

City, University of London Institutional Repository

Citation: Abrahamsen, M., Giannopoulos, P., Loffler, M. & Rote, G. (2020). Geometric

Multicut: Shortest Fences for Separating Groups of Objects in the Plane. Discrete &
Computational Geometry, 64(3), pp. 575-607. doi: 10.1007/s00454-020-00232-w

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/24746/

Link to published version: https://doi.org/10.1007/s00454-020-00232-w

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Discrete & Computational Geometry
https://doi.org/10.1007/s00454-020-00232-w

R ICKY POLLACK MEMORIAL ISSUE

Geometric Multicut: Shortest Fences for Separating Groups
of Objects in the Plane

Mikkel Abrahamsen1 · Panos Giannopoulos2 ·Maarten Löffler3 ·
Günter Rote4

Received: 7 May 2019 / Revised: 3 March 2020 / Accepted: 3 July 2020
© The Author(s) 2020

Abstract
We study the following separation problem: Given a collection of pairwise disjoint
coloured objects in the plane with k different colours, compute a shortest “fence” F ,
i.e., a union of curves of minimum total length, that separates every pair of objects of
different colours. Two objects are separated if F contains a simple closed curve that
has one object in the interior and the other in the exterior. We refer to the problem as
geometric k-cut, as it is a geometric analog to the well-studied multicut problem on
graphs. We first give an O(n4 log3n)-time algorithm that computes an optimal fence
for the case where the input consists of polygons of two colours with n corners in
total. We then show that the problem is NP-hard for the case of three colours. Finally,
we give a randomised 4/3 · 1.2965-approximation algorithm for polygons and any
number of colours.

1 Introduction

Problem Statement We are given k pairwise interior-disjoint sets B1, B2, . . . , Bk

in the plane, not necessarily connected. We want to find a covering of the plane
R
2 = B̄1 ∪ B̄2 ∪ · · · ∪ B̄k such that the sets B̄i are closed and interior-disjoint,

Bi ⊆ B̄i , and the total length of the boundary F = ⋃k
i=1 ∂ B̄i between the different

sets B̄i is minimized.

Dedicated to the memory of Ricky Pollack

Editor in Charge: János Pach.

An extended abstract of this work has been presented at the 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019) in July 2019 in Patras, Greece [2].

M. Abrahamsen: Supported by the Innovation Fund Denmark through the DABAI project. BARC is
supported by the VILLUM Foundation grant 16582. M. Löffler: Partially supported by the Netherlands
Organisation for Scientific Research (NWO); 614.001.504.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-020-00232-w&domain=pdf
http://orcid.org/0000-0002-0351-5945

Discrete & Computational Geometry

We think of the k sets Bi as having k different colours and each set Bi as a union
of simple geometric objects like circular disks or simple polygons. We call B̄i the
territory of colour i . Examples are shown in Figs. 1 and 2. The “fence” F consists
of the boundaries that separate the territories, or alternatively, F is the set of points
belonging to more than one territory. As we can see, the fence does not have to be
connected, and a territory can have more than one connected component.

An alternative view of the problem concentrates on the fence: A fence is defined as
a union of curves F such that each connected component of R2 \ F intersects at most
one set Bi . An interior-disjoint covering as defined above gives, by definition, such
a fence. Likewise, a fence F induces such a covering, by assigning each connected

Fig. 1 An instance with k = 2 sets, red and green, with two disks each; the big green disk is only partially
shown. The optimal covering has a hippodrome-shaped red territory, with the small green disk as a hole,
and an additional unbounded part of the green territory. The fence F has two components: the boundary of
the hippodrome and the boundary of the small green disk

Fig. 2 An instance of geometric 3-cut and a fence in black. The fence contains a cycle that does not
touch any object. The grey fence shows how such a cycle can be shrunk without changing the total length
of the fence (Lemma 2.2). We believe this to be the optimal fence. In any case, we can ensure that this fence
is optimal by filling the territories more densely with objects of the appropriate colour

123

Discrete & Computational Geometry

component of R2 \ F to an appropriate territory B̄i . The total length of a fence F is
also called the cost of F and is denoted as |F |.

In this paper, we will focus on the case where the input consists of simple polygons
with disjoint interiors. We refer to this problem as geometric k-cut. Each input
polygon is called an object. The results can be extended to more general shapes of
objects as long as they are reasonably well behaved, but we refrain from trying to
achieve greater generality. We use n to denote the total number of corners of the input
polygons, counted with multiplicity.

Even in this simple setting, the problem poses both geometric and combinatorial
difficulties. A set Bi can consist of several objects, and the combinatorial challenge
is to choose which of the objects should be grouped into the same component of B̄i .
The geometric task is to construct a network of curves that surrounds the given groups
of objects and thus separates the groups from each other. For k = 2 colours, optimal
fences consist of geodesic curves around obstacles, which are well understood. As
soon as the number k of colours exceeds 2, the geometry becomes more complicated,
and the problem acquires traits of the geometric Steiner tree problem, as shown in the
example in Fig. 2.

Our Results In Sect. 3, we show how to solve the case with k = 2 colours in time
O(n4 log3n). (The running time is actually a tiny bit smaller, see Theorem 3.2.) The
crucial observation is that the optimal fence must consist of line segments between
corners of input polygons (Lemma 3.1). The algorithm is then straightforward. We
consider the arrangement A formed by all these line segments. The shortest fence
corresponds to a minimum cut in the dual graph of this arrangement. This is a planar
graph, and for solving the multiple-source multiple-sink maximum flow problem in
this graph, we can apply results from the literature.

The casewith k = 3 colours is alreadyNP-hard, aswe show in Sect. 4 by a reduction
from planar positive 1-in-3-sat (Theorem 4.7). The main feature of the gadgets in
our reduction is that they have different optimal solutions (in a local sense) of equal
length, thus allowing logical values to be represented and propagated. The analysis of
our clause gadget, which captures the logical core of the reduction, is unfortunately
quite involved and requires a large case distinction over several pages.

It is not known whether the decision version of geometric k-cut is in NP or not.
Indeed, this seems to depend on the complexity of other problems such as the sum of
square roots problem [17] and the Euclidean Steiner tree problem [11], both of which
are not known to be in NP. See the remarks after Theorem 3.2.

In Sect. 5, we discuss an approximation algorithm. We first compare the optimal
fence FA consisting of line segments between corners of input polygons to the unre-
stricted optimal fence F∗, and in Theorem 5.1 we show that |FA| ≤ 4|F∗|/3. The
proof requires topological arguments (Lemma 5.2) as well as combinatorial arguments
(Lemma 5.4). As in Sect. 3, restricting the solution to the arrangementA allows us to
view the problem as a graph-theoretic problem. By applying a 1.2965-approximation
algorithm for the k-terminal multiway cut problem [21], we obtain a polynomial-time
4/3 · 1.2965-approximation algorithm for geometric k-cut (Theorem 5.6).

Related Work Despite the fact that the problem is natural and fundamental, there
is little previous work. The problem of enclosing a set of objects by a shortest system
of fences has recently been considered with a single set B1 by Abrahamsen et al. [1].

123

Discrete & Computational Geometry

The task is to “enclose” the components of B1 by a shortest system of fences. This
can be formulated as a special case of our problem with k = 2 colours: We add an
additional set B2, far away from B1 and large enough so that it is never optimal to
surround B2. Thus, we have to enclose all components of B1 and separate them from
the unbounded region. In this setting, there will be no nested fences. Abrahamsen et
al. gave an algorithm with running time O(n polylog n) for the case where the input
consists of n unit disks.

Some variations with additional constraints on the fence become NP-hard already
for point objects with two colours. For example, if we require the fence to be a single
closed curve, it has been observed by Eades and Rappaport [10] already in 1993 that
one can model the Euclidean Travelling Salesman Problem of computing the shortest
tour through a given set of sites by placing two tiny objects of opposite colour next
to each site. If we require the fence to be connected, the same construction will lead
to the Euclidean Steiner Tree Problem, which was shown to be NP-hard by Garey,
Graham, and Johnson in 1977 [11].

Applications Besides being a natural problem in its own right, the geometric mul-
ticut problemmay well find applications in image processing and computer vision. As
we describe in Sect. 3, a problem closely related to the case k = 2 has been studied
from the perspective of image segmentation. Simplified slightly, we are given a picture
with some pixels known to be black or white, and we have to choose colours for the
remaining pixels so as to minimize the boundary between black and white regions.
The problem for k > 2 is equally well motivated in this context, although we have
not found any explicit references to it (perhaps because of the NP-hardness which we
will prove in this case).

2 Structure of Optimal Fences

Lemma 2.1 An optimal fence F∗ is a union of (not necessarily disjoint) closed curves,
disjoint from the interior of the objects. Furthermore, if the objects are polygons,
F∗ is the union of straight line segments of positive length. If two non-collinear line
segments in F∗ have a common endpoint p that is not a corner of an object, then
exactly three line segments meet at p, forming angles of 2π/3 with each other.

Proof We first prove that the curves in F∗ are disjoint from the interior of each object.
To this end, consider any fence F in which some open curve π ⊂ F is contained in
the interior of an object O ⊂ Bi . Then the connected components of R2 \ F on both
sides of π must be part of the territory B̄i . Hence, π can be removed from F while
the fence remains feasible. That operation reduces the length, so F is not optimal.

We next show that F∗ is the union of a set of closed curves. Suppose not. Let
F ′ ⊂ F∗ be the union of all closed curves contained in F∗ and let π be a connected
component in F∗ \ F ′. Then π is the (not necessarily disjoint) union of a set of open
curves, which do not contribute to the separation of any objects. Hence, F∗ \ π is a
fence of smaller length than F∗, so F∗ is not optimal.

In a similar way, one can consider the union L of all line segments of positive length
contained in F∗, and if F∗ \ L is non-empty, a curve π in F∗ \ L can be replaced by a

123

Discrete & Computational Geometry

shortest path homotopic to it, which consists of a sequence of line segments. (See the
proof of Lemma 5.2.)

The last claimed property is shared with the Euclidean Steiner minimal tree on a set
of points in the plane, and it can be proved in the same way, see for example Gilbert
and Pollak [13]: suppose that the fence F contains two non-collinear line segments �1
and �2 sharing an endpoint p that is not a corner of an object. If the angle between �1
and �2 at p is less than 2π/3, then parts of �1 and �2 can be replaced by three shorter
segments. Hence, the angle between segments meeting at p is at least 2π/3, and there
can be at most three such line segments. If there are only two, one can make a shortcut.
Therefore, there are exactly three segments, and they form angles of 2π/3. �	

As can be seen in Fig. 2, optimal fences may contain cycles that do not touch any
object. By the following lemma, such cycles can be eliminated without increasing the
length. This will be useful for the design of our approximation algorithm (Sect. 5).

Lemma 2.2 Let N be the set of corners of the objects in an instance of geometric
k-cut. There exists an optimal fence F∗ with the property that F∗ \ N contains no
cycles.

Proof Let us look at a connected component T of F∗\N . Since F∗ is a union of closed
curves by Lemma 2.1, it follows that the leaves of F∗ \ N are in N . All other vertices
have degree 3, and the incident edges meet at angles of 2π/3. If T contains a cycle C ,
we can push the edges ofC in a parallel fashion (forming an offset curve), as shown in
Fig. 2. This operation does not change the total length of T . This can be seen by looking
at each degree-3 vertex v individually: We enclose v in a small equilateral triangle
whose sides cut the edges at right angles, see Fig. 3. It is a well-known geometric fact
that the sum of the distances from a point v inside an equilateral triangle to the three
sides is constant. (This can be seen by observing that each distance is proportional to
one of the barycentric coordinates of v, and that the three proportionality factors are
the same in case of an equilateral triangle.) This implies that the length of the fence
inside the triangle is unchanged by the offset operation. The portions of C outside the
triangles are just translated and do not change their lengths either.

As we offset the cycle C , an edge of C must eventually hit a corner of an object.
Another conceivable possibility is that an edge of C between two degree-3 vertices
is reduced to a point, but this would lead to an optimal fence with two non-collinear
segments sharing an endpoint and forming an angle of π/3, violating Lemma 2.1. In
this way, the cycles of T can be eliminated one by one. �	

v

Fig. 3 Offsetting the cycle does not change the total length of the fence inside the triangle

123

Discrete & Computational Geometry

We mention that the restriction of objects to polygonal shapes is not crucial for
Lemmas 2.1 and 2.2. If objects have curved boundaries, the fence consists of straight
segments that are disjoint from the interior of the objects, plus portions of object
boundaries.

3 The Bicoloured Case

In this section we consider the case of k = 2 colours. Let N be the set of all corners of
the objects. A line segment is said to be free if it is disjoint from the interior of every
object. A vertex v of an optimal fence cannot have degree 3 or more unless v ∈ N ,
as otherwise two of the regions meeting at v would be part of the same territory and
could be merged, thus reducing the length of the fence. We therefore get the following
consequence of Lemma 2.1.

Lemma 3.1 An optimal fence consists of free line segments with endpoints in N.

Let S be the set of all free segments with endpoints in N . S includes all edges of the
objects. LetA be the arrangement induced by S, see Fig. 4. Consider an optimal fence
F∗ and the associated territories B̄1 and B̄2. Lemma 3.1 implies that F∗ is contained
in the edges and vertices of A. Thus, each cell of A belongs entirely either to B̄1 or
B̄2. The objects are cells ofAwhose classification (i.e., membership of B̄1 versus B̄2)
is fixed. In order to find F∗, we need to select the territory that each of the other cells
belongs to. Since |S| = O(n2), A has size O(|S|2) = O(n4) and can be computed
in O(|A|) = O(n4) time [7]. For simplicity, we stick with the worst-case bounds. In
practice, set S can be pruned by observing that the edges of an optimal fence must be
bitangents that touch the objects in a certain way, because the curves of the fence are
locally shortest.

Finding an optimal fence amounts to minimising the boundary between B̄1 and
B̄2. This can be formulated as a minimum-cut problem in the dual graph G(V , E)

of the arrangement A. There is a node in V for each cell and a weighted edge in
E for each pair of adjacent cells: the weight of the edge is the length of the cells’

Fig. 4 Left: the arrangement A induced by an instance of geometric 2-cut with two green and two red
objects. The dual graph G is blue. Right: the optimal solution

123

Discrete & Computational Geometry

common boundary. Let S1, S2 ⊂ V be the sets of cells that contain the objects of
B1, B2, respectively. We need to find the minimum cut that separates S1 from S2. This
can be obtained by finding the maximum flow in G from the sources S1 to the sinks
S2, where the capacities are the weights. Such a maximum flow can be computed
in strongly polynomial time. As G is a planar graph, we can use the algorithm by
Borradaile et al. [4] with running time O(|V | log3 |V |). The running time has since
then been improved to O(|V | log3 |V |/log2 log |V |) byGawrychowski and Karczmarz
[12]. As |V | = O(|S|2) = O(n4), we obtain the following theorem.

Theorem 3.2 geometric 2-cut can be solved in time O(n4 log3n/log2 log n), where
n is the total number of corners of the objects.

A Note on the Machine Model Theorem 3.2 assumes that edge weights can be
added and subtracted in constant time. As the edge weights are Euclidean distances,
whose computation involves square roots, this is only warranted if we work in the
real- rammodel of computation, which is appropriate for geometric algorithms [19].
In the Turing machine model, the exact comparison of sums of square roots is difficult
[17], and geometric 2-cut is not known to be even in NP, a property that it shares
with many other geometric optimisation problems such as the Euclidean Travelling
Salesman Problem or the Euclidean Minimum Spanning Tree Problem [11].

Related Algorithms A similar algorithm has been described before in a slightly
different context: image segmentation [14], see also [4]. Here, we have a rectangular
grid of pixels, each having a given gray-scale value. Some pixels are known to be
either black or white. The remaining pixels have to be assigned either the black or the
white colour. Each pixel has edges to its (at most four) neighbours. The weights of
these edges can be chosen in such a way that the minimum cut problem corresponds
to minimising a cost function consisting of two parts: One part, the data component,
has a term for each pixel, and it measures the discrepancy between the gray-value of
the pixel and the assigned value. The other part, the smoothing component, penalises
neighbouring pixels with similar gray-values that are assigned different colours.

Alternative Approaches The running time of roughly n4 in Theorem 3.2 is rather
high. In many instances, the arrangement A might be much smaller than the worst
case, and then the algorithm will of course benefit. The O(n4) complexity is due to
the inclusion of all intersections between the O(n2) potential line segments. We are
rewarded because this turns the problem into a problemon a planar graph, and therefore
the effort for obtaining a maximum flow adds only a polylogarithmic factor. On the
other hand, finding the minimum cut in the arrangement A is some sort of overkill,
since it optimises also weird types of fences that zigzag through the arrangement,
while we know that optimal fences can only bend at object corners.

It would be nice to work only with the O(n2) line segments without their cross-
ings. We have considered an incremental approach that turns red objects into green
objects one by one and determines the green territories that should be merged, by
computing the boundary cycle of the resulting larger territory. However, a preliminary
estimate indicated that this approach would not be competitive with the algorithm of
Theorem 3.2, unless it is combined with new ideas.

123

Discrete & Computational Geometry

4 Hardness of the Tricoloured Case

We show how to construct an instance I of geometric 3-cut from an instance � of
planar positive 1-in-3-sat. For ease of presentation, we first describe the reduction
geometrically, allowing irrational coordinates. We prove that if � is satisfiable, then
I has a fence of a certain cost M∗, whereas if � is not satisfiable, then the cost is at
least M∗ + 1/50. This gap of 1/50 allows us to slightly move the corners into a new
instance I ′ with rational coordinates, while still being able to distinguish whether �

is satisfiable or not, based on the cost of an optimal fence.
In order to make the geometric part of the proof as simple as possible, we introduce

a new specialised problem, colouredtrigrid positive1-in-3-sat, by endowing the
instances with additional geometric and combinatorial structure (in the form of a
double edge colouring).

4.1 Auxiliary NP-Complete Problems

Definition 4.1 1. In the positive 1-in-3-sat problem, we are given a collection� of
clauses, each consisting of exactly three distinct variables. (There are no negated
variables.) The problem is to decide whether there exists an assignment of truth
values to the variables of � such that exactly one variable in each clause is true.

2. The trigrid positive 1-in-3-sat problem is the same, except that the input has
some additional geometric structure: We are given an instance � of positive 1-
in-3-sat together with a planar embedding of an associated graph G(�) with the
following properties, see Fig. 5:

• G(�) is a subgraph of the infinite regular triangular grid in the plane, which
is composed of equilateral triangles of side length 1.

• For each variable x , there is a simple cycle vx .
• For each clause C = {x, y, z}, there is a path PC and three vertical paths

�Cx , �Cy , �Cz with one endpoint at a vertex of PC and one at a vertex of each of
vx , vy, vz .

• Except for the described incidences, no edges share a vertex.
• All vertices have degree 2 or 3.
• Any two adjacent edges form an angle of π or 2π/3.
• The number of vertices is bounded by a quadratic function of the size of �.

Mulzer and Rote [20] showed that another problem, planar positive 1-in-3-sat,
is NP-complete, which is similar but uses a slightly different plane embedding with
axis-parallel segments: The variables are represented by disjoint line segments on a
horizontal line �; and each three-legged clause looks like a rotated E-shape and lies
above or below �. Figure 5 shows how such an instance can be easily converted to
follow the conventions of Definition 4.1. It follows that trigrid positive1-in-3-sat
is also NP-complete.

The idea of our reduction to geometric 3-cut is to thicken the edges of G(�)

into channels of width 1/2, as illustrated in Fig. 6. A channel contains small inner
objects and is bounded by larger outer objects of another colour. There will be two

123

Discrete & Computational Geometry

vx1
vx2 vx3

vx4
vx5

PC 1

PC2

PC3

vx1 vx2
vx3 vx4

vx5

PC 1

PC2

PC3

�

Fig. 5 Left: an instance of planar positive 1-in-3-sat for the formula � = C1 ∧ C2 ∧ C3 with three
clauses C1 = {x1, x3, x5}, C2 = {x1, x2, x3}, and C3 = {x2, x4, x5}, which are represented as rotated
E-shapes. Right: a corresponding instance of trigrid positive 1-in-3-sat. The paths representing the three
clauses are highlighted. Clause vertices are drawn as dots and branch vertices as boxes

1
2

Fig. 6 Illustration of a section of a channel with red outer objects and six green inner objects, centred
around an edge of the graph G(�) (the dashed line), and two ways of separating the different colours. The
solution on the left will be called the inner solution because the empty part inside the channel is assigned
to the same territory as the inner objects. The solution on the right is called the outer solution

equally good ways to separate the inner and outer objects, namely long fences along
the boundaries of the channel and individual fences around the inner objects. Any
other way of separating the inner from the outer objects will turn out to require more
fence. These two optimal ways of separating the colours are used to represent the truth
values.

Wewill now bemore specific. Consider an instance (�,G(�)) of trigrid positive
1-in-3-sat. There are some vertices of degree three on the cycles vx corresponding
to each variable x in �, and these are denoted as branch vertices. There is also one
vertex of degree three on the path PC corresponding to each clause C in �, which we
denote as a clause vertex. These are the only vertices of degree 3.

We consider G(�) as a subset of the plane and remove all clause vertices. This
splits G(�) into one connected component Ex for each variable x of �. We build
one channel around each set Ex , including the bends and branch vertices, and we will
ensure that there are two equally good ways to separate the inner and outer objects
throughout the whole channel. These two choices, along the boundaries or around
each inner object individually, play the roles of x being false and true, respectively.

At the clause vertices where three regions Ex , Ey, Ez meet, we make a clause
gadget that connects the three channels of x, y, z. The objects in the clause gadget can
be separated using the least amount of fence if and only if one of the channels is in
the state corresponding to true and the other two are in the false state. Therefore, this
corresponds to the clause being satisfied in the sense that exactly one variable is true.

In order to make this idea work, we first assign two colours to every edge of G(�):
an inner and an outer colour from the set {red, green, blue}. These will be used as

123

Discrete & Computational Geometry

the colours of the inner and outer objects of the channel. The colouring must have the
following properties:

1. The inner and outer colours of every edge are distinct.
2. Any two adjacent collinear edges have the same inner or the same outer colour

(or both).
3. Any two adjacent edges that meet at an angle of 2π/3 at a non-clause vertex have

the same inner and the same outer colour.
4. The inner colours of the three edges meeting at a clause vertex are red, green, blue

in clockwise order, while the outer colours of the same edges are blue, red, green,
respectively.

We now introduce the problem colouredtrigrid positive1-in-3-sat, which we
will reduce to geometric 3-cut, see Fig. 7.

Definition 4.2 In colouredtrigrid positive 1-in-3-sat, we are given an instance
(�,G(�)) of trigrid positive1-in-3-sat together with a colouring of the edges of
G(�) satisfying the above four requirements. We want to decide whether � has a
satisfying assignment in the sense of positive 1-in-3-sat (Definition 4.1).

Lemma 4.3 The problem coloured trigrid positive 1-in-3-sat is NP-complete.

Proof Membership in NP is obvious. For NP-hardness, we reduce from trigrid
positive 1-in-3-sat. Let (�,G(�)) be an instance of the latter. We assume that
all vertical paths �Cx have length at least 4. This can be achieved by stretching them
vertically, as shown in Fig. 7, or simply by scaling the whole graph by a factor of 4.

We colour each triple of edgesmeeting at a clause vertex according to requirement 4.
Then, in each clause path PC , we simply continue the colouring from the edges incident
to the clause vertices in both directions, and also to the first edge of the vertical paths
�Cx incident to the endpoints. For all branch vertices and all cycles vx we choose red
as the outer colour and blue as the inner colour, and this colouring is also used for the
first edge on each incident vertical path �Cx .

It remains to colour the “interior” edges of the vertical paths �Cx . Since each vertical
path has at least four edges and only the colours of the first and last edges have been

Fig. 7 An instance of coloured trigrid positive 1-in-3-sat based on the instance from Fig. 5

123

Discrete & Computational Geometry

fixed, it is possible to change inner or outer colour three times. It is easy to check that
this is sufficient to interpolate between any combination of colours at the boundary
edges. There are six possible combinations of inner and outer colours: (R, B), (B, R),
(R,G), (G, R), (B,G), and (G, B), denoting the three colours by R, B,G. These
combinations can be arranged in a cycle of length six, so that it is possible to get from
one combination to an adjacent one by changing the inner or the outer colour:

inner:
outer:

R R B B G G R
B G G R R B B

Each colour change is denoted by a vertical bar. It follows that one can get from any
combination to any other in at most three steps. The maximum number of changes is
needed when the inner and outer colours have to be swapped.

Therefore, it is possible to adjust the colours so that the entire path gets coloured.We
have hence constructed an instance of colouredtrigrid positive 1-in-3-sat. �	

4.2 Building a geometric 3-sat Instance fromTiles

Consider an instance (�,G(�)) of colouredtrigrid positive 1-in-3-sat that we
want to reduce togeometric 3-cut. We use hexagonal tiles of six different types,
namely straight, inner colour change, outer colour change, bend, branch, and clause
tiles. Each tile is a regular hexagon with side length 1/

√
3 and hence has distance 1

between opposite sides.
Every tile is placed with its centre at a vertex p of G(�), and rotated so that it

has two horizontal edges. Thus, each edge of G(�), which has length 1, connects the
centres of two adjacent tiles. Let Gp be the part of the graph G(�) within distance
1/2 from p. Figure 8 shows the tiles and how they are placed according to the shape
and colours of Gp.

In order to define the objects of a tile, we take the offsets of the edges of Gp at
distance 1/4 on both sides, as shown in Fig. 8. Such an offset is obtained by translating
each edge ofGp parallel to itself. The moving edges are shortened or extended to meet
adjacent moving edges in common endpoints. The region between the offset curves
contains all points at distance at most 1/4 from the edges of Gp. In the bend tile, this
region contains also some points of larger distance because an offset of a reflex angle
is formed. The largest distance occurs for the vertex q: it has distance 1/

√
12 from p.

The offset polygons partition the tile into an inner and an outer region. The outer
objects cover the outer region completely. Every point in the outer region is coloured
with the outer colour of the closest edge in Gp. The inner region is mostly empty,
except for the inner objects described in each case below.

We place the origin at the centre p = (0, 0). We describe each tile in one selected
orientation, as shown in Fig. 8; the tiles can be rotated by multiples of π/3. In each
case, we assume that Gp contains the vertical segment from p upwards to (0, 1/2).

The Straight Tile: This is used when two collinear edges meet at p with the same
inner and outer colour. There are four axis-parallel squares of the inner colour of Gp

with side length 1/8 centred at (±(1/4 − 1/16), ±1/4). This size is chosen so that

123

Discrete & Computational Geometry

p1

1
4

1
4

p p

straight inner colour change outer colour change

p
q

b

p a′b′

a

b

c
p

c1

c2

esualchcnarbdneb

Fig. 8 The six kinds of tiles used in the reduction to geometric 3-cut. The dashed coloured lines show
the edges of Gp and their inner and outer colours. The tiles are coloured accordingly. The points in the
clause tile are defined so that ‖ab‖ = ‖a′b′‖ = 0.24 and ‖bc‖ = ‖b′c‖ = 1/4 = 0.25. The point c has

coordinates (x, x/
√
3), where x = 13

√
3/200 + 3/16 −

√
3900

√
3 − 459/400 ≈ 0.1017 is a solution to

10000x2 + (−1300
√
3 − 3750)x + 507 = 0. Rotations by ±2π/3 around p give the remaining points in

the tile. The point c and its images c1, c2 form an equilateral triangle with side length 2x ≈ 0.2034

their total perimeter is 2 and equals the length of the boundary between the inner and
outer regions.

The Inner Colour Change Tile: This is used when two consecutive collinear
edges have different inner colours. In addition to the four squares of the previous
case, there are four smaller axis-parallel squares with side length 1/28 centred at
(±(1/4 − 1/56), ±1/56). Each square is coloured in the inner colour of the closest
point in Gp. The size of the small squares is chosen so that they can be individually
enclosed using fences of total length 2 × 7 × 1/28 = 1/2, which is the width of the
inner region.

The Outer Colour Change Tile: This is used when two consecutive collinear
edges have different outer colours. There are four axis-parallel squares of the inner
colour of Gp with side length 3/32. Their centres are (±(1/4 − 3/64), ±1/4). The
size of these squares is chosen so that their total perimeter is 2 − 1/2 = 3/2.

TheBendTile: If two non-collinear edgesmeet at p, we use a bend tile.We place an
axis-parallel squarewith side length x = (6 + √

3)/72 and centre (−(1/4−x/2), 1/4)
and another with side length y = (6 − √

3)/48 and centre (1/4− y/2, 3/8). We place
symmetric squares across the symmetry line b. One of the outer objects has a concave
corner q with exterior angle 2π/3. We place a parallelogram at this corner, of side
length x , with two edges running along the edges of the outer object. The boundary
between the inner and the outer region has a total length of (1 − √

3/6) + (1 +

123

Discrete & Computational Geometry

√
3/6) = 2. The inner objects are chosen so that the total perimeter of the two small

squares, 8y = 1 − √
3/6, as well as the total perimeter of the three larger objects,

12x = 1+√
3/6, equals the length of the respective boundary on which these objects

abut.
The Branch Tile: This is used when p is a branch vertex. We place axis-parallel

squares of side length y = (6 − √
3)/48 centred at (±(1/4 − y/2), 3/8) and their

rotations around p by angles 2π/3 and 4π/3. The boundary between the inner and
the outer regions has total length of (6 − √

3)/2, and the total perimeter of the inner
objects is also 24y = (6 − √

3)/2.
The Clause Tile: It is used for a clause vertex, and it is described in the caption of

Fig. 8.

4.3 Solving the Tiles Locally

Let an instance I of geometric 3-sat be given together with a fence F . We will
consider the restriction of I to a polygon P , which is a tile or a part of a tile. In this
way, we only have to look at problems of constant size. The part of the fence F ∩ P
inside P can be expressed as a union of (not necessarily disjoint) closed curves and
open curves with endpoints on the boundary ∂P . An open curve must be contained in
a larger closed curve of F that continues outside P .

Note that F ∩ P has the property that if a path π ⊂ P connects two objects in P of
different colour, then π intersects F ∩ P . We call a union of closed and open curves
in P with this property a solution to I ∩ P . Clearly, this is a necessary condition for
a set of curves to be extensible to a fence F for the full instance. In the following, we
analyse the solutions to the tiles defined in Sect. 4.2, and we characterise the solutions
of minimum cost. We say that two closed curves (disjoint from the interiors of the
objects) are homotopic if one can be continuously deformed into the other without
entering the interiors of the objects. Two open curves with endpoints on the boundary
of the tile are homotopic if they can be extended outside the tile to two homotopic
closed curves.

The following lemma characterises the optimal solutions to each type of tile. The
statement is that if a solution is not too much more expensive than the solutions shown
in Fig. 9, then it will contain curves homotopic to each curve in one of the solutions
in the figure.

Lemma 4.4 Figure 9 shows optimal solutions to each kind of tile. The cost in each
case is:

• Straight tile: 2.
• Inner colour change tile: 5/2.
• Outer colour change tile: 2 + (2/

√
3 − 1/2) ≈ 2.65.

• Bend tile: 2.
• Branch tile: (6 − √

3)/2 ≈ 2.13.
• Clause tile: M ≈ 3.51. (The value M is specified inLemma4.5. The exact algebraic
expression is complicated and of no importance.)

123

Discrete & Computational Geometry

Ex

Ey

Ez

Ex

Ey

Ez

Ex

Ey

Ez

Fig. 9 The optimal solutions to each type of tile. The edges inGp are shown in dashed grey. The left solution
to each of the first five types of tiles is the outer solution, and the right solution is the inner solution, as
explained in Fig. 6. For the clause tile, we call the solutions the z-outer, x-outer, and y-outer solutions from
left to right, according to the dominant territory

Moreover, if the cost of a solution F to a tile T exceeds the optimum by less than
1/50, then F is homotopic to one of the optimal solutions F∗ of T in the following
sense: For each curve π∗ in F∗, there is a curve π in F homotopic to π∗. If π∗ is a
closed curve, the distance from any point on π to the closest point on π∗ is less than√

(1/8 + 1/100)2 − (1/8)2 < 0.06. If π∗ is an open curve and π∗ has an endpoint
f ∗, there is a corresponding endpoint f of π with ‖ f ∗ f ‖ < 1/10.

Proof We assume again that the origin is at the centre p = (0, 0) of the tile T , and we
assume that the orientation and colours are as in Fig. 8.

For each tile T , Gp consists of the two or three half-edges of G(�) meeting at
p, and it separates T into two or three pieces. The pieces are two pentagons for the
straight, inner colour change, and outer colour change tiles; a pentagon and a non-
convex heptagon for the bend tile; and three pentagons for the branch and the clause
tiles.

For each tile type except the clause tile, we consider each such piece T ′ separately
and check the minimum cost of a solution to T ′. Since these pieces contain few
objects, it is easy to compute the optimal solutions. For example, consider the simplest
instance: the left half-tile T ′ of the straight tile. The fence runs inside a 1/4 × 1

123

Discrete & Computational Geometry

1
8

< 0.04

Fig. 10 Left: a square of side length 1/8. The red curve encloses all curves of length at most 1/2 + 1/50
that enclose the square. One such curve with maximum deviation from the boundary of the square is drawn
in black. The red curve consists of eight elliptic arcs. Middle and right: a solution to the straight tile in the
outer resp. inner state with a cost that exceeds the optimum by 1/50

rectangle containing two small blue squares. There are two possibilities: The two
blue squares can be in the same connected component of the blue territory or in two
different components. These components may be disjoint from the boundary or touch
the boundary of T ′. In the first case, the fence must contain a closed curve surrounding
the blue object(s) in it. In the second case, the fence is a curve between two boundary
points. In each case, it is easy to calculate (or even to see) what the optimal solution is
and, by comparing all possibilities, one finds that there are the two optimal solutions
shown in the first twopictures of Fig. 9. The solution in the right halfmust be symmetric
to the left half in order to produce a solution to the whole tile T . In a similar way, one
can treat the other tiles. We omit the details, but we will give the full proof for the most
complicated case: the clause tile. Here, it is not true that a solution to the complete tile
can be obtained by combining optimal solutions of the three smaller pieces. As this
proof requires an extensive case analysis, it is deferred to Lemma 4.5.

It turns out that for each piece T ′ of the first five tile types, there are two solutions,
and they are as shown in Fig. 9. One solution corresponds to the outer state and the
other to the inner state. In order to be combined to a solution for all of T , each of
the two or three pieces T ′ needs to be in the same state. Thus, the solutions shown in
Fig. 9 are all the optimal solutions.

By analysing the casesmore carefully, one obtains a stronger claim that any solution
F that is not homotopic to an optimal solution has a cost that exceeds the optimal cost
by more than 1/50. (Again, we give the detailed analysis only for the clause tile in
Lemma 4.5 below.) Consider therefore a solution F whose cost exceeds the cost of a
homotopic optimal solutionF∗ by less than 1/50. In order to decide how muchF can
deviate fromF∗, consider the straight tile as an example, see Fig. 10. In the outer state,
each curve enclosing an inner object has length at least 1/2. Since the total cost is less
than 2 + 1/50, each curve has length less than 1/2 + 1/50. An elementary analysis
gives that a closed curve of length at most 1/2+ 1/50 which encloses a square of side
length 1/8 iswithin distance

√
(1/16 + 1/100)2 − (1/16)2 < 0.04 from the boundary

of the square. For the inner state, consider the curve π ⊂ F in the right side of the tile
that has the inner objects to the left. The length of π has to be less than 1 + 1/50 in
order for the total cost to be less than 2 + 1/50. Note that π has to pass through the
upper right corner (1/4, 5/16) of the upper right square. Therefore, π has to meet the

123

Discrete & Computational Geometry

top edge of T at a point within distance
√

(3/16 + 1/50)2 − (3/16)2 < 0.09 from the
corresponding endpoint (1/4, 1/2) of π∗. The other non-clause tiles are analysed in
a similar way.

The largest possible deviation between a closed curve in F and F∗ appears for
the clause tile, since it contains an inner object with the longest edge of all tiles,
namely a triangle with an edge of length 1/4. This leads to a deviation of less than√

(1/8 + 1/100)2 − (1/8)2 < 0.06. Likewise, the largest possible deviation between
open curves is 1/10, as realised in the clause tile and described in Lemma 4.5. �	

It remains to analyse the optimal solutions of the clause tile. We name objects in
the clause tile as shown in Fig. 11. Indices are taken modulo 3. The optimal solutions
are covered by Case 2.3 in the proof.

Lemma 4.5 The optimal cost of a solution F to a clause tile is M := 3‖d0c0‖ +
6‖e0b0‖ + 4‖a0b0‖ + 2‖b0c0‖ + ‖c0c1‖ ≈ 3.51. Moreover, if the cost is less than

O2
′

O0

O1

′

a2
′a1

a0

b0

I0

I2

c2

b2

a2O2

p

e2

a0
′

I2
′

I0
′

b2
′

d1

d2

b1
I1

c1 c0

e0

O0 d0

e1

O1
′

I1
′

b1
′

a1
′

b0
′

O2
′

O0

O1

′

a2
′a1

a0

b0

I0

I2

c2

b2

a2O2

p

e2

a0
′

I2
′

I0
′

b2
′

d1

d2

b1
I1

c1 c0

e0

O0 d0

e1

O1
′

I1
′

b1
′

a1
′

b
H

F0
′

O2
′

O0

O1

′

a2
′a1

a0

b0

I0

I2

c2

b2

a2O2

p

e2

a0
′

I 2
′

I0
′

b2
′

d1

d2

b1
I1

c1 c0

e0

O0 d0

e1

O1
′

I1
′

b1
′

a1
′

b
H

FH F
0
′

O2
′

O0

O1

′

a2
′a1

a0

b0

I0

I2

c2

b2

a2O2

p

e2

a0
′

I2
′

I0
′

b2
′

d1

d2

b1
I1

c1 c0

e0

O0 d0

e1

O1
′

I1
′

b1
′

a1
′

b0
′

Labels Case 1.1

Case 1.2 (and 1.3) Case 1.4

Fig. 11 Labels used in Lemma 4.5 and illustrations for Case 1

123

Discrete & Computational Geometry

M+1/50, then there is i ∈ {0, 1, 2} such thatF contains the following, not necessarily
disjoint parts (see Fig. 13, Case 2.3 for an illustration of the case i = 0):

• a curve from fi ∈ aia′
i to bi , where ‖ fi ai‖ < 1/10,

• a curve from f ′
i ∈ aia′

i to b
′
i , where ‖ f ′

i a
′
i‖ < 1/10,

• a curve from fi+1 ∈ ai+1a′
i+1 to bi+1, where ‖ fi+1ai+1‖ < 1/10,

• a curve from f ′
i+1 ∈ ai+1a′

i+1 to b
′
i+1, where ‖ f ′

i+1a
′
i+1‖ < 1/10,

• a curve from ci+1 to ci+2,
• a curve from ci to b′

i+2,• a curve from ci+2 to bi+2.

Proof Clearly,F must contain segments di ci , ei bi , and eib′
i+2 on the shared boundary

of two objects of different colour, for i = 0, 1, 2. In total, this amounts to 3‖d0c0‖ +
6‖e0b0‖. In the following, we argue about the fence needed in addition to that, i.e.,
the part ofF contained in the closed 15-gon T ′ = a0a′

0b
′
0c1b1a1a

′
1b

′
1c2b2a2a

′
2b

′
2c0b0.

We characterise how the solution looks when the additional cost in T ′ is at most the
critical threshold

4‖a0b0‖ + 2‖b0c0‖ + ‖c0c1‖ + 0.02 = 4 × 0.24 + 2 × 0.25 + 2x + 0.02 < 1.684,

with the quantity x that was defined in Fig. 8. When we say that the solution must
contain a curve or a tree with certain properties (such as connecting two specific
points), we mean such a curve or tree inside T ′.

We define a domain as a connected component of a territory inside a tile. Two
different domainsmight conceivably be connected outside the tile, butwe are interested
only in the local situation. For this definition, we also do not consider the common
point ei+1 of objects O ′

i and Ii+1 as providing a connection between them. We only
consider connections in T ′. Since a territory is a closed set by definition, the interior
of a domain might be disconnected.

We define the cases by specifying which objects are in the same domain. After
making enough assumptions in one branch of the case analysis, we will conclude that
the solution must connect certain groups of points. In most cases, this allows us to
derive a lower bound on the cheapest solution, which is above 1.684. In the case that
contains the optimal solution, all objects of different colours will be separated, and
then we state what the solutions satisfying the specific assumptions are.

The shortest connection network for a specified set of terminal points is a geodesic
variation of the geometric Steiner tree problem, where the network is constrained to
lie in the region T ′. It is usually easy to restrict the structure of the shortest connection
network to a few possibilities, using geometric criteria such as that an angle less than
2π/3 between incident edges is forbidden unless it is blocked by an object. We will
often refer to the Fermat point F of three given points A, B,C : the point minimising
the sum of distances to the tree points. If all angles in the triangle ABC are less than
2π/3, F lies in the interior of this triangle. The three segments to FA, FB, FC make
equal angles 2π/3 at F and they form the minimal Steiner tree of A, B,C .

Once the combinatorial structure of a potential solution was specified, we have used
the Geogebra software [15] to construct the solution from the geometric constraints

123

Discrete & Computational Geometry

and to estimate its costs numerically, and also for producing the illustrations. We will
report the costs rounded to three digits; this precision is sufficient for the comparisons.

Note first that for i = 0, 1, 2, in order to separate Oi from Ii , the solution must
contain a curve (in T ′) starting at bi that has a length of at least 0.24, and similarly
one from b′

i in order to separate O ′
i from I ′

i . The prefixes of length 0.24 of these six
curves are disjoint. We can therefore charge 0.24 to each bi and b′

i , unless this point
is already connected otherwise. The shortest possible cost of 0.24 arises when bi is
connected to ai and b′

i to a′
i . All possibilities of a different structure (for example,

connecting bi , b′
i with each other or to ci and ci+1, respectively) cost at least 0.25.

In the discussion of the cases it will often happen that an object Ii or I ′
i is in a

different domain than all other objects of the same colour. In this case, we say that Ii
or I ′

i is isolated.

Proposition 4.6

• If the object Ii is isolated, the solution must contain a curve from bi to ci inside
the tile.

• If the object I ′
i is isolated, the solution must contain a curve from b′

i to ci+1 inside
the tile.

Proof If Ii is isolated, it is separated from all other objects in the tile, of whatever
colour. Thus there must be curve between bi and ci within the tile, or two curves that
go from bi and ci to the boundary and continue outside. The second case is excluded by
the following calculation: The shortest connection from ci to the boundary has length
≈ 0.441. To this, we have to add 6×0.24 = 1.44 for connecting b0, b′

0, b1, b
′
1, b2, b

′
2,

and this is far more than 1.684 in total. The statement about I ′
i is analogous. �	

We now start the case distinction.

Case 1: For some i , neither Oi and O ′
i nor Ii and I ′

i are in a domain together.
Without loss of generality, suppose that the condition holds for i = 0. We consider
the solution F restricted to the hexagon H = a0a′

0b
′
0c1c0b0. The condition implies

that the left side a′
0b

′
0c1 must be separated from the right side a0b0c0, and therefore

there must be a connected component F of F ∩ H that connects a0a′
0 and c0c1. The

individual cases are shown in Fig. 11.
Case 1.1: F also separates O0 from I0 and O ′

0 from I ′
0 inside H . Then F contains

b0 and b′
0. The shortest connected system of curves that connects b0, b′

0, a0a
′
0, and

c0c1 is a Steiner minimal tree with vertical edges meeting a0a′
0 and c0c1. There are

two infinite families of such minimal trees: In the tree F shown in Fig. 11, the two
Steiner vertices can be simultaneously shifted along the edges incident to b0 and b′

0.
There is also a symmetric version of these trees. The optimal cost is ≈ 0.874. Adding
the 4 × 0.24 = 0.96 charged to b1, b′

1, b2, b
′
2, we get significantly more than 1.684.

Case 1.2: F separates O0 from I0 inside H , but not O ′
0 from I ′

0. Then F must
contain b0, and it has minimal length if F = a0b0 ∪ b0c0, which costs exactly 0.49.
In addition to that, we have 5× 0.24 = 1.2 charged to b′

0, b1, b
′
1, b2, b

′
2, and the total

is 1.69 > 1.684.
Case 1.3: F separates O ′

0 from I ′
0 inside H , but not O0 from I0. This is symmetric

to Case 1.2.

123

Discrete & Computational Geometry

Case 2.1.1 Case 2.1.2

Case 2.1.3.1 Case 2.1.3.2

O2
′

O0

O1

′

a2
′a1

a0

b0

I0

I2

c2

b2

a2O2

p

e2

a0
′

I2
′

I0
′

b2
′

d1

d2

b1 I1
c1 c0

e0

O0 d0

e1

O1
′

I1
′

b1
′

a1
′

b0
′

O2
′

O0

O1

′

a2
′a1

a0

b0

I0

I2

c2

b2

a2O2

p

e2

a0
′

I2
′

I0
′

b2
′

d1

d2

b1
I1

c1 c0

e0

O0 d0

e1

O1
′

I1
′

b1
′

a1
′

b0
′

O2
′

O0

O1

′

a2
′a1

a0

b0

I0

I2

c2

b2

a2O2

p

e2

a0
′

I2
′

I0
′

b2
′

d1

d2

b1
I1

c1 c0

e0

O0 d0

e1

O1
′

I1
′

b1
′

a1
′

b0
′

O2
′

O0

O1

′

a2
′a1

a0

b0

I0

I2

c2

b2

a2O2

p

e2

a0
′

I2
′

I0
′

b2
′

d1

d2

b1
I1

c1 c0

e0

O0 d0

e1

O1
′

I1
′

b1
′

a1
′

b0
′

Fig. 12 Case 2.1. Each pair Oi , O
′
i is in the same domain, and Ii , I

′
i are in different domains

Case 1.4: F separates neither O0 from I0, nor O ′
0 from I ′

0 inside H . In this
case, F has cost at least ≈ 0.441, which is the distance between a0a′

0 and c0c1, and
F contains neither b0 nor b′

0. In addition, 6 × 0.24 = 1.44 is charged to bi , b′
i , . . .,

which in total is far more than 1.684.

Case 2: For every i , Oi and O ′
i or Ii and I ′

i are in a domain together. We divide
into subcases according to the number c of values of i for which Ii and I ′

i are in the
same domain.

Case 2.1: c = 0. In this case, Oi and O ′
i are in the same domain for each i , and Ii

and I ′
i are in different domains. The subcases are shown in Fig. 12.

Case 2.1.1: For no i , Oi ∪ O ′
i is in a domain with Ii+1 or I ′

i+1. In this case, each
object Ii and I ′

i is isolated. Therefore, by Proposition 4.6, the solution contains curves
from bi to ci and from b′

i to ci+1 for each i . Furthermore, there must be a curve from
bi to b′

i bounding the domain containing Oi ∪O ′
i . It follows that the solution connects

123

Discrete & Computational Geometry

any two of the nine points
⋃2

i=0{bi , b′
i , ci }. The cheapest solution that satisfies this is⋃2

i=0(bi ci ∪ b′
i ci+1 ∪ ci p), which has cost ≈ 1.852 > 1.684. This is in fact the most

expensive of all cases. All other solutions provide only a subset of these connections.
Case 2.1.2: For some i , Oi ∪O ′

i is in a domain with I ′
i+1. Assume without loss of

generality that O0 ∪ O ′
0 is in a domain with I ′

1. The boundary of this domain contains

(a) a curve connecting b′
0 and b′

1, and
(b) a curve connecting b0 and c2.

The mentioned domain separates I ′
0 from the remaining green objects, and I2 and I ′

2
from the remaining blue objects. For this reason, these objects are isolated, and the
solution contains

(c) a curve connecting b′
0 and c1,

(d) a curve connecting b2 and c2, and
(e) a curve connecting b′

2 and c0.

By the combined assumptions of Case 2.1 and 2.1.2, I1 is isolated, and therefore the
solution contains

(f) a curve connecting b1 and c1.

Summarising, it follows that the solution contains

• a component connecting b′
0, c1, b1, b

′
1, by (a), (c), and (f),

• a component connecting b0, c2, b2, by (b) and (d), and
• a component connecting b′

2 and c0, by (e).

These components are not necessarily three distinct components. The optimal solution
under these constraints consists of segments from b1, b′

1, c1 to their Fermat point and
the segments b0c0, b′

0c1, b
′
2c0, c0c2, b2c2, and it has cost ≈ 1.848 > 1.684.

Case 2.1.3: For no i , Oi ∪ O ′
i is in a domain with I ′

i+1, but for some i , Oi ∪ O ′
i

is in a domain with Ii+1. Since each I ′
i is isolated, the solution must connect each

pair b′
i , ci+1. Assume without loss of generality that O0 ∪ O ′

0 is in a domain with I1.
There must be a curve connecting b0 and b1 on the boundary of this domain.

Case 2.1.3.1: O1 ∪ O ′
1 is in a domain with I2. There is a curve bounding this

domain connecting b1 and b2. There is thus a component connecting the three points
b0, b1, b2. The shortest solution that also contains curves between all pairs b′

i , ci+1 is⋃2
i=0(bi p ∪ b′

i ci+1), which has total cost ≈ 1.832 > 1.684.
Case 2.1.3.2: O1 ∪ O ′

1 is not in a domain with I2 (and with I ′
2). There is a curve

from b1 to b′
1, bounding the domain of O1 ∪ O ′

1, and this curve can be continued from
b′
1 to c2, and from c2 to b2 (because of the isolated object I2). Thus, as in the previous
Case 2.1.3.1, but for a different reason, we must have a curve connecting b1 and b2,
and therefore the solution cannot be better than that solution.

The shortest solution that has all necessary connections consists of segments from
b0, b1, c2 to their Fermat point and the segments b′

0c1, b
′
1c2, b2c2, b

′
2c0, and it has cost≈ 1.835 > 1.684. This “optimal solution” violates the assumptions defining this case,

as the domain containing O1 ∪ O ′
1 intersects I2 at the point c2, so they are in the same

domain. This solution actually falls under Case 2.1.3.1. Thus, properly speaking, there
is no optimal solution for Case 2.1.3.2. By modifying the solution near c2, one can

123

Discrete & Computational Geometry

O2
′

O0

O1

′

a2
′a1

a0

b0

I0

I2

c2

b2

a2O2

p

e2

a0
′

I2
′

I0
′

b2
′

d1

d2

b1 I1
c1 c0

e0

O0 d0

e1

O1
′

I1
′

b1
′

a1
′

b0
′

O2
′

O0

O1

′

a2
′a1

a0

b0

I0

I2

c2

b2

a2O2

p

e2

a0
′

I2
′

I0
′

b2
′

d1

d2

b1
I1

c1 c0

e0

O0 d0

e1

O1
′

I1
′

b1
′

a1
′

b0
′

O2
′

O0

O1

′

a2
′a1

a0

b0

I0

I2

c2

b2

a2O2

p

e2

a0
′

I2
′

I0
′

b2
′

d1

d2

b1 I1
c1 c0

e0

O0 d0

e1

O1
′

I1
′

b1
′

a1
′

b0
′

O2
′

O0

O1

′

a2
′a1

a0

b0

I0

I2

c2

b2

a2O2

p

e2

a0
′

I2
′

I0
′

b2
′

d1

d2

b1
I1

c1 c0

e0

O0 d0

e1

O1
′

I1
′

b1
′

a1
′

b0
′

Case 2.1.1 and 2.2.3 Case 2.2.2

Case 2.3 (the optimal case) Case 2.4

Fig. 13 Cases 2.2.1–2.4: I0 and I ′0 are in the same domain

obtain solutions for this case that are arbitrarily close to the infimum, but the infimum
is not attained.

Case 2.2: c = 1. Assume without loss of generality that I0 and I ′
0 are in the same

domain, but I1 and I ′
1 are in different domains, and so are I2 and I ′

2. By the assumption
of Case 2, we also know that O1 and O ′

1 are in the same domain, as are O2 and O ′
2.

The domain of I0 ∪ I ′
0 separates O0 and O ′

0 from I1 and I ′
1, so I1 and I ′

1 are isolated,
and the solution must contain a curve connecting b1 and c1 and one connecting b′

1
and c2.

In order to separate I0 ∪ I ′
0 from O0 and O ′

0, the solution either contains a curve
from b0 to b′

0 or curves from b0 and b′
0 to the boundary segment a0a′

0. We consider
the latter option, which is 0.02 cheaper. It will follow from the analysis that even this
is too expensive to get below M + 0.02. The alternative choices of connecting b0 and
b′
0 also do not interfere with the optimal connections between the remaining points.
The individual cases are shown in Fig. 13.

123

Discrete & Computational Geometry

Case 2.2.1: O1 ∪ O ′
1 is not in a domain with I2 or I ′

2. The solution contains a
curve from b1 to b′

1 bounding the domain containing O1 ∪ O ′
1. In addition, since I2

and I ′
2 are isolated, there must be curves between b2 and c2 and between b′

2 and c0.
It follows that the solution contains a tree connecting b1, c1, c2, b′

1, b2. The cheapest
such solution is a0b0 ∪ a′

0b
′
0 ∪ b1c1 ∪ c1c2 ∪ b′

1c2 ∪ b2c2 ∪ b′
2c0, which has cost

M + 0.02. The difference to the optimal solution of Case 2.3 is that the two segments
b1a1 and b′

1a
′
1 of length 0.24 are replaced by b1c1 and b

′
1c2, each of length 0.25. This

“second-best” solution is the reason we have chosen the threshold 0.02 in the lemma.
Note that the domain containing O1 ∪ O ′

1 intersects I2 at the point c2. We have the
same situation as above in Case 2.1.3.2: The “optimal solution” can be obtained as a
limit of solutions that fall under Case 2.2.1, but the limit itself violates the assumptions
defining this case. This solution actually belongs to Case 2.2.3, and we will revisit it
there.

Case 2.2.2: O1∪O ′
1 is in a domain with I ′

2. The solution contains a curve connect-
ing b1 and c0 and one connecting b′

1 and b′
2 bounding that domain. It also contains a

curve connecting b2 and c2, since I2 is isolated. The optimal solution consists of seg-
ments from b2, b′

2, c2 to their Fermat point and segments a0b0, a′
0b

′
0, b1c1, b

′
1c2, c0c1,

and it has cost ≈ 1.831 > 1.684.
Case 2.2.3: O1 ∪ O ′

1 is in a domain with I2. The solution contains a curve con-
necting b1 and b2, and one connecting b′

2 and c0, since I ′
2 is isolated. In the cheapest

solution, the domain containing O1 ∪ O ′
1 ∪ I2 collapses to zero width at c2, and the

solution was described in Case 2.2.1.
Case 2.3: c = 2. Assume without loss of generality that I0 and I ′

0 are in the
same domain, as are I1 and I ′

1. Furthermore, I2 and I ′
2 are separated, but O2 and O ′

2
are together. As in Case 2.2, we assume that b0, b′

0, b1, b
′
1 are all connected to the

boundary. Otherwise, the cost of the solution will increase by at least 0.02, and as the
analysis will show, that is too much to stay below M + 0.02. The domain containing
I1 ∪ I ′

1 separates O1 and O ′
1 from I2 and I ′

2. It follows that I2 and I ′
2 are isolated,

and the solution connects b2 with c2 and b′
2 with c0. Likewise, the domain containing

I0 ∪ I ′
0 separates O0 and O ′

0 from I1 and I ′
1. Hence, the boundary of the domain

containing I1 ∪ I ′
1 contains a curve connecting c1 and c2. The cheapest solution is

a0b0 ∪ a′
0b

′
0 ∪ a1b1 ∪ a′

1b
′
1 ∪ b2c2 ∪ b′

2c
′
0 ∪ c1c2, as shown in Fig. 13, and the cost is

M . This is the best solution among all cases.
The segment a0b0 can be substituted by a curve from f0 ∈ a0a′

0 to b0, while keeping

the cost below M + 0.02, if and only if ‖ f0a0‖ <
√

(0.24 + 0.02)2 − 0.242 = 0.1.
Likewise for the other segments with an endpoint on the boundary of T . These are
exactly the solutions described in the lemma.

Case 2.4: c = 3. The cheapest way to connect the points bi and b′
i is to connect all

of them to the boundary. Furthermore, the solution contains a curve connecting ci and
ci+1 for each i , bounding the domain containing Ii ∪ I ′

i . The cheapest such solution

is
⋃2

i=0(aibi ∪ a′
i b

′
i ∪ ci p) as shown in Fig. 13, which has cost 1.792 > 1.684. �	

Theorem 4.7 The problem geometric 3-cut is NP-hard.

Proof Let an instance (�,G(�)) of colouredtrigid positive 1-in-3-sat be given
and construct the tiles on top of G(�) as described. Let T be the set of tiles andA the

123

Discrete & Computational Geometry

area that the tiles cover (i.e.,A is a union of the hexagons). We will cover any holes in
Awith completely red tiles, and place red tiles all the way along the exterior boundary
of A. Let R be the set of these added red tiles and let I be the resulting instance of
geometric 3-cut. It is now trivial how to place the fences in I everywhere except in
the interior of A.

Consider a fence F to the obtained instance with cost M . Let M∗ be the sum of
the cost of an optimal solution to each tile in T plus the cost of the fence that must be
placed along the boundaries of the added red tiles inR.We claim that if� is satisfiable,
then a solution realising the minimum M∗ exists. Furthermore, if M < M∗ + 1/50,
then � is satisfiable.

Suppose that � is satisfiable and fix a satisfying assignment. Consider a clause tile
where Ex , Ey , and Ez meet. Now, we choose the v-outer state, where v ∈ {x, y, z} is
the variable that is true. For each non-clause tile that covers a part of Ew for a variable
w of �, we choose the outer state if w is true and the inner otherwise. It is now easy
to see that the curves form a fence of the desired cost.

On the other hand, suppose that M < M∗ + 1/50. It follows that in each tile in
T , the cost exceeds the optimum by at most 1/50. Hence, the solution in each tile
is homotopic to one of the optimal states as described in Lemma 4.4. We now claim
that the states of all tiles representing one variable must agree on either the inner or
outer state. Consider two adjacent tiles where one is in the inner state. There are open
curves with endpoints on the shared edge of the two tiles with a distance of more
than 1/2 − 2 · 1/10 = 3/10. The other tile cannot be in the outer state, because then
there would have to be an extra open curve of length at least 3/10 to connect those
endpoints. It follows that the other tile must also be in the inner state. Thus, both tiles
are either in the inner or in the outer state, as desired.

We now describe how to obtain a satisfying assignment of�. Consider a clause tile
where Ex , Ey , and Ez meet and suppose the tile is in the x-outer state. It follows from
the above that each tile covering Ex is in the outer state or, in the case of the clause
tile, in the x-outer state. Similarly, each non-clause tile covering only Ey (resp. Ez)
is in the inner state and each clause tile covering a part of Ey (resp. Ez) is not in the
y-outer (resp. z-outer) state. We now set x to true and y and z to false and do similarly
with the other clause tiles, and it follows that we get a solution to �.

So far, we have described the construction geometrically. Since regular hexagons
are involved, this requires irrational coordinates.Wewill now approximate each object
O from inside by an object O ′ with rational coordinates. For this purpose, we replace
every corner v by a substitute v′ ∈ O with ‖vv′‖ < 1/(200n). See Fig. 14 for an
example. If v is a concave corner, like v3 in the example, we require that the closest
point to v′ on the boundary should be the point v. This restricts v′ to an angular region
between two normals to the edges incident to v.

Since the objects in our instance have no sharp angles (the smallest angle b0c0e0 ≈
24◦ occurs in the clause tile) and there is only one concave angle of size 2π/3, namely
in the bend tile, there is plenty of room for choosing the points v′, and it is easy to
find points with small rational coordinates. In fact, we can choose all coordinates be
multiples of 1/(2000n), so that they require only logarithmically many bits.

This results in an instance I ′ where all objects are subsets of corresponding objects
in I . LetC andC ′ be the cost of the optimal solutions to I and I ′, respectively, and note

123

Discrete & Computational Geometry

v0

v1

v2

q3 = v3 = p3

v′
0

v′
1

v′
2

v′
3

p1
q1

E 0

p0

q0 p2

q2

E 1

E 2E 3

O

O′

1
200 n

1
200 n

Fig. 14 An object O and an inner approximation O ′ ⊂ O

thatC ′ ≤ C , as any solution to I is also a solution to I ′.We claim thatC < C ′+1/100.
To prove this, consider a solution F ′ to I ′. If F ′ contains parts in the interior of an
object O of I , we move these parts to the boundary of O as follows.

Let O ′ ⊆ O be the object in I ′ corresponding to O , see Fig. 14. Let v0, . . . , vk−1
be the vertices of O in clockwise order and v′

0, . . . , v
′
k−1 the corresponding vertices

of O ′. In the following, indices will be taken modulo k. For each point v′
i , define the

closest point pi on vi−1vi and the closest point qi on vivi+1. With these points, we
form quadrilateral edge regions Ei := vivi+1 pi+1qi+1.

We now describe the modification we make on F ′ in order to avoid O . If F ′
intersects some edge region Ei , we project each point in F ′ ∩ Ei to the closest point
on vivi+1. This does not increase the length of the curve. However, thismay disconnect
the fence when it winds around a corner between v′

i and vi . For this purpose, we add a
cap pivi ∪vi qi around each convex vertex vi . Parts of the fenceF ′ close to the corners
which are inside O but not in one of the edge regions Ei are simply discarded. The
caps ensure that no connectivity is lost. We perform these operations for every object.

The modifications of F ′ made to avoid the objects of I do not increase the length,
except for the added caps, which have total length less than n × 1/(100n) = 1/100.
Hence, C < C ′ + 1/100.

Let M ′ := �100M∗�/100, so that M ′ is rational and M∗ ≤ M ′ < M∗ + 1/100.
We conclude by observing that if C ′ ≤ M ′, then C < C ′ + 1/100 < M ′ + 1/100 <

M∗ + 1/50, and thus � is satisfiable. On the other hand, if � is satisfiable, then
C ′ ≤ C = M∗ ≤ M ′. We can thus tell whether � is satisfiable or not by evaluating
whether C ′ ≤ M ′. �	

5 Approximation Algorithm

The approach for k = 2 from Sect. 3 does not extend to k ≥ 3 because Lemma 3.1
does not apply: The arrangementA (formed by the free segments between the corners
N of the input objects) is no longer guaranteed to contain an optimal fence, see Fig. 2.

123

Discrete & Computational Geometry

However, we can follow the approach of Sect. 3 and still hope to get an approximate
solution in A: We show that the optimal fence FA contained in A has a cost which
is at most 4/3 times higher than the true optimal fence F∗ (Sect. 5.1). We construct
a corresponding lower-bound example with |FA| > 1.15 · |F∗|. (This factor is the
conjectured Steiner ratio, see Sect. 5.2.)

This reduces the problem to a graph-theoretic problem: the coloured multiterminal
cut problem in the weighted dual graph G = (V , E) ofA. We have terminals of k ≥ 3
different colours and want to make a cut that separates every pair of terminals of
different colours. This problem is NP-hard, but we can use approximation algorithms,
see Sect. 5.3.

5.1 Upper Bound |FA|/|F∗| ≤ 4/3

Theorem 5.1 |FA| ≤ 4/3 · |F∗|.
Proof By Lemmas 2.1 and 2.2, we know that after cutting an optimal fence F∗ at all
points of N , the remaining components are Steiner minimal trees with leaves in N
and internal Steiner vertices of degree 3, where three segments make angles of 2π/3.
Consider such a Steiner tree T (Fig. 15a). Since T is embedded in the plane, the leaves
can be enumerated in cyclic order as v1, . . . , vm . We will replace T by a connected
system T̄ of fences that connects the same set of leaves v1, . . . , vm , but contains only
segments from the arrangementA. Furthermore, we prove that the total length of T̄ is
bounded as |T̄ | ≤ 4|T |/3. Thus, carrying out this replacement for every Steiner tree
leads to the fence FA of the desired cost. If T consists of a single segment, we define
T̄ to be the same segment, in which case trivially |T̄ | ≤ 4|T |/3. Assume therefore
that T has at least one Steiner vertex.

Let Ti j be the path in T from vi to v j . For each pair {i, j}, we define the path T̄i j
as the shortest path with the properties that

(a) T̄i j has endpoints vi and v j , and
(b) T̄i j is homotopic to Ti j : this means that Ti j can be continuously deformed into T̄i j

while keeping the endpoints fixed at vi and v j , without entering the interiors of
the objects.

It is clear that

(c) T̄i j is contained in the arrangement A, and
(d) T̄i j is at most as long as Ti j .

We will construct T̄ as the union of paths T̄i j that are specified by a certain set S of
leaf pairs {i, j}, and we will show that its total length is bounded, |T̄ | ≤ 4|T |/3. The
fact that FA is a valid fence is ensured by our choice of the set S, which we will now
discuss.

If we overlay all paths Ti j for {i, j} ∈ S, we get a multigraph T̃ , which has the
same vertices as T and uses the edges of T , some of them multiple times. We require
these three properties:

1. Every edge of T is used once or twice in T̃ .

123

Discrete & Computational Geometry

T̄35

T
T̄24

T̄15

(a) (b)

v1

v2

v3

v4v5

v1

v2

v3

v4v5

Fig. 15 a Steiner tree T with five terminals v1, . . . , v5, which is part of a larger fence system F∗. Steiner
vertices are white, leaves are black. b The transformed graph T̄ , formed as the union of three shortest
homotopic paths T̄15, T̄24, and T̄35

2. Every Steiner vertex of T has even degree (4 or 6) in T̃ . (By contrast, the degree
in T is always 3.)

3. Any two paths Ti j and Ti ′ j ′ with {i, j}, {i ′, j ′} ∈ S that have a point of T in com-
mon must cross in the following sense: If we assume, by relabelling if necessary,
that i < j and i ′ < j ′, then i ≤ i ′ ≤ j ≤ j ′ or i ′ ≤ i ≤ j ′ ≤ j .

If the multigraph T̃ is indeed constructed as the overlay of paths Ti j , property 2. is a
consequence of 1. We will in fact construct the set S of pairs indirectly, through the
multigraph T̃ . We will show that, once properties 1. and 2 . are fulfilled by T̃ , we can
represent T̃ as a union of a family of paths Ti j for which 3. holds.

Let us discuss property 3. Two paths that share a common endpoint cross always.
Thus, 3. poses a constraint only when the two paths have four distinct endpoints
altogether. Property 3. is important to ensure that T̄ is indeed connected, and that
replacing T by T̄ results in a valid fence. Although this is intuitively obvious, we
could not come up with a short and elegant argument. We use the following lemma
and its corollary, whose proofs are given later on. For a path P and points x, y ∈ P , we
denote by P[x, y] the subpath of P from x to y. To make this notation unambiguous
even if P is not simple, we will assume that the points x, y are associated to particular
parameter values along the parameterisation of P .

Lemma 5.2 Suppose that the paths Ti j and Ti ′ j ′ cross in the sense of 3. Then there
exists a point x̄ ∈ T̄i j ∩ T̄i ′ j ′ such that the path

T̄i j [v j , x̄] ∪ T̄i ′ j ′ [x̄, vi ′]

is homotopic to the path Tji ′ .

Corollary 5.3 For any two leaves vi and v j , where the pair {i, j} is not necessarily in
S, the set T̄ contains a path from vi to v j that is homotopic to the path Ti j .

As a consequence, after replacing T by T̄ in F∗, we get a system of fences F ′ that
encloses and separates the same objects as F∗, and thus we have indeed produced a
valid fence.

123

Discrete & Computational Geometry

Proof of Corollary 5.3 Let the vertices of Ti j be x0, x1, . . . , xp+1 in order such that
x0 := vi and xp+1 := v j . For each m = 0, 1, . . . , p, we select, by property 1., a
path Tkmlm with {km, lm} ∈ S that goes through the directed edge xmxm+1 on the way
from vkm to vlm . This leads to a sequence of paths Tk0l0 , Tk1l1 , . . . , Tkplp , where k0 = i ,
l p = j , and any two successive paths Tkm−1lm−1 and Tkmlm have the point xm in common,
and hence cross, by property 3. Lemma 5.2 implies that also the corresponding paths
T̄km−1lm−1 and T̄kmlm have a common point x̄m such that

Ūm := T̄km−1lm−1[vlm−1 , x̄m] ∪ T̄kmlm [x̄m, vkm]

is homotopic to Um := Tlm−1km . Now, define the paths

W := Tk0l0 ∪U1 ∪ Tk1l1 ∪U2 ∪ . . . ∪Up ∪ Tkplp and

W̄ := T̄k0l0 ∪ Ū1 ∪ T̄k1l1 ∪ Ū2 ∪ . . . ∪ Ūp ∪ T̄kpl p .

The path W is homotopic to Ti j , as it has the same endpoints and is obtained by
joining paths in the simple tree T . Also,W and W̄ are homotopic, as the corresponding
subpaths are homotopic. The path W̄ is thus homotopic to Ti j , and W̄ is contained in
T̄ , so we are done. �	
Proof of Lemma 5.2 We first describe how Ti j can be continuously deformed into T̄i j
while remaining a polygonal path, moving one vertex at a time. We denote by T̂i j the
current path during this deformation procedure.

Consider the case that T̂i j has a vertex b which is not in the set of corners N . Let
a and c be the neighbouring vertices. We then move b towards c, thus shortening the
edge bc while the edge ab sweeps over a region in the plane. If ab hits the corner of an
object, T̂i j gets a new vertex a′ at this point. The segment aa′ will then remain static,
and we continue the movement of b with a′ taking the role of a. When b eventually
reaches c, the number of vertices of T̂i j that are not in N has decreased by 1.We repeat
this process of contracting edges as long as there is a vertex not in N . Note that it is
possible that the path crosses itself during the deformation, or it may have a vertex
where it turns 180◦ back on itself. Such a vertex is known as a spur, and it can be
easily eliminated by moving it to the closest adjacent vertex.

(For establishing Theorem 5.1, we could already stop the deformation procedure as
soon as all vertices of T̂i j are in N and T̂i j is free of spurs, because T̂i j is contained in
A and is at most as long as Ti j , thus satisfying properties (c) and (d).) If T̂i j is not yet
the shortest homotopic path, it must contain three consecutive vertices abc such that
the angle at b contains no object. In this case we can start the same deformation move
from b towards c as above. Temporarily, the vertex b is an additional vertex not in
N , but after the move, T̂i j is again a path connecting vertices of N . Since the number
of such paths that are not longer than the initial path Ti j is finite, the procedure must
eventually terminate with the shortest homotopic path T̄i j .

We successively apply this procedure to the pairs i j and i ′ j ′. We still have to prove
the existence of a point x̄ ∈ T̄i j∩T̄i ′ j ′ with the property stated in the lemma.We assume
that the four corners vi , v j , vi ′ , v j ′ are distinct because otherwise the statement follows
easily if we choose a shared endpoint as x̄ .

123

Discrete & Computational Geometry

The proof uses that fact that the number of crossings between the paths T̂i j and
T̂i ′ j ′ can only change by an even number during a deformation. The definition of a
crossing requires some care, as the paths may share segments. Assume that T̂i j is the
path that is currently being deformed, while T̂i ′ j ′ is either the initial path Ti ′ j ′ or the
final deformed path T̄i ′ j ′ .

Orient the paths T̂i j and T̂i ′ j ′ arbitrarily. Consider a maximal subpath Q that is
shared between T̂i j and T̂i ′ j ′ , possibly in opposite directions. If T̂i j enters and leaves
Q on the same side of T̂i ′ j ′ , we say that T̂i j touches T̂i ′ j ′ at Q. Otherwise, T̂i j and
T̂i ′ j ′ form a crossing at Q. Here it is important that T̂i ′ j ′ has no spurs, since at a spur,
the side on which T̂i j enters or leaves T̂i ′ j ′ is ill-defined. If Q contains an endpoint
q of one of the paths, we extend this path into the interior of the object in order to
determine the side of T̂i ′ j ′ on which T̂i j enters or leaves Q at q.

A crossing Q of T̂i j and T̂i ′ j ′ is a homotopic crossing if it has the desired property
for the lemma, namely that T̂i j [v j , x̂] ∪ T̂i ′ j ′ [x̂, vi ′] for x̂ ∈ Q is homotopic to Tji ′ .
Clearly, this does not depend on the choice of x̂ ∈ Q, because Q is represented by a
connected interval of parameters, both on T̂i j and T̂i ′ j ′ .

When T̂i j is deformed by moving one vertex at a time, as described above, it is
easy to see that crossings can only appear or disappear in pairs: It is not possible for
a crossing Q to appear or disappear by T̂i j sliding over an endpoint q ′ of T̂i ′ j ′ , since
that would require T̂i j to enter the interior of the object with q ′ on the boundary.

Furthermore, a pair of crossings Q1, Q2 that appear or disappear will either both
be homotopic crossings or non-homotopic crossings: At the moment when the pair
appears or disappears, the loop formed by the subpaths of T̂i j and T̂i ′ j ′ between Q1
and Q2 is empty and thus contains no objects. Therefore, if x̂1 ∈ Q1 and x̂2 ∈ Q2,
the paths T̂i j [v j , x̂1] ∪ T̂i ′ j ′ [x̂1, vi ′] and T̂i j [v j , x̂2] ∪ T̂i ′ j ′ [x̂2, vi ′] are homotopic.

During the deformation of T̂i j , each crossing Q can move back and forth on T̂i ′ j ′ ,
expand and shrink. However, it is clear that its character (homotopic versus non-
homotopic) does not change during the deformation.

The initial number of crossings is 1, and the single crossing Q is a homotopic
crossing, since Tji ′ can be realized as a path T̂i j [v j , x̂]∪ T̂i ′ j ′ [x̂, vi ′] for x̂ ∈ Q. Hence
the number of homotopic crossings of T̄i j and T̄i ′ j ′ is odd, and in particular positive,
which establishes the claim. �	

To bound the length of T̄ , we bound each path T̄i j , {i, j} ∈ S, by the corresponding
path Ti j in T . This upper estimate is simply the total length of T plus the length of the
duplicated edges of T .

Asmentioned above, we start by constructing themultigraph T̃ . By property 1., this
boils down to selecting which edges of T to duplicate. In order to fulfil property 2., we
require that the degree of every inner vertex of T̃ becomes even. We now analyse this
task from a purely combinatorial viewpoint. We show in the end that this is sufficient
to ensure that the edges of T̃ can be partitioned into paths Ti j such that 3. holds.

Lemma 5.4 The edges that should be duplicated can be chosen so that their total
length is at most |T |/3.

123

Discrete & Computational Geometry

u

v

u

v

L
R

Fig. 16 A subtree U rooted at u and two possible solutions. The first solution is considered for computing
U1 and the second one for U2

Proof For a particular tree, the optimum can be computed easily by dynamic program-
ming, as follows. We root T at some arbitrary leaf. Consider a subtree U rooted at
some vertex u of T such that u has one child v in U , see Fig. 16. We define U1 and
U2 as the cost of the optimal set of duplicated edges in U , under the constraint that
the multiplicity of the edge uv in T̃ is 1 and 2, respectively. By induction, we will
establish that

2U1 +U2 ≤ |U |. (1)

This gives min {U1,U2} ≤ |U |/3 and proves the lemma, since this also holds for
U = T . In the base case, U has only one edge. Then U1 = 0 and U2 = ‖uv‖ = |U |,
and (1) holds.

If U is larger, v has degree 3, and two subtrees L and R are attached there. If uv is
not duplicated, then exactly one of the other edges incident to v has to be duplicated in
order for v to get even degree in T̃ . On the other hand, if uv is duplicated, then either
both or none of the other edges should be duplicated. Hence, we can compute U1 and
U2 by the following recursion:

U1 = min {L1 + R2, L2 + R1}, (2)

U2 = min {L1 + R1, L2 + R2} + ‖uv‖. (3)

We therefore get

U1 ≤ L2 + R1, U1 ≤ L1 + R2, (4)

from (2) and

U2 ≤ L1 + R1 + ‖uv‖ (5)

from (3). Adding inequalities (4) and (5) and using the inductive hypothesis (1) for L
and R gives

123

Discrete & Computational Geometry

Fig. 17 The core (left) and repeated (right) construction for the proof of Lemma 5.5

2U1 +U2 ≤ 2L1 + L2 + 2R1 + R2 + ‖uv‖ ≤ |L| + |R| + ‖uv‖ = |U |.

The bound |T |/3 in Lemma 5.4 cannot be improved, as shown by the graph K1,3
with 3 edges of unit length. This graph can appear as a Steiner tree in an optimal
fence, see Fig. 17. (But this does not mean that the factor 4/3 in Theorem 5.1 cannot
be improved.)

We now have amultigraph T̃ where every internal vertex has even degree. It follows
that the edges of T̃ can be partitioned into leaf-to-leaf paths, much like when creating
an Eulerian tour in a graph where all vertices have even degree. The endpoint pairs of
these paths constitute the set S of leaf pairs.

We still need to satisfy property 3. Whenever two paths P1 and P2 violate this
property, we repair this by swapping parts of the paths, without changing the number
of remaining violating pairs, as follows: The paths P1 and P2 have a common vertex,
and thus also a common edge uv, because themaximumdegree in T is 3. Orient P1 and
P2 so that they use this edge in the direction uv, and cut them at v into P1 = Q1 · R1
and P2 = Q2 · R2. We now make a cross-over at v, forming the new paths Q1 · R2 and
Q2 · R1. These new paths satisfy 3. To check that we did not create any new violations,
we observe that, by property 1., no other path can use the edge uv, because the capacity
of 2 is already used up by P1 and P2. Thus, all other paths can either interact with Q1
and Q2, or with R1 and R2. Swapping the parts of P1 and P2 in the other half of the
tree T does not affect property 3. We have thus established Theorem 5.1. �	

5.2 Lower Bound on |FA|/|F∗|

We believe that the bound 4/3 of Theorem 5.1 on the approximation factor can be
improved: We have bounded |T̄i j | crudely by |Ti j |, using only the triangle inequality,
and we did not use at all the fact that edges meet at angles of 2π/3.

We establish a lower bound of roughly 1.15 by constructing an example. Gilbert
and Pollak [13] conjectured that for any set of points in the plane, the ratio between
the length of a minimum spanning tree and the length of a minimum Steiner tree is
at most 2/

√
3 ≈ 1.15, which is realised by the corners of an equilateral triangle. The

current best upper bound is 1.21 by Chung and Graham [8]. We show a lower bound
on the ratio |FA|/|F∗| that corresponds to the conjectured Steiner ratio.

123

Discrete & Computational Geometry

Lemma 5.5 For every ε > 0, there is an instance ofgeometric 3-cut for which

|FA|
|F∗| ≥ 2√

3
− ε > 1.15 − ε.

Proof The core idea is shown in Fig. 17: Three very thin rectangles in different colours
form an equilateral triangle with side length

√
3. The optimal fence uses the centre

of the triangle as a Steiner vertex, whereas the fence FA is restricted to follow the
triangle edges. Considered in isolation, this example gives only a ratio |FA|/|F∗| ≈
4
√
3/(3 + 2

√
3) ≈ 1.07, because the outer boundary edges, which are common to

both fences, “dilute” the ratio. So we set k = 1/ε, and repeat the construction k × k
times. We get |F∗| = 2k2 · 3 + 2k · √3, versus |FA| = 2k2 · 2√3 + 2k · √

3. �	

5.3 Finding a Good Fence inA

As in Sect. 3, the restriction to A reduces the optimal fence problem to a graph-
theoretic problem of finding a best multicut in a planar graph. We apply results from
the literature.

The problem of finding a small cut in a planar graph G = (V , E) that separates
k different classes T1, . . . , Tk ⊂ V of terminals was mentioned as a suggestion for
future work by Dahlhaus et al. [9], but we have not found any subsequent work on that
except for the case k = 2 [4]. We can, however, reduce the problem to the multiway
cut problem in general graphs (also known as the multiterminal cut problem): For
each class Ti , we add an “apex vertex” ti which is connected to all vertices in Ti
by edges of infinite weight. We then ask for the cut of minimum total weight that
separates each pair ti , t j . Dahlhaus et al. showed the problem to be APX-hard for
k ≥ 3 and gave a simple (2−2/k)-approximation algorithm. The approximation ratio
was later improved to 3/2 − 1/k (expected) by Călinescu et al. [6]. Their algorithm
is based on a geometric LP relaxation of the problem and an appropriate randomised
rounding scheme. Successive refinements of the rounding scheme have brought down
the ratio further: the currently best one is 1.2965, due to Sharma and Vondrák [21],
and it has been verified only by computer. A slightly worse hand-verified ratio of
297/229 ≈ 1.29694 was given by Buchbinder et al. [5]. For specific values of k the
best known ratios are due to Karger et al. [16]. Finally, it is worth noting that, under the
Unique Games Conjecture, the integrality gap of the LP of Călinescu et al. has been
shown to be a lower bound for the approximation ratio for the multiway cut problem
by Manokaran et al. [18]; the best known value for the integrality gap is 1.20016− ε,
for any ε > 0, due to Bérczi, Chandrasekaran et al. [3].

Together with Theorem 5.1, we obtain the following result.

Theorem 5.6 There is a polynomial-time randomised 4/3 · 1.2965-approximation
algorithm for geometric k-cut.

123

Discrete & Computational Geometry

6 Concluding Remarks

We have initiated the study of the geometric multicut problem. As our NP-hardness
reduction does not imply APX-hardness, an interesting open question is whether there
exists a (1 + ε)-approximation algorithm for any ε > 0.

There are other versions of the problemwhich could also be interesting to study. For
example, apart from considering shortest paths in the plane, much attention has also
been paid to minimum-link paths, i.e., paths connecting two points and consisting of
a minimum number of line segments. The analogous problem in our setup is likewise
interesting: Compute a simplest possible fence, i.e., one that is the union of as few line
segments as possible. The fence can be required to be disjoint from the object interiors,
or it can be allowed to pass through the objects, leading to two different problems.

Acknowledgements Open Access funding provided by Projekt DEAL. This work was initiated at the
workshop on Fixed-Parameter Computational Geometry at the Lorentz Center in Leiden in May 2018.
We thank the organisers and the Lorentz Center for a nice workshop and Michael Hoffmann for useful
discussions during it. We thank Charalampos Angelidakis for information about the state of the art in the
multicut problem for graphs.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abrahamsen, M., Adamaszek, A., Bringmann, K., Cohen-Addad, V., Mehr, M., Rotenberg, E., Royt-
man, A., Thorup, M.: Fast fencing. In: 50th Annual ACM SIGACT Symposium on Theory of
Computing (Los Angeles 2018), pp. 564–573. ACM, New York (2018)

2. Abrahamsen, M., Giannopoulos, P., Löffler, M., Rote, G.: Geometric multicut. In: 46th International
Colloquium on Automata, Languages, and Programming. Leibniz International Proceedings in Infor-
matics, vol. 132, # 9. Leibniz-Zent. Inform., Wadern (2019)

3. Bérczi, K., Chandrasekaran, K., Király, T., Madan, V.: Improving the integrality gap for multiway cut.
In: Integer Programming and Combinatorial Optimization—20th International Conference. Lecture
Notes in Comput. Sci., vol. 11480, pp. 115–127. Springer, Cham (2019)

4. Borradaile, G., Klein, P.N., Mozes, S., Nussbaum, Y., Wulff-Nilsen, Ch.: Multiple-source multiple-
sink maximum flow in directed planar graphs in near-linear time. SIAM J. Comput. 46(4), 1280–1303
(2017)

5. Buchbinder, N., Schwartz, R., Weizman, B.: Simplex transformations and the multiway cut problem.
In: 28th Annual ACM-SIAM Symposium on Discrete Algorithms (Barcelona 2017), pp. 2400–2410.
SIAM, Philadelphia (2017)

6. Călinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for MULTIWAY CUT.
J. Comput. Syst. Sci. 60(3), 564–574 (2000)

7. Chazelle, B., Edelsbrunner, H.: An optimal algorithm for intersecting line segments in the plane. J.
Assoc. Comput. Mach. 39(1), 1–54 (1992)

8. Chung, F.R.K., Graham, R.L.: A new bound for Euclidean Steinerminimal trees. In: DiscreteGeometry
and Convexity (New York 1982). Ann. New York Acad. Sci., vol. 440, pp. 328–346. New York Acad.
Sci., New York (1985)

123

http://creativecommons.org/licenses/by/4.0/

Discrete & Computational Geometry

9. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of
multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

10. Eades, P., Rappaport, D.: The complexity of computingminimum separating polygons. PatternRecogn.
Lett. 14(9), 715–718 (1993)

11. Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing Steiner minimal trees. SIAM
J. Appl. Math. 32(4), 835–859 (1977)

12. Gawrychowski, P., Karczmarz, A.: Improved bounds for shortest paths in dense distance graphs. In:
45th International Colloquium on Automata, Languages, and Programming. Leibniz International
Proceedings in Informatics, vol. 107, # 61. Leibniz-Zent. Inform., Wadern (2018)

13. Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16, 1–29 (1968)
14. Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images.

J. R. Stat. Soc. Ser. B (Methodological) 51(2), 271–279 (1989)
15. Hohenwarter,M., Borcherds,M.,Ancsin,G., Bencze, B., Blossier,M.,Delobelle,A.,Denizet, C., Éliás,

J., Fekete, A., Gál, L., Konečný, Z., Kovács, Z., Lizelfelner, S., Parisse, B., Sturr, G.: GeoGebra 5.0
(2018). http://www.geogebra.org

16. Karger, D.R., Klein, P., Stein, C., Thorup, M., Young, N.E.: Rounding algorithms for a geometric
embedding of minimum multiway cut. Math. Oper. Res. 29(3), 436–461 (2004)

17. Kayal, N., Saha, C.: On the sum of square roots of polynomials and related problems. ACM Trans.
Comput. Theory 4(4), # 9 (2012)

18. Manokaran, R., Naor, J., Raghavendra, P., Schwartz, R.: SDP gaps and UGC hardness for multiway
cut, 0-extension, and metric labeling. In: 40th Annual ACM Symposium on Theory of Computing
(Victoria 2008), pp. 11–20. ACM, New York (2008)

19. Matoušek, J.: Geometric range searching. ACM Comput. Surv. 26(4), 422–461 (1994)
20. Mulzer, W., Rote, G.: Minimum-weight triangulation is NP-hard. J. ACM 55(2), # 11 (2008)
21. Sharma, A., Vondrák, J.: Multiway cut, pairwise realizable distributions, and descending thresholds.

In: 46th Annual ACM Symposium on Theory of Computing (New York), pp. 724–733. ACM, New
York (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Mikkel Abrahamsen1 · Panos Giannopoulos2 ·Maarten Löffler3 ·
Günter Rote4

Mikkel Abrahamsen
miab@di.ku.dk

Panos Giannopoulos
panos.giannopoulos@city.ac.uk

Maarten Löffler
m.loffler@uu.nl

Günter Rote
rote@inf.fu-berlin.de

1 Basic Algorithms Research Copenhagen (BARC), University of Copenhagen,
Universitetsparken 1, 2100 Copenhagen, Denmark

2 giCenter, Department of Computer Science, City University of London, London EC1V 0HB,
United Kingdom

3 Department of Information and Computing Sciences, Utrecht University, Utrecht, The
Netherlands

4 Institut für Informatik, Freie Universität Berlin, Takustraße 9, 14195 Berlin, Germany

123

http://www.geogebra.org
http://orcid.org/0000-0002-0351-5945

	Geometric Multicut: Shortest Fences for Separating Groups of Objects in the Plane
	Abstract
	1 Introduction
	2 Structure of Optimal Fences
	3 The Bicoloured Case
	4 Hardness of the Tricoloured Case
	4.1 Auxiliary NP-Complete Problems
	4.2 Building a geometric 3-sat Instance from Tiles
	4.3 Solving the Tiles Locally

	5 Approximation Algorithm
	5.1 Upper bound |F(A)|/|F*|<4/3
	5.2 Lower bound on |F(A)|/|F*|
	5.3 Finding a good fence in A

	6 Concluding Remarks
	Acknowledgements
	References

