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Abstract: 

In a recent article, Wu et al. (Nature 2016;529:43–47) review previous studies and present 

new estimates for the contribution of extrinsic factors to cancer development. The new 

estimates are generally close to 100%, even for bone and brain cancers that have no known 

associations with lifestyle and are typically not considered to be preventable. We find that 

the results of Wu and colleagues are incompatible with previous estimates derived from 

epidemiological and genetic data. We further argue that their methods are fundamentally 

flawed because they overlook important effects of tissue type on cancer risk. We therefore 

conclude that their results give a misleading view of cancer etiology and preventability. 
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Quantifying how much cancer risk may be avoided through changes in lifestyle or 

environment is important for guiding prevention efforts. In a recent article, Wu et al. [1] 

review previous studies and present new estimates for the contribution of extrinsic factors 

to cancer development. The authors define extrinsic factors as “environmental factors that 

affect mutagenesis rates (such as ultraviolet (UV) radiation, ionizing radiation and 

carcinogens)” that are “highly modifiable and thus preventable”. They derive their new 

estimates by reanalyzing a previously published data set using two different methods: an 

“intrinsic risk line” (IRL) and a multistage model (MM). The estimates of extrinsic risk are 

generally close to 100%, even for bone and brain cancers that have no known associations 

with lifestyle and are typically not considered to be preventable. We question the reliability 

of these results for the following reasons: (i) the two methods produce contradictory 

estimates of extrinsic contributions for individual cancer types, which are also inconsistent 

with evidence from epidemiological studies and mutational signatures; (ii) the IRL method 

relies on the biologically implausible assumption that the intrinsic risk per stem cell division 

is a constant; and (iii) results from the MM model are undermined if one considers plausible, 

higher mutation rates. These considerations cast doubt on whether the new estimates of 

Wu et al. [1] accurately characterize cancer etiology or preventability. 

If the IRL and MM methods of Wu et al. [1] were reliable, then we would expect them to 

produce consistent estimates when applied to the same cancer types. We might also expect 

them to be consistent with estimates derived from epidemiological studies (Table 1) and 

from an analysis of mutational signatures [2] cited by Wu et al. [1]. In fact, the data show 

that while the estimates derived from prior studies are correlated, the generally much 

higher IRL and MM estimates are uncorrelated both with each other and with the two other 
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data sets (Fig. 1). These inconsistencies have two potential implications. First, it is possible 

that the estimates derived from epidemiological studies and analysis of mutational 

signatures are unreliable, and the true contribution of extrinsic risk is close to 100% for 

almost all cancer types; however, given the significant correlation of these two independent 

data sets and our technical concerns over the other two methods (see below), this appears 

unlikely. Second, at least one, and potentially both, of the methods proposed by Wu et al. 

[1] are unreliable. The latter possibility suggests that a careful examination of the 

assumptions underlying the two novel methods is warranted. 

For their IRL analysis, Wu et al. [1] used simple linear regression to estimate how cancer risk 

scales with the lifetime number of stem cell divisions across diverse tissue types, based on 

the data set of Tomasetti & Vogelstein [3]. Underlying their method (and prior analysis by 

Tomasetti & Vogelstein [3]) is the assumption that the intrinsic risk of a given cancer type 

over a lifetime can be expressed as 

risk per stem cell division × lifetime number of stem cell divisions (lscd).   (1) 

This equation is not an exact description (because risk must eventually saturate at 100%), 

but it is a reasonable approximation when the risk per stem cell division is much less than 1 

and the lifetime risk is less than 10% (which holds for almost all of the data set). It follows 

that if the risk per stem cell division is the same for a subset of cancer types, then the 

lifetime risk of each type will simply be proportional to the lscd of the affected tissue. 

However, in any multistage model of carcinogenesis (i.e. any model requiring more than one 

mutational hit) the risk per stem cell division is not a constant, since it depends on the 

extent to which cancer-promoting mutations have accumulated.  Given that obtaining a 
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cancer is a rare event, then a simple multistage model requiring M mutational hits predicts 

that [4] 

intrinsic risk =  C(uK)M,         (2) 

where C is the number of stem cells in the tissue, u is the somatic mutation rate, and K is the 

stem cell division rate. Equation 2 can be rewritten as 

intrinsic risk =  lscd x (uK)M/K,        (3) 

so that the risk per division in Equation 1 is replaced by (uK)M/K, which is the long-term 

average risk per division. If M is constant across a subset of tissues and they undergo division 

at similar rates, then this risk scales linearly with size. For example, since leg bones contain 

approximately twice as many cells as arm bones, we would expect osteosarcoma to be 

about twice as common in legs as in arms. Equation 3 implies that for such a subset, 

log(lifetime intrinsic risk) = log(lscd) + log(long-term average risk/division).  (4) 

Therefore, assuming the long-term average risk is constant, we would predict an 

approximately linear relationship between log(lifetime intrinsic risk) and log(lscd) with slope 

approximately equal to 1. Any deviations above this line would represent the contributions 

of extrinsic factors. However, if extrinsic factors may affect all of the observed risks then 

how can we know where to draw the line? One approach is to position the line so that it 

intercepts the minimum observed risk, in which case deviations from the line correspond to 

minimum estimates of the contribution of extrinsic factors. What is essential is that, 

wherever the line is drawn, its slope must be equal to 1, so that it represents the assumed 

linear relationship between intrinsic cancer risk and lscd. The Wu et al. [1] IRL method 
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follows the above procedure except that it estimates the contributions of extrinsic factors to 

cancer risk by measuring deviations from a regression line that has slope much less than one 

(Fig 2A). The latter method has no theoretical basis and its results are therefore unreliable. 

A more fundamental problem is that the IRL method (similar to that in Tomasetti & 

Vogelstein [3]) relies on the assumption that the long-term average risk per division is the 

same among all cancer types. This assumption is false, since the risk varies considerably 

depending on tissue organization [5], number of mutational “hits” necessary to initiate 

cancer (M), the rate of stem cell division, and other intrinsic biological factors [4]. As noted 

above, whenever the number of mutational hits (M) required to induce cancer is greater 

than one, then cancer risk scales linearly with cell number, but is more strongly related to 

the number of divisions (to the power M) [4]. As a result, any simple regression method 

cannot discriminate extrinsic from intrinsic effects across diverse cancer types, and 

estimates derived in this way are overestimates, since variation interpreted as extrinsic risk 

(Fig 2A) can disappear when the data are subdivided into comparable groups (Fig. 2B), as 

pointed out in recent critiques of Tomasetti & Vogelstein’s analysis [6-10]. Unreliability of 

the IRL method would explain the apparently anomalous results of Wu et al. [1], such as the 

inconsistent estimates for bone cancer (for example, approximately 0% estimated extrinsic 

contribution to the risk of arm, head and pelvis osteosarcoma but >77% for leg 

osteosarcoma). 

In their second analysis, Wu et al. [1] estimated extrinsic contributions to cancer risk using a 

mathematical model of multistage carcinogenesis and the same previously published data 

set [3]. They concluded that the risks predicted by the multistage model are much lower 

than observed cancer rates, and therefore extrinsic factors must make a very large 
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contribution. This analysis is based on two assumptions: first that all tissues require the 

same number of driver mutations to initiate cancer (i.e. M is constant across all tissues), and 

second that the effective somatic mutation rate is between 10-10 and 10-6 per stem cell 

division. The first assumption is known to be false (e.g. comparing retinoblastoma, where M 

= 2, to the cancers of larger tissues, where M is larger [11]). At first sight, the second 

assumption appears plausible; however, higher mutation rates may be more realistic given 

that (i) cancer-promoting mutations per driver gene are generally considered to be at the 

high end of this range (as in recent literature [12, 13]), and (ii) some driver mutations result 

in a burst of cell proliferation leading to clonal expansion [14]. Whereas more complex 

models are required to examine the effect of clonal expansion in detail (for example [15-

17]), it can more simply be approximated as an increase in the “effective” mutation rate [4]. 

With these concerns in mind, Nunney & Muir [7] found the same data set to be consistent 

with a similar multistage model provided that M was allowed to vary among tissue types and 

was estimated from the data. As expected, their analysis indicated a higher effective driver 

mutation rate of about 8x10-6 per stem cell division. Of course, this higher mutation rate 

could be partly the result of extrinsic factors, but in its present form the data does not 

permit us to distinguish between intrinsic and extrinsic effects. As a result, we cannot assign 

percent causality between these two sources, or even exclude the possibility that the 

variation in risk is largely explained by intrinsic differences between tissues, such as the 

number of mutational hits required to initiate cancer [7].  

Wu et al.’s [1] attribution of nearly all cancer risk to “highly modifiable and thus preventable 

extrinsic factors” demands scrutiny because of its implications for prevention strategies. We 

agree that epidemiological studies [18, 19] and analyses of mutational signatures [2] suggest 
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that extrinsic factors contribute substantially to the risk of many cancer types. We also share 

concerns about the methodology underlying the recent very different estimates of 

Tomasetti & Vogelstein [3]. However, the methods of Wu et al. [1] similarly do not account 

for the effects of intrinsic, tissue-dependent factors that could explain much of the observed 

variation in cancer risk, and the resulting estimates are therefore likewise questionable. Both 

Wu et al. [1] and Tomasetti & Vogelstein [3] also do not consider the realistic possibility that 

within a given cell or tumor, some mutational “hits” may be ascribed to the environment, 

whereas others may be due to bad luck, and extrinsic factors may further influence the 

selective value of mutations by changing the microenvironment [17]. Taken together this 

suggests that estimating relative contributions, even for particular cancer types, will be a 

daunting challenge. We argue that beyond an improved knowledge of transformation 

pathways towards specific cancers, progress will require a greater understanding of how 

mutational processes undermine evolved cancer prevention and suppression in different cell 

types, and how they interact with tumour microenvironments and our external 

environments and life-styles. 
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Figure 1 | Lack of consistency between different sets of estimates of extrinsic cancer risks. 

A, Comparison between results of the two new analyses by Wu et al. [1], and comparisons of 

these results with estimates derived from mutational signatures. B, Comparisons with 

estimates derived from epidemiological data, categorized as “low” (less than 50%) or “high” 

(more than 50%). Each point corresponds to a cancer type. ICC is the intraclass correlation 

coefficient; r is Pearson correlation coefficient. Epidemiological data is from Extended Data 

Table 2 in Wu et al. [1] and recent reviews [19-21] (see Table 1); estimates from mutational 

signatures are from Extended Data Table 3 in Wu et al. [1], derived from Alexandrov et al. 

[2]. Wu et al. [1] also present estimates derived from two-hit and four-hit models of 

carcinogenesis, which are likewise uncorrelated with the estimates from the IRL method, 

epidemiological data, and analysis of mutational signatures (data not shown). ICC values 

were calculated using the irr package for the R programming language [22]. In the calculation 

of ICC values, the “low” and “high” categories were assigned values of 0.25 and 0.75, 

respectively. 

 

Figure 2 | Alternative models for explaining variation in cancer risk. For clarity, only part of 

the Tomasetti & Vogelstein [3] data set is shown. A, Wu et al. [1] assume that a single 

regression line can be used to quantify intrinsic cancer risk, and any additional risk must be 
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due to extrinsic factors. B, If we allow that the intrinsic cancer risk per stem cell division 

varies between tissues, then it is invalid to draw only a single regression line through the 

data for diverse cancer types. Instead, separate regression lines must be drawn for each 

cancer type or for sets of cancer types with similar features (such as anatomical site [6]). The 

vertical displacement of these regression lines corresponds to the tissue effect, which may 

be due to a combination of intrinsic factors (such as the number of mutational “hits” 

necessary to initiate cancer) and extrinsic factors (such as diet or smoking). 



Cancer types with high (>50%) extrinsic risk Reference(s) 
Basal cell carcinoma  1 
Colorectal adenocarcinoma  1, 19 
Colorectal adenocarcinoma with FAP  * 
Colorectal adenocarcinoma with Lynch syndrome * 
Duodenum adenocarcinoma with FAP  * 
Esophageal squamous cell carcinoma  1, 19 
Head & neck squamous cell carcinoma  1, 19 
Head & neck squamous cell carcinoma with HPV-16 * 
Hepatocellular carcinoma 1 
Hepatocellular carcinoma with HCV  * 
Lung adenocarcinoma (smokers)  * 
Melanoma  1, 19 
Small intestine adenocarcinoma  1 
Thyroid papillary/follicular carcinoma 1 
Cancer types with low (<50%) extrinsic risk Reference(s) 
Acute myeloid leukemia 19 
Chronic lymphocytic leukemia  19 
Gallbladder non papillary adenocarcinoma  19 
Glioblastoma  21 
Osteosarcoma  20 
Osteosarcoma of the arms  20 
Osteosarcoma of the head  20 
Osteosarcoma of the legs  20 
Osteosarcoma of the pelvis  20 
Ovarian germ cell  19 
Pancreatic ductal adenocarcinoma (acinar) 19  

Table 1 | Categorization of cancer types by relative contributions of extrinsic factors to 

risk, according to epidemiological data. Risks for cancer types labeled * apply to 

subpopulations and are more than double the risks among the general population. 
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