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Abstract—It is difficult to demonstrate that safety-criticeoftware is com-
pletely free of dangerous faults. Prior testing banused to demonstrate that
the unsafe failure rate is below some bound, byiractice, the bound is not
low enough to demonstrate the level of safety parémce required for critical
software-based systems like avionics. This papgues higher levels of safety
performance can be claimed by taking account o&xtgrnal mitigation to pre-
vent an accident: 2) the fact that software isexiad once failures are detected
in operation. A model based on these conceptsvisloiged to derive an upper
bound on the number of expected failures and astsdender different assump-
tions about fault fixing, diagnosis, repair andideaot mitigation. A numerical
example is used to illustrate the approach. Thdidagons and potential appli-
cations of the theory are discussed.

Keywords. safety, software defects, software reliabilityylfatolerance, fault
correction.

1 I ntroduction

It is difficult to show that software has an acedyby low dangerous failure rate for a
safety-critical system. The work of Butler and Hiin@] and Littlewood and Strigini
[21] suggests that there is a limit on the rate ttem be demonstrated by testing.
Given the difficulty of testing the software undexalistic conditions, it is often
claimed that this limit is likely to be around @0 10° failures per hour [18]. As
these tests would typically be completed without &ilures, we do not know what
proportion of the failures are likely to be dangexoso we have to use the bound
derived from testing as the upper bound for thegdewus failure rate as well.

The safety requirement for a software-based systambe far more stringent than
the bound established by testing the software,aetgrget of 17 per hour for catas-
trophic failures is required for an individual amios function [12, 13]. The magni-
tude of the gap between the demonstrable failuee aad such targets can be illus-
trated in the following example. With a demonstealhtastrophic failure rate of
10™hr per system, 100 critical systems per aircradt 5210’ flight hours per year for



civil jet airliners world-wide, around 500,000 fhtaircraft accidents could occur
every year. In practice, statistics on aircraftideots [2] show that there are around
40 airliner accidents per year worldwide from auses (including pilot error).

It is clear that real avionics systems performtfatter than we are entitled to ex-
pect based on testing alone [25], but the actudbpeaance can only be determined
after the system has been deployed. What we need isdébty argument that would
convince a regulator that a software-based sysgsuitable for use in a safety-
critical contextbeforeit is deployed in actual operation [11].

One alternative to empirical test evidence is tlant that compliance to estab-
lished standards for safety-critical software widkult in software with a tolerable
dangerous failure rate. For example, compliand&@ 61508 Level 4 is linked with
dangerous system failure rates as low a3Hr([9]. Unfortunately there is very little
empirical evidence to support such a claim.

More credibly, it may be possible to support arolaif perfection if the software is
proved correct using formal methods [8]. In thiseany failure rate target, even a
stringent target like I per hour, would be achievable and the ProbalkiliStfety
Assessment (PSA) of the overall system could asstmesoftware had a dangerous
failure rate of zero. In practice however, few sys¢ have been constructed using
formal proof methods, and even these systems cdrenguaranteed to be fault free
(e.g. due to errors in requirements or faults enghoof tools [6, 20]).

Another alternative is a risk-informed based desgproach [19] which focuses
on reducing dangerous failure modes rather thakirspsoftware perfection. Poten-
tially hazardous failure modes are identified aaféguards against these failures are
included in the design. However there is no guamnthat a hazard-based approach
will identify all potential hazards in the real-world environmemii @ convincing
safety argument would need to show that the haderdification is complete.

Safety assurance can also be achieved by the daelbfolerance techniques [1],
[14] like design diversity [22] that mitigates faies from individual software compo-
nents. Software design diversity can reduce thgelaus failure rate of the compos-
ite system as the same failure has to occur in ri@e one software component be-
fore it becomes dangerous. These techniques haae Ued in a range of safety-
critical systems [3, 15].

It should be noted that all these strategies fodpecing safe software are vulner-
able to an error in the original specification, inen there is a mismatch between the
software requirement and the real world need. Thiertunately also limits the po-
tential for accelerated testing of software agaihsetrequirement to reduce the dan-
gerous failure rate bound as the tests will omit $hme key features of real-world
behaviour.

In practice, systems designers use the defencegthdorinciple to mitigate the
impact of dangerous failures in subsystems [720Q,for example,

« A nuclear protection system failure is covered hyiramlependently designed sec-
ondary protection system, manual shutdown andipostent control measures.

» A flight control system failure is covered by diserflight controls and pilot inter-
vention.



As a result of these strategies, the dangerougdaihte of the systefunctioncan be
lower than that of any individual software compandihis can be formalized as:

Aace = PacA 1)

wherel,. is the accident rat@g. is the probability that a dangerous subsystem fail
ure will cause an accident aids the bound on the dangerous software failure rate
established by testing.

The problem lies in achieving and justifying an eqgpiate value op,.. Empirical
studies of software fault tolerance techniques tksign diversity [16, 26] suggest
that reductions of no more than two orders of maglei can be achieved, while hu-
man intervention under stress may only result tlzer order of magnitude reduction
in the dangerous failure giving a total reductidri®™ If a dangerous failure rate of
10*%hr can be demonstrated from actual flight testibgnight be argued that the
accident rate due to failure of the avionics sutesysis no worse than 10hr, but this
could still be insufficient to demonstrate the rieed target (e.g. I&hr for an avion-
ics function).

In this paper we will present a probabilistic safter failure model that can be used
to claim a lower contribution to the accident rintan dangerous software faults. This
approach is novel and potentially controversiaitagquires certification bodies to
accept an argument based on a low average risktloeesystem lifetime, but with the
possibility of a higher instantaneous risk whenghstem is first introduced.

2 Basic Concept

Software failures need to be handled in a differesay to hardware failures because a
systematic software defect can be fixed—once wevkmbat the problem is, it can be
removed. In the best case, each software fault oedfail once if it is successfully
fixed in all instances immediately after failure, we consider that it is inappropriate
to use a fixed failure rate for software in a safestification. We also need to take
account of the fact that software failures needh®tatastrophic (i.e. cause an acci-
dent), because there can be mitigations outsidedfieare-based component.

In the most basic representation of this idea, amsicler the failures caused by a
single fault in the software (the impact of muléghults will be considered later).

Clearly the number of failures that occur before thult is successfully fixed de-
pends on the probability of diagnosing a fault #&meh repairing it correctly [24]. In
the basic model, we make the following assumptions.

< The conditional probability that a fault is diagedswhen a software failure occurs
is pdiag-

» The conditional probability that a fault is repaireorrectly after diagnosis Bepair.

» The success of diagnosis and repair is indeperafahe number of previous fail-
ures.

* No further failures can occun any software instancantil the fix attempt has
finished.



Given the independence assumptions made on diagaodirepair, the probability of
a fault being successfully fixed after each failise

pfix = pdiag prepair (2)

Given the assumption that no failures can occuindua fix, a simple transition
model can be used to model the fixing procesdustriated in Fig 1.

A
A

Fail(1) Fail(2) Fail(3) Fail(n)

1- pﬁx' 1- Prix -
Prix Prix Prix

OK OK OK

Fig. 1. Fault correction model

So forpsx = 0.5, there is a 50% chance of removing a fdtdt ahe first failure; 25%
after the second failure; and so on. The mean teofgthis failure sequencay, is:

Ny = Z NCpg A= Pr)™ )

n=1,c0
Using a standard result for this geometric se2&$, this reduces to:
1
Prix

Nt =

(4)

This represents the expected number of failures awvénfinite period of time, caused
by a single software fault operating within the \ehfieet of software-based units. If
there areN faults that cause dangerous failures, then theagd number of fleet
failures due to these faults is bounded by:

nfail =

— ®)
pfix

The other element of the model is based on thefiattsafety-related computer-based
systems typically operate within a fault-tolerarthatecture (as discussed earlier). We
can represent this external mitigation of a dangemoftware failure by the probabil-
ity pacc that an accident occurs after a dangerous softiadoee.

It follows that the expected number of accidentsrdtie lifetime of the fleet due to
N dangerous faults is bounded by:

nacc < % (6)
Prix



This equation implies that M<<pj./ paco the expected number of accidenfg<<1.
This represents the case where there is a highapildl that allN dangerous faults
will be diagnosed and removed before the firstdemi occurs. A value of,.. well
below unity is effectively equivalent to the prob&yp of an accident over the lifetime
of the fleet due to failures of the software congran

Given the assumption that no further software faBuoccur during a fix attempt,
the failure rate of the software has no impacthenrhaximum number of accidents in
the fleet. This assumption could be satisfiedlifailures resulted in an instantaneous
fix attempt, or more realistically, it could be nméthe fleet was grounded immedi-
ately after failure while the fix attempt is made.

This independence between the upper bound ondaiate and the number of ac-
cidents is particularly useful in cases where thikufe rate bound has not been esti-
mated correctly, e.g. due to a flaw in the speaffan. Such a flaw would invalidate
any failure rate estimate based on testing, buatitéddent bound derived from equa-
tion (6) would still be valid providedl included an estimate for dangerous specifica-
tion flaws. This differs from hardware where thatantaneous failure rate is often
assumed to be constant, so expected accidentssaimagase with fleet usage.

3 Impact of Delayed Fixing

The basic model makes a strong assumption thatinieef failures will occur after a
dangerous failure is observed. In many cases hawéwe fleet containing the soft-
ware components will continue to operate after fikire has occurred. Clearly, if
repair is delayed, further failures could occurhivitthe fault fixing interval.

Initially we will consider the case of a single fa(extension to N faults will be
addressed later). Let us define:

A as the upper bound on the software failure rate
Aty as the time needed to perform diagnosis and repair
() as the total execution time of the software fléedlapsed time

We further assume that:

* No new faults are introduced when the softwaréxisf,
e The failure rate boundl is unchanged if the fix attempt is not successful.

These assumptions are also quite strong. New fatdt&nown to occur occasionally
but if the new fault is in the same defective caeéetion, it can be modeled as the
samefault with a reducegy, value.

The second assumption is conservative if the retigally decreases after a repair
(e.g. due to a partial fix). An increase in failuege would not be conservative, but it
might be argued that the rate is bounded by thewimn probability of the faulty
code section. The assumption that the failureigatenxchanged by unsuccessful fixes
makes this process mathematically equivalent todia fault with failure raté with
probability ps, at a timeAt;, after a failure was observed.



To estimate the impact of delayed fixing, we fidgffine the time needed before an
average length failure sequence termindaigsas the value that satisfies the equation:

AT(t ) = Ny )

From equation (4), this is equivalent to:

1
AT(ty) =— (8)

fix

It can be shown using Jensen’s Inequality [17], tiidbhe execution time functiorn(t)
is convex (i.e. the gradient is constant or inaeeasver calendar time), the total num-
ber of failuresnsy.q, When the fix delay is included is bounded by:

Npyeg S AT (L + By ) (9)

fail
We now consider a situation where there Brelangerous faults. Most reliability

models assume the failures of the individual faoltsur independently. If this as-

sumption is made, the failure rates sun\tdut we will take a worst case scenario
where:

» The failure rate of each faultis
« Failures occur simultaneously frfaults.
« Only one fault can be fixed after a failure.

In this worst case scenario there Wltimes more failures than a single fault and the
failures will occur at the same frequendy,as the single fault case. This failure se-
quence is equivalent to having a single fault vaths, probability that isN times
worse, i.e. where:

[ pf'
Piix = NIX (10)
The bound in equation (9) can therefore be gersemlioN faults as:
Nixea < AT (L +Atg,) (11)
where:
, 1
AT(ty) = —— (12)

fix

So from equation (10}, has to satisfy the relation:



, N
AT(ty) =— (13)

fix
It follows that the worst scale factkidue to delayed fixing, is:

k = nfixed < T(tfail +Atfix) (14)

nfail Z-(t'fail )

The basic principle for scaling the bound is ilfagtd in Fig 2. Without fixing, the
expected number of failures increases to infinftyth fixing and no delay, the num-
ber cannot exceed the basic bound, and would taikeed r; for the bounding num-
ber of failures to occur. With a fix delay, the Induis increased to allow for the addi-
tional failures that can occur in the extra tifig needed for fault repair.

)\ry
KNI prix

AN

Number
Uof ) N/pfix
failures Ctai Aty
Time (t)

Fig. 2. Effect of fix delay on the expected number ofufedls

We can also compare the expected number of failisfault fixing (Nrxeq against
the expected number without fault fixing, fixed, Namely:

Nyiixed = AT (Lgeer) (15)

wheretgee is the calendar time that the software is in ofg@main the fleet. So the
failure reduction (and hence accident reductioprachieved by fault fixing is:

[ = Neived < T(thy +Atg) AL

t v+ Hail <t
nunfixed Z-( eret)

fix fleet (16)

Application to Demand-based Systems. Equation (6) is directly applicable to any
demand-based system if the fleet is grounded duairitx attempt. The increade
caused by delayed fixing can be calculated for dehtmsed systems using equations
(13) and (14) provided we can derive an equivdighire rate bound.



For example, if we know there is an average dematedofd demands per unit of
execution time and the upper bound on the proltplafi failure on demand is(e.g.
from accelerated testing), the effective failure naer unit of execution time is:

A=fd 7

4  Theory Applied to an Avionics Example

To illustrate the potential gains achievable byidag fault fixing, we will apply the
theory to a hypothetical avionics example with fiblllowing parameters

c 10 unit sales per month

u 0.6 (fraction of time in use)
N 1

A 10 failures/ hour

Prix 0.1

Pacc 0.001

Note that the figures used are only estimatesabaitconsidered to be realistic. The
number of dangerous faultd is taken to be one as we assume thorough levels of
testing and analysis (especially for the safeeaitiportions of the software). The
assumed failure rate represents a year of reaflgjltt testing (e.g. in ground based
tests and actual test flights). The probabilityaofaccidenp,.. is assumed to be small
because an aircraft is engineered to tolerateréslwf specific components (via
standby systems, pilot override, etc). Ty probability is actually the product of
diagnosis and repair probabilities, P = Paiagfrepair- FOr critical software we expect
the repair probability achieved by the softwarepgrpteam to be close to unity, so
pix is largely determined by the diagnosis probabilithich is estimated to be around
0.1 as any hazardous incidents will occur in-fligintd diagnosis relies on later recon-
struction of events based on in-flight recordintada

If the fleet is grounded after a dangerous failthe, basic model applies and we
would expect 10 failures (from equation (3)) an@l0accidents (from equation (6))
over the fleet lifetime.

If there is delayed fixing, thk value has to be computed using the execution time
equation. With a linear growth in the fleet of aniits units at per month the execu-
tion time function can be shown to be:

cu,,
t)=—t 18
r(t) > (18)

We can use equations (13) and (14) and the exectitie function (18) to com-
pute the scale-up factér The impact of different fix delay timeat{,) onk and the
expected number of accidents is shown in Table 1.



Table 1. Expected Accidents Over Infinite Time for Diffete®oftware Fix Times

Atfix (months) K Nixed Nacc
0 1 10 0.010
1 1.3 13 0.013
2 1.7 17 0.017
3 2.1 21 0.021

With a 3 month delay in fixing, the bound on theested number of fleet accidents
is only double the number predicted by the basidehwith no fix delay).
The upper bound on the mean accident Xxgtgover the fleet lifetime is:

n
A <% 19
acc T ( )

fleet
whereTseet IS the total execution time of all the avionicstsin

From equation (18), if unit sales continued foreans, the total number of operat-
ing hours, Thees is around 1.810" hours. So the upper bound on the mean accident
rateA,cc over the fleet lifetime for a 3 month fix delay is

Nace S 1.3x10° accidents per hour

This bound on the mean accident rate is closeadatyet of 17 accidents per hour
required in avionics standards [12][13]. The boundld be reduced to less tharn®10
accidents per hour if a shorter fix delay is usad.(1 month).

By comparison, if we only relied on external acaidmitigation, the bound on the
mean accident rate would be the same as the inatiep,.A. For the avionics exam-
ple, the expected rate would belD’ accidents per hour.

So for this choice of model parameters, the inolugif a fault removal model has
reduced the expected accident rate over the ffeéitde by two orders of magnitude.
Clearly the reduction varies with the parametersdudable 2 shows the accident
reductionr achieved by fault fixing for different failure et assuming a 3 month
delay in fixing and a 5 year operating period.

Table 2. Accident Reduction for Different Software Failuret&a

A Mean Accidents / hr Reduction
(per hr) (no fix) (fix) factorr
10 10° 3.5¢10°° 0.0035
10" 10”7 1.3x10°° 0.013
107 108 0.8x10° 0.08

It is apparent that the greatest reduction occurenathe software failure rafe is
high. This is not surprising as the mean accidata is relatively stable (regardless of
A) when there is fault fixing, but it increases hnlg with A without fault fixing.
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5 Discussion

The fault fixing model predicts an upper bound be total number of software fail-
ures (and associated accidents) over the fledginiée The impact of fault fixing is
greatest in large fleets where the expected nurabéailures without fixing would
greatly exceed the expected number with fault §xim the avionics example, the
claimed accident rate can be two orders of mageifeds than would be predicted
from testing alone. In particular, once a relatvelodest (and demonstrable) level of
software reliability is achieved, further reducsan failure rate make little difference
to the ultimate number of failures and accidents.

This type of probabilistic argument is not currgrakbcepted in safety standards or
by certification and regulatory bodies. Early usefgshe system could be placed at
greater risk if the instantaneous failure rateldse to the limit established by testing.
However it might be more acceptable asupportto a primary argument such as a
claim of zero faults in critical portions of theftweare. The supporting argument
would be that, even if the claim of zero dangerausdts is invalid, there is high prob-
ability that a software fault never causes anydmt over the lifetime of the fleet
(e.g. 98% in our avionics example).

If the theory is valid, equation (6) can also bipfg in choosing design trade offs.
We note that an order of magnitude change in tedipted number of accidents can
be achieved by an order of magnitude change i) pgiag OF Pacc Knowing the
contribution of these parameters, design tradea#fsbe based on cost and technical
feasibility. For example, sending extra data tohared black-box data recorder to
improve pgiag Might be more cost effective than additional efforreduceN. Alterna-
tively installing a backup system using differezmttinology might double the cost but
improvep,.. by orders of magnitude.

The theory also shows that the operational comamntaffect the accident probabil-
ity. Obviously the repair probabilityiag directly affects the number of accidents, and
we can minimise the scale-lpdue to delayed fixing by considering equations) (13
and (14). For example might be reduced by decreasing fixedelay timeAt;, or by
reducing the growth in usagé) for some trial period.

To successfully apply the model, evidence will leeded to show that the model
parameter estimates are either realistic or at lemsservative. Values, liki, could
be derived from past experience with similar systefa.g. analysing FAA directives
[5, 25]) but further research is needed on quantifyhe model parameters.

More generally, the same theory should be appkcablany systematic design
fault that is amenable to fault fixing such as wafie security vulnerabilities, hard-
ware design faults or requirements faults.

6 Summary and Conclusions

This paper has presented a basic fault-fixing mddat shows there is an upper
bound on the expected number of dangerous softfaduees if faults are diagnosed
and fixed. If the fault fixing is immediate, thi®ind is independent of the software
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failure rate. When this bound on failures is coreblinvith external failure mitigation,
there can be a high probability that an accideneigercaused by dangerous software
failure regardless of the size of the fleet usimg oftware-based component.

We have also presented a refinement of the basitehtlbat allows the bound to be
increased to allow for a delay in fixing a detecladlt. This revised bound is depend-
ent on the software failure rate, but the increasgpically quite small.

The theory was illustrated by an aircraft avionblcemple where fault fixing re-
duced the expected number of accidents by arouadtders of magnitude over the
fleet lifetime.

If the assumptions behind the theory are validpitld provide an additional means
of arguing that critical software-based systems safe prior to deployment even
though ultra high reliability of the software camhe demonstrated by prior testing.

The theory might also be helpful in making desigd aupport trade-offs to mini-
mize the probability of an accident.

We also suggest that the theory could be applicatday systematic fault (e.g. in
requirements, hardware, software or mechanical coemmts).

Further empirical research is recommended to viittee model assumptions and
quantify the model parameters.
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