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Abstract— Graphene, a two-dimensional monatomic layer of 

carbon material, has demonstrated as a good candidate for 
applications of ultrafast photodetectors, transistors, transparent 
electrodes, and biosensing. Recently, many studies have shown 
that using metallic deep gratings could enhance the absorptance 
of graphene of 2.3% up to 80% in the near infrared region for 
applications in photon detection. This paper presents utilizing a 
nanograting structure, namely, a compound metallic grating 
could greatly enhance the absorptance of graphene up to 98% and 
widen its spectral bandwidth to 0.6 µm, which are greater than 
those of previous work. The study also showed that the 
absorptance spectrum is insensitive to angles of incidence. 
Furthermore, the proposed graphene-covered compound grating 
might bring a lot of benefits for graphene designs-based optical 
and optoelectronic devices. 
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I. INTRODUCTION 

RAPHENE is a two-dimensional (2D) material with 
carbon atoms arranged in a honeycomb lattice, and it 

offers many potential applications for optoelectronic devices 
due to its unique electrical, mechanical, and optical 
characteristics [1-8]. To be detailed, the electrons in graphene 
are known as massless quasi-particles exhibiting a linear 
energy dispersion. More importantly, a very high carrier 
mobility (lager than 200,000 cm2 V-1 s-1) makes graphene as an 
excellent material used for ultrafast photodetectors and 
transistors in the visible and near infrared (NIR) regions [2, 7, 
8]. Unlike transistors, the photon detectors are designed with a 
requirement of strong light absorptance which generates more 
electro-hole pairs, and it thus produces a greater photocurrent 
[7, 9-11].  

As demonstrated, optical properties of graphene in the 
mid- and far-IR are similar to those of Drude-type materials and 
make strong resonance absorption when graphene interacts 
with light due to its plasmonic resonance [12-17]. On the other 
hand, in the visible and NIR ranges, there is no plasmonic 
response, and the absorption of a single-layered graphene is 
about 2.3% due to its very thin thickness [18]. Accordingly, 
absorption enhancement is necessary for the application of 
photon detection based on graphene designs. Many methods of 
the absorption enhancement have been proposed by using 
microcavities and nanostructures [7, 19-31]. A microcavity 
enhances absorption by allowing light to pass through the 
graphene layer multiple times [7]. Meanwhile, a deep grating 
structure covered by a graphene sheet could also enhance 
absorptance due to a strong localized electric field causing the 
magnetic resonances [9, 23, 24, 32, 33]. Although this grating 
exhibits absorptance of 81% and a spectral bandwidth of 0.3 
µm, it is very sensitive to angles of incidence [23, 24]. 
Accordingly, novel structures featuring a higher absorptance, a 
wider bandwidth and independence on angles of incident light 
are still in need. One of the simple gratings, namely a 
single-layered compound grating (CG) has not yet been studied 
and utilized to increase the absorption of graphene and widen 
its spectral bandwidth. 

In the present study, we propose CGs used to enhance 
graphene absorption, and its enhancement is caused by strong 
localized electromagnetic fields inside grating trenches and 
surface plasmons. A CG has a several multiple grating periods 
[34], and it is also named as a double-period grating, a 
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dual-pitch grating, a dual-period grating or a complex grating 
[35-38]. On the contrary, a simple grating (SG) has a single 
grating period [17]. Figure 1 (a) shows the schematic of a silver 
(Ag) SG structure while Fig. 1(b) similarly illustrates an Ag 
grating but covered by a graphene sheet on the top. As 
demonstrated in previous studies, graphene covered on SG 
structures works as a pure conductor or resistor in the NIR 
region which could absorb a large of incidence energy at the 
trench opening of deep gratings [23]. In addition to that, it was 
seen that resonance wavelengths in the SG structures and the 
structures covered by a graphene sheet remain unchanged. 
Accordingly, in order to enhance the absorption of graphene, 
this manuscript presents an optimal analysis of the absorptance 
of different SG structures. Their geometries are then tailored to 
have CG structures that could significantly elevate the 
absorption and their physical phenomena are investigated as 
well.  

II. MODELING DEVELOPMENT AND NUMERICAL METHOD 

A. Geometric Grating Structure  

As shown in Fig. 1(a), the geometry of the SG structure is 
defined by the period (Λ), the lamella width wΛ (w is the filling 
ratio, 0 < w <1), and the grating thickness (d). Similarly, Fig. 
1(b) shows the same SG but covered by a graphene layer (at z = 
0) with a thickness of h. The incident transverse magnetic (TM) 
H travels through free space with an orientation defined by the 
polar angle θ  between the wavevector k and the surface normal 
z. For the one-dimensional gratings shown in Fig. 1, the 
electromagnetic field is independent to y-axis because the 
wavevectors of all diffracted waves lie in the x-z plane, and 
thus, there are no excitations in the y direction. In this study, the 
TM wave is used for calculations because as theoretically and 
experimentally demonstrated designer surface plasmons (SPPs) 
or Fabry-Perot modes could be excited when the TM 
polarization is applied in the y direction [17, 23, 24, 34, 39-42]. 
The Ag base below the grating is assumed to be thick enough as 
an opaque. Accordingly, the transmittance is equal to 0, and the 
absorptance (α) can be computed from the reflectivity (R) via α 
= 1–R, where the reflectivity was calculated by the rigorous 
coupled-wave analysis (RCWA) based on a home-made 
program [43].  
  

B. Numerical Method 

In the simulation, the optical property of Ag is calculated 
based on a Lorenzt-Drude model [43] [44] expressed as: 
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where εr,∞ is the dielectric constant at infinite frequencies, ωk, fk 

and Γk  are  the resonance frequency, strength and damping 
frequency of the kth oscillator, and ωp is the plasma frequency. 
These values of Ag are taken from [44]. Meanwhile, the 
dielectric function of graphene is described as 

0( ) 1 / ( )si hε ω σ ε ω= +  [6] , where σs, ε0, and ω are the sheet 

conductivity, the vacuum permittivity, and the angular 
frequency, respectively. The sheet conductance σs (σs = σD + 
σI) including the contribution of a Drude (intraband) term σD 
and an interband term σI  is described as:

         

 

 
Fig.1. Schematic illustration of (a) grating structure and (b) 
graphene-covered Ag grating. Their geometries are defined by grating 
period Λ, grating thickness d, lamella width wΛ (w is filling ratio), and 
graphene thickness h. The transverse magnetic wave H (parallel to the 
grating grooves or y-axis) is incident on the grating with a wavevector 
k and an angle θ  
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Fig.2. Real and imaginary parts of the permittivity of Ag and graphene. It is 
noted that the permittivity of graphene is computed based on µ = 0.3 eV, τ = 
10-13 s, T = 300K, and h = 0.3 nm     

where ( ) ( ) [ ]sinh / / cosh( / ) cosh( / )B B BG k T k T k Tξ ξ µ ξ= +   
[14]. In the above equations, e is the electron charge,   is the 
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reduced Planck constant, and kB is the Boltzmann constant. 
Other parameters are used for the calculation such as the Fermi 
energy µ = 0.3 eV, relaxation time (τ = 10-13 s), the temperature 
T = 300K, and the thickness of graphene, h = 0.3 nm. It is noted 
that the Fermi energy, µ = 0.3 eV, was used in the current work 
because calculations have shown that with this selected value in 
a range of 0.2 to 0.5 eV graphene-covered grating structures 
exhibit the highest absorptance. Accordingly, the property of 
graphene can be changed by varying µ which results in a 
change of plasmonic resonances [33]. Meanwhile, the optical 
property of Ag based on the Lorentz-Drude model and 
graphene is plotted in Fig. 2. It is seen that, the real part of 
permittivity of Ag decreases when the incident wavelength 
increases while that of graphene is constant. On the contrary, 
the imaginary of permittivity of Ag rises when the incident 
wavelength goes up, and the imaginary part of graphene has a 
similar trend. 

III. NUMERICAL RESULTS AND DISCUSSION 

A. Absorptance Spectrum at Normal Incidence  

 Figure 3 shows the absorptance contours for TM waves at 
normal incidence of two types of gratings: (a) and (b) the short 
period grating with and without a graphene overlay, and (c) and 
(d) the long period grating with and without a graphene layer as 
a function of wavelength and filling ratio w (0 < w <1), 
respectively. The short period, Λ = 140 nm, is to be divided in 7 
sections while the long period, Λ = 540 nm, is divided into 27 
sections. For instance, each lamella width (one section) 
corresponds to 20 nm (wΛ = 20 nm, and so w = 1/7 = 0.14 for 
the short period grating and w = 1/27 = 0.04 for the long period 
grating), and the grating thickness d is 200 nm while that of 
graphene h is 0.3 nm. The above values of the lamella width 
and the grating thickness are selectively feasible for fabrication 
since their aspect ratio 1:10 is satisfied with current 
manufacturing techniques. For example, to manufacture 
gratings one could use a cryogenic etching method to etch deep 
grating trenches to have the desired geometric gratings and then 
transfer the graphene onto the gratings. Previous fabrication 
processes were implemented with a deep width to wall 
thickness ratio (aspect ratio) up to 40 and a possible trench 
width of 20 nm [45-47]. Note that graphene is fabricated using 
chemical vapor deposition on a copper foil. In order to validate 
our RCWA MATLAB codes, we repeated calculations of 
radiative properties for the graphene-covered deep grating in 
Ref. [24], and results (not shown here) have revealed that our 
obtained absorptance and that of this structure are well-agreed. 

As can be seen from Fig. 3 (a) and (c), the absorptance α is 
obtained to be high at the larger filling ratio at w = 6/7 = 0.86 
for the short period grating (α = 0.3 at the peak λ = 1.67 µm) 
and w = 25/27 = 0.93 for the long period grating (α = 0.6 at the 
peak λ = 1.47 µm), and there is no absorptance at small filling 
ratios. It can be revealed that when the trench (containing air) is 
opened wider (the lamella width is thus smaller), the 
absorptance decreases significantly. On the other hand, the 
trench gets smaller the higher absorptance is obtained due to the 
coupling of surface plasmons and localized magnetic fields 

trapped in grating trenches. Results (not presented here for 
simplicity) have shown that the SPP occurs at the interface of 
Ag and air surroundings, and standing waves oscillate in the 
grating trenches of the short period grating structure [as shown 
in Fig. 3(a)] with w = 6/7 (narrow slits). In contrast, there were 
no resonance modes to be observed in the short period one with 
large slits (e.g., w = 0.14). The results were in agreement shown 
in previous work [23, 24, 34, 48]. The structural grating was 
also optimized with different thicknesses to get an optimal 
small trench (with d = 200 nm) and to ensure for the ease of 
fabrication as well. Similarly, the absorptance of the 
graphene-covered Ag short period and long period gratings in 
Figs. 3(b) and (d) are much enhanced compared with that 
shown in Figs. 3(a) and (c). In general, Fig. 3 provides a good 
guideline for designing gratings-based graphene with high 
optical absorptance. 

 
Fig. 3. Absorptance (α) contours at normal incidence for (a) short period Ag 
grating with Λ = 140 nm, (b) graphene-covered Ag grating with short Λ = 140 
nm, (c) long period Ag grating with Λ = 540 nm, and (d) graphene-covered Ag 
grating with long Λ = 540 nm in terms of filling ratio (0 < w <1) and wavelength 
λ.  

Figure 4 (a) shows the normal-incidence absorptance of the 
short and long period gratings with and without a covered 
graphene sheet with the periods of 140 nm and 540 nm, 
respectively. It is noted that the short period grating and long 
period grating with filling ratios of 0.86 (w = 6/7) and 0.93 (w = 
25/27), respectively, the grating thickness d of 200 nm, and the 
graphene thickness of 0.3 nm were selected. This is because 
their absorptance displays high values of 0.3 at λpeak = 1.67 µm 
and 0.6 at λpeak = 1.47 µm, respectively. However, when 
covering a graphene layer on top of the grating structures, their 
absorptance increases up to 0.7 for the short period grating and 
0.9 for the long period grating without changing the peak 
wavelengths. Figures 4(b) and (c) illustrate the absorptance 
contours of the short and long period graphene-covered Ag 
gratings in terms of the wavelength and angles of incidence. It 
is seen that the absorptance of the short period 
graphene-covered Ag grating remains high absorptance up to 
40° and then drops slowly to 70°, but the absorptance spectrum 
with a bandwidth of 0.2 µm still covers a wide range of the 
incidence wavelength. Meanwhile, the absorptance with its 
bandwidth of 0.3 µm of the long period graphene-covered Ag 
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grating is insensitive to angles of incidence up to 50° and 
decreases slowly to 80°. In general, the absorptance of the 
graphene-covered gratings was much enhanced, and their 
spectra covered a wide range of the incident angles. However, 
both their absorptance and spectral bandwidths were not 
obtained to be higher and wider enough. 

 
Fig. 4 (a) Normal-incidence absorptance of short period grating (w = 6/7, Λ = 
140 nm) with and w/o graphene and long grating period (w = 25/27, Λ = 540 
nm) with and w/o graphene, (b) and (c) Absorptance contours of 
graphene-covered short period and long period gratings, respectively, as 
function of wavelength and angle of incidence  
 

 
  Fig. 5. Schematic illustration of (a) optimal short period grating structure and 

(b) optimal long period grating structure, and (c) compound Ag grating 
constructed based on two simple gratings. Their geometries and coordinates are 
similarly defined as in Fig. 1 such as grating period Λ, grating thickness d, and 
trench width b. Transverse magnetic wave H (parallel to the grating grooves or 
y-axis) is incident on grating with wavevector k and angle θ  

Figure 5 shows the schematic illustration of (a) the short 
period, (b) long period, and (c) compound grating structures. 
The compound grating in Fig. 5(c) is constructed based on the 
SGs (a) and (b), and their geometries and coordinates are as 
same as shown in Fig. 1. As demonstrated in Figs. 3 and 4, the 
maximum absorptance could be obtained in the short period 

and long period gratings with a condition of the small trench 
(the filling ratio is large), e.g. w = 6/7 and 25/27. Accordingly, a 
compound grating structure was proposed by combining this 
feature of two grating structures with different grating periods 
as shown in Fig. 5(c). Note that the short and long periods were 
based on the above calculation due to their high optical 
performance. It is also ensured that the characteristic of the 
trench width in the compound grating is kept to be small (the 
trench width was selected to be b = 20 nm). Therefore, the 
compound grating used to be analyzed features a long period of 
540 nm comprising three Ag lamellae and three trenches 
occupied by air with different sizes.  
TABLE 1. COMPARISON OF OPTICAL PERFORMANCE OF PREVIOUS 

STRUCTURES COVERED BY GRAPHENE WITH THE CURRENT WORK 

Ref. Absorptance 
(%) 

Spectral 
bandwidths 

(µm) 
Structures 

[23, 
24] 81 ∼0.30 A binary grating 

[26] 80 ∼0.02 Multiple layered 
structure 

[27] 65 ∼0.12 2D nanopillars 
[28] 90 ∼0.32 A metal layer with an 

array of groove rings 
covered by 8 

graphene sheets 
[29] ∼50 ∼0.35 A multiple layered 

metal dielectric metal 
structure 

[30] 90 ∼0.5 A 
metal/dielectric/metal 

structure 
[31] 99 ∼0.02 A 2D multiple layered 

structure with a 
cross-shaped groove 

air resonator 
This 
work 

98 ∼0.6 A compound Ag 
grating 

 
Figure 6(a) displays the normal-incidence absorptance for 

TM waves of the short period (w = 5/7), long period (w = 
13/27), and compound gratings with and without a covered 
graphene layer. The compound grating was built based on the 
short and long period gratings. It is noted that building the 
compound grating having small trenches but comprising 
multiple lamellae and trenches requires a SG structure with a 
wide trench width to be superimposed by another with smaller 
trenches as shown in Fig. 5. Accordingly, the optimal filling 
ratios were selected based on Fig. 3 for calculations such as w = 
5/7 and 13/27. From Fig. 6(a), it is seen that the absorptance of 
the long period grating with a wide trench (b = 280 nm) is 
found to be 0.05 and increases to 0.22 when covered by a 
graphene sheet. Meanwhile, the short period grating with a 
trench b = 40 nm absorbs energy about 0.2, and this 
absorptance goes up to 0.4 when it is added with a graphene 
layer. On the contrary, the compound grating exhibits very high 
absorptance of 0.9 at the peak λ = 1.67 µm and spectral 
bandwidth about 0.3 µm. Interestingly, it absorbs the maximum 
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energy of 0.98 at the same peak wavelength when covered by a 
graphene sheet. In addition, its spectral bandwidth is obtained 
to be approximately 0.6 µm.  

In order to prove superior performance of the proposed 
device, Table 1 shows a comparison of the optical 
characteristics including absorptance, bandwidths and 
structural geometries of previously designed structures covered 
by graphene and the current work.  It is seen that the proposed 
device features a simply geometric structure exhibiting a higher 
absorptance (98%) and a wider bandwidth (0.6 µm) compared 
with those of the previous structures. Although some of 
previous devices have high absorptance from 90% to 99%, they 
own complex geometric structures (multiple layers or 2D 
geometries), which need more materials and complicated 
fabrication processes.  

Figures 6(b) and (c) show the normal-incidence absorptance 
contours of the compound grating with and without a covered 
graphene layer as a function of wavelengths and angles of 
incidence. It is revealed that the absorptance in both structures 
is independent to the incident angles in a wide range from 0° to 
80°. It can be observed that the grating without the graphene 
overlay keeps maximum absorptance at a very large range of 
incident angles although it exhibits a narrower bandwidth. In 
other words, the absorptance spectrum of the graphene-covered 
compound Ag grating has the wider bandwidth covering a 
range of wavelengths from 1.4 µm to 1.8 µm up to 40° and is 
then narrower after 50°.  Generally, the proposed absorber 
provides very good optical performance, i.e. the superior 
absorptance, the wider spectral bandwidth, and insensitivity of 
the incident angles. In addition to that, it owns an easy 
fabrication process due to the simple structural geometry that 
results in cost effectiveness. 

Fig. 6. (a) Normal-incidence absorptance of short period grating (w = 5/7), long 
grating period (w = 13/27), and compound grating constructed by 
superimposing short and long period grating with and w/o a covered graphene, 
(b) and (c) Absorptance contours of compound Ag grating and 
graphene-covered compound Ag grating, respectively, as function of 
wavelength and angles of incidence 

 
B. Physic Origin Underlying the Grating Structures 

Figure 7 shows the electric field and Poynting vector 
distributions in one grating period of the CG and 

graphene-covered CG structures at an off-resonance 
wavelength of 1 µm, on-resonance wavelength of 1.67 µm, and 
normal incidence. Figs. 7(a) and (b) display the electric field 
distributions at the off-resonance wavelength corresponding to 
the lowest absorptance of the CG with and without a graphene 
layer as plotted in Fig. 6(a). As shown, the electric fields are 
strongly confined in the middle trench of one grating period of 
the CG and the graphene-covered CG structure; however, they 
are much enhanced at the corners of the graphene and trench 
opening.  In other words, at the on-resonance wavelength as 
shown in Figs. 7(c) and (d), the electric fields trap in the two 
grating trenches, which results in a higher absorptance 
compared with those at the off-resonance wavelength. 
Similarly, magnetic fields (not shown here) oscillating much 
more in the centers of two grating trenches at the on-resonance 
wavelength were also observed. 

 
Fig. 7. Electric field distributions and Poynting vector in one grating period 
including three trenches of CG and graphene-covered CG structures at 
off-resonance wavelength (λ = 1 µm and θ = 0°) and on-resonance wavelength 
(λ = 1.67 µm and θ = 0°). (a) and (b) normalized electric field at 1 µm, (c) and 
(d) normalized electric field at 1.67 µm, and (e) and (f) Poynting vector patterns 
and arrows at 1.67 µm. It is noted that Figs. (e) and (f) show only one trench 
opening  w/o graphene of the CG structure.  

It is clearly seen from Figs. 7(a)-7(d) that high 
concentration of the electric fields is at the graphene and trench 
opening; as a result, the absorptance of graphene is elevated. 
This enhancement can be explained based on the power 
dissipation density of graphene, which is related to optical 
constants of graphene (high imaginary part in the permittivity) 
and the high electric field [24]. It is described as: 

 2"
0

1( , ) ( , ) ,
2

w x z x z x zε ωε= E( )  (4) 

where E is the complex electric field, and ε” is the imaginary 
part of the permittivity of graphene. Finally, the absorptance of 
graphene is calculated by dividing the power dissipated in 
graphene to the incident power.   
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Figures 7(e) and (f) show energy flowing indicated by 
patterns and arrows in trench opening of CG with and without 
graphene at normal incidence and the on-resonance 
wavelength, λ = 1.67µm. As can be seen, the energy squeezes 
into the trench of all the grating structures. However, the 
coming energy concentrates much on the interface between the 
graphene layer and the top edge of the trench opening. In 
addition, the energy flows on the surfaces of the metal layer and 
the graphene layer as indicated by the arrows. This confirmed 
that the designer surface plasmons occur at the interface of Ag 
(graphene) and the dielectric layer [40]. Further, energy reflects 
back from the grating walls and trench bottom hitting the 
graphene overlay; accordingly, this results in a reflection 
reduction. Therefore, as demonstrated the graphene layer 
absorbs much energy due to the localized electromagnetic 
fields inside the grating trench (the Fabry-Perot mode) 
coupling with surface plasmons [41, 49, 50]. These phenomena 
cause the increase of the absorptance of the whole structure and 
widen the spectral bandwidth as well.    

IV. CONCLUSIONS 
This work theoretically presented a method of enhancing 
graphene absorption by proposing a compound metallic grating 
structure. The enhancement of absorptance up to the maximum 
attainable of 100% was demonstrated with the observation of 
strongly localized electromagnetic fields in the grating trenches 
and SPP modes at the interface of Ag/graphene and air. 
Moreover, the resonance frequency occurred in the compound 
Ag grating with and without a graphene overlay remains 
unchanged. It has also shown that the spectral bandwidth of 0.6 
µm is found to be wider than that of the previous studies, and 
the absorption spectrum is insensitive to a large range of the 
angles of incidence. Additionally, the proposed structure is 
feasible to be manufactured, which might pave the way for 
many novel designs of graphene-based photon detection, 
energy harvesting systems, and plasmonics devices. 
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