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 1 

Abstract 2 

Kleptoparasitism can be considered as a game theoretical problem and a foraging tactic at the 3 

same time, so the aim of this paper is to combine the basic ideas of two research lines: 4 

evolutionary game theory and optimal foraging theory. To unify these theories, firstly, we take 5 

into account the fact that kleptoparasitism between foragers has two consequences: the 6 

interaction takes time and affects the net energy intake of both contestants. This phenomenon 7 

is modeled by a matrix game under time constraints. Secondly, we also give freedom to each 8 

forager to avoid interactions, since in optimal foraging theory foragers can ignore each food 9 

type (we have two prey types: either a prey item in possession of another predator or a free prey 10 

individual is discovered). The main question of the present paper is whether the zero-one rule 11 

of optimal foraging theory (always or never select a prey type) is valid or not, in the case where 12 

foragers interact with each other?  13 

In our foraging game we consider predators who engage in contests (contestants) and those who 14 

never do (avoiders), and in general those who play a mixture of the two strategies. Here the 15 

classical zero-one rule does not hold. Firstly, the pure avoider phenotype is never an ESS. 16 

Secondly, the pure contestant can be a strict ESS, but we show this is not necessarily so. Thirdly, 17 

we give an example when there is mixed ESS.  18 

 19 

Keywords: ESS, food stealing, matrix game, time constraints, zero-one rule 20 
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1. Introduction 1 

Kleptoparasitism is the stealing of already procured food by one individual from another 2 

(Brockmann and Barnard 1979), and it is observed across several taxonomic groups, including 3 

spiders (Coyle et al. 1991), insects (Erlandsson 1988), mammals (Janson 1985; Carbone et al. 4 

2005), and birds (Barnard 1990). The advantage of kleptoparasitic behavior is that it allows 5 

individuals to avoid some of the costs of the foraging cycle (searching for, acquiring and 6 

handling food items) by exploiting food discovered by another individual’s effort (Giraldeau 7 

and Caraco 2000). Clearly, kleptoparasitism can be considered as a game theoretical problem 8 

and a foraging tactic at the same time. Starting from this point, the aim of this paper is to 9 

combine the basic ideas of two research lines.  10 

The first research line is optimal foraging theory (Stephens and Krebs 1986). The main 11 

assumptions of optimal foraging theory are the following:  12 

a) the focal forager has all necessarily information about its prey (cf. omniscient forager 13 

e.g. Schmidt and Brown 1996, and Garay and Móri 2010);  14 

b) the focal forager has absolute control of its own food preferences, i.e. the forager freely 15 

accepts or ignores any of its prey types (food items);  16 

c) energy collection by a forager does not depend on the food preferences of other foragers, 17 

and finally;  18 

d) an individual’s fitness is its net energy intake rate, which is given by the functional 19 

response (Holling 1959, Jeschke et al. 2002). The overwhelming majority of the 20 

derivation of functional responses (see e.g. Garay 2019) are based on the assumption 21 

that either the prey density is renewed after each killing (Cressman et al. 2014, 22 

McNamara et al. 2006) or the predators have no (or only a negligible) effect on prey 23 

density during the duration of the foraging time (Garay and Móri 2010, Holling 1959), 24 

thus classical optimal foraging theory assumes that the prey density is fixed.  25 
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In the prey choice model (where each forager has different prey types providing different energy 1 

intakes and with different handling times), the basic result of optimal foraging theory is the 2 

zero-one rule, which claims that a predator accepts a given prey type if its energy / handling 3 

time ratio is bigger than the average intake rate on the whole foraging process (Charnov 1976). 4 

In other words the predator either ignores or accepts a given prey type, so it never uses a mixed 5 

prey preference.  6 

 7 

The second research line is evolutionary game theory (Maynard Smith and Price 1973) focusing 8 

on the fitness consequences of interaction between conspecifics, when individuals’ behavior 9 

have effects on the fitness of others, often through direct contests. In such contests, they 10 

assumed that when two individuals encounter each other then they always play a game. Observe 11 

that the latter assumption is not in harmony with the basic view of the optimal foraging, see 12 

assumption c) above, where the individual can ignore any interaction with its prey types. In this 13 

paper we concentrate on the case where each individual has freedom to interact or not to interact 14 

with others it encounters, and each activity needs a period of time.  15 

There are three points, which offer us a way to make a connection between the above two 16 

research lines. Firstly, the functional response can take account of the interference between 17 

predators, which has an effect on the functional response, since this interference takes time. De 18 

Angelis’ (1975) and Beddington’s (1975) functional response takes account of the time duration 19 

of the interactions between predators, but these interactions have no effect on the energy intake 20 

of predators. In this paper we consider the case when this interference has an effect on the net 21 

energy intake of predators as well, i.e. there are game theoretical conflicts between predators 22 

for prey. Secondly, in the classical matrix model of evolutionary game theory, Maynard Smith 23 

(1982) included a positive basic fitness, which is independent from the phenotypes (i.e. the 24 

strategy of players), in order to avoid a negative total fitness. But "There is no such thing as a 25 
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free lunch". In biology, the collection of basic fitness at least needs time, as in optimal foraging 1 

theory. Thus, the concept of time constraints gives us a way to introduce the “time cost” of 2 

collecting the basic fitness of Maynard Smith (1982). Thirdly, the Nash principle can make a 3 

bridge between game theory and optimal foraging theory, namely the zero-one rule and the 4 

Nash-equilibrium condition are connected by the rule of time averages (Garay et al. 2015), 5 

claiming that “the optimal predator behavior involves those activities that ensure larger time 6 

average intake than the time average of all activities”.  7 

Furthermore, there are game theoretical models, which are related to the present paper. Firstly, 8 

kleptoparasitism is modeled by ecological games with time constraints (e.g., Broom and 9 

Ruxton, 1998; Broom et al., 2004, 2008, 2009, 2010; Broom and Rychtář, 2013; Sirot, 2000). 10 

The models of Broom and colleagues are compartmental, where individuals follow a Markov 11 

transition process between searching, handling and contesting states, with each behavior taking 12 

(an exponential amount of) time. Unlike in the present paper, strategic decisions are made at 13 

the transition stage, so a searching individual can decide whether to challenge a handler for a 14 

food item, after which the handler decides whether to defend it, the winner being decided at 15 

random, with no further decisions. The game is thus a type of sequential game. The model of 16 

Sirot (2000) had a similar basis, but here individuals made simultaneous decisions when 17 

contesting a food item. Secondly, the present paper builds on a general game-theoretical 18 

modeling methodology, namely a matrix game under time constraints (Křivan and Cressman 19 

2017, Garay et al. 2018a), when each interaction between players has a time duration. Matrix 20 

games under time constraint are then characterized by two matrices, the intake matrix 𝐴 =21 

(𝑎𝑖,𝑗)𝑛×𝑛 and the time constraint matrix 𝑇 = (𝑡𝑖,𝑗)𝑛×𝑛, i.e. when the focal individual uses the 22 

𝑖-th pure strategy and its opponent the 𝑗-th one, the focal individual's payoff is 𝑎𝑖,𝑗, and the focal 23 

individual cannot play the next game during an average time duration 𝑡𝑖,𝑗 ≥ 0. If this time 24 

duration depends on the strategies that the players use in the interaction, then the matrix game's 25 
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evolutionary outcome is no longer given solely through its payoff matrix. Instead, an 1 

individual’s payoff is given at the stationary distribution of a Markov chain that depends on the 2 

time constraint matrix. A similar process is followed for the more complex kleptoparasitism 3 

model developed that follows. 4 

The aim of this paper is to combine the basic ideas of optimal foraging theory and evolutionary 5 

game theory with time constraints. A good combination of two theories should get back these 6 

theories as special cases. Clearly, for this aim, we have to keep as many basic assumptions of 7 

these theories as possible. From optimal foraging theory we keep the following three 8 

assumptions:  9 

1. The predators have no (or a negligible) effect on prey density during the foraging 10 

time duration, so the prey density is fixed. In other words, we use one of the basic 11 

assumptions of optimal foraging theory: prey renewal, see assumption d) above.  12 

2. The predator is searching for food, and there are two types of food: (i) free food 13 

means that there is no other predator nearby; (ii) not free food means that the 14 

predator finds the food of a conspecific, but the acquired food has still not been 15 

consumed by the killer. Here we assume the interaction is symmetric, i.e. there is no 16 

ownership. In other words, when a predator kills a prey, then the “ownership” has 17 

no effect on the behavior of the killer. The difference between a symmetric game, 18 

e.g. hawk-dove game, and an asymmetric version of this game, the hawk-dove-19 

bourgeois game (Maynard Smith 1982), is well known.  20 

3. As in optimal foraging theory, each forager can neglect all types of food. In other 21 

words, when two predators have only one food item, the interaction between them 22 

is not a must, as in the basic evolutionary matrix game model. If an individual can 23 

evade the interactions, then this kind of individual has two extreme behaviors: either 24 
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it evades the interactions (thus collects “basic fitness” alone, i.e., only looking for 1 

free food), or it interacts with others, i.e. plays a game. 2 

 3 

Thus we will introduce a situation dependent sequential game with time constraints. The first 4 

level gives the ratio of the materialization of the interaction. When two foragers encounter each 5 

other and one of them has killed but not eaten a prey individual, then they either interact for 6 

this killed prey (we call an individual playing this strategy a contestant) or they do not interact 7 

(we call an individual playing this strategy an avoider). The avoider (non- contesting) strategy 8 

means that before any interaction the avoider predator leaves the place, thus it has neither payoff 9 

nor extra time cost. The second level of our sequential game describes the situation when both 10 

foragers use the contestant strategy, and we consider the hawk-dove game as a mathematical 11 

description of the interaction between predators, when they find the same food item. So the 12 

hawk-dove game is a subgame in the sequential game introduced here. Now let us make clear 13 

the difference between a non-contest and a non-fight. The contest but not-fight behavior is the 14 

dove strategy, needing some extra time when interacting with a hawk and it has extra time and 15 

some payoff when interacting with another dove strategy user. We will assume a symmetric 16 

situation where all individuals can evade the interactions, so interaction takes place if and only 17 

if both individuals want to play the game. We emphasize that this situation is a combination of 18 

the basic problem of the optimal foraging theory (where the forager has a free decision on the 19 

acceptance of any type of prey) and the matrix game under time constraints, since both methods 20 

take account of the time constraints of different activities. In the present paper we will 21 

investigate this combined model. The main question of the present paper is whether the zero-22 

one rule remains valid when the foragers interact with each other and assumption c) of optimal 23 

foraging theory does not hold.  24 

 25 
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2. Optimal foragers face game theoretical conflicts with others: a general monomorphic 1 

model  2 

2.1. Model description 3 

We start from an optimal foraging model (e.g. Stephens and Krebs 1986, Garay and Móri 2010), 4 

but now we consider two types of food: free food that has not been found by a forager and food 5 

in the possession of another forager (called discovered food). A focal individual forager begins 6 

in the searching stage, the average time duration of which will be denoted by 𝜏𝑠. During this 7 

time, the focal forager can either find free food or discovered food. The model described here 8 

concentrates on the following question: which foraging behavior is optimal, engaging in a 9 

contest with the other forager over discovered food or avoiding contests by focusing only on 10 

free food. 11 

Firstly, consider the case where a searching focal forager has found free food without another 12 

forager. Then it starts to handle the food item without consuming it (e.g. killing, transporting 13 

the food, etc). We call this period the vulnerable stage, the average time duration of which will 14 

be denoted by 𝜏𝑣. This is the only stage where there is the possibility for the interaction with 15 

another forager, one result of which may be the theft of the food item. During the vulnerable 16 

stage, either the focal individual does not encounter a searching forager, or such an intruder 17 

arrives from the whole population and these two individuals will or will not interact. If there is 18 

no encounter, the focal forager passes to the digestive stage, the average time duration of which 19 

will be denoted by 𝜏𝑑. If there is an encounter, there are the following four conditional events. 20 

(i) The focal individual does not retire and the intruder leaves. (ii) The focal individual retires 21 

and the intruder does not. In both these cases, there is no interaction between them and the 22 

forager who does not retire starts to digest the food in the digestive stage and the other returns 23 

to the searching stage. (iii) Both the focal individual and the intruder retire, in which case there 24 
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is no interaction and each gets the food item with probability ½. Finally, when (iv) neither the 1 

focal nor the intruder retire, they interact in a contest, called the subgame, which is modelled 2 

as a symmetric matrix game with time constraints. In the interaction in this subgame between 3 

the two foragers, one of them possesses the food item and digests it before returning to the 4 

searching stage while the other returns to the searching stage. Note that we split the standard 5 

notion of “handling time” into two stages, the vulnerable stage and the digestive stage (cf. 6 

Jeschke 2002). Moreover, all time durations are assumed to be independent and exponentially 7 

distributed. 8 

Here we assume that the subgame is based on the classical hawk-dove game where pairs of 9 

foragers are engaged in a contest over the food item (i.e. the resource) of value 𝐵. Prior to the 10 

contest, neither forager has any information concerning the behavior (i.e. strategy) of the other 11 

forager. Moreover, we assume that this contest is symmetric (i.e., there is no ownership, so the 12 

winning probabilities of the contestants can only depend on the strategies they use, and not on 13 

which one discovered the food item and which is the intruder). The subgame is then specified 14 

as a matrix game under time constraints characterized by the following intake and time 15 

constraint matrices:   16 

𝐴 ≔ (

𝐵−𝐶𝐻𝑊−𝐶𝐻𝐿

2
𝐵

0
𝐵

2

)    and   𝑇 ≔ (

𝜏𝐻𝑊+𝜏𝐻𝐿

2
0

0
𝜏𝐷𝑊+𝜏𝐷𝐿

2

), 17 

where the entries of 𝐴 (respectively, 𝑇) are the intake (respectively, time duration) of the row 18 

player when interacting with the column player. When two hawks interact, they engage in an 19 

escalated fight with one of them winning without getting injured and the other losing with 20 

injuries. This is reflected in matrix 𝐴 where 𝐶𝐻𝑊 is the winner’s cost and 𝐶𝐻𝐿  is the losing 21 

hawk’s cost (including the cost of fighting and the cost of recovery). Moreover, 𝜏𝑋𝑊 22 

(respectively, 𝜏𝑋𝐿, 𝑋 = 𝐷, 𝐻) is the time duration for the winner (respectively, loser) that is 23 
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associated with this interaction, including fighting and recovery time. When a hawk and dove 1 

interact, the hawk gets the food item immediately (i.e. the time duration is 0), which accounts 2 

for the off diagonal terms in matrices 𝐴 and 𝑇. Finally, when two doves interact, there is no 3 

fight (one wins the food item and the other loses) and the time duration is 𝜏𝐷𝑊 for the winner 4 

and 𝜏𝐷𝐿 for the loser (they can differ, e.g., in the time of digestion).  We emphasize that, from 5 

the game theoretical perspective, the subgame is symmetric. Indeed, in hawk-hawk and dove-6 

dove interactions, both contestants win with the same probability (i.e. who wins the contest 7 

does not depend on who discovered the food). Since all time durations are exponentially 8 

distributed, the matrix 𝑇 contains the means of these independent exponential random variables.  9 

We note that here we follow the basic modelling methodology of our earlier paper (Garay et al. 10 

2017) on matrix games with time constraints. Namely, the intake matrix 𝐴 and the time 11 

constraint matrix 𝑇 are independent parameters and the time constraints decrease the number 12 

of interactions between individuals. In essence, we build our model in two distinct steps. After 13 

setting up a continuous time Markov chain, first we look for the stationary distribution of the 14 

chain. This depends on the time constraint matrix. Then we calculate the average payoff 15 

determined by the intake matrix at this equilibrium. Thus our model is a static one, similar to 16 

the basic model of Maynard Smith and Price (1973), since we are interested in the set of 17 

conditions under which a sufficiently rare mutant cannot invade the resident population, but we 18 

are not interested in the dynamical frequency change of different phenotypes. In particular, we 19 

do not use replicator dynamics (cf. Garay et al. 2018b, Varga et al. 2019).  20 

Secondly, consider the case where the focal forager finds discovered food (i.e. food with 21 

another forager who is in the vulnerable stage). In this case, the focal forager is the intruder, 22 

and these two individuals will or will not interact, leading to a similar “story” to the one above. 23 

If the focal individual leaves, then it starts a new search. If the focal individual does not leave 24 

and the other forager retires, then the focal individual gets the food and enters the digestive 25 



11 
 

stage. (For the sake of simplicity, we assume throughout that at most one intruder can find a 1 

given food item that is with a forager in the vulnerable stage; i.e., no sequence of encounters 2 

can occur among foragers over the same food item.) When the focal individual does not leave 3 

and the other forager does not retire, then the above subgame (a matrix game under time 4 

constraints) takes place.  5 

In this model, each forager has two types of decision. When a forager in the vulnerable stage 6 

and an intruder encounter each other, they can choose to interact or not to interact. Their 7 

strategies can be characterized by a real number 𝜎 ∈ [0,1]; namely, a 𝜎-strategist is willing to 8 

interact with probability 𝜎. Observe that the subgame will be realized if and only if both foragers 9 

are willing to interact. Furthermore, in the subgame under time constraints, an individual 10 

forager can use a mixed strategy that can be described by a discrete probability distribution 𝑝 =11 

(𝑝1, 𝑝2) where 𝑝1 (respectively 𝑝2) is the probability that the forager plays hawk (respectively, 12 

dove) in the subgame. A forager’s phenotype is then characterized by its choice of 𝜎 and 𝑝. 13 

 14 

2.2 Mathematical model 15 

Suppose there are 𝑚 phenotypes in the forager population with 𝑦𝑖 the number of foragers with 16 

phenotype 𝑖 (𝑖 = 1, … , 𝑚). Then 𝑦 = 𝑦1 + 𝑦2 + ⋯ + 𝑦𝑚 is the total number of foragers. An 17 

individual forager, labelled as the ordered pair (𝑖, 𝑗), corresponds to the 𝑗-th forager (where 1 ≤18 

𝑗 ≤ 𝑦𝑖) of the phenotype 𝑖. An individual can be in one of the following stages at any moment: 19 

• searching stage, denoted by 𝑠, 20 

• vulnerable stage, denoted by 𝑣, 21 

• subgame stage, denoted by 𝑔(𝑢, 𝑤) or simply by 𝑔. This means that the forager, using 22 

pure strategy 𝑢 in the subgame, is interacting with another forager who is using pure 23 
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strategy 𝑤. The duration of this stage depends on the strategies used and may differ for 1 

the two contestants.  2 

• digestive stage, denoted by 𝑑. 3 

We emphasize that in our model the subgame stage includes digestion and hence it is not 4 

followed by staying in the digesting stage. This is because the duration of digestion may depend 5 

on the amount of food, and in a subgame we allow the contestants to share the food in an 6 

undetermined proportion. Therefore, separating digestion from the subgame would make the 7 

mathematical model significantly more complicated. In all other cases, i.e. when food is 8 

acquired outside of a subgame, digestion always presumes a digestive stage. Note that the 9 

subgame stage may include recovery from injuries, which can also be different for the 10 

contestants. 11 

Here we assume that there are 𝑛 possible pure strategies a forager can use in the subgame (in 12 

the model description of Section 2.1, 𝑛 = 2). If a forager uses the pure strategy 𝑢 against an 13 

opponent using pure strategy 𝑤, its intake is 𝑎𝑢,𝑤, and the average time it spends in the subgame 14 

stage is 𝑡𝑢,𝑤. Thus, following Garay et al. (2017), the subgame is characterized by the intake 15 

matrix 𝐴 = (𝑎𝑖,𝑗)𝑛×𝑛 and the time constraint matrix 𝑇 = (𝑡𝑖,𝑗)𝑛×𝑛. Phenotype 𝑖 is then 16 

determined by the probability 𝜎𝑖 that such a forager is willing to interact in the subgame 17 

combined with the strategy distribution vector 𝑝𝑖 = (𝑝𝑖1, … , 𝑝𝑖𝑛), where 𝑝𝑖𝑢 is the probability 18 

that this phenotype uses the pure strategy 𝑢 in the subgame; thus ∑ 𝑝𝑖𝑢
𝑛
𝑢=1 = 1. 19 

Further notations: Let 𝑥 denote the number of food items in the habitat. Food is assumed to 20 

regenerate at the same rate as it is consumed, thus 𝑥 is assumed constant in time, in other words, 21 

we assume food renewal. We introduce 22 

𝜃𝑖 =
𝑦𝑖

𝑥
, 1 ≤ 𝑖 ≤ 𝑚, 𝜃 =

𝑦

𝑥
= ∑ 𝜃𝑖

𝑚

𝑖=1

;                                   (1) 23 
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here 𝜃𝑖 is the number of foragers of phenotype 𝑖 per one food item, and 𝜃 is the same quantity 1 

with respect to all foragers, regardless of the phenotype. Let 𝜌𝑠,𝑖, 𝜌𝑣,𝑖 , 𝜌𝑔,𝑖, 𝜌𝑑,𝑖 denote the 2 

proportions of phenotype 𝑖 in the searching, vulnerable, subgame, and digestive stages, 3 

respectively. Moreover, let 𝜌𝑠, 𝜌𝑣, 𝜌𝑔, 𝜌𝑑 be the equivalent proportions for the whole population. 4 

Clearly, 𝜌𝑠 = ∑
𝑦𝑖

𝑦
𝜌𝑠,𝑖

𝑚
𝑖=1 , and analogous equations can be established for the vulnerable, 5 

subgame, and digestive stages.   6 

The state of the population can be described with a vector of the form 7 

𝑧 = (𝑧(1,1), … , 𝑧(1,𝑦1)|𝑧(2,1), … , 𝑧(2,𝑦2)| … |𝑧(𝑚,1), … , 𝑧(𝑚,𝑦𝑚)), 8 

each coordinate being an element of the stage set {𝑠, 𝑣, 𝑑} ∪ {𝑔(𝑢, 𝑤): 𝑢, 𝑤 = 1, … , 𝑛}. Here 9 

𝑧(𝑖,𝑗) is the stage of individual (𝑖, 𝑗). Thus, the cardinality of the state space 𝒮 is (3 + 𝑛2)𝑦, 10 

since we have searching, vulnerable and digestive stages, and, in addition, the subgame stage 11 

can be realized in 𝑛2 different ways (pure strategy pairs). Let us introduce the following Markov 12 

dynamics on the state space 𝒮. In the state transitions we only indicate the coordinates that 13 

change. An individual searching for food finds it with constant rate 
1

𝜏𝑠
 , i.e. spends an average 14 

time 𝜏𝑠 searching. In our Markov process all transitions occur at a constant rate, so all of our 15 

events have durations that follow an exponential distribution with means corresponding to the 16 

stated times, equivalently transitions out of these states occur at rates 1 divided by this time. 17 

The possible transitions from the searching stage (listed in the first three following bullet points) 18 

depend on whether the food is free or already discovered. The remaining bullet points describe 19 

transitions from the other stages.  20 

• 𝑧(𝑖,𝑗): 𝑠 ↦ 𝑣  with transition rate  
𝑥−𝜌𝑣𝑦

𝑥𝜏𝑠
=

1−𝜌𝑣𝜃

𝜏𝑠
    21 

— individual (𝑖, 𝑗) finds free food. Note that 1/𝑥 is the probability that a given searcher 22 

finds a prescribed food item, thus 1/𝑥𝜏𝑠 is the rate of this transition. There are 𝑥 − 𝜌𝑣𝑦 23 
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free food items, thus the probability that the food item found by the searcher is still free 1 

is  1 − 𝜌𝑣𝜃. (We keep the basic assumption of optimal foraging theory, namely, that the 2 

food density is fixed.) 3 

• 𝑧(𝑖,𝑗): 𝑠 ↦ 𝑔(𝑢, 𝑤) and 𝑧(𝑘,ℓ): 𝑣 ↦ 𝑔(𝑤, 𝑢)  with rate 
1

𝑥𝜏𝑠
𝜎𝑖𝜎𝑘𝑝𝑖𝑢𝑝𝑘𝑤, where  (𝑖, 𝑗) ≠4 

(𝑘, ℓ)  5 

— individual (𝑖, 𝑗) finds food discovered by forager (𝑘, ℓ), both are willing to interact, 6 

and they use game strategies 𝑢 and 𝑤, respectively.  7 

• 𝑧(𝑖,𝑗): 𝑠 ↦ 𝑑 and 𝑧(𝑘,ℓ): 𝑣 ↦ 𝑠 with rate 
𝜎𝑖(1−𝜎𝑘)

𝑥𝜏𝑠
+

1

2

(1−𝜎𝑖)(1−𝜎𝑘)

𝑥𝜏𝑠
=

(1+𝜎𝑖)(1−𝜎𝑘)

2𝑥𝜏𝑠
  8 

— the first term corresponds to the case where individual (𝑖, 𝑗) finds food discovered 9 

by forager (𝑘, ℓ), the former is willing to interact but the latter is not. If both retire, 10 

then each has probability ½ to win the food, thus the second term in the rate stands for 11 

the case where chance favors individual (𝑖, 𝑗). Only phenotype 𝑖 receives an intake 12 

(which we will denote by 𝐺𝑖) : 𝐺𝑖 = 𝐵.  13 

• 𝑧(𝑖,𝑗): 𝑣 ↦ 𝑑  with rate 14 

1

𝜏𝑣
+

1

𝑥𝜏𝑠
∑ 𝜌𝑠,𝑘𝑦𝑘(1 − 𝜎𝑘)

𝑚

𝑘=1
(𝜎𝑖 +

1 − 𝜎𝑖

2
) =  

1

𝜏𝑣
+

(1 − 𝜎)(1 + 𝜎𝑖)

2𝜏𝑠
 , 22 

where 1 − 𝜎 = ∑ 𝜌𝑠,𝑘𝜃𝑘(1 − 𝜎𝑘)𝑚
𝑘=1  15 

— the first term corresponds to the case where no forager in the searching stage 16 

encounters individual (𝑖, 𝑗) during its vulnerable stage. For the second term, a 17 

searching forager (the intruder) encounters individual (𝑖, 𝑗) in the vulnerable stage but 18 

the intruder is not willing to interact. Then individual (𝑖, 𝑗)  moves to the digestive 19 

stage if either it is willing to interact or, if not, with probability 
1

2
 it retains the food 20 

item. Intake: 𝐺𝑖 = 𝐵. 21 
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• 𝑧(𝑖,𝑗): 𝑑 ↦ 𝑠  with rate 
1

𝜏𝑑
  1 

— digestion is over. 2 

• 𝑧(𝑖,𝑗): 𝑔(𝑢, 𝑤) ↦ 𝑠  with rate 
1

𝑡𝑢,𝑤
  3 

— a game played with strategies 𝑢 and 𝑤 is over. Intake: 𝐺𝑖 = 𝑎𝑢,𝑤 4 

It is easy to see that this Markov chain is irreducible as every state communicates with the state 5 

(𝑠, … , 𝑠), hence it has a unique stationary distribution. Similarly to as in Garay et al. (2017), 6 

one can show that the random proportions 𝜌𝑠,𝑖, 𝜌𝑣,𝑖, 𝜌𝑔,𝑖, 𝜌𝑑,𝑖 converge to constants as the size 7 

𝑦 of the population and the amount 𝑥 of food increase to infinity in such a way that the ratios 8 

𝜃𝑖 converge. 9 

This result allows us to define a game among the 𝑚 phenotypes where the payoff is taken as 10 

the intake rate at the stationary equilibrium and to do this we need to consider cycles. 11 

In what follows, we will focus on a sufficiently large equilibrium population with a single 12 

(resident) phenotype, where a mutant phenotype appears. In this general monomorphic model, 13 

we then take 𝑚 = 2 in the above mathematical model. Consider an arbitrary focal forager, 14 

resident or mutant. We will distinguish its strategy parameters, 𝜎∗ and 𝑝∗, by asterisks. The 15 

population parameters then have no asterisks. Let us call a sequence of consecutive stages a 16 

cycle if it lasts from the beginning of a searching stage to the next searching. What’s going on 17 

during a cycle? 18 

• 1) The focal individual is searching until it finds food, and the average searching time 19 

is 𝜏𝑠. At the end of searching 20 

• 2a) The focal individual finds free food with probability 1 − 𝜌𝑣𝜃. Then it moves to the 21 

vulnerable stage. Its average time length is  22 
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1

1
𝜏𝑣

+
𝜌𝑠𝜃
𝜏𝑠

=
𝜏𝑠𝜏𝑣

𝜏𝑠 + 𝜌𝑠𝜃𝜏𝑣
,                     (2) 9 

because the length of the vulnerable stage is the minimum of two independent 1 

exponential time spans, one of them is the length of the uninterrupted vulnerable 2 

period, and the other one is the time needed by the fastest searcher to find the focal 3 

individual. As is well-known, the minimum of two independent, exponentially 4 

distributed random variables is also exponential, with expectation being half of the 5 

harmonic mean of the two expectations (equivalently, with hazard rate being the sum 6 

of the two hazard rates). According to this, at the end of vulnerable stage there are two 7 

possibilities.  8 

o Either the focal individual starts digesting, with probability  10 

1
𝜏𝑣

1
𝜏𝑣

+
𝜌𝑠𝜃
𝜏𝑠

=
𝜏𝑠

𝜏𝑠 + 𝜌𝑠𝜃𝜏𝑣
, 12 

average time 𝜏𝑑, and intake 𝐵, 11 

o or it meets an intruder with probability 13 

1 −
𝜏𝑠

𝜏𝑠 + 𝜌𝑠𝜃𝜏𝑣
=

𝜌𝑠𝜃𝜏𝑣

𝜏𝑠 + 𝜌𝑠𝜃𝜏𝑣
. 14 

Note that the occurrence of these possibilities is (stochastically) independent of 15 

the length of the vulnerable period, i.e. knowing the length of any occurrence of 16 

the period (as opposed to its expectation 𝜏𝑣) provides no information on which 17 

event will occur. 18 

Then, from the point of view of the focal individual, the following outcomes are 19 

possible. 20 
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▪ The focal individual is not willing to interact but the intruder is. This has 1 

probability  𝜎(1 − 𝜎∗) and leads to no additional time, and zero intake. 2 

▪ The focal individual is willing to interact but the intruder is not, which 3 

happens with probability 𝜎∗(1 − 𝜎). Then the focal individual receives 4 

intake 𝐵 and moves to the digestive stage with average time 𝜏𝑑. 5 

▪ Neither the focal nor the intruder are willing to interact. Such a case 6 

occurs with probability (1 − 𝜎∗)(1 − 𝜎). Here the whole food item is 7 

taken by one of them, with equal probability for each. The luckier one 8 

moves to the digestive stage, the other to the searching stage. Thus the 9 

average time left for the focal individual in the cycle is 𝜏𝑑 2⁄ , and its 10 

average intake is 𝐵 2⁄ . 11 

▪ Both the focal individual and the intruder are willing to interact, 12 

occurring with probability 𝜎∗𝜎. The average time for the game is 𝑝∗𝑇𝑝, 13 

and the average intake is 𝑝∗𝐴𝑝.  14 

• 2b) Alternatively, the focal individual finds previously discovered food with 15 

probability 𝜌𝑣𝜃. Then the following scenarios are possible. 16 

o The focal individual is not willing to interact but the intruder is. This has 17 

probability   (1 − 𝜎∗)𝜎. There is no additional time and zero intake. 18 

o The focal individual is willing to interact but the intruder is not, with probability 19 

𝜎∗(1 − 𝜎).  The focal individual starts digesting with average time 𝜏𝑑 and intake 20 

𝐵. 21 

o Neither the focal individual nor the intruder are willing to interact, with 22 

probability (1 − 𝜎∗)(1 − 𝜎). The focal individual spends average time 𝜏𝑑 2⁄  23 

digesting, with average intake 𝐵 2⁄ . 24 
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o Both the focal individual and the intruder are willing to interact. The probability 1 

of this possibility is 𝜎∗𝜎, and the average time and average intake are 𝑝∗𝑇𝑝, and 2 

𝑝∗𝐴𝑝, respectively. 3 

After all of the above, the cycle starts over again. Let 𝜏∗ denote the average time of the focal 4 

individual’s cycle. It has the following components. 5 

• searching stage with average length 𝜏𝑠, 6 

• vulnerable stage with average length  𝜏𝑣𝜋𝑑, where 𝜋𝑑 is the probability that free food 7 

is found and no intruders arrive, namely, 8 

𝜋𝑑 =
𝜏𝑠

𝜏𝑠 + 𝜌𝑠𝜃𝜏𝑣
(1 − 𝜌𝑣𝜃), 9 

• subgame stage with average length 𝜋𝑐𝜎∗𝜎 𝑝∗𝑇𝑝, where 10 

𝜋𝑐 =
𝜌𝑠𝜃𝜏𝑣

𝜏𝑠 + 𝜌𝑠𝜃𝜏𝑣

(1 − 𝜌𝑣𝜃) + 𝜌𝑣𝜃 =
𝜃(𝜌𝑠𝜏𝑣 + 𝜌𝑣𝜏𝑠)

𝜏𝑠 + 𝜌𝑠𝜃𝜏𝑣
 16 

can be interpreted as the probability of getting into a contest situation (i.e., where two 11 

individuals, one with food and another without it, meet): the first term stands for the 12 

case where an intruder appears, and the second one for the case where the searching 13 

focal individual finds previously discovered food. A contest situation leads to a 14 

subgame if and only if  𝜎𝜎∗ ≠ 0.  15 

• digesting stage of average length 𝜏𝑑(𝜋𝑑 + 𝜋𝑐
(1−𝜎)(1+𝜎∗)

2
). The first term corresponds to 17 

the case where free food is found and no intruders come, and the second term stands for 18 

the case where in an encounter food is taken without a contest. The multiplier of 𝜋𝑐 in 19 

the above is 
(1−𝜎)(1+𝜎∗)

2
= (1 − 𝜎)𝜎∗ +

(1−𝜎)(1−𝜎∗)

2
, where the first term comes from the 20 

case where the focal would fight but the intruder would not, and the second term comes 21 

from the case where both retire and the food is awarded randomly. Neither of these cases 22 

correspond to a subgame. 23 
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Thus 1 

𝜏∗ = 𝜏𝑠 + 𝜏𝑣𝜋𝑑 + 𝜋𝑐𝜎∗𝜎 𝑝∗𝑇𝑝 + 𝜏𝑑 (𝜋𝑑 + 𝜋𝑐
(1−𝜎)(1+𝜎∗)

2
). 2 

The average amount of food taken by the focal individual during one cycle is 3 

𝐺∗ = (𝜋𝑑 + 𝜋𝑐
(1−𝜎)(1+𝜎∗)

2
) 𝐵 + 𝜋𝑐𝜎∗𝜎 𝑝∗𝐴𝑝. 4 

In order to characterize the equilibrium, let the focal individual belong to the resident 5 

population, i.e., there is no need for asterisks, as all quantities tagged with asterisks are equal 6 

to their unmarked counterparts. Then the proportions of individuals in searching, vulnerable, 7 

subgame, or digestive stages, respectively, are equal to the proportions of time spent in those 8 

stages during one cycle. Thus, in equilibrium we have 9 

𝜏𝑠 = 𝜌𝑠𝜏,   𝜏𝑣𝜋𝑑 = 𝜌𝑣𝜏,   𝜋𝑐𝜎2 𝑝𝑇𝑝 = 𝜌𝑔𝜏. 10 

The fourth equation is omitted, because it follows from the preceding three. In detail, we obtain 11 

the following system of quadratic equations in the two variables 𝜌𝑠 and 𝜌𝑣; 12 

𝜏𝑠
2 + 𝜌𝑠𝜃𝜏𝑠𝜏𝑣 = 𝜌𝑠𝜏𝑠(𝜏𝑠 + 𝜏𝑣 + 𝜏𝑑)13 

+ 𝜌𝑠
2𝜃𝜏𝑣 (𝜏𝑠 + 𝜎2 𝑝𝑇𝑝 +

1−𝜎2

2
 𝜏𝑑)14 

+ 𝜌𝑠𝜌𝑣𝜃𝜏𝑠 (−(𝜏𝑣 + 𝜏𝑑) + 𝜎2 𝑝𝑇𝑝 +
1−𝜎2

2
 𝜏𝑑),               (3𝑎) 15 

𝜏𝑠𝜏𝑣 − 𝜌𝑣𝜃𝜏𝑠𝜏𝑣 = 𝜌𝑣𝜏𝑠(𝜏𝑠 + 𝜏𝑣 + 𝜏𝑑)16 

+ 𝜌𝑣
2𝜃𝜏𝑠 (−(𝜏𝑣 + 𝜏𝑑) + 𝜎2 𝑝𝑇𝑝 +

1−𝜎2

2
 𝜏𝑑)17 

+ 𝜌𝑠𝜌𝑣𝜃𝜏𝑣 (𝜏𝑠 + 𝜎2 𝑝𝑇𝑝 +
1−𝜎2

2
 𝜏𝑑).                            (3𝑏) 18 

After this system is solved, the third equation provides us an explicit formula for 𝜌𝑔 in terms of 19 

𝜌𝑠 and 𝜌𝑣. Since an irreducible, continuous time, finite state space Markov chain always has a 20 

stationary distribution, this system does have a feasible solution. Though the stationary 21 
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distribution is unique, it does not necessarily imply the uniqueness of the solution of our system 1 

of equations.  2 

To illustrate our model, we use the game tree method introduced earlier by Cressman et al. 3 

(2014). Game trees provide a way to describe the forager’s behavior in detail, based on the 4 

sequence of its choices at different decision points. The game tree describes all possible 5 

foraging situations, which start from the beginning of the search for food (the root of the tree), 6 

and end at different random events (the leaves of the tree). In the illustration, we will consider 7 

two types of focal foragers, i.e. we consider polymorph model for visualization.1 The first type, 8 

called an avoider (see Figure 1), is a forager who is never willing to interact (i.e. 𝜎 = 0). The 9 

second type, called a contestant (see Figure 2), is a forager who is always willing to interact 10 

(i.e. 𝜎 = 1). Accordingly, we will use the notations 𝜌𝑠,𝑎, 𝜌𝑣,𝑎, 𝜌𝑔,𝑎, 𝜌𝑑,𝑎, 𝜃𝑎 (respectively 𝜌𝑠,𝑏, 11 

𝜌𝑣,𝑏, 𝜌𝑔,𝑏, 𝜌𝑑,𝑏, 𝜃𝑏) instead of 𝜌𝑠,1, 𝜌𝑠,2, 𝜌𝑣,1, 𝜌𝑣,2, 𝜃1, 𝜃2 etc. for the avoider (respectively, 12 

contestant). We call the reader’s attention to the fact that it is not assumed here that at least one 13 

of these phenotypes is arbitrary rare.  14 

In Figure 1 we consider a focal individual that adopts the avoider strategy in all foraging turns. 15 

This individual encounters a food item discovered by another avoider with rate 𝜌𝑣,𝑎𝜃𝑎, see (1). 16 

Similarly, the focal avoider encounters a food item discovered by a contestant and free food 17 

with rates 𝜌𝑣,𝑏𝜃𝑏 and 1 − 𝜌𝑣,𝑎𝜃𝑎 − 𝜌𝑣,𝑏𝜃𝑏, respectively. The time spent in the vulnerable stage 18 

is the minimum of two independent, exponentially distributed random variables, as in (2), so it 19 

has mean 20 

𝜏𝑚 =
1

1
𝜏𝑣

+
𝜌𝑠,𝑏𝜃𝑏 + 𝜌𝑠,𝑎𝜃𝑎

𝜏𝑠

 . 21 

 
1 Our model is monomorphic, since each individual can use a mixed strategy, i.e. each one can use all pure 

strategies with a genetically fixed probability.  
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There is no interaction when no intruder arrives during the vulnerable stage of the focal avoider, 1 

that is, when the focal individual can pass to the digestive stage before meeting a searcher.  This 2 

happens with probability  𝜏𝑚 𝜏𝑣⁄ .  In this case the focal avoider starts digesting its free prey, so 3 

in this particular foraging turn, the focal avoider spends time 𝜏𝑠 + 𝜏𝑚 + 𝜏𝑑 and gets benefit 𝐵.  4 

Next, consider the possibilities of interactions. Firstly, let us start with the case where the focal 5 

avoider is in the vulnerable stage and another individual arrives in the meantime. This happens 6 

with probability 1 −
𝜏𝑚

𝜏𝑣
. The intruders must be in searching stage. The probabilities that the 7 

intruder plays the subgame or uses the avoider strategy are proportional to the frequencies of 8 

the corresponding phenotypes, that is, a contestant individual arrives with probability  9 

𝜌𝑠,𝑏𝜃𝑏

𝜌𝑠,𝑏𝜃𝑏+𝜌𝑠,𝑎𝜃𝑎
.  If a contestant arrives, it takes the focal avoider’s prey, thus the focal individual 10 

is left without prey and in this particular foraging turn the focal individual spends 𝜏𝑠 + 𝜏𝑚 time 11 

on average. On the other hand, an avoider individual arrives with probability  
𝜌𝑠,𝑎𝜃𝑎

𝜌𝑠,𝑏𝜃𝑏+𝜌𝑠,𝑎𝜃𝑎
 , and 12 

after the encounter, without a subgame occurring, one of them gets the prey and starts digestion, 13 

each with probability 1/2, so the average time duration and benefit are 𝜏𝑠 + 𝜏𝑚 +
𝜏𝑑

2
  and  𝐵 2⁄  14 

. When a focal avoider finds prey with a contestant, the focal individual retires and immediately 15 

starts a new search, thus the time duration of this kind of foraging turn is just 𝜏𝑠. Finally, when 16 

a focal avoider finds prey with another avoider, no contest follows, and both parties have the 17 

same chance to take the whole prey. Thus the focal individual spends time 𝜏𝑠 +
𝜏𝑑

2
  and gets  18 

𝐵 2⁄  on average.  19 

In Figure 2 we consider a focal individual that follows the contestant strategy (𝜎 = 1) in all 20 

foraging turns. Differences only appear on the leaves of the tree. The leftmost leaf (no intruder 21 

arrives) is the same as in the case of a focal avoider. When the focal contestant is in the 22 

vulnerable stage and another contestant arrives, they start to play the matrix game with time 23 
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constraints, so in this particular foraging turn the focal contestant spends time  𝜏𝑠 + 𝜏𝑚 + 𝑝𝑇𝑝 1 

on average and its average intake is 𝑝𝐴𝑝. If the intruder is an avoider, then no contest (subgame) 2 

begins: the focal contestant gets the prey and starts digesting, so the average time duration and 3 

benefit are 𝜏𝑠 + 𝜏𝑚 + 𝜏𝑑 and 𝐵, respectively. Similarly, when a focal contestant finds a prey 4 

with another contestant, they start to play the game immediately, so this particular foraging turn 5 

takes an average 𝜏𝑠 + 𝑝𝑇𝑝 of the focal contestant’s time, and the focal individual gets 𝑝𝐴𝑝. 6 

Finally, when the discovered prey is with an avoider, the focal contestant takes the prey and 7 

starts to digest it, so it only spends time 𝜏𝑠 + 𝜏𝑑 and gets benefit 𝐵.   8 

 9 

2.3 Strict ESS 10 

We say that the resident phenotype is strictly evolutionarily stable if for an arbitrary focal 11 

different from the resident we have 12 

𝐺∗

𝜏∗
<

𝐺

𝜏
 , 13 

that is, the resident phenotype maximizes the average intake per time unit among all possible 14 

phenotypes, and this maximum is unique. This is equivalent to maximizing the long-term payoff 15 

of the individual, the standard measure of evolutionary success. We note that an alternative way 16 

of approaching this problem was developed in Křivan and Cressman (2017). The fact that these 17 

two methods are actually equivalent was shown in Broom et al. (2019).  18 

Claim.  If the resident phenotype is strictly evolutionarily stable, then 𝜎 = 1. 19 

Proof. Let 𝑝∗ = 𝑝. Then the focal individual’s average intake per time unit can be written in 20 

the following form: 21 

𝐺∗

𝜏∗
=

𝑄1 + 𝑄2𝜎∗

𝑄3 + 𝑄4𝜎∗
=: 𝑓(𝜎∗), 22 
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where the coefficients are positive, namely 1 

𝑄1 = (𝜋𝑑 + 𝜋𝑐
1−𝜎

2
) 𝐵, 𝑄2 = 𝜋𝑐 (

1−𝜎

2
𝐵 + 𝜎 𝑝∗𝐴𝑝) ,

𝑄3 = 𝜏𝑠 + (𝜏𝑣 + 𝜏𝑑)𝜋𝑑 + 𝜏𝑑𝜋𝑐
1−𝜎

2
 , 𝑄4 = 𝜋𝑐 (

1−𝜎

2
𝜏𝑑 + 𝜎 𝑝∗𝑇𝑝) .

         (4) 2 

This is a linear rational function of 𝜎∗, hence monotone. Thus, if 0 < 𝜎 < 1, there exists a 3 

mutant with 𝜎∗ ∈ {0, 1} which is at least as good as the resident. This is excluded by 4 

supposition. If 𝜎 = 0, then 𝑄2𝑄3 − 𝑄1𝑄4 =  
1

2
𝐵𝜋𝑐(𝜏𝑠 + 𝜏𝑣𝜋𝑑) > 0, so the function 𝑓(𝜎∗) is 5 

strictly increasing, therefore the resident can be outperformed by choosing  𝜎∗ = 1. ∎ 6 

 7 

Next we show an example of a strictly evolutionarily stable phenotype. 8 

Example 1.  Suppose the matrices 𝑇 and 𝐴 have unique smallest and largest elements, resp., 9 

at the same diagonal position, say 10 

𝑡11 = 𝑡 < min {𝑡𝑖𝑗: (𝑖, 𝑗) ≠ (1,1)},      𝑎11 = 𝑎 > max {𝑎𝑖𝑗: (𝑖, 𝑗) ≠ (1,1)}. 11 

Then 𝑝 = (1,0, … ,0) is optimal: 𝑝∗𝑇𝑝 > 𝑡 = 𝑝𝑇𝑝  and 𝑝∗𝐴𝑝 < 𝑎 = 𝑝𝐴𝑝  for every 𝑝∗ ≠ 𝑝. 12 

Let the resident phenotype be defined by 𝑝 = (1,0, … ,0) and 𝜎 = 1. Then  13 

𝐺𝜏∗ − 𝐺∗𝜏 = [𝜋𝑑𝐵 + 𝜋𝑐 𝑝𝐴𝑝][(𝜏𝑠 + (𝜏𝑣 + 𝜏𝑑)𝜋𝑑) + 𝜋𝑐𝜎∗𝑝∗𝑇𝑝]14 

− [𝜋𝑑𝐵 + 𝜋𝑐𝜎∗𝑝∗𝐴𝑝][(𝜏𝑠 + (𝜏𝑣 + 𝜏𝑑)𝜋𝑑) + 𝜋𝑐 𝑝𝑇𝑝] . 15 

This is a linear function of 𝜎∗, thus it suffices to check its positivity at 𝜎∗ = 0 and 𝜎∗ = 1. 16 

If 𝜎∗ = 1, then 17 

𝐺𝜏∗ − 𝐺∗𝜏 = 𝜋𝑐[(𝜏𝑠 + (𝜏𝑣 + 𝜏𝑑)𝜋𝑑)(𝑝𝐴𝑝 − 𝑝∗𝐴𝑝) + 𝜋𝑐(𝑝𝐴𝑝 𝑝∗𝑇𝑝 − 𝑝∗𝐴𝑝 𝑝𝑇𝑝)18 

+ 𝜋𝑑𝐵(𝑝∗𝑇𝑝 − 𝑝𝑇𝑝)] ≥ 0, 19 

and equality holds if and only if 𝑝∗ = 𝑝. If 𝜎∗ = 0, then 20 
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𝐺𝜏∗ − 𝐺∗𝜏 = 𝜋𝑐[(𝜏𝑠 + (𝜏𝑣 + 𝜏𝑑)𝜋𝑑)𝑝𝐴𝑝 − 𝜋𝑑𝐵 𝑝𝑇𝑝]. 1 

This is obviously positive if (𝜏𝑣 + 𝜏𝑑)𝑝𝐴𝑝 > 𝐵 𝑝𝑇𝑝, which can be achieved by suitably 2 

choosing 𝑎 and 𝑡. Then the resident phenotype is evolutionarily stable. 3 

 4 

2.4 Mixed ESS 5 

Of course, a strictly evolutionarily stable phenotype does not necessarily exist. For example, if 6 

the matrices 𝑇 and 𝐴 are given in such a way that 𝑎𝑖𝑗 = 𝑎 and 𝑡𝑖𝑗 = 𝑡 for every 𝑖, 𝑗 ∈ {1,2, … , 𝑛}, 7 

then game strategy 𝑝 is indifferent. Therefore, two phenotypes are equivalent if they have the 8 

same contesting probability 𝜎. Thus no phenotype can be strictly evolutionarily stable. Apart 9 

from this trivial case, if the duration of the game is very long, and the reward is small, it is not 10 

worth contesting. Our second example presents a case where a strictly evolutionarily stable 11 

phenotype cannot exist. 12 

 13 

Example 2. Consider a model where 𝜃 < 1, that is, there is more food than individuals. It is 14 

easy to see that 15 

𝜋𝑑 =
𝜏𝑠

𝜏𝑠 + 𝜌𝑠𝜃𝜏𝑣

(1 − 𝜌𝑣𝜃) ≥
𝜏𝑠(1 − 𝜃)

𝜏𝑠 + 𝜃𝜏𝑣
 . 16 

Though 𝜋𝑑 depends on 𝜎 through 𝜌𝑠 and 𝜌𝑣, this estimate does not.  Let 𝑇 and 𝐴 be defined as 17 

in Example 1. Clearly, if 𝑝 ≠ (1,0, … 0), then the phenotype given by 𝜎 = 1 and 𝑝 cannot be 18 

evolutionarily stable, as the mutant with 𝜎∗ = 1 and 𝑝∗ = (1,0, … 0) is better. If 𝑝 = (1,0, … 0) 19 

and 𝜎 = 1, then for 𝑝∗ = 𝑝 and 𝜎∗ = 0 we have already shown that 20 

𝐺𝜏∗ − 𝐺∗𝜏 = 𝜋𝑐[(𝜏𝑠 + (𝜏𝑣 + 𝜏𝑑)𝜋𝑑)𝑝𝐴𝑝 − 𝜋𝑑𝐵 𝑝𝑇𝑝]. 21 

Recalling the lower estimate for 𝜋𝑑 we can see that 𝐺𝜏∗ − 𝐺∗𝜏 < 0, if  22 
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[𝜏𝑠(𝜏𝑠 + 𝜃𝜏𝑣) + (𝜏𝑣 + 𝜏𝑑)𝜏𝑠(1 − 𝜃)]𝑝𝐴𝑝 − 𝜏𝑠(1 − 𝜃)𝐵 𝑝𝑇𝑝 < 0, 1 

that is, 2 

(𝜏𝑠 + 𝜏𝑣)𝑝𝐴𝑝 < (1 − 𝜃)(𝐵 𝑝𝑇𝑝 − 𝜏𝑑 𝑝𝐴𝑝).             (5) 3 

Suppose  4 

(𝜏𝑠 + 𝜏𝑣 + 𝜏𝑑)𝑎 < 𝐵𝑡, 𝜃 <
𝐵𝑡 − (𝜏𝑠 + 𝜏𝑣 + 𝜏𝑑)𝑎

𝐵𝑡 − 𝜏𝑑𝑎
 .          (6) 5 

Then (𝜏𝑠 + 𝜏𝑣)𝑎 < (1 − 𝜃)(𝐵𝑡 − 𝜏𝑑𝑎), that is, (5) holds, therefore a mutant with 𝑝∗ = 𝑝 and 6 

𝜎∗ = 0 is strictly better than the resident. Thus, in this model there does not exist a strictly 7 

evolutionarily stable phenotype.  8 

 9 

2.5 Weak ESS 10 

We can also define the weak evolutionary stability property of phenotype (𝑝, 𝜎). It means that 11 

for an arbitrary focal with (𝑝∗, 𝜎∗) we have 
𝐺∗

𝜏∗ ≤
𝐺

𝜏
 . In Example 2, though there exist no strictly 12 

evolutionarily stable phenotypes, still there may be one in the weaker sense. Again, 𝑝∗ = 𝑝 =13 

(1,0, … 0) can be assumed, thus 𝑝∗𝐴𝑝 = 𝑝𝐴𝑝 = 𝑎 and 𝑝∗𝑇𝑝 = 𝑝𝑇𝑝 = 𝑡. For a weakly 14 

evolutionarily stable 𝜎 one has to solve the equation 𝑄1𝑄4 − 𝑄2𝑄3 = 0. It looks quadratic, but 15 

in fact it is not, because 𝜋𝑑 and 𝜋𝑐 also depend on 𝜎 through 𝜌𝑠 and 𝜌𝑣, which are only implicitly 16 

given. Fixing 𝑎, 𝑡, 𝐵, 𝜏𝑠, 𝜏𝑣, 𝜏𝑑 so that the conditions of Example 2 are satisfied one solves the 17 

equation numerically, by computing 𝑄1𝑄4 − 𝑄2𝑄3 for 𝜎 running from 0 to 1. We shall see that 18 

for suitably choosing 𝑎, 𝑡, 𝐵, 𝜏𝑠, 𝜏𝑣, 𝜏𝑑 the existence of a weakly evolutionarily stable 𝜎 can be 19 

realized. 20 

 21 
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Example 3.  For the sake of simplicity, we suppose 𝜏𝑠 =  𝜏𝑣 = 𝜏𝑑 = 1, that is, all time durations 1 

are identically distributed, namely, exponential with mean 1, and let 𝑎 = 1. Set the positive 2 

parameters 𝑡, 𝐵, θ, such that they satisfy (6) (i.e. 𝐵𝑡 > 3 and 𝜃 <
𝐵𝑡−3

𝐵𝑡−1
 ). With 𝐶 = 𝜎2𝑡 +

1−𝜎2

2
, 3 

equations (3a) and (3b) take the form: 4 

(3 − 𝜃)𝑥 + 𝜃(𝐶 + 1)𝑥2 + 𝜃(𝐶 − 2)𝑥𝑦 = 1 , 5 

(3 + 𝜃)𝑦 + 𝜃(𝐶 − 2)𝑦2 + 𝜃(𝐶 + 1)𝑥𝑦 = 1 , 6 

where x and y stand for 𝜌𝑠 and 𝜌𝑣 respectively. For 𝜎 fixed between 0 and 1, we find numerically 7 

the unique positive solution of this system of two quadratic equations in x and y that satisfy 𝑥 +8 

𝑦 < 1. We then plot the function  9 

𝜑(𝜎) = (1 − 𝜃𝑦 + 𝜃
1 − 𝜎

2
(𝑥 + 𝑦)) 𝐵 (

1 − 𝜎

2
+ 𝜎𝑡)10 

− (3 + 𝜃𝑥 − 2𝜃𝑦 + 𝜃
1 − 𝜎

2
(𝑥 + 𝑦)) (

1 − 𝜎

2
𝐵 + 𝜎) , 11 

which is equal to a positive multiple 
 (1+𝑥𝜃)2

𝜃(𝑥+𝑦)
  of 𝑄1𝑄4 − 𝑄2𝑄3. When 𝑡 = 1, 𝐵 = 4 and 𝜃 =12 

0.1, Figure 3 shows that there is a mixed solution 𝜎 ≅ 0.81 that satisfies the weak evolutionary 13 

stability property.  14 

By Example 3, the zero-one rule is not valid in general since the ESS phenotype is ready to 15 

contest with probability 0.81 (i.e. the expected outcome is a mixed ESS). 16 

 17 

 18 

3. Conclusion 19 
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Through considering the functional response, we can see that kleptoparasitism is a special 1 

interference between foragers, which does not only take time but also has an effect on the net 2 

energy intake of both forager individuals. Thus, kleptoparasitism is an excellent example for a 3 

foraging game (e.g. Filippi and Nomakuchi 2016, Sirot 2000, Spencer and Broom 2018). 4 

Furthermore, it is also a good example for the game with time constraints, for instance the 5 

victim not only lost its acquired food item but also the time it has spent to get this food item 6 

before it was stolen. That is, although we only formally introduce time constraints in the 7 

subgame, it is clear that time constraints also play an important part in other stages of the 8 

sequential game.  9 

The novelty of the present work is that we make a bridge between two theoretical research lines: 10 

optimal foraging theory and a sequential evolutionary game theory with time constraints. One 11 

of the basic ideas of optimal foraging theory is that the densities of different prey types 12 

determine the optimal foraging tactics. In our game theoretical model a similar effect takes 13 

place. For instance, in Example 2 we found that if there is more food than individuals (i.e. the 14 

free food is abundant enough) then there is no strict ESS. Furthermore, in our model, although 15 

there is only one prey species, there are different prey types (as a free food item, but also as a 16 

food item at the vulnerable stage of foragers, moreover according to which phenotype acquired 17 

the prey). During our investigation the relative frequency of these different food items implicitly 18 

determines the evolutionary stability (see the role of 𝜃𝑖 in the main text and Examples). In this 19 

sense, the above basic ideas of optimal foraging theory are transferred to the game theory. 20 

Moreover, the Nash solution concept in our game (where the payoff is the ratio of average 21 

intake to the average time duration of one of the foraging cycle) is equivalent with the rule of 22 

time averages (Garay et al. 2015), claiming that “the optimal predator behavior involves those 23 

activities that ensure larger time average intake than the time average of all activities”. Thus 24 
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the time durations of different activities also have effect on the optimal behavior in the game 1 

with time constraints.  2 

In our game, where the interactions between predators have an effect on their net energy 3 

intake and need extra time, we found that the classical zero-one rule is not valid. Firstly, the 4 

avoider phenotype (𝜎 = 0) is never an ESS, since if there are only avoiders in the resident 5 

population (that is, e.g. the resident never contests), the mutant always get an advantage by 6 

stealing the resident’s food. Secondly, we point out that the contestant (𝜎 = 1) can be a strict 7 

ESS, but is not necessarily one. Thirdly, the contestant (𝜎 = 1) is sometimes not an ESS, 8 

since if the average time duration of the game is very long, and the reward is small, it is not 9 

worth contesting. Fourthly, we give an example where a mixed ESS does exist. The 10 

kleptoparasitism models of Broom and colleagues did not generally produce mixed solutions, 11 

as have been produced here. A key reason for this was the sequential nature of decisions in 12 

that model. The challenger decides their choice first and then the defender responds, and if the 13 

challenger decided not to challenge then the defender automatically keeps their food. We note 14 

that simple sequential games generally have only pure solutions (see Broom and Rychtář, 15 

2013). These food stealing games (see e.g., Broom and Ruxton, 1998; Broom et al., 2004) are 16 

not simple but affected by population density. However, the effect of density is destabilizing 17 

for mixtures. If all individuals fight then the effective foraging rate is low, meaning the value 18 

of any given food item is effectively higher, making it more attractive to fight for. Thus more 19 

than one ESS was common. The exceptions that produced mixed strategies were Broom et al. 20 

(2008, 2009), where individuals which did not attempt to search for conspecifics had a higher 21 

rate of finding free food than others, whereas in the other models the efficiency of food 22 

finding was assumed the same for all individuals. In the present paper individuals make 23 

simultaneous decisions, and they do it without making a distinction in whether they are the 24 

challenger or the defender (since our model is symmetric without ownership), in a similar way 25 
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to Sirot (2000), and so can similarly obtain a mixed solution. We note that there are a number 1 

of differences in the current model and the Sirot (2000) model. In the latter Dove versus Dove 2 

contests took no time (as in Broom et al., 2004, although there it arose naturally as there was 3 

no contest), whereas in the current paper it does, in the spirit of the “war of attrition” game 4 

(see Maynard Smith, 1982). Sirot (2000) also effectively had a simplifying assumption for the 5 

payoffs, where the value of a reward compared to the cost of a fight was independent of the 6 

population strategy, which is not made here (or in the Broom et al. (2004) models).  7 

Although we concentrate on a theoretical symmetrical selection situation, we think the game-8 

tree method (Cressman et al. 2014) can handle other biological situations, as well. For instance, 9 

two different types of asymmetry occur in kleptoparasitism. The first one takes place within the 10 

same species, namely ownership, which may have effect on the behavior of owner, like the 11 

bourgeois strategy (Maynard Smith 1982). The effects of ownership on the evolutionary 12 

outcome when, unlike kleptoparasitism, it is only interaction times that are strategy dependent, 13 

were investigated by Cressman and Křivan (2019). The second one is when kleptoparasitism 14 

occurs between different species (e.g. Balme et al. 2017, Garthe and Hüppop 1998). These types 15 

of asymmetry (ownership and/or multispecies interactions) can be modelled by the game-tree 16 

method, but the analysis of these asymmetric games will need more investigation and is left to 17 

future research. 18 
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Figure 1.   Game tree of a focal individual following the avoider strategy. On the leaves the 15 

average time durations of the corresponding foraging turns (upper row), and the average 16 

intakes (lower row), are exhibited. For the notations see the main text. 17 
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Figure 2.  Game tree of a focal individual following the contestant strategy. On the leaves the 20 

average time durations of the corresponding foraging turns (upper row), and the average intakes 21 

(lower row), are exhibited. For the notations see the main text. 22 
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𝜏𝑠 + 𝜏𝑚 + 𝜏𝑑  
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𝜏𝑠 + 𝜏𝑑  
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𝜏𝑠 + 𝜏𝑚 + 𝜏𝑑  

 𝐵 

Subgame No subgame 
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 1 

 2 

Figure 3. (see Example 3) By setting 𝑡 = 1, 𝐵 = 4 and 𝜃 = 0.1, the graph shows 𝜑(𝜎) = 0 at 3 

approximately 𝜎 = 0.81. 4 
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