r′1〉 , 3)) if v is a vertex of priority d in G and r′1 = max(r1, d) is odd (we
state this case for completeness but this will never occur);
((v, 〈r1〉 , p) , (u, 〈r1〉)) where (v, u) belongs to the Steven reachability strategy from A to
the set of vertices of priority d in G.

Note that this strategy is G-positional.
Suppose now that H = 〈A, (S1,H1, A1), . . . , (S`,H`, A`)〉 and that it has Strahler

number k. For all i = 1, 2, . . . , `, let ki be the Strahler number of Hi. By induction, for
all i, we have a Steven defensive ki-register strategy σi, which is (G ∩ Si)-positional, on a
set of states Ωi in Rki(G ∩ Si) including all the states (v, 〈rki , . . . , r1〉) for v ∈ Si and rki

an even number at least as large as every vertex priority in Si. Let Γi be the set of states
in Rk(G ∩ Si) defined as all the states (v, 〈d, rk−1, . . . , r1〉) for v ∈ Si if ki 6= k and as the
union of the states (v, 〈d, rk−1, . . . , r1〉) for v ∈ Si and Ωi, otherwise.

The strategy σi induces a strategy on Γi in Rk(G ∩ Si) by simply ignoring registers
rki+1, . . . , rk, and using (G∩Si)-positionality to define moves from the states not in Ωi. More
precisely, in a state (v, 〈rk, . . . , r1〉), Steven resets register j if and only if register j is reset in
a state

(
v,
〈
r′ki
, . . . , r′1

〉)
of Ωi according to σi. This is well defined by (G ∩ Si)-positionality.

Similarly, we add moves ((v, 〈rk, . . . , r1〉 , p) , (u, 〈rk, . . . , r1〉)) to the strategy if and only if
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there is a move
((
v,
〈
r′ki
, . . . , r′1

〉
, p′
)
,
(
u,
〈
r′ki
, . . . , r′1

〉))
in σi. This is again well-defined by

(G ∩ Si)-positionality.
This strategy is denoted by τi. Note that τi is a defensive k-register strategy on Γi, which

is G-positional.
The Steven defensive strategy in Rk(G) is defined by the following moves, where S denotes

the set of vertices of priority d in G:
On the set of states with first component a vertex of Ai \ Si, the moves are given by τi.
On the set of states with first component a vertex of A \ S, Steven uses the strategy
induced by the reachability strategy from Ai to Si, without resetting any registers.
On Rk(G ∩ (A \ S)), Steven uses the strategy induced by the reachability strategy from
A to S, without resetting any registers.
On the set of states with first component a vertex of S,

((v, 〈rk, . . . , r1〉) , (v, 〈d, 0, . . . , 0〉 , p)) where v is a vertex in S and p = 2k if max(rk, d)
is even and p = 2k + 1 otherwise.
((v, 〈rk, . . . , r1〉 , p) , (u, 〈rk, . . . , r1〉)) for some uniquely chosen u such that (v, u) in E
if v is owned by Steven and for all u such that (v, u) in E if v is owned by Audrey.

Observe that this strategy is G-positional.

Correctness of the Strategy. We prove now that the strategy defined above is indeed a
defensive k-register strategy. We proceed by induction on the height of TH and define a set
of states Γ, including all the states (v, 〈d, rk−1, . . . , r1〉) such that v is a vertex of G.

Base Case: If the height of TH is 0 and H = 〈A, ∅〉, let Γ be the set of states (v, 〈r1〉) and
(v, 〈r1〉 , p) with v a vertex of G, 1 ≤ r1 ≤ d and p being either 1 or 2. It is easy to see that
the strategy defined above is a defensive dominion strategy on this set.

Inductive step: If H = 〈A, (S1,H1, A1), . . . , (S`,H`, A`)〉 with Strahler number k and ki
being the Strahler number ofHi for all i (note that ki ≤ k for all i, and by definition of Strahler
number, there is at most one m such that km = k), we define Γ to be the set comprising the
union of the Γi and all the states of the form (v, 〈rk, . . . , r1〉) and (v, 〈rk, . . . , r1〉 , p) with v
a vertex of (Ai \ Si) ∪A and 1 ≤ p ≤ 2k.

Case 1: For each i, ki < k.
We first show that Γ is a trap for Audrey for the strategy defined above, showing that

rank 2k + 1 can never be reached (implying that the strategy is defensive). This comes from
the fact that the register of rank k is only reset in a state (v, 〈rk, . . . , r1〉) with v in S. Since
max(rk, d) = d is even then this leads to a state (v, 〈d, 0, . . . , 0〉 , 2k). Otherwise, register k is
never reset, so a state with rank 2k + 1 cannot be reached.

Consider now any cycle in Rk(G) with moves restricted to the strategy constructed above.
If this cycle contains a state whose first component is a vertex of S, then as explained above,
the highest rank in the cycle is 2k. Otherwise, the cycle is necessarily in Rk(G ∩ Si) for some
i. By induction, τi is winning and so the cycle is even.

Case 2: There is a unique m such that km = k.
We first show that a state of rank 2k+ 1 is never reached. Observe that register k is reset

in two places: (1) immediately after a state with first component a vertex of S is visited, (2)
if register k is reset by τm. In the first case, similarly as shown above, a state of rank 2k
is reached. In the second case, register k is either reset in a state (v, 〈d, rk−1, . . . , r1〉), and
similarly as above, a state of rank 2k is reached, or in a state of Ωi. In this case, as τi is
defensive on Ωi by induction, a state of rank 2k + 1 cannot be reached, and the highest rank
that can be reached is 2k.

Proving that every cycle is even is similar to the previous case. J
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4 Strahler-Optimal Attractor Decompositions

In this section we prove that every parity game whose Lehtinen number is k has an attractor
decomposition of Strahler number at most k. In other words, we establish the Lehtinen
number upper bound on the Strahler number, which together with Lemma 7 provides a
positive answer to Question 5.

I Theorem 8. The Strahler number of a parity game is no larger than its Lehtinen number.

When talking about strategies in parity games in Section 2, we only considered positional
strategies, for which it was sufficient to verify the parity criterion on (simple) cycles. Instead,
we explicitly consider the parity criterion on infinite paths here, which we find more convenient
to establish properties of Audrey strategies in the proof of Theorem 8.

First, we introduce the concepts of tight and offensively optimal attractor decompositions.

I Definition 9. A Steven d-attractor decomposition H of G is tight if Audrey has a winning
strategy from at least one state in DStr(H)−1(G) in which the value of register Str (H)− 1 is d.

By definition, the existence of a tight Steven d-attractor decomposition on a parity game
implies that the Lehtinen number of the game is at least its Strahler number, from which
Theorem 8 follows. Offensive optimality of an attractor decomposition, the concept we define
next, may seem less natural and more technical than tightness, but it facilitates our proof
that every game has a tight attractor decomposition.

I Definition 10. Let H = 〈A, (S1,H1, A1), . . . , (S`,H`, A`)〉 be a Steven d-attractor decom-
position, let games Gi for i = 1, 2, . . . , ` be as in the definition of an attractor decomposition,
let A′i be the Audrey attractor of the set of vertices of priority d−1 in Gi, and let G′i = Gi \A′i.
We say that H is offensively optimal if for every i = 1, 2, . . . , `, we have:

Audrey has a dominion strategy on RStr(Hi)−1(G′i);
Audrey has a dominion strategy on DStr(Hi)(G′i \ Si).

Proving that every offensively optimal Steven attractor decomposition is tight (Lemma 11),
and that every Steven dominion in a parity game has an offensively optimal Steven attractor
decomposition (Lemma 12), will complete the proof of Theorem 8.

I Lemma 11. Every offensively optimal Steven attractor decomposition is tight.

Proof. Let H = 〈A, (S1,H1, A1), . . . , (S`,H`, A`)〉 be an offensively optimal d-attractor
decomposition of a parity game and let k = Str (H). We construct a strategy for Audrey
in Dk−1(G) that is winning for her from at least one state in which the value of register k− 1
is d. We define G′i and A′i as in Definition 10.

Case 1: Str (Hi) = k for some unique i in {1, . . . , `}. In this case, we show that Audrey
has a dominion strategy on Dk−1(Gi). Since Gi is a trap for Steven in G, this gives the desired
result. Consider the following strategy in Dk−1(Gi):

On the set of states whose vertex components are in A′i, Audrey follows a strategy induced
by the reachability strategy in A′i to a vertex of priority d− 1 (picking any move if v is of
priority d− 1);
In states whose vertex component is in G′i, Audrey plays a (k − 1)-register dominion
strategy on Rk−1(G′i). Such a strategy exists by the definition of offensive optimality and
by the assumption that Str (Hi) = k.
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This strategy is indeed an Audrey dominion strategy on Dk−1(Gi), because any play either
visits a state whose first component is a vertex in A′i infinitely often, or it eventually remains
in Rk−1(G′i). In the former case, the play visits a state whose first component is a vertex of
priority d− 1 infinitely often. In the latter case, the state parity criterion holds. Note that
this even defines an Audrey dominion strategy on Rk−1(Gi).

Case 2: There are 1 ≤ i < j ≤ ` such that Str (Hi) = Str (Hj) = k − 1. We construct
a strategy for Audrey in Dk−1(G) that is winning for her from all states in Gj whose
register k − 1 has value d. Firstly, since H is offensively optimal, Audrey has a dominion
strategy on Dk−1(G′i \ Si), denoted by τi, and a dominion strategy on Rk−2(G′i), denoted
by τ ′i . Moreover, since 〈∅, (Sj ,Hj , Aj), . . . , (S`,H`, A`)〉 is an offensively optimal attractor
decomposition of Gj , an argument similar to the one in Case 1. yields that Audrey has a
dominion strategy, denoted by τj , on Rk−2(Gj) (note that Gj is a trap for Steven in G).
Consider the following strategy for Audrey in Dk−1(G), starting from a state whose vertex
component is in Gj and register k − 1 has value d:

As long as the value of register k − 1 is larger than d− 1, Audrey follows the strategy
induced by τj , while ignoring the value of register k − 1, as long as this value is larger
than d− 1.
If the value in register k − 1 is at most d− 1:

In states whose vertex component is in A′i, Audrey follows a strategy induced by the
reachability strategy from A′i to a vertex of priority d − 1 (picking any move if the
vertex has priority d− 1);
In states whose vertex component is in G′i \ Si and whose register k − 2 has value at
most d− 2, Audrey follows τi;
In states whose vertex component is in G′i and whose register k − 1 has value d− 1,
Audrey follows the strategy induced by τ ′i , while ignoring the value of regiser k − 1.

Audrey plays any move if none of the above applies.
We argue that this strategy is winning for Audrey in Dk−1(G) from states whose vertex

component is in Gj and register k − 1 has value d. Consider an infinite path that starts in
such a state. As long as register k − 1 has value d, Audrey follows τj . If Steven never resets
register k− 1 then Audrey wins. Otherwise, once register k− 1 has been reset, its value is at
most d− 1. Note that Gj is included in A′i ∪ (G′i \ Si). If register k − 1 has a value smaller
than d− 1, and the play never visits a state whose vertex component is in A′i, then Audrey
has followed τi along the play (she has never left G′i \ Si as the only way for Steven to go out
G′i \ Si is to go to A′i) and wins. Otherwise, the play visits a state whose vertex component
is in A′i, and so it visits a state whose vertex component has priority d − 1, leading to a
state in which register k− 1 has value d− 1. Finally, if a state whose vertex component is in
A′i is visited infinitely many times then Audrey wins. Otherwise, Audrey eventually plays
according to τ ′i . If Steven never resets register k − 1 then Audrey wins. Otherwise, if Steven
resets register k− 1, which at this point has value d− 1, a state of rank 2k− 1 is visited and
Audrey wins. J

I Lemma 12. Every Steven dominion in a parity game has an offensively optimal Steven
attractor decomposition.

Proof. Consider a parity game G which is a Steven dominion. Let k be the Lehtinen number
of G and let d be the largest even value such that π−1({d, d − 1}) 6= ∅. We construct an
offensively optimal Steven attractor decomposition by induction.

If d = 0, it is enough to consider 〈A, ∅〉, where A is the set of all vertices in G.
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If d > 1, let A be the Steven attractor of the set of vertices of priority d in G. Let
G0 = G \A. If G0 = ∅ then 〈A, ∅〉 is an offensively optimal Steven attractor decomposition
for G. Otherwise, G0 is a non-empty trap for Steven in G and therefore G0 has a Lehtinen
number at most k. Let A′ be the Audrey attractor of all the vertices of priority d− 1 in the
sub-game G0 and let G′0 = G0 \A′.

Given a positive integer b, let Lb be the largest dominion in G′0 such that Steven has a
dominion strategy on Db(G′0). We define m to be the smallest number such that Lm 6= ∅
and let S0 = Lm. We show that m ≤ k. To prove this, we construct an Audrey dominion
strategy on Db(G0) for all b such that Lb = ∅. Since the Lehtinen number of G0 is at most k,
this implies that m ≤ k. The Audrey dominion strategy on Db(G0), assuming Lb = ∅, is as
follows:

If the vertex component of a state is in A′ then Audrey uses the strategy in A′ induced
by the reachability strategy to vertices of priority d− 1;
If the vertex component of a state is in G′0 then Audrey uses her dominion strategy
on Db(G′0), which exists because the Steven dominion Lb in Db(G′0) is empty.

Any play following the above strategy and visiting infinitely often a state of Db(G0 ∩A′) is
winning for Audrey. A play following the above strategy and remaining eventually in Db(G′0)
is also winning for Audrey.

Let H0 be the (d− 2)-attractor decomposition of S0 obtained by induction. In particular,
H0 is offensively optimal.

Let A0 be the Steven attractor to S0 in G0 and let G1 = G0 \A0. Subgame G1 is a trap
for Steven and therefore it is a Steven dominion. Let H′ = 〈∅, (S1,H1, A1), . . . , (S`,H`, A`)〉
be an offensively optimal Steven d-attractor decomposition of G1 obtained by induction.

We claim that H = 〈A, (S0,H0, A0), (S1,H1, A1), . . . , (S`,H`, A`)〉 is an offensively op-
timal Steven d-attractor decomposition of G. Since H′ is offensively optimal, it is enough to
show that:

Audrey has a dominion strategy on RStr(H0)−1(G′0),
Audrey has a dominion strategy on DStr(H0)(G′0 \ S0).

Since H0 is offensively optimal, Audrey has a dominion strategy in RStr(H0)−1(S0), by
Lemma 11, and hence m ≥ Str (H0). Moreover, by construction of S0, Audrey has a
dominion strategy on Dm(G′0 \ S0). This implies that Audrey has a dominion strategy on
DStr(H0)(G′0 \ S0).

By choice of m, Steven does not have a defensive dominion strategy on DStr(H0)−1(G′0)
from any state. This means that for all states s, Audrey has a winning strategy τs on
DStr(H0)−1(G′0) starting in s. We construct a dominion strategy for her on RStr(H0)−1(G′0):
after every visit to a state of rank 2Str (H0) − 1, Audrey follows τs, where s is the first
state that follows on the path and whose rank is smaller than 2Str (H0)− 1. This defines a
dominion strategy on RStr(H0)−1(G′0). J

5 Strahler-Universal Trees

Our attention now shifts to tackling Question 6. The approach is to develop constructions of
small ordered trees into which trees of attractor decompositions or of progress measures can
be embedded. Such trees can be seen as natural search spaces for dominion strategies, and
existing meta-algorithms such as the universal attractor decomposition algorithm [21] and
progress measure lifting algorithm [19, 20] can use them to guide their search, performed in
time proportional to the size of the trees in the worst case.
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An ordered tree is universal for a class of trees if all trees from the class can be embedded
into it. The innovation offered in this work is to develop optimized constructions of trees that
are universal for classes of trees whose complex structural parameter, such as the Strahler
number, is bounded. This is in contrast to less restrictive universal trees introduced by
Czerwiński et al. [4] and implicitly constructed by Jurdziński and Lazić [20], whose sizes
therefore grow faster with size parameters, leading to slower algorithms.

Firstly, we give an inductive construction of Strahler-universal trees and an upper bound
on their numbers of leaves. Then we introduce labelled ordered trees, provide a succinct
bit-string labelling of the Strahler-universal trees, and give an alternative and more explicit
characterization of the succinctly-labelled Strahler-universal trees. Finally, we argue how the
succinct bit-string labelling of Strahler-universal trees facilitates efficient computation of the
so-called “level-p successors” in them, which is the key computational primitive that allows
using ordered trees to solve parity games. The constructions and techniques we develop here
are inspired by and significantly refine those introduced by Jurdziński and Lazić [20].

Strahler-Universal Trees and Their Sizes Intuitively, an ordered tree can be embedded in
another if the former can be obtained from the latter by pruning some subtrees. More formally,
the trivial tree 〈〉 can be embedded in every ordered tree, and 〈T1, T2, . . . , Tk〉 can be embedded
in 〈T ′1, T ′2, . . . , T ′`〉 if there are indices i1, i2, . . . , ik such that 1 ≤ i1 < i2 < · · · < ik ≤ ` and
for every j = 1, 2, . . . , k, we have that Tj can be embedded in T ′ij .

An ordered tree is (n, h)-universal [4] if every (n, h)-small ordered tree can be embedded
in it. We define an ordered tree to be k-Strahler (n, h)-universal if every (n, h)-small ordered
tree whose Strahler number is at most k can be embedded in it, and we give a construction
of small Strahler-universal trees.

I Definition 13 (Trees Ukt,h and V kt,h). For all t ≥ 0, we define trees Ukt,h (for all h and k
such that h ≥ k ≥ 1) and V kt,h (for all h and k such that h ≥ k ≥ 2) by mutual induction:
1. if h = k = 1 then Ukt,h = 〈〉;
2. if h > 1 and k = 1 then Ukt,h =

〈
Ukt,h−1

〉
;

3. if h ≥ k ≥ 2 and t = 0 then Ukt,h = V kt,h =
〈
Uk−1
t,h−1

〉
;

4. if h ≥ k ≥ 2 and t ≥ 1 then V kt,h = V kt−1,h ·
〈
Uk−1
t,h−1

〉
· V kt−1,h;

5. if h = k ≥ 2 and n ≥ 2 then Ukt,h = V kt,h;
6. if h > k ≥ 2 and n ≥ 2 then Ukt,h = V kt,h ·

〈
Ukt,h−1

〉
· V kt,h.

For g ≥ 0, let Ig be the trivial tree, that is the tree with exactly one leaf, of height g. For
example, I1 = 〈〉 and I3 = 〈〈〈〉〉〉 = 〈〈◦〉〉. It is routine to verify that if h ≥ k = 1 or t = 0
then Ukt,h = Ih, and if h ≥ k ≥ 2 and t = 0 then V kt,h = Ih.

I Lemma 14. For all n ≥ 1 and h ≥ k ≥ 1, the ordered tree Ukblgnc,h is k-Strahler (n, h)-
universal.

Proof. We say that a tree has weak Strahler number at most k if every subtree rooted in
a child of the root has Strahler number at most k − 1. A tree is then weakly k-Strahler
(n, h)-universal if every (n, h)-small ordered tree whose weak Strahler number is at most k
can be embedded in it. We proceed by induction on the number of leaves in an ordered tree
and its height, using the following strengthened inductive hypothesis:

for all n ≥ 1 and h ≥ k ≥ 1, ordered tree Ukblgnc,h is k-Strahler (n, h)-universal;
for all n ≥ 1 and h ≥ k ≥ 2, ordered tree V kblgnc,h is weakly k-Strahler (n, h)-universal.
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Let T be an (n, h)-small ordered tree of Strahler number at most k. If n = 1, h = 1, or
k = 1, then T is the trivial tree (with just one leaf) of height at most h, and hence it can be
embedded in Ukblgnc,h = Ih, the trivial tree of height h. Likewise, if h ≥ k ≥ 2 and n = 1,
then T is the trivial tree of height at most h, and hence it can be embedded in V kblgnc,h = Ih,
the trivial tree of height h.

Otherwise, we have that T = 〈T1, . . . , Tj〉 for some j ≥ 1. We consider two cases: either
Str (Ti) ≤ k − 1 for all i = 1, . . . , j, or there is q such that Str (Tq) = k. Note that by
Proposition 3, the latter case can only occur if h > k.

If Str (Ti) ≤ k − 1 for all i = 1, . . . , j, then we argue that T can be embedded in V kblgnc,h,
and hence also in Ukblgnc,h, because V kblgnc,h can be embedded in Ukblgnc,h by definition
(see items 3., 5., and 6. of Definition 13). Let p (a pivot) be an integer such that both
trees T ′ = 〈T1, . . . , Tp−1〉 and T ′′ = 〈Tp+1, . . . , Tj〉 are (bn/2c , h)-small. Then by the
strengthened inductive hypothesis, each of the two trees T ′ and T ′′ can be embedded in
tree V kblgbn/2cc,h = V kblgnc−1,h and tree Tp can be embedded in Uk−1

blgnc,h−1. It then follows that

tree T = T ′ · 〈Tp〉 · T ′′ can be embedded in V kblgnc,h = V kblgnc−1,h ·
〈
Uk−1
blgnc,h−1

〉
· V kblgnc−1,h.

If Str (Tq) = k for some q (the pivot), then we argue that T can be embedded in Ukblgnc,h.
Note that each of the two trees T ′ = 〈T1, . . . , Tq−1〉 and T ′′ = 〈Tq+1, . . . , Tj〉 is (n, h)-small
and all trees T1, . . . , Tq−1 and Tq+1, . . . , Tj have Strahler numbers at most k − 1. By the
previous paragraph, it follows that each of the two trees T ′ and T ′′ can be embedded
in V kblgnc,h. Moreover, tree Tq is (n, h− 1)-small and hence, by the inductive hypothesis, it
can be embedded in Ukblgnc,h−1. It follows that tree T = T ′ · 〈Tq〉 · T ′′ can be embedded in

Ukblgnc,h = V kblgnc,h ·
〈
Ukblgnc,h−1

〉
· V kblgnc,h. J

I Lemma 15. For all t ≥ 0, we have:
if h ≥ k = 1 then leaves

(
Ukt,h

)
= 1;

if h ≥ k ≥ 2 then leaves
(
Ukt,h

)
≤ 2t+k

(
t+k−2
k−2

)(
h−1
k−1
)
.

I Theorem 16. For k ≤ lgn, the number of leaves of the k-Strahler (n, h)-universal ordered
trees Ukblgnc,h is nO(1) · (h/k)k = nk lg(h/k)/lgn+O(1), which is polynomial in n if k · lg (h/k) =
O(logn). In more detail, the number is at most nc(n) · (h/k)k, where c(n) = 5.45 if k ≤ lgn,
c(n) = 3 + o(1) if k = o(logn), and c(n) = 1 + o(1) if k = O(1).

I Remark 17. By Proposition 3 and Lemma 14, for all positive integers n and h, the tree
U
blgnc+1
blgnc,h is (n, h)-universal. Theorem 16 implies that the number of leaves of Ublgnc+1

blgnc,h is
nlg(h/lgn)+O(1), which matches the asymptotic number of leaves of (n, h)-universal trees of
Jurdziński and Lazić [20, Lemma 6]. In particular, if h = O(logn) then lg(h/lgn) = O(1),
and hence the number of leaves of Ublgnc+1

blgnc,h is polynomial in n.

Labelled Strahler-Universal Trees Labelled ordered tree are similar to ordered trees: the
trivial tree 〈〉 is an A-labelled ordered tree and so is a sequence 〈(a1,L1), (a2,L2), . . . , (ak,Lk)〉,
where L1, L2, . . . , Lk are A-labelled ordered trees, and a1, a2, . . . , ak are distinct elements
of a linearly ordered set (A,≤) and a1 < a2 < · · · < ak in that linear order. We define
the unlabelling of a labelled ordered tree 〈(a1,L1), (a2,L2), . . . , (ak,Lk)〉, by straightforward
induction, to be the ordered tree 〈T1, T2, . . . , Tk〉, where Ti is the unlabelling of Li for
every i = 1, 2, . . . , k. An A-labelling of an ordered tree T is an A-labelled tree L whose
unlabelling is T . We define the natural labelling of an ordered tree T = 〈T1, . . . , Tk〉, again
by a straightfoward induction, to be the N-labelled tree 〈(1,L1), . . . , (k,Lk)〉, where L1, . . . ,
Lk are the natural labellings of trees T1, . . . , Tk.
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For an A-labelled tree 〈(a1,L1), . . . , (ak,Lk)〉, its set of nodes is defined inductively to
consist of the root 〈〉 and all the sequences in A∗ of the form 〈ai〉 · v, where v ∈ A∗ is a node
in Li for some i = 1, . . . , k, and where the symbol · denotes concatenation of sequences. For
example, the natural labelling of tree

〈〈
◦3〉 , ◦4, 〈〈◦〉〉2

〉
has the set of nodes that consists

of the following set of leaves 〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈2〉, 〈3〉, 〈4〉, 〈5〉, 〈6, 1, 1〉, 〈7, 1, 1〉, and all
of their prefixes. Indeed, the set of nodes of a labelled ordered tree is always prefix-closed.
Moreover, if L ⊆ A∗ then its closure under prefixes uniquely identifies a labelled ordered tree
that we call the labelled ordered tree generated by L, and its unlabelling is the ordered tree
generated by L. For example, the set { 〈1〉 , 〈3, 1〉 , 〈3, 4, 1〉 , 〈6, 1〉 } generates ordered tree
〈◦, 〈◦, 〈◦〉〉 , 〈◦〉〉.

Consider the following linear order on the set { 0, 1 }∗ of bit strings: for each bit b ∈ { 0, 1 },
and for all bit strings β, β′ ∈ { 0, 1 }∗, if ε is the empty string, then we have 0β < ε, ε < 1β,
and bβ < bβ′ iff β < β′.

For a bit string β ∈ { 0, 1 }∗, we write |β| for the number of bits used in the string. For
example, we have |ε| = 0 and |010| = 3, and |11| = 2. Suppose that 〈βi, βi−1, . . . , β1〉 is a
node in a { 0, 1 }∗-labelled ordered tree. Then if βj = bβ for some j = 1, 2, . . . , i, b ∈ { 0, 1 },
and β ∈ { 0, 1 }∗, then we refer to the first bit b as the leading bit in βj , and we refer to
all the following bits in β as non-leading bits in βj . For example, node 〈ε, 010, ε, ε, 11〉 has
two non-empty strings and hence two leading bits, and it uses three non-leading bits overall,
because |010|+ |11| − 2 = 3.

For a bit b ∈ { 0, 1 } and a { 0, 1 }∗-labelled ordered tree L = 〈(β1,L1) , . . . , (β`,L`)〉, we
define the { 0, 1 }∗-labelled ordered tree [L]b to be equal to L = 〈(bβ1,L1) , . . . , (bβ`,L`)〉. In
other words, [L]b is the labelled ordered tree that is obtained from L by adding an extra
copy of bit b as the leading bit in the labels of all children of the root of L.

The inductive structure of the next definition is identical to that of Definition 13, and
hence labelled ordered trees Ukt,h and Vkt,h defined here are labellings of the ordered trees Ukt,h
and V kt,h, respectively.

I Definition 18 (Trees Ukt,h and Vkt,h). For all t ≥ 0, we define { 0, 1 }∗-labelled ordered
trees Ukt,h (for all h and k such that h ≥ k ≥ 1) and Vkt,h (for all h and k such that h ≥ k ≥ 2)
by mutual induction:
1. if h = k = 1 then Ukt,h = 〈〉;
2. if h > 1 and k = 1 then Ukt,h =

〈(
ε,Ukt,h−1

)〉
;

3. if h ≥ k ≥ 2 and t = 0 then Vkt,h =
〈(
ε,Uk−1

t,h−1

)〉
and Ukt,h =

[
Vkt,h

]0
=
〈(

0,Uk−1
t,h−1

)〉
;

4. if h ≥ k ≥ 2 and t ≥ 1 then Vkt,h =
[
Vkt−1,h

]0
·
〈(
ε,Uk−1

t,h−1

)〉
·
[
Vkt−1,h

]1
;

5. if h = k ≥ 2 and t ≥ 1 then Ukt,h =
[
Vkt,h

]0
;

6. if h > k ≥ 2 and t ≥ 1 then Ukt,h =
[
Vkt,h

]0
·
〈(
ε,Ukt,h−1

)〉
·
[
Vkt,h

]1
.

The inductive definition of labelled ordered trees Ukt,h and Vkt,h makes it straightforward
to argue that their unlabellings are equal to trees Ukt,h and V kt,h, respectively, and hence to
transfer to them Strahler-universality established in Lemma 14 and upper bounds on the
numbers of leaves established in Lemma 15 and Theorem 16. We now give an alternative
and more explicit characterization of those trees, which will be more suitable for algorithmic
purposes. To that end, we define { 0, 1 }∗-labelled trees Bkt,h and Ckt,h and then we argue
that they are equal to trees Ukt,h and Vkt,h, respectively, by showing that they satisfy all the
recurrences in Definition 18.
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I Definition 19 (Trees Bkt,h and Ckt,h). For all t ≥ 0 and h ≥ k ≥ 1, we define { 0, 1 }∗-labelled
ordered trees Bkt,h as the tree generated by sequences 〈βh−1, . . . , β1〉 such that:
1. the number of non-empty bit strings among βh−1, . . . , β1 is k − 1;
2. the number of bits used in bit strings βh−1, . . . , β1 overall is at most (k − 1) + t;
and for every i = 1, . . . , h− 1, we have the following:
3. if there are less than k − 1 non-empty bit strings among βh−1, . . . , βi+1, but there are t

non-leading bits used in them, then βi = 0;
4. if all bit strings βi, . . . , β1 are non-empty, then each of them has 0 as its leading bit.

For all t ≥ 0 and h ≥ k ≥ 2, we define { 0, 1 }∗-labelled ordered trees Ckt,h as the tree
generated by sequences 〈βh−1, . . . , β1〉 such that:
1. the number of non-empty bit strings among βh−2, . . . , β1 is k − 2;
2. the number of bits used in bit strings βh−1, . . . , β1 overall is at most (k − 2) + t;
and for every i = 1, . . . , h− 1, we have the following:
3. if there are less than k − 2 non-empty bit strings among βh−2, . . . , βi+1, but there are

t− |βh−1| non-leading bits used in them, then βi = 0;
4. if all bit strings βi, . . . , β1 are non-empty, then each of them has 0 as its leading bit.

I Lemma 20. For all t ≥ 0 and h ≥ k ≥ 1, we have Ukt,h = Bkt,h.

The following corollary follows from Lemma 20, and from the identical inductive structures
of Definitions 13 and 18.

I Corollary 21. For all t ≥ 0 and h ≥ k ≥ 1, the unlabelling of Bkt,h is equal to Ukt,h.

Efficiently Navigating Labelled Strahler-Universal Trees. The computation of the level-p
successor of a leaf in a labelled ordered tree of height h is the following problem: given a
leaf 〈βh, βh−1, . . . , β1〉 in the tree and given a number p, such that 1 ≤ p ≤ h, compute the
<lex-smallest leaf

〈
β′h, β

′
h−1, . . . , β

′
1
〉
in the tree, such that 〈βh, . . . , βp〉 <lex

〈
β′h, . . . , β

′
p

〉
. As

(implicitly) explained by Jurdziński and Lazić [20, Proof of Theorem 7], the level-p successor
computation is the key primitive used extensively in an implementation of a progress measure
lifting algorithm.

I Lemma 22. Every leaf in tree Bkt,h can be represented using O ((k + t) log h) bits and for
every p = 1, 2, . . . , h, the level-p successor of a leaf in tree Bkt,h can be computed in time
O ((k + t) log h).

6 Progress-Measure Strahler Numbers

Consider a parity game G in which all vertex priorities are at most an even number d.
If (A,≤) is a well-founded linear order then we write sequences in Ad/2 in the follow-
ing form 〈md−1,md−3, . . . ,m1〉, and for every priority p ∈ { 0, 1, . . . , d }, we define the
p-truncation of 〈md−1,md−3, . . . ,m1〉, denoted by 〈md−1,md−3, . . . ,m1〉|p, to be the se-
quence 〈md−1, . . . ,mp+2,mp〉 if p is odd and 〈md−1, . . . ,mp+3,mp+1〉 if p is even. We use
the lexicographic order ≤lex to linearly order the set A∗ =

⋃∞
i=0 A

i.
A Steven progress measure [8, 19, 20] on a parity game G is a map µ : V → Ad/2 such

that for every vertex v ∈ V :
if v ∈ VEven then there is a µ-progressive edge (v, u) ∈ E;
if v ∈ VOdd then every edge (v, u) ∈ E is µ-progressive;

where we say that an edge (v, u) ∈ E is µ-progressive if:
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if π(v) is even then µ(v)|π(v) ≥lex µ(u)|π(v);
if π(v) is odd then µ(v)|π(v) >lex µ(u)|π(v).

We define the tree of a progress measure µ to be the ordered tree generated by the image
of V under µ.

I Theorem 23 ([8, 19, 20]). There is a Steven progress measure on a parity game G if and
only if every vertex in G is in its largest Steven dominion. If game G is (n, d)-small then the
tree of a progress measure on G is (n, d/2 + 1)-small.

We define the Steven progress-measure Strahler number of a parity game G to be the
smallest Strahler number of a tree of a progress measure on G. The following theorem refines
and strengthens Theorems 2 and 23 by establishing that the Steven Strahler number and the
Steven progress-measure Strahler number of a parity game nearly coincide.

I Theorem 24. The Steven Strahler number and the Steven progress-measure Strahler
number of a parity game differ by at most 1.

The translations between progress measures and attractor decompositions are as given by
Daviaud, Jurdziński, and Lazić [5]; here we point out that they do not increase the Strahler
number of the underlying trees by more than 1. This coincidence of the two complexity
measures, one based on attractor decompositions and the other based on progress measures,
allows us in Section 7 to use a progress measure lifting algorithm to solve games with bounded
Strahler number.

7 Strahler-Universal Progress Measure Lifting Algorithm

Jurdziński and Lazić [20, Section IV] have implicitly suggested that the progress-measure
lifting algorithm [19] can be run on any ordered tree and they have established the correctness
of such an algorithm if their succinct multi-counters trees were used. This has been further
clarified by Czerwiński et al. [4, Section 2.3], who have explicitly argued that any (n, d/2)-
universal ordered tree is sufficient to solve an (n, d)-small parity game in this way. We make
explicit a more detailed observation that follows using the same standard arguments (see, for
example, Jurdziński and Lazić [20, Theorem 5]).

I Proposition 25. Suppose the progress measure-lifting algorithm is run on a parity game G
and on an ordered tree T . Let D be the largest Steven dominion in G on which there is a
Steven progress measure whose tree can be embedded in T . Then the algorithm returns a
Steven dominion strategy on D.

An elementary corollary of this observation is that if the progress-measure lifting algorithm
is run on the tree of a progress measure on some Steven dominion in a parity game, then the
algorithm produces a Steven dominion strategy on a superset of that dominion. Note that
this is achieved in polynomial time because the tree of a progress measure on an (n, d)-small
parity game is (n, d/2)-small and the running time of the algorithm is dominated by the size
of the tree [20, Section IV.B].

I Theorem 26. There is an algorithm for solving (n, d)-small parity games of Strahler
number k in quasi-linear space and time nO(1) · (d/2k)k = nk lg(d/k)/lgn+O(1), which is
polynomial in n if k · lg(d/k) = O(logn).

Proof. By Proposition 3, we may assume that k ≤ 1 + lgn. In order to solve an (n, d)-small
parity game of Steven Strahler number k, run the progress-measure lifting algorithm for
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Steven on tree Bk+1
blgnc,d/2+1, which is (k + 1)-Strahler (n, d/2 + 1)-universal by Lemma 14

and Corollary 21. By Theorem 24 and by Proposition 25, the algorithm will then return
a Steven dominion strategy on the largest Steven dominion. The running time and space
upper bounds follow from Theorem 16, by the standard analysis of progress-measure lifting
as in [20, Theorem 7], and by Lemma 22. J

I Remark 27. We highlight the k · lg(d/k) = O(logn) criterion from Theorem 26 as offering
a novel trade-off between two natural structural complexity parameters of parity games
(number of of priorities d and the Strahler/Lehtinen number k) that enables solving them
in time that is polynomial in the number of vertices n. It includes as special cases both
the d < lgn criterion of Calude et al. [3, Theorem 2.8] and the d = O(logn) criterion of
Jurdziński and Lazić [20, Theorem 7] (set k = blgnc+ 1 and use Propositions 4 and 3 to
justify it), and the k = O(1) criterion of Lehtinen [24, Theorem 3.6] (by Theorem 8).

We argue that the new k ·lg(d/k) = O(logn) criterion (Theorem 26) enabled by our results
(coincidence of the Strahler and the Lehtinen numbers: Theorem 8) and techniques (small
and efficiently navigable Strahler-universal trees: Theorem 16, Corollary 21, and Lemma 22)
considerably expands the asymptotic ranges of the natural structural complexity parameters
in which parity games can be solved in polynomial time. We illustrate it by considering the
scenario in which the rates of growth of both k and lg d as functions of n are O

(√
logn

)
, i.e.,

d is 2O
(√

logn
)
. Note that the number of priorities d in this scenario is allowed to grow as

fast as 2b·
√

lgn for an arbitrary positive constant b, which is significantly larger than what is
allowed by the d = O(logn) criterion of Jurdziński and Lazić [20, Theorem 7]. Indeed, its rate
of growth is much larger than any poly-logarithmic function of n, because for every positive
constant c, we have (lgn)c = 2c·lg lgn, and c · lg lgn is exponentially smaller than b ·

√
lgn.

At the same time, the O
(√

logn
)
rate of growth allowed in this scenario for the Strahler

number k substantially exceeds k = O(1) required by Lehtinen [24, Theorem 3.6].
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