
              

City, University of London Institutional Repository

Citation: Movahedi, Y., Cukier, M. & Gashi, I. (2020). Predicting the Discovery Pattern of 

Publically Known Exploited Vulnerabilities. IEEE Transactions on Dependable and Secure 
Computing, 19(2), doi: 10.1109/tdsc.2020.3014872 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/24766/

Link to published version: https://doi.org/10.1109/tdsc.2020.3014872

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 1 

 

Predicting the Discovery Pattern of Publically 
Known Exploited Vulnerabilities 

Yazdan Movahedi, Michel Cukier, and Ilir Gashi 

Abstract— Vulnerabilities with publically known exploits typically form 2-7% of all vulnerabilities reported for a given software 

version. With a smaller number of known exploited vulnerabilities compared with the total number of vulnerabilities, it is more 

difficult to model and predict when a vulnerability with a known exploit will be reported. In this paper, we introduce an approach 

for predicting the discovery pattern of publically known exploited vulnerabilities using all publically known vulnerabilities reported 

for a given software. Eight commonly used vulnerability discovery models (VDMs) and one neural network model (NNM) were 

utilized to evaluate the prediction capability of our approach. We compared their predictions results with the scenario when only 

exploited vulnerabilities were used for prediction. Our results show that, in terms of prediction accuracy, out of eight software we 

analyzed, our approach led to more accurate results in seven cases. Only in one case, the accuracy of our approach was worse 

by 1.6%.    

Index Terms— Prediction, Exploited Vulnerabilities, All Vulnerabilities, Vulnerability Discovery Models, Artificial Neural Network, 

Time to Next Vulnerability   

——————————      —————————— 

1 INTRODUCTION

Researchers have used data from various vulnerability da-
tabases to study trends of discovery of new vulnerabilities, 
used various models for fitting the vulnerability discovery 
process, and predicting the number of new vulnerabilities 
that may be discovered for a given product [1]–[6]. Esti-
mating the number of new vulnerabilities over time is use-
ful both for vendors of these products as well as the end-
users as it can help them with resource allocation.   

For some vulnerabilities, exploits are never published. 
This might be because the patches for these vulnerabilities 
are made available very quickly by the vendors, and hence 
it is not profitable for hackers to develop exploits for them; 
the vulnerabilities have a lower criticality from the security 
viewpoint; or it might be that the exploits for these vulner-
abilities are only known to the vendors, to security agen-
cies or are exchanged in, for example, dark web forums.  
Previous studies [7], [8] have reported that vulnerabilities 
with publically-known exploits usually form only 2-7% of 
all vulnerabilities reported for a given software version . In 
addition, as opposed to vulnerability databases such as 
NVD, which are actively maintained, security repositories 
reporting exploited vulnerabilities like Exploit Database, 
also known as “ExploitDB”, are less common. A compari-
son between NVD and ExploitDB finds that only 22% of 
NVD distinct vulnerabilities have exploits listed in Ex-
ploitDB. On the other hand, vulnerabilities with known ex-
ploits are more dangerous to end users, even if patches 
may be available, since not all users regularly patch their 
systems. For this reason, it is important for both vendors 

and users to be able to predict the time to the next vulner-
ability with a known exploit and the number of vulnerabil-
ities that will be exploited over time. However, with a 
smaller number of known exploited vulnerabilities com-
pared with the total number of vulnerabilities, it is difficult 
to model and predict the discovery pattern of publically 
known exploited vulnerabilities. Specifically, the data scar-
city makes it difficult to use data driven models, which are 
helpful where there is no theoretical guidance to explain 
the data generation process for such data [9]. Therefore, we 
postulate that it is a worthwhile research activity to explore 
whether there is a link between discovery pattern of all 
vulnerabilities reported for a given software and discovery 
pattern of its exploited vulnerabilities. Finding such link 
would allow to use a larger dataset of all vulnerabilities for 
predicting the number of exploited vulnerabilities that will 
be reported over time. 

In this paper, we introduce an approach for predicting 
the discovery pattern of publically known exploited vul-
nerabilities using all vulnerabilities reported for a given 
software. Eight commonly used vulnerability discovery 
models (VDMs) as well as one neural network model 
(NNM) were used to evaluate the prediction capability of 
our approach. We applied the models to vulnerability data 
associated with four well-known operating systems (OSs) 
(Windows, Mac, IOS (the OS associated with Cisco), and 
Linux), as well as four well-known web browsers (Internet 
Explorer, Safari, Firefox, and Chrome). 

Two scenarios were considered. In the first scenario (S1), 
for each software, we utilize all vulnerabilities reported for 
it (exploited + unexploited) to predict the discovery pat-
tern of exploited vulnerabilities over time. In the second 
scenario (S2), for each software, we only use exploited vul-
nerabilities to predict the discovery pattern of exploited 
vulnerabilities over time. 

Our work makes the following contributions: 
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 We introduce an approach for predicting total num-
ber of publically-known exploited vulnerabilities 
using all vulnerabilities reported for a given soft-
ware in 30-day time intervals; 

 We compare the prediction capability of two sce-
narios S1 and S2, S1 when all the vulnerabilities are 
considered, S2 when only exploited vulnerabilities 
are, utilizing eight VDMs and one NNM on eight 
well-known software; 

 We show that, out of eight software we analyzed, 
scenario S1 outperforms scenario S2 in seven cases 
in terms of prediction accuracy. Only in one case, 
the prediction of S1 was worse than S2 by 1.5%. In 
other words, for most of the cases analyzed, we 
show that using all the vulnerability data available 
for a system allows to better predict when vulnera-
bilities that will have publically known exploits for 
them will be reported.  

The rest of the paper is organized as follows. Section 2 
describes the related work. Section 3 describes the models 
used in this study, including details of a neural network 
model we used in our analysis. Section 4 describes the da-
taset and the scenarios we used. Sections 5 describes the 
analytical steps we followed in the first scenario (S1). Sec-
tion 6 presents the results of using both scenarios with the 
models for prediction. Section 7 discusses the main find-
ings and some limitations. Finally, Section 8 presents con-
clusions and provisions for future work. 

2 RELATED WORK 

A security vulnerability is defined as any fault in a soft-
ware that, if exploited, can lead to a security failure. Re-
search has been conducted to find a link between the fault 
discovery process of a software and the discovery process 
of its vulnerabilities for modeling purposes [10]. When 
considering the fault detection process of a software, it is 
justifiable to conclude that software reliability models 
(SRMs) and vulnerability discovery models (VDMs) are 
similar [1]. In such cases, the intensity/rate function can 

represent the detection rate of vulnerabilities. Several stud-
ies have been conducted applying regression models 
and/or existing VDMs/SRMs on vulnerability datasets, or 
proposing new VDMs for modeling the discovery process 
of vulnerabilities. In these cases, researchers introduced 
new software security indicators such as total number of 
residual vulnerabilities in the system, time to next vulner-
ability (TTNV), vulnerability detection rate, etc. [1]–[7], 
[10]–[14].  

The earliest effort at modeling software reliability was a 
Markov birth-death model introduced by Hudson in 1967 
[15]. A comprehensive overview of several SRMs that char-
acterize the process of software defect-finding is provided 
in [2]. The earliest study on modeling the vulnerability dis-
covery process was conducted in 2002, when the first VDM 
termed the Anderson Thermodynamic (AT) model pro-
posed by Anderson [16]. Since 2002, other VDMs have 
been proposed. Rescorla [4], [5] proposed a VDM to esti-
mate the number of undiscovered vulnerabilities. In 2005, 
Alhazmi et al. [17] proposed the application of SRMs to 
vulnerability discover modeling. The same year, they also 
introduced a logistic VDM known as Alhazmi–Malaiya 
Logistic (AML) model.  Their proposed AML model as-
sumes a symmetrical shape around the peak discovery rate 
value [6]. A Weibull distribution-based VDM was pro-
posed by Kim in 2007 [18]. Li et al. [19] empirically showed 
that, in comparison to other reliability models, a Weibull 
model is better for defect occurrence across a wide range 
of software systems. 

Several studies applied existing models to different 
types of software packages, such as operating systems and 
web servers, to simulate the vulnerability discovery rate 
and predict the number of vulnerabilities that may be pre-
sent but not yet found [20]–[22]. Other studies focused on  
increasing the accuracy of vulnerability discovery model-
ing by examining the skewness of the vulnerability data 
[23],   using Bayesian theorem [24], [25], or using machine 
learning techniques like nueral networks [26].  

In addition to the vulnerabilities publication dates, 
some studies used software source code for vulnerability 
assessment in the context of VDMs. Kim et al. [18] pro-
posed a VDM based on shared source code measurements 
among multi-version software systems. In 2006, Ozment 
and Schechter employed a reliability growth model to 
evaluate the security of the OpenBSD OS by examining its 
source code and the rate at which new code has been intro-
duced [27]. However, it has been shown that source code 
cannot be an efficient measure in terms of prediction [3]. 
Recently, Nguyen et al. proposed an automated method 
that determines the code evidence for the presence of vul-
nerabilities in previous software versions to evaluate 
whether the target version is vulnerable [28]. 

There is little work that focuses on specifically modeling 
exploited vulnerabilities. One effort is the probabilistic ex-
amination of intrusions by [29], [30]. The lack of data is a 
barrier to modeling exploited vulnerabilities using current 
VDMs or machine learning techniques, which require con-
siderable amount of data for satisfactory training.  

 

Fig. 1. Classification of Considered Time-based VDMs 
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3 MODELS USED 

3.1 Vulnerability Discovery Models (VDMs) 

Vulnerability discovery models (VDMs) can be character-
ized into two classes: time-based and effort-based VDMs. 
Time-based VDMs tally the vulnerabilities of a given soft-
ware as a function of calendar time. Effort based VDMs, 
presented by Alhazmi et.al [6], consider changes in envi-
ronmental factors over usage time of the software like, for 
example, the number of installations, share of installed 
base of the software and so forth (see [6] for more infor-
mation regarding effort-based models). In this paper, we 
will focus on time-based models since the data sources we 
have utilized have information about vulnerability report 
dates but not installation dates. A classification of the time-
based VDMs used in this research is shown in Figure 1, 
based on [20]. These models include the most well-known 
VDMs utilized in the literature.  

S-shaped VDMs isolate the procedure of vulnerability 
disclosure into three phases as shown in Figure 2. Phase 1 
corresponds to the learning phase, which begins from the 
presentation of the product and proceeds until the start of 
the period "Sustained Growth" as a result of expanding 
popularity of the software [23]. Amid the learning phase, 
the vulnerability discovery intensity function is an increas-
ing function. Phase 2, or the linear phase, is the period 
when the majority of the vulnerabilities are discovered. 
The intensity function at this phase is steady and linear. 
Phase 3, or the saturation phase, is the period when the 
majority of the vulnerabilities have been detected [20]. The 
vulnerability discovery intensity function for phase 3 is di-
minishing. This phase is present only if most vulnerabili-
ties have been discovered. 

The five S-shaped VDMs in this paper consist of two 
right-skewed distributions (Gamma-based VDM, Younis 
Folded VDM), one flexible-skewed distribution (Weibull-
based VDM), and two symmetrical distributions 
(Alhazmi–Malaiya Logistic (AML) model and Normal dis-
tribution-based model). These VDMs include the most fre-
quent ones for the modeling process of vulnerability dis-
covery [23].  

Furthermore, we have included three non-S-Shaped 

VDMs: Rescorla Exponential (RE) model, Rescorla Quad-
ratic (RQ) model, and NHPP Power-law model. More in-
formation regarding the Rescorla models can be found in 
[5]. When modeling the cumulative number of failures 
Ω(𝑡)  for software dependability/reliability assessments, 
models built upon a nonhomogeneous Poisson process 
(NHPP) are often selected. Allodi [31] demonstrated that 
discovered vulnerabilities may pursue a Power-law distri-
bution. The model utilized in this paper was applied on 
vulnerability data as a VDM in [32], [33]. The main as-
sumption of this model is that the number of discovered 
vulnerabilities pursues a nonhomogeneous Poisson pro-
cess. Moreover, in NHPP-based software reliability 
growth models (SRGMs), the intensity function (  ω(t) =

dE[Ω(t)]/dt) is assumed as a monotonic function [34].  
The equations associated with all the models above are 

provided in Table 1.  

3.1.1 NHPP Power-law 

When modeling the mean cumulative number of fail-
ures (MCF) (𝑡 ) for software reliability evaluations, models 
derived from a nonhomogeneous Poisson process (NHPP) 
are often used. Allodi [31] showed that the vulnerability 
exploitation may follow a Power-law distribution. How-
ever, such models have several assumptions. The main one 
is that the number of detected vulnerabilities follows a 
nonhomogeneous Poisson process. In addition, if we con-
sider a software as a repairable system, its intensity func-
tion ω(t) = dE[Ω(t)]/dt, is often, for simplicity, assumed a 
monotonic function of t. Therefore, in NHPP-based soft-
ware reliability models (SRMs) or NHPP-based VDMs, the 
intensity function (the detection rate of software er-
rors/the detection rate of vulnerabilities) is considered to 
be a monotonic function [34]. In this research, we use an 
NHPP Power-law model and compare it with other VDMs 
in terms of modeling capabilities. The equation associated 
with the Power-law model is presented in Table I. This 
model is continuous over time and has two parameters: α 
(shape parameter), β (scale parameter). 

 

Fig. 2. Three Phases for S-shaped Models 
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3.1.2 Gamma-based VDM 

The Gamma-based VDM, derived from the Gamma dis-
tribution, belongs to the family of right-skewed distribu-
tions. It has a continuous intensity function with three pa-
rameters: α (shape parameter), β (scale parameter), and 𝛾 , 
which represents the total number of vulnerabilities that would 
finally be discovered. The equation associated with the 
Gamma-based VDM is presented in Table I. This distribu-
tion is only defined for t >0. The shape and the scale pa-
rameters are always positive. It is expected that for the soft-
ware with large values of t, right-skewed distributions pro-
vide better fits to vulnerability discovery data than other 
models [23] because of gradual reduction in the number of 
discovered vulnerabilities, which yields a tail on the right 
side of the relevant vulnerability discovery intensity func-
tion. 

3.1.3 Weibull-based VDM 

The Weibull-based VDM, derived from the Weibull dis-
tribution, belongs to the family of flexible-skewed distri-
butions. This VDM was first introduced in 2007 [18]. Like 
the Gamma-based VDM, the Weibull-based VDM has a 
continuous intensity function with three parameters: α 
(shape parameter), β (scale parameter), and 𝛾 which represents 
the total number of vulnerabilities that would finally be discov-
ered. This VDM can be symmetrical with zero skewness for 
α values around 3. For α <3, this VDM is always right-
skewed, while for α >3, it is left-skewed. Like the Gamma-
based VDM, this distribution is defined for t >0.  

3.1.4 AML VDM 

Alhazmi–Malaiya Logistic (AML) model belongs to the 
family of distributions with symmetrical intensity (rate) 
functions. This model was first introduced in 2005 [6] and 
is based upon the idea that as an operating system gains 
market share, the attention it receives increases. Then, after 
experiencing a peak, it starts decreasing when a newer ver-
sion is released. Overall, the AML model assumes the cu-
mulative number of vulnerabilities is influenced by two 
factors: the share of the installed base (increasing factor) 
and the number of remaining undiscovered vulnerabilities 
(declining factor). The AML model has three parameters 
including a constant C. Parameters A and B are empirical 
constants and directly estimated from the dataset. B stands 
for the total number of vulnerabilities that would finally be dis-
covered. This model is defined for time values t from the 
negative infinity to the positive infinity, and the parame-
ters must be positive. 

3.1.5 Normal-based VDM 

The Normal-based VDM belongs to the family of distri-
butions with symmetrical intensity/probability density 
functions. This model presents a distribution with zero 
skewness that has three parameters: μ is a location param-
eter, σ is a scale parameter and 𝛾 is the total number of vul-
nerabilities that would eventually be discovered. The Normal-
based VDM has lighter tails on both sides in comparison to 
the logistic distribution used for the AML model. For a da-
taset with fewer vulnerabilities discovered at the begin-
ning and at the end of a discovery process, the Normal 

VDM might be a better fit than the AML model [23].  

3.1.6 Rescorla VDMs 

In 2005, Rescorla proposed two VDMs to estimate the 
number of undiscovered vulnerabilities [4], [5]. In Rescorla 
Exponential (RE) model, 𝛾 is the total number of vulnerabili-
ties that would eventually be discovered and, as time increases, 
Ω approaches 𝛾. In the second model, as t grows, Ω grows 
quadratically, thus it is called the Rescorla Quadratic 
model. 

3.1.7 Younis Folded (YF) VDM 

The normal distribution is symmetric around its mean 
and is defined for a random variable that takes values from 
-inf to +inf. In some cases, a distribution is needed that has 
no negative values. Folded distributions are kinds of asym-
metrical models obtained by folding the negative values 
into the positive side of the distribution. The folded distri-
bution has been found usable in industrial practices such 
as measurement of flatness and straightens. 
 

In the Younis folded model [35] vulnerability discovery 
starts at time t = 0 which corresponds to the release time of 
the software. In this model, t represents the calendar time, 
𝜏 is a location parameter, σ is a scale parameter, and 𝛾 rep-
resents the number of vulnerabilities that will be eventu-
ally discovered. Compared to AML, the Folded VDM has 
shorter learning phase or missing learning phase which 
makes the normal distribution asymmetric. It results in a 
higher discovery rate at the beginning which may be espe-
cially applicable to the cases where the vulnerability dis-
covery plot is in linear phase even at the beginning. 

3.2 Neural Network 

Neural network models (NNMs) comprise of an arrange-
ment of algorithms for modeling and perceiving specific 
patterns. NNMs have been generally utilized for predic-
tions of sequential data in time series, for example, month 
to month electricity demand of a city or stock price [36]–
[38]. Unlike VDMs, NNMs can incorporate the nonlinear-
ity that exists in noisy time series data. Moreover, NNMs 
are not based upon a specific model since they are data 
driven models. Thus, NNMs are flexible nonlinear data 
driven models with powerful predictive capability. Data 
driven models are helpful for the cases without a theoreti-
cal model to explain the data. In [39], it has been empiri-
cally proven that NNMs are suitable for capturing both lin-
ear and nonlinear behavior of time series. 

In this paper, we utilize a feedforward NNM to forecast 
the number of detected vulnerabilities over time. Feedfor-
ward NNMs are widely-used forms of neural network [36] 
that accept a fixed number of inputs at any given time, and 
generate one output. We assume that the number of future 
vulnerabilities rely upon the number of vulnerabilities un-
veiled over the past periods (lags).  

We utilize a single hidden-layer NNM for one step-
ahead prediction. As indicated by [40], a single hidden-
layer NNM is fit for approximating non-linear functions 
with discretionary accuracy. Figure 3 shows the structure 
of our NNM that comprises of three layers called input, 



AUTHOR ET AL.:  TITLE 5 

 

hidden (the middle layer), and output. Each layer is an ac-
cumulation of neurons (nodes) where the associations are 
governed by the corresponding weights. Data have been 
fed through the input layer, after that they go through the 
at least one hidden layer, and the ultimate result is given 
by the output layer. 

To predict the present value, several past observations 
are utilized. In other words, the inputs are a p-component 
subset of the set {𝑦𝑡−𝑝, . . . , 𝑦𝑡−2, 𝑦𝑡−1}; and 𝑦𝑡 is the output 
or the total number of vulnerabilities reported in time pe-
riod t. Equations 1 and 2 show the relations with the input 
and output values of the middle layer, consecutively. The 
equations associated with the output layer are represented 
by Equations 3 and 4, respectively. 

 

𝐼𝑗 = ∑ 𝑤𝑗𝑖 × 𝑦𝑖 + 𝛽𝑗  

𝑡−1

𝑖=𝑡−𝑝

   (𝑗 = 1, … , ℎ),                           (1) 

𝑦𝑗 = 𝑓ℎ(𝐼𝑗)                           (𝑗 = 1, … , ℎ),                           (2) 

𝐼𝑜 = ∑ 𝑤𝑜𝑗 × 𝑦𝑗 + 𝛼𝑜

ℎ

𝑗=1

     (𝑜 = 1),                                    (3) 

𝑦𝑡 = 𝑓𝑜(𝐼𝑜)                            (𝑜 = 1),                                   (4) 

 
where I is the input; y denotes the output; p and h denote 
the number of input and hidden layer nodes, respectively; 
𝑤𝑗𝑖  represents the connection weights of the input and hid-
den layers; and 𝑤𝑜𝑗 denotes the connection weights of the 
hidden and output layers. The bias values of the hidden 
and output layers are respectively shown by 𝛽𝑗  and 𝛼𝑜 , 
and are always between -1 and 1. 𝑓ℎ and 𝑓𝑜 are the non-lin-
ear activation functions associated with the hidden and the 
output layers, respectively. A hyperbolic tangent function 
was employed as the activation function for the hidden 
layer since it is the function that is most widely used [36].  

Deciding the optimal number of input nodes (lags) and 
hidden layer nodes is the initial step in structuring a NNM. 
From the literature, there is no systematic solution [18]. To 
determine the optimal number of inputs (lags) and the 
number of hidden nodes, we utilized the optimization al-
gorithm (ADE-BPNN) introduced in [36]. It is shown that, 

 

1 We looked at the following ones: http://www.cvedetails.com/, 
https://cxsecurity.com/, http://www.security-database.com/ and 

for time series data, applying this algorithm improves pre-
diction accuracy associated with basic NNMs, and other 
hybrid models [36]. This algorithm uses the minimum 
mean square error (MSE) of the training data as loss func-
tion for finding the proper number of the nodes (input and 
hidden) by experimentation. MSE is it the most frequently 
used accuracy measure in literature [41]. As our start point, 
we began with statistically significant lags derived from 
assessing the partial autocorrelation function (PACF) asso-
ciated with each time series. In time series analysis, the 
PACF gives the linear partial correlation of a time series 
with its own lagged values [42]. However, we cannot only 
rely on the lags we found from PACF since the selection of 
inputs would then have be only based on the identification 
of a linear model, while our NNM should also be able to 
handle non-linear correlations. A detailed survey of exist-
ing input selection strategies for NNMs is provided in [43]. 
We assessed up to 50 hidden nodes for each time series and 
selected the number of hidden nodes that minimize the 
MSE. 

4 DATASET USED 

The dataset used in this paper was collected from the Na-
tional Vulnerability Database (NVD) maintained by NIST. 
We leveraged the vulnerability CVE IDs to compare the re-
porting date of each vulnerability in NVD with the dates 
in other public repositories on vulnerabilities 1 . We up-
dated the reporting dates to the earliest date that a given 
vulnerability was publically known in any of the vulnera-
bility databases used [33]. To obtain exploited vulnerabil-
ity data, we used Exploit Database (EDB)2. The EDB is a 
CVE compliant archive of public exploits and correspond-
ing vulnerable software, developed for use by penetration 
testers and vulnerability researchers [44].  

We will analyze the reported vulnerabilities associated 
with four well-known OSs: Windows (1995-2017), Mac 
(1997-2017), IOS (the OS associated with Cisco) (1992-2017), 
and Linux (1994-2017), as well as four well-known web 
browsers including Internet Explorer (1997-2017), Safari 
(2003-2017), Firefox (2003-2017), and Chrome (2008-2017). 
These software have been selected because they are the 
most widely used and have the most vulnerabilities among 
the databases. The variable we used in this research is the 
cumulative number of vulnerabilities reported in 30-day 
time intervals. In other words, for a given software, we 
partitioned the relative study period into intervals of 30 
days, and counted the total number of vulnerabilities de-
tected in each time interval. 

For each software, all the vulnerabilities reported for 
any of its versions were included. For instance, all the vul-
nerabilities reported for mac_os, mac_os_server, mac_os_x, 
and mac_os_x_server were put together to create a vulner-
ability database for Mac.   

Two modeling scenarios were considered. In the first 
scenario (S1), we analyze all vulnerabilities reported for a 
software for any of its versions. In the second scenario (S2), 

http://www.securityfocus.com/  
2 https://www.exploit-db.com/ 

 

Fig. 3. The architecture of the NNM model used for our study 
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for each software, we only consider the exploited vulnera-
bilities.  

Table 2 presents the total number of vulnerabilities for 
each software (All vulnerabilities together (”S1”) and only 
exploited vulnerabilities (“S2”)). The percentages of ex-
ploited/unexploited vulnerabilities per software are pre-
sented in Figure 4. Windows and IE had the most percent-
ages of exploited vulnerabilities with 24.13% and 22.65%, 
respectively. The reason is that, for each software, our da-
taset includs all the vulnerabilities reported for any of its 
version. 

5 ANALYTICAL STEPS OF SCENARIO S1 

In this section, we explain the approach we developed to 
predict the number of publically reported exploited vul-
nerabilities associated with a given software using all vul-
nerabilities reported for that software. 

5.1 For VDMs 

Regarding VDMs, we need to find a relationship between 
the discovery pattern of all vulnerabilities (S1) and those 
vulnerabilities that were exploited (S2).  We focused on the 
ratio of the time to next vulnerability (TTNV) for exploited 

vulnerabilities over the TTNV associated with all vulnera-
bilities. TTNV was introduced as a way examining the fre-
quency of vulnerability reports in [3]. Zhang et. al [45] also 
used TTNV as a measure that could imply the likelihood 
for presence of zero-day vulnerabilities in a software. By 
calculating the ratio of the TTNV for exploited vulnerabil-
ities, which could also be referred as time to next exploit, 
over the TTNV associated with all vulnerabilities, we are 
looking for using the predictions resulted from VDMs to 
predict exploited vulnerabilities. In other words, we use 
this ratio as a multiplier in the equations associated the 
VDMs  in the training phase to approximate the VDMs’ 
equations for exploited vulnerabilities. We used a 
resampling method and a filtering method to take care of 
the noisy nature of vulnerability data [46], [47]. For each 
software, we resample/split the vulnerability data (all 
vulnerabilities & exploited vulnerabilities) into intervals 
of 120, 150, 180, 210, 240, 270, 300, 330, 360 days to remove 
the effect of the daily fluctuations. For each interval (i-th 
interval), we calculate the mean TTNV of the observations 
at each time step (MTTNV) and calculate the ratio of MTT-
NVs, Ratio𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑖(t) = MTTNV𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑(𝑡)/MTTNV𝐴𝑙𝑙(𝑡) . 
Figure 5 shows the box plot of ratios associated with each 
interval per software. As it is shown, the median of the ra-
tios for each software, 𝑀𝑒𝑑𝑖𝑎𝑛 (Ratio𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑖(𝑡)), is almost 
constant over different intervals. The median values of the 
ratios per software are presented in Table 3. The VDM for 
exploited vulnerabilities is calculated as follows: 

 

Ω(𝑡)𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑 =  Ω(𝑡)𝐴𝑙𝑙/𝑀𝑒𝑑𝑖𝑎𝑛 (Ratio𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑖(𝑡))        (5) 

5.2 For NNM 

Regarding the NNM, since we want to link two time 
series, we feed one time series (all vulnerabilities) into the 
NNM as input and select the output (𝑦𝑡) from the second 
time series (exploited vulnerabilities). In other words, the 
vector of inputs {𝑦𝑡−𝑝, . . . , 𝑦𝑡−2, 𝑦𝑡−1} belongs to S1 and the 
output is chosen from S2.  

The NNM developed for this paper was programmed 
utilizing Matlab R2018a. For every software, our analysis 
started by separating the vulnerability dataset into two 
groups; training and testing. The training set comprises of 
all the vulnerabilities published before 2015. The testing 
data set comprises of vulnerabilities reported in years 2015, 
2016, and 2017. NNM training is a complex nonlinear opti-
mization problem. Therefore, there is the likelihood to be 
caught in local minima of the error surface. To avoid get-
ting poor outcomes, the training procedure needs to be it-
erated a few times with various random starting weights 
and biases [39].  

We set the maximum training number equal to 500 
epochs, which based upon our experiments provided the 
best results for our problem. An epoch represents the total 
number of times a given dataset is used for training. In 
other words, it represents the number of times the weights 
in a network were updated [48]. Since the process of model 
optimization in deep learning algorithms is done utilizing 
the gradient decent method [41], it requires to pass the 
training data through the network numerous times to up-
date the weights and obtain a more precise prediction 

 

 

Fig. 4. Percentage of exploited vulnerabilities per software 

TABLE 2 
NUMBER OF VULNERABILITIES PER SOFTWARE 

OS Windows Mac IOS Linux 

# All Vulnera-
bilities 

3100 2705 650 4745 

# Exploited 
Vulnerabilities 

748 282 27 481 

Web Browser IE Safari Firefox Chrome 
# All Vulnera-

bilities 
1775 943 1477 1837 

# Exploited 
Vulnerabilities 

402 108 100 78 



AUTHOR ET AL.:  TITLE 7 

 

model [48]. As our learning function, we utilized the Le-
venberg-Marquardt (LM) method as recommended by the 
reference paper, which proposed the optimization algo-
rithm [36]. We set the logsig and purelin functions as the 
activation function of the hidden and output layers, re-
spectively. These functions also were picked similarly to 
the settings recommended by the algorithm.  To avoid 
overfitting/over training, for every software, we utilized a 
cross validation technique by partitioning our training da-
taset into two subgroups of training data (70%), validation 
data (30%), and checked the validation performance of the 
trained network metrics of the Matlab Neural Network 
tool compartment such as gradient decent (gradient thresh-
old=1.00e-4) and maximum number of validation checks 
(max_fail=100). These metrics appear as stop states of the 
training phase and were estimated after running a number 
of trials and errors while observing the training/validation 
error curves. Whenever the parameters of the network un-
der training met any of these limits, the training procedure 
ends. 

6 RESULTS 

For both scenarios (S1 and S2), we used the eight VDMs for 
the discovery process of vulnerabilities on eight well-
known software (four OSs and four web browsers). The 
VDMs were fitted to the  datasets using a non-linear re-
gression method described in [20].  In addition, for the first 
scenario (S1) we also used one NNM, which is capable of 
modeling nonlinearities. Since the NNM is a data driven 

model, we could not use it for scenario S2 due to lack of 
exploited vulnerabilities.  

As mentioned previously, we started the analysis by 
splitting the data into two groups of training and test data. 
For scenario S1, both the VDMs and the NNM use a dataset 
that includes all vulnerabilities reported for all versions of 
a given software. For scenario S2, the VDMs use the data 
associated with exploited vulnerabilities reported for those 
versions. The training period for both scenarios starts from 
the time when the first exploited vulnerability associated 
with a given software was reported and continues until 
12/31/2014. We made the predictions for the years 2015, 
2016, and 2017. We then partitioned the vulnerability data 
into intervals of 30 days as is common in the vulnerability 
analysis literature [20], [21], [23]. 

For scenario S1, for the VDMs, during the training pe-
riod, the training data was used to estimate model param-
eters. To avoid overfitting, 10-fold cross validation was 
also conducted on the training data. Using the estimated 
parameters and the TTNV ratios we found from Section 5, 
we estimated the number of exploited vulnerabilities. Then, 
the estimations for each time interval produced by the 
eight models were compared with the actual number of ex-
ploited vulnerabilities to calculate the prediction accuracy. 
For the NNM, for each software, we used the training data 
to train the NNM. The process is like feeding the NNM by 
one time series and comparing the outputs with values as-
sociated with another time series. Using the trained NNM, 
we predicted the number of exploited vulnerabilities for 
the next intervals. We calculated the prediction accuracy 
by comparing the obtained estimation and the actual num-
ber of exploited vulnerabilities.  

For scenario S2, for the VDMs, during the training pe-
riod, the training data was used to estimate model param-
eters. The estimated final values for each interval produced 
by the eight models were compared with the actual num-
ber of exploited vulnerabilities to calculate the prediction 
accuracy. The Chi-square (χ2) goodness of fit test [20] was 
utilized for evaluating the quality of fit of each model on 

    

    

Fig. 5. Box plots of TTNV coefficient ratios per software (S2/S1) 

 TABLE 3 
TABLE OF TTNV COEFFICIENTS (DAYS) 

OS Windows Mac IOS Linux 

TTNV Ratio 
(Median) 

3.526 9.393 5.696 5.306 

Web 
Browser 

IE Safari Firefox Chrome 

TTNV Ratio 
(Median) 

3.360 5.792 10.917 50.127 
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training datasets. The χ2 statistic is calculated using the fol-
lowing equation:  

 

χ2 = ∑
(𝑆𝑖 − 𝐸𝑖)

2

𝐸𝑖

                            (6)

𝑁1

𝑖=1

 

 
where 𝑆𝑖  and 𝐸𝑖 are the simulated and expected observed 
values at 𝑖𝑡ℎ time point, respectively. N1 is the number of 
observations in the training dataset (the time blocks used 
for simulation). For acceptable fits, the corresponding χ2 
critical value should be greater than the χ2 statistic for the 
given alpha level and degrees of freedom. We selected an 
alpha level of 0.05. The null hypothesis indicates that the 
actual distribution is well described by the fitted model. 
The p-values below 0.05 marks the fit as unsatisfactory. For 
each VDM, before testing its prediction capability, first we 
check whether the associated fit is statistically satisfactory. 
We neglect the model, if it shows up with a p-value<0.05.  

For the training part, for the NNM, we used the MSE 
value to select the optimal analytical model, out of the 
models trained with different combination of lags. Then, 
for each software, the best model was selected to make the 
prediction for the testing dataset (the vulnerabilities re-
ported in 2015, 2016, and 2017).  

To evaluate prediction capabilities of the models, we 
used two common normalized predictability measures, av-
erage error (AE) and average bias (AB) [23]. AE represents 
how well a model predicts throughout the test phase, and 
AB is a measure of the model’s general bias, which shows 
its tendency to overestimate or underestimate the number 
of disclosed vulnerabilities. AE and AB are defined as fol-
lows, respectively: 

𝐴𝐸 =
1

𝑁2
∑ |

Ω𝑡 − Ω

Ω
|

𝑁2

𝑡=1

                            (7) 

𝐴𝐵 =
1

𝑁2
∑

Ω𝑡 − Ω

Ω

𝑁2

𝑡=1

                               (8) 

where N2 presents the total number of time points (one per 
30 days) over the prediction period, and Ω stands for the 
actual number of total exploited vulnerabilities, whereas 
the estimated number of total exploited vulnerabilities at 
interval t is shown by Ω𝑡. 

For the VDMs associated with each scenario, we also re-
port ΔVAE𝑖

𝑘, which shows the difference between the AE of 
the i-th VDM and the VDM with minimum AE in the sce-
nario to choose the best VDM/VDMs among the VDMs 
present in each scenario. 

 

%ΔVAE𝑖
𝑘 = (VAE𝑖

𝑘  − VAE𝑚𝑖𝑛
𝑘 ) ∗ 100                    (9) 

 
where k is the k-th scenario,  VAE𝑖  is the AE of the i-th VDM, 
and VAE𝑚𝑖𝑛 is the lowest AE found in the set of VDMs ex-
amined in the scenario (i.e., the best model). Thus, the 
ΔVAE𝑖

𝑘 of the best VDM in a scenario is 0. 
To highlight the difference between the AE of the k-th 

model and the overall best model in both scenarios, we re-
port ΔAE𝑖

𝐺 , which is defined as follows:  
 

%ΔAE𝑗
𝐺 = (AE𝑗  − AE𝑚𝑖𝑛

𝐺 ) ∗ 100                    (10) 

 
where AE𝑗  is the AE of the j-th model, and AE𝑚𝑖𝑛

𝐺  is the low-
est AE found in the set of models examined (i.e., the best 
model). Thus, ΔAE𝑗

𝐺  of the best overall model is 0. In addi-
tion, if for a given model we have ΔAE𝑗

𝐺 = 1.2, it means 
than the model has 1.2% higher prediction error than the 
best overall model.  

The Hanna and Heinold indicator (HH) is another met-
ric to calculate prediction errors.  It is proven that for some 
applications including analyzing real data with high fluc-
tuation the lower values of the commonly used root mean 
square error (RMSE) are not always a reliable indicator of 
the simulations’ accuracy [49]. Hence, Hanna and Heinold 
introduced a corrected estimator as follows [50]: 

 

𝐻𝐻 =  √
∑ (𝑆𝑖 − 𝑂𝑖)2𝑁2

𝑖=1

∑ 𝑆𝑖𝑂𝑖
𝑁
𝑖=1

                             (11) 

 
where 𝑆𝑖  is the 𝑖𝑡ℎ simulated data, 𝑂𝑖  is the 𝑖𝑡ℎ observation 
(test data) and N represents the number of observations in 
test dataset (the time blocks used for simulation). The 
closer to zero HH is, the more accurate the model.  

Tables 4-5 present the values of AE, AB, HH, ΔVAE𝑖
𝑘 , 

and ΔAE𝑗
𝐺  for the cases we analyzed per scenario per 

model (VDMs and NNM), respectively. Regarding p-val-
ues, we used * to show the models with  p<0.05. AB can be 
positive (for overestimation) or negative (for underestima-
tion), while AE is always positive. In each case, we first 
found the best VDMs per scenario by comparing their pre-
diction accuracy and then compared the accuracy of those 
models with the NNM results. In other words, for each 
software, for the VDMs associated with each scenario, the 
models that had the smallest values of AE were selected as 
the best VDMs in terms of prediction and their AE values 
were accompanied by “bv” superscript, which stands for 
best VDM. In addition, the VDMs with ΔVAE𝑖

𝑘 < 2 were 
also selected as the best predictive VDMs, which we as-
sume, show similar prediction capability compared to the 
best VDM (the VDM/VDMs with ΔVAE𝑖

𝑘 = 0 ). In other 
words, one of our assumptions in this paper is that the 
VDMs with less than 2% performance difference from the 
best predicting VDM represent similar prediction capabil-
ities and the differences in their prediction performance 
are negligible. For each software, the best overall model in 
both scenarios is shown by “bo” superscripts attached to 
their associated AE values, which stands for best overall 
model (the model with ΔAE𝑗

𝐺 = 0). If a VDM is the best 
model of a scenario and simultaneously is the best overall 
model, its AE value is only accompanied by “bo” super-
script. 

For each software, the normalized error values ((Ω𝑡 −
Ω)/Ω) over prediction time are plotted in Figure 6. As is 
shown, the models with fewer fluctuations lead to higher 
accuracy. 

Based upon the results provided by Tables 4-5, in terms 
of prediction accuracy (AE and HH), out of eight software 
we analyzed, scenario S1 led to the most accurate results in 
seven cases. Only for Firefox, the best VDM from scenario 
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S2 was more accurate than the best model of scenario S1, 
which is NNM. In addition, considering both scenarios, the 
NNM was selected as the best prediction model in seven 
cases. As mentioned before, the VDMs with the * super-
script are the models that had a p-value less than 0.5 and 
will not be considered in our analysis. In Tables 4-5, we 
used the term “NS” for these models, which stands for Not 
Satisfactory. 

For Windows, the best model from scenario S1, which is 
NNM (ΔAE𝑗

𝐺 = 0), is 1.8% more accurate than the one from 
scenario S2 (the model with smallest AE in scenario S2, 
ΔAE𝑗

𝐺 = 1.836). For Mac, the best model is also NNM by 
having 19.59% smaller average prediction error (AE) than 
the best model from scenario S2. For IOS, Linux, IE, Safari, 
and Chrome the stories are like what happened for Win-
dows and Mac by NNM (from S1) as being the best model, 
which comes up with 1.1%, 1.9%, 3.5%, 3.9%, and 9.3% 
smaller prediction errors than the best models from sce-
nario S2. For Firefox, the model with smallest AE (ΔAE𝑗

𝐺 =
0) belongs to scenario S2 by having 1.6% smaller AE than 
the best model from scenario S1, which is NNM (ΔAE𝑗

𝐺 ≈
1.6).  

Overall, scenario S1 provides more accurate results in 
seven cases (out of eight cases) for the number of future 
exploited vulnerabilities. In the only case that the best 
model from scenario S2 provided most accurate predic-
tions, the performance of the best model from scenario S1 
was only 1.6% worse.  

Considering only VDMs, in terms of prediction accu-
racy (AE and HH), out of eight software we analyzed, sce-
nario S1 led to most accurate results in only two cases. In 
other words, for Mac, and IE, the best VDM from S1 had 
higher accuracy than the best VDM from scenario S2 by 
having 18.8%, and 1.6% smaller prediction errors, respec-
tively. However, the VDMs from scenario S1 were less than 
2.2% different in prediction error in three cases compared 
to the best VDM from scenario S2. The error differences for 
Windows, IOS, and Linux are 2.2%, 1.6%, and 0.3%, respec-
tively. Only for Safari, Firefox, and Chrome this difference 
is high and the best VDM from scenario S2 outperformed 
the best VDM from scenario S1 by having 16.2%, 15.7%, 
and 26% smaller prediction error, respectively.Overall, 
comparing only VDMs, scenario S1 was able to perform 
better than or as well as scenario S2 (with less than 2.2% 

TABLE 4 PREDICTION ACCURACY FOR OSS PER SCENARIO 

Windows S1  S2 

 AE AB HH %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮  AE AB HH %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮 

Gamma 0.187 0.187 0.170 8.126 12.111  0.101bv -0.097 0.148 1.703 3.539 

Weibull 0.148 0.148 0.142 4.245 8.230  0.139 -0.139 0.197 5.432 7.268 

AML 0.106bv 0.083 0.106 0.000 3.984  0.145 -0.145 0.203 6.021 7.856 

Normal 0.106 bv 0.083 0.106 0.000 3.984  0.145 -0.145 0.203 6.021 7.856 

Power-law 0.277 0.277 0.241 17.076 21.061  0.084 bv 0.084 0.085 0.000 1.836 

RE 0.387 0.387 0.329 28.122 32.106  0.138* 0.138 0.128 NS NS 

RQ 0.274 0.274 0.239 16.766 20.750  0.113 0.113 0.108 2.892 4.727 

YF 0.122 bv 0.118 0.123 1.576 5.560  0.140 -0.140 0.199 5.579 7.415 

NNM 0.066 bo -0.024 0.111 NA 0.000  NA NA NA NA NA 

Mac S1  S2 

 AE AB HH %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮  AE AB HH %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮 

Gamma 0.215 -0.215 0.319 14.203 14.985  0.261bv -0.261 0.395 0.000 19.599 

Weibull 0.251 -0.251 0.373 17.772 18.553  0.282 -0.282 0.423 2.038 21.637 

AML 0.257 -0.257 0.379 18.399 19.180  0.277 bv -0.277 0.416 1.577 21.177 

Normal 0.257 -0.257 0.379 18.399 19.180  0.277 bv -0.277 0.416 1.577 21.177 

Power-law 0.073 bv -0.008 0.081 0.000 0.781  0.101* -0.008 0.113 NS NS 

RE 0.081* 0.081 0.080 NS NS  0.092* 0.005 0.099 NS NS 

RQ 0.077 bv -0.011 0.086 0.341 1.122  0.094* 0.017 0.100 NS NS 

YF 0.248 -0.248 0.368 17.513 18.295  0.280 bv -0.280 0.420 1.834 21.433 

NNM 0.065 bo 0.026 0.073 NA 0.000  NA NA NA NA NA 

IOS S1  S2 

 AE AB HH %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮  AE AB HH %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮 

Gamma 0.149 0.146 0.165 10.441 13.206  0.032 bv 0.018 0.034 0.445 1.524 

Weibull 0.156 0.154 0.172 11.126 13.891  0.029 bv 0.001 0.032 0.182 1.260 

AML 0.185 0.185 0.196 14.066 16.831  0.028 bv -0.014 0.036 0.000 1.079 

Normal 0.185 0.185 0.196 14.066 16.831  0.028 bv -0.014 0.036 0.000 1.079 

Power-law 0.156 0.154 0.172 11.153 13.918  0.240* 0.240 0.217 NS NS 

RE 0.301 0.301 0.304 25.647 28.412  0.279* 0.279 0.248 NS NS 

RQ 0.044 bv -0.007 0.055 0.000 2.765  0.153* 0.153 0.143 NS NS 

YF 0.220 0.220 0.231 17.555 20.321  0.028 bv -0.014 0.037 0.080 1.158 

NNM 0.017 bo -0.002 0.020 NA 0.000  NA NA NA NA NA 

Linux S1  S2 

 AE AB HH %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮  AE AB HH %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮 

Gamma 0.132 0.132 0.124 8.919 11.140  0.116 -0.116 0.144 7.620 9.542 

Weibull 0.140 0.140 0.131 9.732 11.954  0.128 -0.128 0.159 8.874 10.796 

AML 0.043 bv 0.037 0.054 0.000 2.221  0.168 -0.168 0.205 12.811 14.733 

Normal 0.043 bv 0.037 0.054 0.000 2.221  0.168 -0.168 0.205 12.811 14.733 

Power-law 0.182 0.182 0.168 13.914 16.135  0.040 bv 0.040 0.046 0.000 1.922 

RE 0.282 0.282 0.255 23.969 26.190  0.045 bv 0.045 0.049 0.540 2.462 

RQ 0.196 0.196 0.180 15.291 17.513  0.050 bv 0.050 0.053 1.031 2.953 

YF 0.084 0.084 0.083 4.135 6.356  0.158 -0.158 0.194 11.843 13.765 

NNM 0.020 bo 0.019 0.031 NA 0.000  NA NA NA NA NA 
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error difference) in five cases.  
Another important factor, which plays a role in model 

selection is the tendency of a given model to overestimate 
or underestimate the results. In this research, we provided 
the average bias values (AB) as well as the visual fluctua-
tion trend of normalized prediction errors (Figure 6). 

Now, for each software, we compare the best overall 
model and the models of similar prediction power (those 
with ΔAE𝑗

𝐺 ≤ 2 ), in terms of average bias. For a given soft-
ware, if there are multiple models that satisfy the men-
tioned condition, we consider the model with lowest AB. 
There are five software, which are qualified for this condi-
tion (i.e. Mac, IOS, Linux, IE, and Firefox). For Linux, IE, 
and Firefox, the absolute value of AB for the best overall 
model was smaller than the other candidates with ΔAE𝑗

𝐺 ≤
2 by 2.1%, 3.9%, and 1.9%, respectively. This For Mac and 
IOS, the best overall model has higher absolute bias by 
1.8%, and 0.1% difference, respectively.  

7 DISCUSSION AND LIMITATIONS 

In terms of prediction accuracy (AE and HH), considering 

the OSs and web browsers (eight cases), our presented ap-
proach led to more accurate results in seven cases. Out of 
those cases, the NNM provided the best model in all the 
cases. Comparing only VDMs, in terms of prediction accu-
racy, scenario S1 was able to perform better than or as well 
as scenario S2 (with less than 2.2% error difference) in five 
cases. 

We believe that the NNM's better execution contrasted 
with VDMs originates from the capacity of the NNM in 
foreseeing the nonlinearity nature of the vulnerability dis-
covery process as a time series. Moreover, a common as-
sumption in most VDMs is the pure S-shaped curve for 
vulnerability discovery process or considering a discovery 
function with a monotonic disclosure rate with constant to-
tal number of vulnerabilities. While, in reality, the vulner-
ability discovery process of a given software may have sev-
eral linear and saturation phases as the total number of 
vulnerabilities may change as the result of introducing 
newer software versions. Furthermore, VDMs and tradi-
tional time-series functions only utilize one set of parame-
ters for estimation. NNMs due to having multilayer per-
ceptron structure, having various neurons per layer, and 

TABLE 5 PREDICTION ACCURACY FOR WEB BROWSERS PER SCENARIO 

IE S1  S2 

 AE AB HH %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮  AE AB HH %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮 

Gamma 0.121 -0.121 0.132 7.189 9.018  0.175 -0.175 0.208 11.004 14.475 

Weibull 0.120 -0.120 0.132 7.138 8.967  0.182 -0.182 0.217 11.700 15.170 

AML 0.188 -0.188 0.220 13.922 15.752  0.256 -0.256 0.316 19.048 22.519 

Normal 0.188 -0.188 0.220 13.922 15.752  0.256 -0.256 0.316 19.048 22.519 

Power-law 0.120 -0.120 0.132 7.113 8.942  0.087 -0.087 0.100 2.172 5.643 

RE 0.049 bv -0.049 0.054 0.000 1.829  0.065 bv -0.065 0.075 0.000 3.471 

RQ 0.102 -0.102 0.110 5.292 7.121  0.069 bv -0.069 0.080 0.386 3.856 

YF 0.126 -0.126 0.140 7.717 9.547  0.228 -0.228 0.279 16.253 19.724 

NNM 0.030 0.010 0.035 NA 0.000  NA NA NA NA NA 

Safari S1  S2 

 AE AB HH %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮  AE AB HH %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮 

Gamma 0.498 -0.498 0.847 20.921 41.101  0.140 bv -0.076 0.331 1.386 5.308 

Weibull 0.528 -0.528 0.925 23.943 44.123  0.126 bv -0.106 0.353 0.000 3.923 

AML 0.533 -0.533 0.937 24.492 44.672  0.131 bv -0.095 0.344 0.500 4.423 

Normal 0.533 -0.533 0.937 24.492 44.672  0.131 bv -0.095 0.344 0.500 4.423 

Power-law 0.357 -0.357 0.550 6.898 27.078  0.285 0.224 0.250 15.963 19.886 

RE 0.288 bv -0.288 0.428 0.000 20.181  0.265 0.193 0.240 13.924 17.847 

RQ 0.351 -0.351 0.541 6.312 26.493  0.270 0.202 0.242 14.462 18.384 

YF 0.527 -0.527 0.923 23.863 44.043  0.127 bv -0.104 0.351 0.101 4.024 

NNM 0.087 0.042 0.130 NA 0.000  NA NA NA NA NA 

Firefox S1  S2 

 AE AB HH %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮  AE AB HH %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮 

Gamma 0.324 0.324 0.301 15.768 31.419  0.010 bo 0.005 0.013 0.000 0.000 

Weibull 0.324 0.324 0.301 15.743 31.394  0.029 bv -0.029 0.031 1.912 1.912 

AML 0.167 bv 0.167 0.159 0.000 15.651  0.064 -0.064 0.067 5.344 5.344 

Normal 0.167 bv 0.167 0.159 0.000 15.651  0.064 -0.064 0.067 5.344 5.344 

Power-law 0.355 0.355 0.327 18.888 34.539  0.209* 0.209 0.202 NS NS 

RE 0.492 0.492 0.436 32.510 48.162  0.199* 0.199 0.194 NS NS 

RQ 0.393 0.393 0.356 22.610 38.261  0.170* 0.170 0.169 NS NS 

YF 0.238 0.238 0.223 7.097 22.748  0.064 -0.064 0.067 5.370 5.370 

NNM 0.026 -0.024 0.032 NA 1.594  NA NA NA NA NA 

Chrome S1  S2 

 AE AB HH %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮  AE AB HH %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮 

Gamma 0.531 bv -0.531 1.106 0.000 35.283  0.363 -0.363 0.771 9.162 18.482 

Weibull 0.557 -0.557 1.180 2.635 37.918  0.359 -0.359 0.764 8.724 18.045 

AML 0.544 bv -0.544 1.141 1.324 36.606  0.409 -0.409 0.859 13.722 23.043 

Normal 0.544 bv -0.544 1.141 1.324 36.606  0.409 -0.409 0.859 13.722 23.043 

Power-law 0.210* -0.204 0.368 NS NS  0.285 bv -0.231 0.537 1.404 10.725 

RE 0.108* -0.052 0.142 NS NS  0.271 bv -0.148 0.428 0.000 9.321 

RQ 0.325* -0.325 0.579 NS NS  0.330 -0.328 0.714 5.831 15.152 

YF 0.544 bv -0.544 1.143 1.275 36.557  0.473* -0.473 0.895 NS NS 

NNM 0.178 bo -0.157 0.307 NA 0.000  NA NA NA NA NA 
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utilizing diverse arrangement of parameters per neuron 
yield a structure with higher complexity for prediction. 

In terms of overall magnitude of bias (i.e., absolute 
value of AB), out of the seven cases that scenario S1 per-
formed better, the best model from scenario S1 outper-
formed the best VDMs from scenario S2 (those with 
ΔAE𝑗

𝐺 ≤ 2) in five cases. 
We believe that, in equivalent precision conditions, in 

terms of bias, the final decision is up to the specialist to pick 
the best model dependent on his/her priorities. Neverthe-
less, from a security perspective, it is better to pick a model, 
which gives more conservative forecast results. In the cur-
rent study, out of the seven NNMs that were chosen as the 
best models, the AB value in three cases (Windows, IOS, 
and Chrome) is negative. In other words, in these cases, the 
predictor underestimated the total number of exploited 
vulnerabilities. It can also be easily inferred from Figure 6, 
where for Windows, IOS, and Chrome most of the predic-
tion points associated with the NNMs are located under 
the X=0 axis. For rest of the cases, the best overall model 
has come up with positive ABs or conservative results.  

There are a few limitations to our work that prevents us 
from expanding our conclusions in a more generalized 

manner. One of which is with respect to utilizing an-
nounced published date of vulnerabilities as their discov-
ery date. Vulnerabilities normally are found by pernicious 
users earlier than the time they are officially reported. To 
ensure that this gauge is as close as conceivable to the real 
date the vulnerability is publically known to the world, we 
searched for various vulnerability repositories and se-
lected the earliest date announced for a vulnerability. Bet-
ter gauges can be achieved in the event that we have more 
precise proxies for ascertaining attacker effort and more 
exact times on when a vulnerability is found and reported 
(for instance, in the dark web), as opposed to when it is 
detected in an open vulnerability database. However, ac-
quiring this information is not straightforward: data in the 
dark web is unstructured and extremely hard to add sig-
nificance to what is mined. 

Another limitation is as to the manner in which we com-
bined all vulnerabilities announced for all versions of a 
given software to have sufficient data for training the mod-
els. While a number of studies utilize vulnerability data as-
sociated with separate version of software (e.g. Windows 
7) on which to apply VDMs [20], [28], there are papers that 
consider all versions of a software together [23], [32]. The 
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Fig. 6. Prediction errors for OSs and web browsers The X-axis indicates time (Year). The Y-axis represents normalized prediction error values in 

percent ((Ω𝑡 − Ω)/Ω).  
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first group expects that each version of a given software is 
an independent and all around characterized item, yet dis-
tinguishing the sources of reliance in vulnerability data is 
not a simple task. 

VDMs utilize the calendar time, which may not be a de-
cent proxy for the product utilization. In security the diffi-
culty is in evaluating the "attacker effort" - the sum of time 
that a malicious user/attacker spends in finding a vulner-
ability - which is something that isn't required for depend-
ability (we assume the users inadvertently experience 
faults that lead to failure, henceforth use time is a sufficient 
proxy for time between failures). A broader discussion of 
this limitation is addressed in [51].  

Another limitation is with regard to the NNMs, since 
they are not mathematically tracable and easily interpreta-
ble, unlike analytical models (ie. VDMs). However, it is 
quite benefial to use their modeling capability as a guid-
ance for improving the structure of the analytical models 
as some vulnerability discovery mechanisms might be 
missed by the common VDMs [52]. In this research, we 
showed that more accurate predictions are also possible 
using NNMs.  

Another limitation is with regard to the availability of 
public information for exploits. Many vendors and public 
repositories, with good reason, may not publish infor-
mation on exploits as that is likely to increase the security 
risks for the end users of those systems. Responsible hack-
ers are also more likely to not publish their exploits in pub-
lic fora, as they can report them to the vendors directly. 
Malicious hackers are more likely to attempt to monetize 
their discoveries via dark web fora. Hence the predictions 
we make of publically known exploits are likely to be un-
derestimates of the true number of all vulnerabilities with 
exploits. Nevertheless, the approach we describe in this pa-
per can be used by vendors and organization who have 
more information about exploits that they cannot share 
publically to calibrate their predictions.  

8. CONCLUSION AND FUTURE WORK 

In this paper, we evaluated the capability of all vulnerabil-
ities associated with a software in predicting the number 
of exploited ones. We compared two scenarios: S1 (use of 
all vulnerabilities) and S2 (use only of exploited vulnera-
bilities). We used eight common vulnerability discovery 
models (VDMs) for both scenarios as well as a non-linear 
neural network model (NNM) for the first scenario. Due to 
insufficient number of exploited vulnerabilities, it was not 
conceivable to use NNM for the second scenario. We used 
the aforementioned models for predicting the total number 
of future exploited vulnerabilities over a prediction period 
of three years. The mentioned models were applied to vul-
nerability data associated with four well known OSs and 
four well-known web browsers. We evaluated the models 
in terms of prediction accuracy and prediction bias. The 
main highlights from the results are:  

- Out of eight software we analyzed, the first sce-
nario led to more accurate results in seven cases. 
Moreover, out of these seven cases, the NNM was 
chosen as the best model in all the cases.  

- Comparing only VDMs, in terms of prediction ac-
curacy, the first scenario was able to acceptably 
approximate the results from the second scenario 
in five cases (by performing better in two cases 
and providing less than 2.2% error difference in 
three cases). This is good since we do not always 
have access to exploited vulnerability data, which 
are scarce, and need to predict their report time 
based on other publically accessible information.  

- This study shows that neural networks are prom-
ising for accurate predictions of the number of 
software vulnerabilities.  

For future work, we are planning on publishing the re-
sults associated with different settings we tried for our 
neural networks as well as other possible configurations to 
investigate the best neural network structure for our prob-
lem. In addition, we intend to explore other nonlinear 
model structures using machine learning algorithms. 
Among them are Recurrent Neural Network (RNN) mod-
els, used for prediction time series, which may better than 
NNMs at modeling dependencies between two points in a 
sequence. We also plan to find the reason behind the ob-
served gap between prediction capabilities of the NNMs 
versus VDMs and to investigate whether current VDMs 
missing a mechanism associated with the process of vul-
nerability discovery within their mathematical structure. 
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