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Abstract 

World energy consumption has increased significantly in the last decade and for this reason 

several energy management strategies are currently under investigation to accommodate 

this high demand. In this frame, the current paper presents a review of the advances of 

district systems (DSs) which offers a contribution to the mission to reduce the 

environmental and economic impact of energy consumption. The aim of the study is to 

examine the potential of these systems and their ability to cope with the requirements of 

energy demands. Additionally, the paper reviews several optimization strategies including 

poly-generation, cogeneration and energy storage that could be adopted to upgrade the 

performance of DSs. Furthermore, the paper discusses the main obstacles facing the 

development of this domain and proposes some suggestions to encourage adoption of the 

district approach. 
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Nomenclature 

Abbreviations 

AC absorption chiller 

ATES aquifer thermal energy storage 

BDHC bidirectional district heating and cooling 

BTES borehole thermal energy storage 

CC compression chiller 

CCCP conventional central circulating pump 

CCHP combined cooling, heating, and power 

CHP combined heating and power 

COP coefficient of performance 

DC district cooling 

DH district heating 

DHC district heating and cooling 

DHW domestic hot water 

DS district system 

DVSP distributed variable speed pump 

EA electricity adjustment 

EAC electricity adjustment capacity 

EC electric chiller 

EES Engineering Equation Solver 

ESS energy storage system 

GSHP ground source heat pump 

GT gas turbine 

HEX heat exchanger 

HP heat pump 

HRSG heat recovery steam generator 

ICE internal combustion engine 

LTDHC low-temperature district heating and cooling  

MILP mixed integer linear programming 

MINLP mixed integer non-linear programming 

NG natural gas 

PGU power generation unit 

PHE plate heat exchanger 

PSO particle swarm optimization 

PV photovoltaic 

RES renewable energy source 

SNG synthetic natural gas 

TES thermal energy storage 

TEST thermal energy storage tank 
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TPP thermal power plant 

TSC thermal solar collector 

TSP thermal solar plant 

WHR  waste heat recovery 

WSt water-steam 

Subscripts 

c cooling 

e electricity 

h heat  

th thermal  

 

1. Introduction 

Energy demand is rapidly increasing due to the combination of population growth and 

increased global gross domestic product per capita. Energy deliveries can be found in three 

different forms: heating, cooling, and electricity. The demand depends mainly on the 

region, weather conditions and lifestyle. The main concern is in the way of supplying 

energy which is related directly to the cost and environment. Thus, it is highly 

recommended to use renewable energy sources (RESs) such as solar [1], wind [2], 

geothermal [3], bioenergy [4] and marine energy [5]. Recent studies are focusing on 

increasing the revenues while being eco-friendly at the same time. Therefore, district 

systems (DSs) are proposed to cope with the contemporary requirements. Figure 1 presents 

the main concept of district heating (DH) which is used to supply a specific region with a 

hot supply line. Modern DSs often incorporate different types of RESs and mainly to 

produce heating and electricity [6] while decreasing the total amount of emissions [7]. For 

example, Huang et al. [8] deduced that solar-geothermal hybrid energy system is a 

preferable reliable solution for DH. The most frequently used renewable source energy 

system is the solar photovoltaic (PV) and especially in stand-alone poly-generation 
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microgrids [9]. Indeed, it is coupled with energy storage devices such as batteries [10], fuel 

cell [11, 12] and thermal energy storage (TES) [13]. 

Even though DSs have high capital costs, they have lower operating costs compared to that 

of individual systems. Currently, DSs are undertaking significant developments in different 

areas of the world in order to supply several forms of energy. DS is not just a simple 

combination, or a centralized plant used to provide the demands for a specific area, it also 

involves a plenty of choices concerning the energy sources, network and piping, load type, 

storage, etc. DSs are beneficial for both investors and the public but still need some 

promotions and encouragements [14]. These systems have several advantages compared to 

the individual plants such as decreasing the peak demand [15], achieving local sustainable 

and affordable energy, contributing to economic regeneration [16], increasing the average 

efficiency ratio and energy savings. For these reasons, numerous DSs were installed all 

over the world. Table 1 presents 8 successful European installations showing their locations 

and specifications. Most of these systems have passed through significant improvements 

and some of them are still currently under development. Beside these advantages of DSs, 

there are some barriers that these systems face. One of the main obstacles is the stochastic 

energy consumption from a day to another and this makes the control of the system very 

complex [17]. In addition, there are some other concerns that need to be taken into 

consideration in DSs such as time delays, pressure distributions, substation faults, leaks, 

outages, variable electricity prices and the nonlinear behavior of several components in the 

system. 
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Figure 1: Principle of the district heating system 

DSs could be found in different forms such as DH, district cooling (DC), district heating 

and cooling (DHC), cogeneration and tri-generation. These systems are not yet developed 

equally, for example, DH is more adopted than DC globally [18]. In order to perform an 

accurate analysis to size a DS, several parameters should be studied such as the required 

load as well as the duration of the load demand. This should also be accompanied by 

climate change assessment such as in [19]. The authors compared between the different 

combustion techniques to study the effect on climate change mitigation. DH systems have 

passed through five different generations: the steam, hot-temperature water, moderate-

temperature water, low-temperature water (ambient DH) and bidirectional DHC (BDHC). 

This development was performed to overcome the problems of these systems such as the 

significant heat losses and steam explosion risk for the first generation or the inaccurate 

control for the heat demand of the second one [20]. The fourth generation was proposed to 

reduce the thermal losses and to decrease the need for insulation. This approach could be 
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also applied to DC systems. The core of this generation is to distribute water or working 

fluid at temperatures close to the ambient one in order to decrease the losses through the 

pipes and the construction cost as much as possible. The fourth generation is known 

recently as the low-temperature district heating and cooling (LTDHC) [21]. In [22], it was 

optimized to achieve a cost reduction of 40% which could be performed by allowing the 

exchange of heat and electricity between the buildings. The latest generation which is the 

fifth one is known as bidirectional DHC, it is able to provide both heating and cooling loads 

simultaneously to the consumers with a decentralized control system [23, 24]. Abugabbara 

et al. [25] stated that the importance of the fifth generation is that the customer could be a 

customer and a producer at the same time. This concept will be more explained in section 

2.3. One of the main differences between old and modern DSs is the hot/cold metering. 

Previously, consumers were used to pay a flat rate since the systems were unmetered. The 

consumption charges were based on some factors such as occupancy and size. However, 

this was found to be not fair enough and thus, metering devices were introduced to the 

newer systems. This could also be helpful in the DS assessment to perform further 

enhancements. For example, it will be easier to monitor energy demands and fluctuations 

[26]. Similarly, in residential heating applications, it was found that a huge amount of heat 

is wasted due to the poor control systems and regulations. Liu et al. [27] suggested to install 

a calorimeter in each building and on-off control valves in each household. This will help 

in measuring the total heat consumption of the building and will provide an accurate 

individual control. 

The current study reviews the advances in DSs and the development of this domain. This 

is carried out based on the techniques, network, strategies, control, and capacity of several 
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case studies performed all over the world. The review also provides a comparison between 

the different configurations of DSs. This spots the light on the optimal path/strategy of DSs 

to reduce energy consumption. 

Table 1: European district energy systems installations 

Location Year DS Size/Capacity Supply/Source 

Drammen, Norway 

[28, 29] 
2011 DH 15 MW HP 

Flensburg, Germany 

[30] 
1974-2013 DH & power 

90,000 inhabitants and 

1,800 of a neighboring city 

CHP, coal & 

NG 

Malmo, Sweden [31]  2001 DH & power 250,000 MWh/year 

Geothermal, 

wind, solar & 

biomass 

Ramsund Naval Base, 

Troms, Norway [32] 
2011 DH 600 kW HP (COP = 2.7) 

Sheffield, UK [33, 34] 1960 DH & power 60 MWth &19.3 MWe CHP & NG 

Southampton, UK [35] 1986-2008 DHC & power 
40 GWhh, 22GWhe 8 GWhc 

(per year) 

CHP, boilers & 

geothermal 

Stockholm City, 

Sweden [36] 
1995-2000 DC 170 MWth (240 GWh/year) HP/refrigeration 

Turin, Italy [37, 38] 1980 DH & power 

Base load (1200 MWe, 740 

MWth), peak periods 

(+1,100 MWth) 

CHP 

 

2. District System Strategies 

The importance of enhancing district systems outweighs that of individual plants taking 

into consideration the difference in emissions and costs of these systems. Thus, all 

optimization methods should be studied before starting the construction of the system. 

Additionally, it is worth to mention that DSs are more beneficial and economic when used 

for regions of high population density  [39]. This section will present a review of the recent 

types of DSs as well as their corresponding developments. Table 2 summarizes all district 

systems reviewed in this paper excluding those with insufficient data. 
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Table 2: Summary of the district systems reviewed in the current study 

Location Year DS Size/Capacity Solver/Method Supply/Source Objective(s) 

Barcelona, Spain 
[40] 

2013 DHC 
3.102 MWth & 

3.354 MWe 
- 

CCHP, GT, 

solar and 

biomass 

Introducing Poly-

generation to save energy 

Barcelona, Spain 
[41] 

2018 DH 
1 MW (Data 

center) 
TRNSYS 

NG, biomass, 

HP & WHR 

Reusing the heat wasted 

from a data center 

Beijing, China [42] 2019 DH 50 kWh Aspen Plus 
Gas-fired HP 

& WHR 

Recovering the wasted flue 

gas heat from a gas-fired 

Bottrop, Germany 

[43] 
2017 DH 550 kWh Modelica CHP 

Performing a full-dynamic 

exergy analysis 

Changsha, China 

[44] 
2016 DHC 

50 MWh & 

101 MWc 

Integer-coded 

genetic 

algorithm 

HP 
Determining the optimal 

pipe diameter 

China [45] 2014 DHC - MATLAB 
Wind, solar & 

gas 

Energy saving and cost 

reduction 

Colorado, USA 

[24] 
2019 BDHC - 

Modelica & 

EnergyPlus 
HP 

Investigating the 

importance of the fifth 

generation of DHC 

Copenhagen, 

Denmark [46] 
2019 DH 200 MW - 

CHP, wind & 

biomass 
Flexibility of CHP 

Croatia [47] 2012 DH 
35 MWh & 

16-38 MWe 
- 

CHP, ICE, NG 

& biomass 

Comparison between 

individual and district 

cogeneration 

Galicia, Portugal 

[48] 
2018 DH 18 MWh Methodology 

TSC & 

biomass 

Achieving cleaner 

production using RESs 

Green Island, 

Taiwan [49] 
2019 DC 756 kWc - WHR & AC 

Activating a DC via WHR 

system in Islands 

Japan [50] 2017 DHC 
32.5MWh & 

27.2 MWc 
MILP-PSO NG & CHP 

Auction is introduced to 

reduce the price of 

electricity 

Lisboa, Portugal 
[51] 

2017 DHC 

22MWh, 28 

MWc & 5 

MWe 

- 

GT, HRSG, 

WSt-HEX, AC 

& CC 

Producing sub-products 

such as char, SNG and 

synthetic gas 

Lisboa, Portugal 

[52] 
2017 DHC 

35 MWh, 29 

MWc & 5 

MWe 

MATLAB & 

e!sankey 

GT, HRSG, 

chillers & 

WSt-HEX 

Upgrading an existing 

DHC by producing sub-

products 

Lower Saxony, 

Germany [53] 
2015 DH 175.225 MWh MILP 

Biomass & 

CHP 

Bioenergy villages 

assessment 

Madrid, Spain [54] 2013 DHC 

1.5 MWh, 7 

MWc & 2.19 

MWe 

- 
NG, TSP & 

AC 

Decreasing the CO2 

emissions via TSP 

Malaga, Spain [14] 2017 DHC 
20.45 - 21.4 

MW 
EnergyPlus CCHP 

Promotion of the DHC 

technologies via CCHP 

Mississippi, USA 

[55] 
2019 DC 21.45 MWc CVODE HP 

Studying the control 

strategy of TES 

Monterusciello, 

Italy [56] 
2017 DHC 

16MWh & 22 

MWc 
TRNSYS 

Solar-

Geothermal-

Biomass 

Adopting DSs based on 

hybrid RESs 
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Naples, Italy [57] 2015 DH 

8.1-9.2 MWth 

& 7.8-9.1 

Mwe 

- 
CCHP, NG & 

biomass 

Investigating the use of 

trigeneration in DH 

Okotoks, Canada 

[58] 
2019 DH 

2293 m2 

(TSC), 240 m3 

(water tanks)  

TRNSYS TSC & NG 
Studying the performance 

of solar DH with TES 

Parma, Italy [59] 2013 DH 
191,330 

people 
WINDIMULA3 

Waste 

incinerator 

Comparing between waste 

incinerators and domestic 

boilers 

Poland [60] 2013 DH 200 MWh EES 
Biomass & 

CHP 

Choosing the optimal 

coefficient of the share of 

co-generation in DSs 

Pongau, Austria 
[61] 

2017 DHC - Modelica NG 
Dynamic thermo-hydraulic 

pipe model for DSs 

Risch Rotkreuz, 

Switzerland [62] 
2019 DC 

50 kWh 

(Storage) 
MILP 

TSC, PV, 

chillers & CHP 

Using heating units during 

their off periods to support 

DC 

Risch Rotkreuz, 

Switzerland [22] 
2018 DH 

90.98 kWth & 

26.2 kWe 

MILP-GAMS 

CPLEX 
PV & CHP 

Investigating the effect of 

energy reciprocity 

San Francisco, 

USA & Cologne, 

Germany [63] 
2017 BDHC 10 MWh Modelica HP, NG & TSP 

Comparing the BDHC with 

DH and stand-alone 

cooling 

Seoul, South Korea 
[64] 

2018 DHC 30 MWc MATLAB CHP 
Implementing bi-lateral 

heat trades 

Shijiazhuang, 

China [65] 
2017 DH 790.5 MWh Testing WHR & HP 

Comparing WHR with 

coal-fired and gas-fired 

boilers in DH 

Spain [66] 2015 DH/DC 2-9 MWe EES 
CHP/CCHP & 

biomass 
CCHP vs CHP 

Tehran, Iran [67] 2016 DHC 

500,000 m2, 

and 137 

buildings 

EnergyPlus 

GT, PV, 

CCHP, AC & 

CC 

Determining the optimal 

capacity and operation 

Tianjin, China [68] 2017 DHC 16.765 MWc MATLAB 
CCHP, EC & 

GSHP 

Design and actual load 

comparison in an optimal 

operation strategy 

Turkey [69] 2015 DH/DC 
11.5-152.3 

MWth 
EES CCHP 

TPPs conversion to 

co/trigeneration for DSs 

Tuusula, Finland 
[70] 

2019 DH 231 MWh 
CPLEX & 

Ipopt 
CHP 

Investigating the effect of 

network storage in DH 

Visoko, Bosnia and 

Herzegovina [71] 
2019 DH 13 MWh EnergyPRO 

Solar, NG, 

biomass, CHP 

& HP 

Investigating DH based on 

RES 

Xinghai Bay, China 
[72] 

2010 DHC 
84.5 MWh & 

95 MWc 

Genetic 

algorithm 
HP 

Using Genetic Algorithm 

to find the optimal design 

Yatagan, Turkey 

[73] 
2010 DHC 

30 MWth & 

630 Mwe 
- Coal (Lignite) 

Converting TPP to 

trigeneration plant as a DS 
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2.1 Waste Heat Recovery 

There is a huge amount of heat wasted yearly from energy related systems, this waste being 

substantially higher than that utilized by residential and commercial buildings. There is 

another critical source of heat waste which is from the industrial sector and thus it could 

be recovered to be used for DH [74, 75]. The powerful point of this source is its availability 

without constructing a new plant because waste heat recovery (WHR) systems can be 

integrated by just retrofitting the existing power plants [76]. The wasted heat is usually 

considered as a low-grade heat source and especially when the temperature is below 100˚C. 

In this case, it is highly recommended to use the trilateral flash cycle in order to recover 

the wasted energy efficiently [77]. Figure 2 summarizes the different types of WHR that 

could be coupled to DH systems. There are mainly three types of incorporations: heat 

wasted from the industrial sector, waste incinerators and if there is a source of heat waste 

between the substations. It is important to draw different connections for the WHR and DH 

combinations to study the potential of this system in order to compare between the 

alternative paths especially because of the long-distance connections. Industrial heat 

recovery has the ability to supply a DH system via centrifugal heat pump (HP) with 40.3 

% of the operating cost of a gas-fired boiler [65]. The overall coefficient of performance 

(COP) of the proposed DH system could reach 4.8 with a 60.6 % and 56.3 % CO2 reduction 

compared to that of coal and gas, respectively. Before constructing an industrial WHR-DH 

system, it is necessary first to perform a risk assessment study concerning its termination. 

However, in [78], it was concluded that most industrial heat recovery systems were 

terminated due to the replacement with other heating sources and not because of the 

termination of the recovery systems. Beside the industrial applications, recovering the flue 
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gas heat of a gas-fired absorption HP is able to increase the COP, energy and exergy 

efficiencies and decrease the payback period of DH [42]. In some cases, WHR cannot be 

considered as a primary source for DH, this may occur when the wasted heat is between 

the supplied sub-stations or when it is insufficient. In this case, heat recovery could be used 

to reheat the return line of the DH to be supplied again directly such as in the presence of 

air cooled data centers between two sub-stations [41]. HPs must be placed to extract the 

wasted heat from this center to the return line allowing it to reach the supply line 

temperature. In DH, waste incinerators provide additional energy supply that are found to 

be good alternatives to domestic boilers [59]. Even though these incinerators produce 

pollutants, but they could be controlled by filters for instance. On the other hand, domestic 

boilers are already producing harmful emissions. The only one issue to be monitored is the 

legal limits of incinerators’ emissions. Managing WHR from waste will reduce the demand 

for landfilling, emissions, and fossil fuel consumption. In [79], two types of ventilation 

were compared in a DH system: heat recovery ventilation and exhaust air HP ventilation. 

The former preserves a low return temperature when compared to the latter while the 

exhaust air HP has the ability to provide domestic hot water in summer which means that 

there is no need for DH in this season. Wang et al. [80] presented the key elements and 

possible approaches for optimizing WHR-DH. One of the important results was to use 

multi-heat source (hybridization). In remote islands, WHR could also be used to activate 

DC such that by recovering the waste heat from a diesel generator which is usually the 

most used power supply source. The main factor affecting the efficiency of the proposed 

system is the design temperature of the cooling tower. This system has a payback period 

of around 4 years as well as it consumes less electricity and emits low amount of CO2 in 
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comparison with the window-type air condition [49]. The second critical parameter in 

cooling systems is the water flow rate [81]. It is very necessary to optimize the flow rate 

and especially the wasted water released to the natural reservoirs due to its significant 

environmental impact [82]. 

 

Figure 2: Waste heat recovery incorporated with DH 

2.2  Poly-generation and Hybrid Systems 

Hybridization is a term used when different sources of energy are combined as shown in 

Figure 3 which is an example of a hybrid system studied in [68]. The case study was 

performed in Tianjin (China) to compare between the design and actual load in an optimal 

operation strategy. The total cooling capacity is assumed to be 16.765 MW such that each 

electric chiller (EC), ground source heat pump (GSHP) and the combined cooling, heating, 

and power (CCHP) could supply 4100 kW, 3550 kW and 1465 kW, respectively. The 

maximum cooling capacity could reach 21.965 MW during peak loads by the help of TES 

which provides additional 5200 kW. Usually, poly-generation is accompanied by 



13 

 

hybridization due to the necessity of using multi-energy sources for supplying different 

energy demands. The main advantage of these systems is to provide different utilizations 

in order to increase the overall efficiency of the plant. Most energy sources used for DSs 

are fossil fuels due to their abundancy and flexibility in control. Fossil fuels have several 

drawbacks such as air pollution, high emission rates and ozone layer depletion. For this 

reason, refuse incineration and gasification derived fuels [83] are introduced beside the DS 

in order to produce other products such as synthetic natural gas (SNG), synthetic gas 

(syngas) and char. According to [52], the highest exergy efficiency and the lowest cost can 

be obtained from DS if char and syngas are used. Recently, the production of fuel from 

wastes is a very important technique to reduce the negative environmental effects and 

consumption cost at the same time [84]. Thus, it is very crucial to apply the fundamentals 

of pyrolysis in waste management in order to produce secondary raw materials or to be 

used in energy related systems [85, 86]. Kabalina et al. [51] found that producing these 

sub-products will help in decreasing the payback period which is expected to be 3 years. 

As a matter of fact, the production of the sub-products will cause a reduction in heating, 

cooling, and electric loads. In [40], it was found that the poly-generation plant has the 

ability to reduce the CO2 emissions to 24% compared to the conventional one. The modern 

poly-generation plants and hybrid systems very often integrate RESs [87-89] such as in 

[56] where solar, geothermal and biomass energies were incorporated to achieve a 75% 

energy saving compared to the traditional systems. In order to decrease the capital cost of 

poly-generation plants, it is recommended to use the heating units that are off during 

summer to drive DC by the help of additional RES such as solar energy [62]. 
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Figure 3: Hybrid system; GSHP, power generation unit (PGU), internal combustion 

engine (ICE), plate heat exchanger (PHE), thermal energy storage tank (TEST), 

absorption chiller (AC) and electric chiller (EC) [68] 

2.2.1 District Systems Involving Co-generation 

Co-generation is the production of two different outputs which is known also as combined 

heating and power (CHP) [90]. These plants are widely used in DSs to provide space 

heating, domestic hot water (DHW) and electricity for a specific region. CHP plants are 

flexible and able to provide two forms of energy while depending on different supplying 

sources [46, 91]. Figure 4 presents a cogeneration plant such that heat is extracted between 

the different levels of turbine to provide district heating. In order to show the potential of 

this incorporation, in Turkey [69], a simulation study was carried out using Engineering 

Equation Solver (EES). The main objective was to investigate the conversion of existing 

thermal power plants (TPPs) into co/tri-generation plants. One of the studies involved in 

co-generation plants is the bilateral trade [64] that uses the surplus of heat generated by the 

CHP plant to either store the energy if needed or to activate an absorption chiller for cooling 
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in summer. Many conventional plants are nowadays converted into co-generation ones to 

decrease the expenses of the power plants and electricity consumption [92] and to increase 

the plant efficiency. According to a case study performed in Croatia, it was reported that 

biomass-fired plants can save energy more than that of gas-fired plants [47]. In [53], 

bioenergy villages were studied as an optimization approach for CHP where crops and 

liquid manure were used from local farmers as a feed stock for the biogas plants in Lower 

Saxony (Germany). The maximum capacity achieved was 175.225 MWh, and the study 

was based on mixed integer linear programming (MILP). 

 

Figure 4: Cogeneration plant based on a Rankine cycle [69] 

2.2.2 District Systems Involving Tri-generation 

Tri-generation is the generation of three different demands which is also known as CCHP 

[93-95] (see Figure 5). It is used as a solution for the imbalance between summer and winter 

in cogeneration plants by introducing DC such that the waste of energy can be utilized for 

cooling. In [66], the authors concluded that replacing CHP by CCHP is better only when 
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there is high summer severity and if it is operating at full load. The study was based on 

Spanish cases using EES as a solver. It was deduced that if the population is between 

10,000 and 20,000, the capacity of the plant must vary between 2 and 9 MW. In this case, 

CCHP plant size becomes smaller and CO2 emissions will be reduced. Several studies were 

performed in order to convert existing TPPs to tri-generation DSs [73]. This can be done 

by extracting a portion from the steam to be used for heating as an example, but this 

conversion must not affect significantly the performance of the power plant or cause an 

increase in the fuel consumption [69]. This system can increase the plant revenue and 

decrease its CO2 emissions. Having said that, in order to produce different outputs, it is 

necessary to construct a hybrid system to provide the three types of loads. It is also 

preferred to introduce RESs [57] to the tri-generation plants such as a thermal solar power 

[54] which can help in decreasing the emissions of the plant and increase energy savings.  

 

Figure 5: Tri-generation plant or CCHP 

2.3 Bidirectional DHC 

The most recent type of DHC network investigated is the BDHC system which is the fifth 

generation of DSs. It uses a single circuit for providing heating and cooling. The system 

circulates in one direction depending on which is more needed as a net (cooling or heating), 
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either from the central plant or in the opposite direction. This also provides an ability to 

use the heat wasted from the buildings directly. Moreover, each building has its own HP to 

control its chilled and water loops (see Figure 6). Bunning et al. [63] compared a 

bidirectional low temperature network to gas-fired DH. The authors deduced that, by 

means of optimization of the BDHC system, this allowed the primary energy consumption 

to be reduced by between 58 % and 84 % depending on each specific case. This is also 

accompanied by significant CO2 and energy cost reductions. The study was carried out 

using Modelica such that the total heating capacity was 10 MW, and supplied via HP, 

natural gas, and a thermal solar plant.  

 

Figure 6: Bidirectional DHC system 

 

3. Energy Storage for District Systems 

Provision of an Energy Storage System (ESS) is a solution for many barriers faced by a 

DS. For example; TES [96-100] can be used to support the central plant during peak hours, 

control and provide good management, increase the efficiency and decrease the operating 
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cost. In [101], a liquid air energy storage system was investigated to store the electricity in 

the form of liquid air during off peak hours. This liquid will be pressurized, vaporized, and 

superheated in a combustion chamber and finally used to feed the DHC. There are three 

types of district energy storage: network storage, storage devices and thermal inertia of 

buildings. The characteristics of these storage techniques are presented in Table 3. The first 

mentioned type is the network storage which can be controlled from the main system; 

however, it is accompanied by high thermal stresses and fatigue of pipes due to the high 

changes in temperature. There are some other storage devices that have been frequently 

used in remote islands and especially when depending on solar and wind energies [102]. 

In these cases, mechanical ESSs are highly recommended due to their fast response and nil 

effect on the environment. They are divided mainly into three types; flywheel [103], 

pumped hydro [104] and compressed air [105] energy storage systems. 

Table 3: DHC Storage Techniques 

Energy Storage Type Storage Techniques 

Network Storage [70] Storing energy in the system’s equipment 

Storage Devices 

Sensible, latent, borehole TES (BTES) [106], aquifer TES 

(ATES) and ice storage [107] 

Thermal Inertia of 

Buildings [108, 109] 

Changing the set point temperature of the building while 

ensuring a comfortable range 

 

4. Design and Calculations 

The design, network and piping are the parts related to the construction and organization 

of the DS which affects the performance and efficiency of the system. This is a very 
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important segment in these systems in which it can increase directly the energy saving and 

help in the load’s regulation. Therefore, a pre-study is always needed before developing 

the DS which may involve weather forecasting and estimations fluctuation of loads in order 

to select the optimal diameter for the pipe network [72]. In [110], DHC models were 

reviewed to highlight the fast modelling techniques for these systems. The most modern 

model used to accurately study the district systems is the dynamic thermo-hydraulic pipe 

model [61]. 

4.1 Control and Network Regulation 

Control strategies are mainly investigated for achieving an optimal distribution of the 

different loads, peak shaving, increasing efficiency, decreasing the temperature difference 

between heating and cooling networks. One of the main network concerns is the flexibility 

which aims to speed up or delay the injection and extraction of heat to achieve a reduction 

in capital expenditure and operating expenses. This term is studied to solve problems faced 

due to the type of energy source such as the intermittent nature of RES. DHC regulations 

are performed to decrease the operating cost. In this frame, two methods that are the 

Electricity Adjustment (EA) and Electricity-Adjustment Capacity (EAC) were proposed in 

[50] as electricity regulation techniques to support the whole operation of the system. The 

authors found that the EA method can decrease 1% of the nominal operational cost while 

that of the EAC is 2%. Determining the optimal diameter will contribute in reducing the 

cost of the DHC piping network. In [44], two piping networks were studied; the 

conventional central circulating pump (CCCP) and the distributed variable speed pump 

(DVSP), as shown in Figure 7. As a result of the study, the annual equivalent cost of the 

DHC using DVSP was approximately 25% lower than that of the conventional one. Energy 
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source integration is considered as a control strategy because the system will be more 

flexible having a fast response. A typical example is studied in [45] where the suggested 

system incorporates wind energy, solar energy, and natural gas.  

 

Figure 7: A schematic diagram for the CCCP and DVSP systems [44] 

4.2 Simulations 

Several studies have been performed in order to achieve the optimal design for the DSs 

while optimizing the calculation and simulation techniques due to the complexity analysis 

of these systems [60]. Simulations and calculations are very critical in DSs which will 

contribute to figuring out the difference between design and actual loads [68], obtaining 

the optimal operation strategy, performing a thermal environment measurement and air 

pollution study. The two most popular optimization methods used in DHC systems are the 

MILP [67] and mixed integer non-linear programming (MINLP) [111]. These approximate 

solutions are used to cope with the nature and characteristics of the output to minimize the 
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operating cost mainly and optimize the amount of energy consumed because it is very hard 

to model it accurately due to the many variables involved. 

5. Discussion 

District systems have showed several advantages compared to the individual systems from 

different aspects: economical, environmental and energy savings. The development of such 

systems is rapidly increasing these days which can be noticed from the increasing number 

of research studies devoted to this concept. This conclusion reflects the great potential of 

the DSs which is expected to be spreading more and more in the future.  

District Systems’ Specifications 

One of the major principles of the district system is the centralization which is opposite to 

the operational mode of an individual plant. Consequently, when the control is preformed 

from a central organization, the energy losses and fuel consumption can be monitored, 

controlled, and reduced leading to significant energy savings. DSs are among the optimal 

solutions for reducing pollution taking into consideration that its footprint is one of the 

most crucial issues in energy domain. Furthermore, these systems focus on increasing the 

penetration of renewable energy which will also help in decreasing the amount of 

emissions. The efficiency and performance depend mainly on the used energy sources, 

characteristics of the load, storage system and network topology. DSs have high 

efficiencies because of the combined sources adopted (hybrid systems) and the different 

types of demands to be supported (poly-generation). The start-up cost is usually added to 

the operating cost and especially when the plant is not working for a long time. This is a 

major problem faced by the individual cooling, heating, and power systems where the 



22 

 

operating costs are very high due to the losses generated during the start-ups and 

shutdowns. This problem is almost eliminated in DSs because the central plant is always 

running and feeding the consumers. In addition, the operating cost is also reduced in the 

case of district systems due to the energy savings resulting from the mentioned energy 

strategies. 

Optimization Methods 

In all energy studies, optimizations aim to achieve almost the same objectives such as to 

increase efficiency, reduce CO2 emissions and energy losses, and increase the economic 

profits. The issue stands behind the techniques that should be considered to attain the 

mentioned objectives which may differ from one case to the other. Figure 8 presents the 

methodology and methods that need to be followed for adopting optimal DSs. Indeed, such 

techniques include, poly-generation, waste heat recovery, energy storage and renewable 

sources of energy [71]. An optimal DS is a hybrid system that combines RESs and WHR 

to provide the needed requirements, decrease the pollutant emissions and reduce the 

operating cost. These sources could be used as primary sources or supplementary otherwise 

if they exist between the substations to reheat the return line directly in case of DH [41]. 

WHR has also the potential to improve DC by activating the absorption chiller cycle [49]. 

Waste incinerators are able to decrease the operating cost of DSs, fuel consumption and 

need for landfilling, however, it must be controlled in order to work within the legal limits 

of emissions. The red arrows in Figure 8 refer to the flow of energy which starts at the TPP 

station and ends at the buildings/consumers. At first, the hybrid system will be used to 

produce the required forms of energy via a poly-generation plant. It will be then connected 

to the BDHC network to supply the consumers by passing through the decentralized control 
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systems. It is also necessary to make sure if there is a source of heat waste between the sub-

stations of the DS to be recovered. During off-peak loads, ESSs could be used to store the 

excess of power to be supplied again when needed during peak loads. The stored energy 

could either be supplied directly to the consumer or to the decentralized control system 

before. This depends on the type of storage technique such that if it is stored within the 

building thermal inertia, then it will be directly used by the consumer. 
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Figure 8: Optimal path for district systems 

DS barriers and recommendations 

The concept of DSs is still under development and it is facing some impediments that are 

hindering its growth. Not all these impediments are considered as disadvantages, but 
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society does not have the ability to cope with new ideas easily. In some countries, fuels are 

found abundantly with low prices. Therefore, these countries do not have the same 

motivation as in the countries suffering from high fuel cost. District systems have high 

capital costs compared to the individual ones due to the massive equipment used and the 

construction of lengthy piping for distribution. In addition, the long network of pipes 

potentially causes large energy losses which imposes a need to use efficient insulation that 

will be also added to the initial cost of the whole system. The imbalance between the 

different consumers’ demands and significant fluctuations of the loads lead to complexity 

in the system control. In addition, the loads are not the same neither among different 

buildings nor during different periods of the year. Therefore, various control strategies need 

to be investigated and studied for each district system alone due to the uncommon 

conditions between the DSs. This control must be based on a demand-side management 

(DSM) [112] to ensure its economical sustainability. Finally, it is recommended to build 

BDHC in order to decrease the overall losses. In such DSs, ESSs are very crucial such that 

network [70] and thermal inertia of the buildings [108] are used for short duration storage 

while BTES is favorable for seasonal storage [106]. It is also necessary to study and 

optimize the wall insulation of the buildings to determine the optimal thickness [113] in 

order to reduce the total energy losses. 

There are two ways in which the governmental sector can encourage uptake of DSs, firstly 

by providing investors with the required information and special tools for construction and, 

more directly, by decreasing taxes on DSs to make them more economically feasible. 

Another method is to decrease the capital cost of the district system which mainly depends 

on the piping and network. This could be achieved by reducing the pressure inside the pipe 
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and hence minimizing the pipe wall thickness [114]. DSs should be more publicized and 

promoted to highlight their benefits for the investors. Indeed, this is a crucial point because 

there are still some hidden issues concerning the district concept that make people hesitate 

in adopting such approach. Retrofitting the existing power plants provide several benefits 

from environmental and economic aspects. In other words, if there exist a power plant, it 

is more beneficial to improve it than constructing a new DS to avoid the high capital cost 

of these systems. Enhancing the conventional plants also helps in reducing the gas 

emissions and thermal environmental pollution. 

6. Conclusion 

The District Systems concept has received increased adoption recently, providing both 

heating and cooling loads. The performance of these systems was found to be principally 

dependent on the energy source used. The integration between the different sources is an 

effective way to improve the efficiency of the system. Fluctuations in energy demand 

within different locations or for the same location but at different time-period are among 

the main technical problems that should be tackled when adopting district systems. Among 

the solutions are ESSs such as network storage, thermal inertia of the buildings and storage 

devices. The heterogeneous characteristics of the demand profile raises a major problem 

of DSs that is the complexity of control to ensure an optimal supply to each residence. In 

this frame, DVSP and BDHC systems were found to offer good solutions. The economic 

and environmental quality of DSs could be improved by incorporating renewable sources 

and heat recovery systems. WHR has a great potential to support the district line; either as 

a primary source or as a secondary one placed between the substations. The latter is based 

on reheating the return line to be supplied again directly. Waste incinerators are found to 
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be good alternatives to domestic boilers in order to decrease the total emissions, cost and 

the need for landfilling. Further studies should investigate the techniques that could be 

followed in order to retrofit old DSs. This is important to follow up with the change in the 

district generations. 
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