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Prediction of the post-fire flexural capacity of RC beam using GA-BPNN 1 

Machine Learning  2 

Bin Cai 1; Guo-liang Pan 2;Feng Fu3 CEng,F.ASCE 3 

 4 

Abstract:  To accurately predict the flexural capacity of post-fire RC beams is 5 

imperative for fire safety design. In this paper, the residual flexural capacity of 6 

post-fire RC beams is predicted based on a back-propagation (BP) neural network 7 

(NN) optimized by a genetic algorithm (GA). First, the temperature distribution of the 8 

beams was determined using the finite element analysis software ABAQUS, and the 9 

strength reduction factor of materials was determined. The flexural capacity of the RC 10 

beams after fire is calculated by the flexural strength reduction calculation model. The 11 

model is used to generate the training data for the NN. To enable machine learning, 12 

480 datasets are produced, of which 360 datasets are used to train the network; the 13 

remaining 120 datasets are used to test the network. The predictive models are 14 

constructed using BPNN and GA-BPNN respectively. The prediction accuracy is 15 

evaluated by comparing the predicted values and the target values. The comparison 16 

shows that the GA-BPNN has a faster convergence speed, higher stability, and can 17 

reach the goal more times, reducing the possibility of BPNN falling into the local 18 

optimum and achieving the global optimum. The proposed GA-BPNN model for 19 

predicting the flexural capacity of post-fire RC beams provides a new approach for 20 

design practice. 21 

Keywords: reinforced concrete, fire, flexural capacity, BP neural network, GA-BP 22 

neural network, prediction 23 

 24 

1. Introduction 25 

Fire is one of the most common disasters in today's society. Building Fire 26 

frequently occurs, accounting for approximately 80% of all fires (Xue et al. 2017). 27 

Buildings experience various degrees of damage after fire, and their mechanical 28 

properties should be fully evaluated to determine the safety of the structure after fire 29 

and provide reliable technical support for further retrofitting requirements. In fire the 30 

mechanical properties RC beam decrease significantly as the temperature increases 31 

(Felicetti et al. 2009; Annerel and Taerwe 2011). 32 

To determine the residual flexural capacity, a large number of calculation 33 

processes are needed. The neural network (NN) can substitute human being  to 34 

accurately predict the flexural capacity of the RC beams after a fire, thus avoiding 35 

complicated calculation processes (Naser et al. 2012; Xiang and Wang 2013). 36 

Artificial NNs (ANNs) (Fu,2020) are mathematical or computational models that 37 

mimic the formation of the structure and the function of biological systems (Mao et al. 38 

2011; Di Massimo et al. 1992; Zhang et al. 2003). ANNs have strong nonlinear 39 
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analysis capabilities and can map a given input to the required output through training 40 

(Zhang et al. 2004). ANNs define relations in datasets and are suitable for problems 41 

that are difficult to solve using traditional mathematical methods. ANNs have wide 42 

application prospects in engineering. Sobhani et al. (2010) used NNs to study the 43 

compressive strength of no-slump concrete. Alshihri et al. (2009) established a 44 

predictive model of the compressive strength of structural light-weight concrete using 45 

ANN. Dwaikat (2008) conducted numerical simulations of fire-induced restraint 46 

effects in reinforced concrete beams based on NN. Kodur et al. (2004, 1998, 2003) 47 

predicted the fire resistance behavior of high-strength concrete columns using NNs. 48 

Abbasi (2005) used ANNs to establish a predictive model for glass fiber-reinforced 49 

plastic steel concrete beams. Erdem (2010) studied the prediction of the flexural 50 

capacity of RC plates after a fire using an ANN. 51 

Back-propagation (BP) is a neural network algorithm whose process includes 52 

forward propagation of information and back propagation of errors. However, when 53 

Ling and Zhang (2014) used the BP NN to predict the price trend of gold, the 54 

convergence speed of the learning process of the BP NN appeared to be slower. To 55 

solve this problem, the global search ability of the genetic algorithm (GA) is often 56 

used to optimize the weight and threshold of BP NNs to improve their prediction 57 

ability (Ma and Shi 2004; Ding et al. 2011; Xu et al. 2014). Vinay Chandwani et al. 58 

(2015) used GAs to assist the ANN to simulate the slump of ready-mix concrete. The 59 

study showed that by hybridizing ANN with GA, the convergence speed of ANN and 60 

its accuracy of prediction can be improved. The trained hybrid model can be used to 61 

quickly predict the slump of concrete. Ahmed and Nehdi (2017) presented an 62 

approach to predicting the intrinsic self-healing in concrete using a hybrid GA–63 

artificial NN. Yan et al. (2017,2016) combined the strong nonlinear mapping ability of 64 

ANN with the global searching ability of GA to study the diameter, surface, position, 65 

and embedment length of the steel, as well as the thickness of the concrete cover and 66 

concrete compressive strength on the influence of the glass fiber reinforced plastic 67 

(GFRP) bond strength of reinforcement and concrete, and they studied the anchorage 68 

reliability of GFRP steel given the factors of steel diameter, thickness of concrete 69 

cover, anchoring length, concrete compressive strength and ultimate yield strength of 70 

GFRP steel. However, few people use GA-BP NN to study the prediction of the 71 

flexural capacity of RC beams after fire controlled by multiple factors. 72 

In this study, a new method for the rapid prediction the flexural capacity of 73 

post-fire reinforced concrete (RC) beams using GA-BP NN is developed. First, the 74 

temperature distribution of the beams was determined using the finite element 75 

analysis software ABAQUS, and the strength reduction factor of materials was 76 

determined. The flexural capacity of the RC beams after fire is calculated by the 77 

flexural strength reduction calculation model. The model is used to generate the 78 

training data for the NN. The flexural capacity of post-fire RC beams is predicted 79 

using a GA-BPNN. The predicted values obtained by the NN are compared to the 80 

target value, with small errors, demonstrating the accuracy of ANNs. The use of the 81 

GA-BPNN to predict the flexural capacity of post-fire RC beams can avoid the 82 

complex calculation used to reduce the workload for the study of post-fire building 83 



structures, providing a reliable basis for the strengthening of such structures, and save 84 

both time and resources. 85 

  86 

2. Calculation model of the post-fire flexural capacity of RC beams 87 

2.1 Heat transfer  88 

Heat transfer comprises three key process, conduction, radiation and convection. 89 

Conduction is the physical process of heat transfer from the presence of a 90 

temperature gradient. The high temperature of the fire acting on the surface of the 91 

reinforced concrete member is conducted into it by thermal conduction. 92 

According to Fu (2016a,b, 2018), the thermal convection between the concrete 93 

surface of the fire field and the fire environment is as follows: 94 

  f rq h T T    (1) 95 

where h  is the convective heat transfer coefficient, 
fT  is the fire field temperature 96 

and 
rT  is the absolute temperature of receiving the surface. 97 

The thermal radiation between the surface of concrete components and the fire 98 

environment is as follows: 99 

  4 4

f rq T T    (2) 100 

where   is the surface emissivity, which, for concrete, is generally 0.3; and   is the 101 

Stefan-Boltzmann constant (5.67×10−8 W/m2K4). 102 

2.2 Thermal parameters 103 

Heat transfer analysis requires the thermal parameters of the materials, including 104 

the heat conductivity, the specific heat capacity, and the density. The thermal 105 

parameters proposed in Eqs. (3) – (4) are used for the concrete in this study from BS 106 

EN1994-1-2 (BSI, 2013), and the steel adopts the thermal parameters proposed in Ref. 107 

(Lie and Irwin 1995). 108 

The heat conduction rate of the concrete is as follows: 109 
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  (3) 110 

where c  is the heat conduction rate of the concrete and T  is the current 111 

temperature. 112 

The specific heat capacity of the concrete is as follows: 113 
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  (4) 114 

where cc  is the specific heat capacity of the concrete. 115 

The heat conduction rate of the steel is as follows: 116 
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  (5) 117 

where s  is the heat conduction rate of the steel. 118 



The specific heat capacity of the steel is as follows: 119 
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  (6) 120 

where 
Tc  is the specific heat capacity of the steel. The specific heat capacity of the 121 

steel varies greatly with the increase of temperature, and the specific heat capacity 122 

increases rapidly; however, as the temperature continues to rise, the specific heat 123 

capacity of the steel rapidly decreases. 124 

The ISO 834 fire curve used in this study is as follows (ISO, 1999): 125 

  0 345lg 8 1T T t     (7) 126 

where 
0T  is the room temperature and t is the heating time. 127 

2.3 Calculation of the post-fire flexural capacity 128 

The mechanical properties of both reinforced steel and concrete were 129 

deteriorated after fires, which caused lower flexural capacity and thereby safety risks, 130 

therefore, the flexural capacity attenuation of components should be quantitatively 131 

identified. The temperature of post-fire RC beams was determined from the heat 132 

transferring analysis. The strength reduction equations were introduced to determine 133 

the post-fire strength of component materials. Then the post-fire residual flexural 134 

capacity of RC beams was analyzed. 135 

After the thermal parameters of the concrete and the steel in the RC beam are 136 

determined according to sections 2.1 and 2.2, a heat transfer analysis is performed 137 

using ABAQUS to simulate the temperature field and to extract the temperatures of 138 

each point of the section at different times. According to the strength reduction 139 

method proposed in Niu et al (1990) and Yang et al. (2009), the compressive strength 140 

reduction factor of concrete and the yield strength reduction factor of steel at different 141 

temperatures are shown in Fig. 1. The flow chart for the flexural capacity of post-fire 142 

RC beams is shown in Fig. 2. 143 

(Fig. 1) 144 

According to Cai et al. (2019), the formula for calculating the flexural capacity 145 

in an RC beam after a fire is as follows: 146 

    C 1 C c 0 y y s 0 s0 5T T TM f bx h . x f A h a          (8) 147 

where CTM  is the flexural capacity of the post-fire concrete beam at the maximum 148 

fire temperature of T ℃ ; CT  is the strength reduction factor of concrete in the 149 

compressive zone; cf  is the compressive strength of the concrete at normal 150 

temperature; b is the sectional width of the beam; h0 is the valid sectional height of the 151 

beam; α1 = 1; x is the height of the compressed zone in the post-fire component; yT  152 

is the yield strength reduction factor of compressive reinforced steel; sa  is the 153 

distance from the resultant force point of the compressive reinforced steel to the 154 

margins of the compressive section; yf   is the yield strength of compressive 155 

reinforced steel at normal temperature; sA  is the area of reinforced steel in the 156 



compressive zone. 157 

 158 

(Fig. 2) 159 

 160 

 161 

2.4 Verification of the post-fire flexural capacity of RC beams 162 

The post-fire flexural capacity calculation model for RC beams was validated 163 

using the test data of specimen L5 and L9 in Ref. (Xu et al. 2013). They performed 164 

flexural tests for 7 RC beams after fire. the effects of fire exposure time，shear span 165 

ratio，reinforcement ratio and flange on the residual flexural capacity of the beans 166 

were analyzed. The reinforcement details of the specimen are illustrated in Fig.3. The 167 

reason that Tests L5 and L9 are selected for the validation is because they are expose 168 

to different fire durations. L5 is exposed to fire for 1 hour, and L9 is exposed to fire 169 

for 2 hours. The temperature field distribution is simulated using ABAQUS; then, in 170 

combination with Fig. 1, the compressive strength reduction factor and the yield 171 

strength reduction factor of the section of the beam after a fire are determined. The 172 

flexural capacity of specimen L5 was calculated with Eq. (8) as 194.45 kN, with a 173 

0.79% error from that of specimen L5 in Ref. (Xu et al. 2013), which is 196 kN. The 174 

flexural capacity of specimen L9 was calculated with Eq. (8) as 164 kN, with a 1.70% 175 

error from that of specimen L9, which is 167 kN. The flexural capacity of the strength 176 

reduction model proposed in this paper agrees well with the Ref. (Xu et al. 2013) and 177 

indicates that the method can be applied to the calculation of the flexural capacity of 178 

RC beams after a fire. 179 

(Fig. 3) 180 

3 Artificial Neural Networks (ANNs) 181 

3.1 Overview of ANNs 182 

ANNs are mathematical models that mimic the structure and function of 183 

biological systems and are characterized by adaptivity, self-learning, nonlinear 184 

mapping, robustness, and fault tolerance (Lin et al. 2016). Based on modern 185 

neuroscience, ANNs mimic brain processing mechanisms to achieve the simulation 186 

effect. ANN models are independent of objects, targets, and datasets and have a strong 187 

nonlinear processing capability. Without the need for manually inputting specific 188 

formulas, the network can search for nonlinear relations between the inputs and outputs 189 

according to the existing test data and obtain a mathematical model that can map the 190 

intrinsic relations of the test data (Zhou and Ke 2016). 191 

3.2 Introduction to the BPNN 192 

The BPNN is currently the most widely used multilayer feedforward network 193 

structure (Cheng et al. 2015; Shen et al. 2008). In terms of learning rules, the BPNN is 194 

a supervised learning network, which can, when there is an unknown specific 195 

mapping relation between the inputs and outputs of the network, change its own 196 

structure, adjust the weights of neurons through the continuous learning of sample 197 

data, and finally create the correct mapping between the inputs and outputs of the 198 

network (Shang and Mao 2001; Zhao et al. 2019). Both working signals and error 199 

signals are propagated in the BPNN. The working signals are propagated forward 200 



from the input layer to the output layer, while the error signals are propagated 201 

backward (Yang et al. 2001). The two phases are repeated continuously to adjust the 202 

weights and thresholds of the network until the errors are minimized (Zhao et al. 203 

2019). 204 

The BPNN adopts the working principle of a multilayer feedforward network. 205 

Neurons in the hidden layer are connected to the inputs and outputs. The gradient 206 

learning method is used to adjust the weights in the training stage to minimize the 207 

errors between the actual outputs and target outputs. A given set of inputs [v1, v2, ..., vj] 208 

are successively subjected to 2 basic mathematical operations to solve for the final 209 

output Zj. 210 

First, when the information passes through the input layer to the hidden layer, the 211 

bias of each neuron in the hidden layer is added to the product of the inputs and the 212 

sum of their respective weights to obtain the receiving vector Uj as follows: 213 
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    (9) 214 

  j jZ f U   (10) 215 

where 1 2, ,...,j j ijw w w    is the weight vector of the j-th neuron between the input layer 216 

and the hidden layer, and bj is the bias between the input layer and the hidden layer. 217 

Assume that the architecture of the NN is 7-n-1 and the input layer is [v1, v2, ..., v7]; 218 

then 1W  is the weight matrix from the input layer to the hidden layer, 2W  is the weight 219 

matrix from the hidden layer to the output layer, 1B  is the bias vector of the hidden 220 

layer, and 2B  is the bias vector of the output layer. According to the receiving vector 221 

1U , the corresponding output 1Z  from the input layer to the hidden layer is obtained. 222 

 1 1 1

TU W V B    (11) 223 

Finally, the receiving vector 2U  is used to obtain the corresponding output 2Z  224 

from the hidden layer to the output layer as follows: . 225 

   2 2 1 2 2 1 1 2

T T TU W V K W f W V B B       (12) 226 

      2 2 2 2 2 1 1 1 2

T TZ f U f W f W V B B      (13) 227 

where 2Z  is the prediction of the flexural capacity of the RC beam. 228 

However, the traditional BP network inevitably has local convergency problems. 229 

During the learning process, the rate of decline and the rate of learning are slow, and a 230 

long-term error flat area is prone to appear. The choice of network structure is 231 

different, the network is too large, and the efficiency is not high in training.  232 

3.3 Introduction to the GA-BPNN 233 

The GA is a random search algorithm based on natural selection and the genetic 234 

mechanism of biological organisms. The GA searches for the optimal solution by 235 

simulating the natural evolution process. The method has the advantages of high 236 

robustness, strong global search ability, and simple calculations. The GA continuously 237 

evolves through the processes of selection, crossover, and mutation to obtain the 238 

optimal solution. Aiming at the shortcomings of the BPNN, a GA can be combined 239 

with BPNN to improve the structure, rules and weight threshold of an NN using the 240 

characteristics of the GA, thus improving the speed and accuracy of network 241 



prediction. The process of optimization of BPNN by the GA is shown in Fig. 4.  242 

Step 1: Determine the topology, the weights, the thresholds, and the number of 243 

nodes of the BPNN. 244 

Step 2: Collect raw data, such as fire duration and beam height. The original data 245 

is normalized and preprocessed, and the preprocessed value is used as input to the 246 

network. 247 

Step 3: Select the GA parameters, initialize the population, and encode each 248 

individual as a string of real numbers, which are the connection weights between the 249 

input layer and the hidden layer, the threshold of the hidden layer, the connection 250 

weights between the hidden layer and the output layer, and the threshold of the output 251 

layer. 252 

Step 4: Calculate the fitness of each individual of the population using the 253 

following function: 254 

  '

1
1

N

i ii
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    (14) 255 

where 
iy  is the target value and '

iy  is the predicted output. 256 

Step 5: Perform the GA operations of selection, crossover and mutation, 257 

successively, retaining the individuals with high fitness and eliminating those with low 258 

fitness. 259 

The selection operation is as follows: 260 

 
1

N
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    (15) 261 

where N is the population and iF  is the fitness of individual i. 262 

The crossover operation is as follows: 263 

Because real encoding is adopted for each individual, a real-coded crossover 264 

operator is used. The crossover operation at the j-th bits of the k-th chromosome ka  and 265 

the l-th chromosome 1a  is as follows: 266 
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  (16) 267 

where 0b  is a random number in the range [0,1]. 268 

The mutation operation is as follows: 269 
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  (17) 270 

    
2

2 max1f g r g G     (18) 271 

where 
maxa and mina  are the upper and lower bounds of genes, respectively; 2r  is a 272 

random number; g is the current iterations; maxG  is the maximum evolution and r is a 273 

random number in the range [0,1]. 274 

Step 6: Calculate the fitness of each individual. If there exists an individual in the 275 



new population that makes the network reach the global optimum or the number of 276 

iterations reaches the set maximum value, proceed to the next step; otherwise, return 277 

to Step 5. 278 

Step 7: Output the individual with the highest fitness and obtain the weights and 279 

thresholds that result in the global optimum. 280 

Step 8: Assign the optimized weights and thresholds to the BPNN. Then, the 281 

reserved training samples are used to train the BPNN until the errors are within the 282 

preset error range, thus completing the prediction for the flexural capacity of the 283 

post-fire RC beam. 284 

Step 9: Input the preprocessed data into the trained GA-BPNN, output the data 285 

from the network, and inversely normalize the data to obtain the predicted values of 286 

the flexural capacity of the post-fire RC beam. 287 

 288 

Fig. 4  289 

 290 

4 The NN model for predicting the post-fire flexural capacity of an RC beam 291 

4.1 Model development 292 

As we all know, fire experiments are very expensive and require a lot of time. In 293 

addition, the number of dedicated research facilities and test furnaces is limited. These 294 

problems pose obstacles to the flexural, shear, axial tests of reinforced concrete 295 

members under high temperature. Therefore, in this paper, an alternative method is 296 

proposed. According to the calculation model of the flexural strength reduction after a 297 

fire proposed in section 2.3, the theoretical value of the flexural capacity of the RC 298 

beam after fire is obtained. The theoretical value is used as the training data of the 299 

NN. 300 

The developed BPNN and GA-BPNN models have 7 input neurons and 1 output 301 

neuron. The input layer is the main influencing factor on the flexural capacity of the 302 

RC beams after fire, including 7 parameters: the beam width, the beam height, the fire 303 

time, the cross-sectional area of the tensile reinforcement, the concrete compressive 304 

strength, the tensile strength of the tensile reinforcement, and the thickness of the 305 

concrete cover. The number of neurons in the hidden layer is 10 and the output layer 306 

is the flexural capacity of the RC beam after a fire. The topology of the BPNN is 307 

shown in Fig. 5. The values of the input layer parameters were t (5, 10, 15, 20, 25, 30, 308 

35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120min), b 309 

(200mm), h (400, 450, 500, 550, 600mm), As (628, 760, 982, 1232mm2), fc (24.23, 310 

28.03, 32.05, 36.05, 39.82, 42.92MPa), fy (332.85, 381.65, 443.80, 554.75MPa), c (25, 311 

30, 35, 40, 45mm). 312 

 313 

Fig. 5 314 

 315 

4.2 Model algorithm 316 

In this study, the GA-BPNN prediction model is used. The tangent sigmoid 317 

function is adopted as the transfer function for the neurons in the hidden layer. The 318 

sigmoid function is expressed as follows: 319 
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  (19) 320 

The outputs are controlled in the range [0,1]. Transformation is performed to prevent 321 

the excessively large absolute value of the net input from saturating the output of the 322 

neuron and subsequently adjusting the weights to enter the flat area of the error 323 

surface. A pure linear transformation function, the purelin function, is used for the 324 

neurons in the output layer to improve the prediction accuracy of the network. The 325 

Initff function is selected as the initialization function, and the Trainlm function is 326 

selected as the training function. The Levenberg-Marquard algorithm is adopted, 327 

which has a high gradient descent speed and a small number of training steps 328 

(Hecht-Nielsen 1992). 329 

The input and output data are preprocessed prior to training to accelerate the 330 

convergence of the training network and to obtain more accurate prediction results by 331 

arranging the data in the same order of magnitude during operation. Data normalization 332 

is a commonly used data preprocessing method to transform the input and output data 333 

to values in the interval [0,1], shown in Eq. (20) as follows: 334 
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  (20) 335 

where 
iv  are the input/output data, 

minv  is the minimum range of data change, and 336 

maxv is the maximum range of data change. 337 

4.3 Training data  338 

The selection of training samples affects the accuracy of the NN. The prediction 339 

model of the flexural capacity of RC beams after a fire provided 480 datasets using 340 

the calculation method proposed in section 2.3. Among them, the first 360 datasets 341 

were used for network training and the last 120 datasets were used for network 342 

testing. . In training sets, the varied parameters and its range：t (5, 10, 15, 20, 25, 30, 343 

35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120min), b 344 

(200mm), h (400, 450, 500, 600mm), As (628, 982, 1232mm2), fc (24.23, 28.03, 36.05, 345 

39.82, 42.92MPa), fy (332.85, 381.65, 554.75MPa), c (25, 30, 40, 45mm); In testing 346 

sets, the varied parameters and its range: t (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 347 

65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120min), b (200mm), h (500, 550mm), 348 

As (760, 982mm2), fc (28.03, 32.05MPa), fy (381.65, 443.80MPa), c (25, 35mm). The 349 

training target error is 0.0001, the maximum number of training steps is 1000, and the 350 

learning rate is 0.1. In the GA-BPNN prediction model used in this study, the number 351 

of neurons in the hidden layer is 10, and the network structure is 7 - 10 - 1; thus, the 352 

weight and the threshold are adjusted as shown in Eqs. (21) - (24). The parameters of 353 

the GA are shown in Table 1, and the predicted samples are shown in Table 2. 354 

(Table 1)  355 

 356 



 1

0.1452  0.8605  -0.2432  0.2343  0.7056  -0.6470  0.5659

0.0931  0.4168  0.5095  -0.6050  -0.1141  -0.2291  0.9709

0.2850  -0.8223  -0.2377  -0.7271  0.8383  -0.0898  0.0560

0.7729  0.4409  -0.2259  -

W 

0.6032  0.7508  -0.1719  0.0003

0.0729  -0.9962  0.6954  0.1888  0.3656  -0.5325  -0.5049

0.4299  0.6596  0.2856  0.1927  -0.0686  0.2241  0.5440

-0.6993  -0.9837  0.3221  -0.8106  0.5365  -0.5613  -0.7259

0.5130  -0.2736  0.8373  0.9135  -0.5422  0.9641  0.1041

0.5436  -0.5641  0.8727  -0.5856  0.2048  0.7321  0.2472

-0.9972  -0.4054  -0.3021  0.9476  0.4698  0.0223  0.0123

 
 
 
 
 
 
 
 
 
 
 
 










  (21) 357 

1 -0.0973  -0.6616  0.6662  0.4355  -0.5157  0.0273  -0.5978  -0.7636  -0.7224  0.6833TB   (22) 358 

 2 0.7974  0.8701  0.3143  -0.2621  -0.4665  -0.3173  0.5124  0.6922  -0.5729  0.6179W   359 

 (23) 360 

 2 0.4996B     (24) 361 

(Table 2)  362 

 363 

 364 

 365 

5 GA-BPNN prediction and analysis 366 

To verify the efficiency of the GA-BPNN, the performance of the model is 367 

evaluated using the relative error ( MRE ) and the root-mean-square error ( RMSE ). The 368 

correlation coefficient (R2) is introduced to test the robustness of the NN model. 369 
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where iy  is the target value, and '

iy  is the predicted value. 373 

Fig. 7 shows the Comparison of the predicted values of BPNN and GA-BPNN and 374 

Fig. 8 shows the comparison of the absolute error values predicted by BPNN and 375 

GA-BPNN  376 

The data in Fig. 7 show that, after training, there is little difference in the flexural 377 

capacity of the post-fire RC beams as predicted by the BPNN and GA-BPNN 378 

prediction models and the target values. The values predicted by the GA-BPNN model 379 

are nearer the target values, indicating the higher accuracy of the GA-BPNN model.In 380 

Fig.8, the maximum absolute error of the GA-BPNN prediction is 12.64, the 381 

minimum is -9.82, the maximum absolute error of the BPNN is 18.45, and the 382 

minimum is -13.89, and the amplitude and range of the GA-BPNN absolute error 383 

curve are small, indicating that the GA-BPNN prediction is more stable, which 384 

reflects the generalization ability of the GA-BPNN is stronger. Figure 9 is the 385 

comparison of GA-BPNN prediction relative error and BPNN prediction relative error, 386 

whose X-axis is prediction sample and Y-axis is relative error. Figure 9 shows the MRE  387 

values of the GA-BPNN model is less than 8.1% and the BPNN model is less than 12%, 388 

while overall, the MRE of the GA-BPNN model is better than that of the BPNN model. 389 



Figures 10, 11, and 12 show the correlation between the target values and the values 390 

predicted by the GA-BPNN model using the training samples, all samples, and the 391 

testing samples, respectively. The 2R  of the testing samples is 0.99886, the 2R  of the 392 

training samples is 0.99526, and the 2R  of all samples is 0.99617. Figure. 13 shows 393 

the correlation between the target values and the values predicted by the BPNN with 394 

an 2R  of 0.99721. The closer R2 is to 1, the better the fit. The results show that the R2 395 

of the testing samples of the GA-BPNN is closer to 1 than that of the BPNN, indicating 396 

the improved generalization ability of the GA-BPNN. 397 

From Table 3, the average relative error of the GA-BP neural network prediction 398 

model is 2.81%, the RMSE is 4.70, and the average relative error of the BP neural 399 

network prediction model is 4.41%, with an RMSE of 7.39. The data demonstrate that 400 

the prediction performance of the GA-BPNN model is more stable than that of the 401 

BPNN model. 402 

In Table 4, the training time of the GA-BPNN and BPNN is almost the same, but 403 

the training accuracy of the GA-BPNN is much better than that of the BPNN, so the 404 

use of the GA-BPNN can better predict the RC beam flexural capacity after fire. The 405 

BPNN learning rate is slow, and the training efficiency is not high. While the 406 

GA-BPNN has a faster convergence speed, higher stability, and can reach the goal 407 

more times, reducing the possibility of BPNN falling into the local optimum and 408 

achieving the global optimum.  409 

 410 

In summary, the calculation results prove that it is feasible to use GA-BPNNs to 411 

predict the flexural capacity of post-fire RC beams. 412 

 413 

Fig. 6-13 414 

 415 

Table 3 416 

Table 4 417 

6. Conclusion 418 

In this paper. a GA-optimized BPNN is proposed to predict the flexural capacity of 419 

post-fire RC beams. The optimal weights and thresholds of the BPNN are obtained 420 

through the GA. The prediction model is trained and then tested to eventually obtain the 421 

global optimal predicted values. Finally, the values predicted by the GA-BPNN and the 422 

BPNN are compared, and the following conclusions are obtained: 423 

(1) The analysis results show that both the BPNN and the GA-BPNN can predict 424 

the flexural capacity of RC beams after fire exposure. 425 

(2) The GA-BPNN prediction model proposed in this paper for calculating the 426 

flexural capacity of post-fire RC beams combines the nonlinear mapping capability of 427 

ANNs and the global search capability of GA. The predicted values of the GA-BPNN 428 

model fit well with the target values. The 
MRE  of the predicted values of the NN and the 429 

target values are always less than 8.1% and less than that of the BPNN, the 2R  of the 430 

training samples and the test samples are 0.99526 and 0.99886, respectively, 431 

indicating that the GA-BP prediction model has higher robustness and fitting ability. 432 

(3) The prediction for the flexural capacity of post-fire RC beams based on the 433 

GA-BPNN has good generalization ability, and can be used as a feasible method for RC 434 

beam flexural capacity research after fire. 435 



(4) With the increase of the fire time, the strength reduction factor of the concrete 436 

in the compression zone 
CT  and the yield strength reduction factor of compressive 437 

reinforced steel 
yT  decrease, so that the flexural capacity of RC beams after fire 438 

decreases.  In addition, during the temperature increase stage, the protective 439 

capability provided by the concrete cover on the RC beam can decrease from fire 440 

damage. 441 

In this study, the ISO834 international temperature rise curve is used to establish 442 

the RC beams model according to the input parameters and adopted to simulate the fire 443 

condition of the RC beams when the fire occurs, and the flexural capacity of the RC 444 

beams after fire conditions is obtained. However, in the real time fire situation, it is 445 

difficult to predict the flexural capacity of the RC beams because of the complex fire 446 

conditions of building components. The prediction model proposed in this study can 447 

only provide preliminary theoretical data for the damage assessment and reinforcement 448 

of post-fire beams, and further research is needed. 449 
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 602 

Table  603 

Table 1 GA parameters 604 

 605 

 606 

Population  

size 

Number of 

evolutions 

Crossover 

probability 

Mutation  

probability 

50 20 0.6 0.2 



Table 2 Prediction samples 607 
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4.3

7 Target and GA-BP-simu are the target value and predicted value of the reinforced 608 

concrete strength, respectively; e=| Target –GA-BP-simu|/ Target 609 

 610 

Table 3 Analysis of the predicted values of testing samples 611 

 

Maximum 

relative 

error /% 

Minimum 

relative 

error /% 

Mean 

relative 

error /% 

RMSE R2 

BP 11.73 0.0078 4.41 7.39 0.99721 

GA-BP 8.10 0.17 2.81  4.70 0.99886 



 612 

Table 4 Training performance comparison of GA-BPNN and BPNN 613 

 Training time（s） Training accuracy 

BP 3 0.015 

GA-BP 3.2 0.0043 

 614 
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