

City, University of London Institutional Repository

Citation: Movahedi, Y., Cukier, M. & Gashi, I. (2020). Predicting the Discovery Pattern of

Publically Known Exploited Vulnerabilities. IEEE Transactions on Dependable and Secure
Computing, 19(2), doi: 10.1109/tdsc.2020.3014872

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/24766/

Link to published version: https://doi.org/10.1109/tdsc.2020.3014872

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

Predicting the Discovery Pattern of Publically
Known Exploited Vulnerabilities

Yazdan Movahedi, Michel Cukier, and Ilir Gashi

Abstract— Vulnerabilities with publically known exploits typically form 2-7% of all vulnerabilities reported for a given software

version. With a smaller number of known exploited vulnerabilities compared with the total number of vulnerabilities, it is more

difficult to model and predict when a vulnerability with a known exploit will be reported. In this paper, we introduce an approach

for predicting the discovery pattern of publically known exploited vulnerabilities using all publically known vulnerabilities reported

for a given software. Eight commonly used vulnerability discovery models (VDMs) and one neural network model (NNM) were

utilized to evaluate the prediction capability of our approach. We compared their predictions results with the scenario when only

exploited vulnerabilities were used for prediction. Our results show that, in terms of prediction accuracy, out of eight software we

analyzed, our approach led to more accurate results in seven cases. Only in one case, the accuracy of our approach was worse

by 1.6%.

Index Terms— Prediction, Exploited Vulnerabilities, All Vulnerabilities, Vulnerability Discovery Models, Artificial Neural Network,

Time to Next Vulnerability

—————————— ——————————

1 INTRODUCTION

Researchers have used data from various vulnerability da-
tabases to study trends of discovery of new vulnerabilities,
used various models for fitting the vulnerability discovery
process, and predicting the number of new vulnerabilities
that may be discovered for a given product [1]–[6]. Esti-
mating the number of new vulnerabilities over time is use-
ful both for vendors of these products as well as the end-
users as it can help them with resource allocation.

For some vulnerabilities, exploits are never published.
This might be because the patches for these vulnerabilities
are made available very quickly by the vendors, and hence
it is not profitable for hackers to develop exploits for them;
the vulnerabilities have a lower criticality from the security
viewpoint; or it might be that the exploits for these vulner-
abilities are only known to the vendors, to security agen-
cies or are exchanged in, for example, dark web forums.
Previous studies [7], [8] have reported that vulnerabilities
with publically-known exploits usually form only 2-7% of
all vulnerabilities reported for a given software version . In
addition, as opposed to vulnerability databases such as
NVD, which are actively maintained, security repositories
reporting exploited vulnerabilities like Exploit Database,
also known as “ExploitDB”, are less common. A compari-
son between NVD and ExploitDB finds that only 22% of
NVD distinct vulnerabilities have exploits listed in Ex-
ploitDB. On the other hand, vulnerabilities with known ex-
ploits are more dangerous to end users, even if patches
may be available, since not all users regularly patch their
systems. For this reason, it is important for both vendors

and users to be able to predict the time to the next vulner-
ability with a known exploit and the number of vulnerabil-
ities that will be exploited over time. However, with a
smaller number of known exploited vulnerabilities com-
pared with the total number of vulnerabilities, it is difficult
to model and predict the discovery pattern of publically
known exploited vulnerabilities. Specifically, the data scar-
city makes it difficult to use data driven models, which are
helpful where there is no theoretical guidance to explain
the data generation process for such data [9]. Therefore, we
postulate that it is a worthwhile research activity to explore
whether there is a link between discovery pattern of all
vulnerabilities reported for a given software and discovery
pattern of its exploited vulnerabilities. Finding such link
would allow to use a larger dataset of all vulnerabilities for
predicting the number of exploited vulnerabilities that will
be reported over time.

In this paper, we introduce an approach for predicting
the discovery pattern of publically known exploited vul-
nerabilities using all vulnerabilities reported for a given
software. Eight commonly used vulnerability discovery
models (VDMs) as well as one neural network model
(NNM) were used to evaluate the prediction capability of
our approach. We applied the models to vulnerability data
associated with four well-known operating systems (OSs)
(Windows, Mac, IOS (the OS associated with Cisco), and
Linux), as well as four well-known web browsers (Internet
Explorer, Safari, Firefox, and Chrome).

Two scenarios were considered. In the first scenario (S1),
for each software, we utilize all vulnerabilities reported for
it (exploited + unexploited) to predict the discovery pat-
tern of exploited vulnerabilities over time. In the second
scenario (S2), for each software, we only use exploited vul-
nerabilities to predict the discovery pattern of exploited
vulnerabilities over time.

Our work makes the following contributions:

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 Yazdan Movahedi is with the Center for Risk and Reliability, University of
Maryland, College Park, MD 20742. E-mail: ymovahed@ umd.edu.

 Michel Cukier is with the Center for Risk and Reliability, University of
Maryland, College Park, MD 20742. E-mail: mcukier@ umd.edu.

 Ilir Gashi is with the Center for Software Reliability, City, University of
London, London, UK EC1V 0HB. E-mail: ilir.gashi.1@city.ac.uk.

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

 We introduce an approach for predicting total num-
ber of publically-known exploited vulnerabilities
using all vulnerabilities reported for a given soft-
ware in 30-day time intervals;

 We compare the prediction capability of two sce-
narios S1 and S2, S1 when all the vulnerabilities are
considered, S2 when only exploited vulnerabilities
are, utilizing eight VDMs and one NNM on eight
well-known software;

 We show that, out of eight software we analyzed,
scenario S1 outperforms scenario S2 in seven cases
in terms of prediction accuracy. Only in one case,
the prediction of S1 was worse than S2 by 1.5%. In
other words, for most of the cases analyzed, we
show that using all the vulnerability data available
for a system allows to better predict when vulnera-
bilities that will have publically known exploits for
them will be reported.

The rest of the paper is organized as follows. Section 2
describes the related work. Section 3 describes the models
used in this study, including details of a neural network
model we used in our analysis. Section 4 describes the da-
taset and the scenarios we used. Sections 5 describes the
analytical steps we followed in the first scenario (S1). Sec-
tion 6 presents the results of using both scenarios with the
models for prediction. Section 7 discusses the main find-
ings and some limitations. Finally, Section 8 presents con-
clusions and provisions for future work.

2 RELATED WORK

A security vulnerability is defined as any fault in a soft-
ware that, if exploited, can lead to a security failure. Re-
search has been conducted to find a link between the fault
discovery process of a software and the discovery process
of its vulnerabilities for modeling purposes [10]. When
considering the fault detection process of a software, it is
justifiable to conclude that software reliability models
(SRMs) and vulnerability discovery models (VDMs) are
similar [1]. In such cases, the intensity/rate function can

represent the detection rate of vulnerabilities. Several stud-
ies have been conducted applying regression models
and/or existing VDMs/SRMs on vulnerability datasets, or
proposing new VDMs for modeling the discovery process
of vulnerabilities. In these cases, researchers introduced
new software security indicators such as total number of
residual vulnerabilities in the system, time to next vulner-
ability (TTNV), vulnerability detection rate, etc. [1]–[7],
[10]–[14].

The earliest effort at modeling software reliability was a
Markov birth-death model introduced by Hudson in 1967
[15]. A comprehensive overview of several SRMs that char-
acterize the process of software defect-finding is provided
in [2]. The earliest study on modeling the vulnerability dis-
covery process was conducted in 2002, when the first VDM
termed the Anderson Thermodynamic (AT) model pro-
posed by Anderson [16]. Since 2002, other VDMs have
been proposed. Rescorla [4], [5] proposed a VDM to esti-
mate the number of undiscovered vulnerabilities. In 2005,
Alhazmi et al. [17] proposed the application of SRMs to
vulnerability discover modeling. The same year, they also
introduced a logistic VDM known as Alhazmi–Malaiya
Logistic (AML) model. Their proposed AML model as-
sumes a symmetrical shape around the peak discovery rate
value [6]. A Weibull distribution-based VDM was pro-
posed by Kim in 2007 [18]. Li et al. [19] empirically showed
that, in comparison to other reliability models, a Weibull
model is better for defect occurrence across a wide range
of software systems.

Several studies applied existing models to different
types of software packages, such as operating systems and
web servers, to simulate the vulnerability discovery rate
and predict the number of vulnerabilities that may be pre-
sent but not yet found [20]–[22]. Other studies focused on
increasing the accuracy of vulnerability discovery model-
ing by examining the skewness of the vulnerability data
[23], using Bayesian theorem [24], [25], or using machine
learning techniques like nueral networks [26].

In addition to the vulnerabilities publication dates,
some studies used software source code for vulnerability
assessment in the context of VDMs. Kim et al. [18] pro-
posed a VDM based on shared source code measurements
among multi-version software systems. In 2006, Ozment
and Schechter employed a reliability growth model to
evaluate the security of the OpenBSD OS by examining its
source code and the rate at which new code has been intro-
duced [27]. However, it has been shown that source code
cannot be an efficient measure in terms of prediction [3].
Recently, Nguyen et al. proposed an automated method
that determines the code evidence for the presence of vul-
nerabilities in previous software versions to evaluate
whether the target version is vulnerable [28].

There is little work that focuses on specifically modeling
exploited vulnerabilities. One effort is the probabilistic ex-
amination of intrusions by [29], [30]. The lack of data is a
barrier to modeling exploited vulnerabilities using current
VDMs or machine learning techniques, which require con-
siderable amount of data for satisfactory training.

Fig. 1. Classification of Considered Time-based VDMs

Time-based
VDMs

Quasi-linear
Models

Rescorla's
Quadratic

S-shaped
Models

Gamma-based

Weibull-based

Normal-based

AML

Younis’s
Folded

SRGM-based
Models

Rescorla's Ex-
ponential

NHPP Power-
law

AUTHOR ET AL.: TITLE 3

3 MODELS USED

3.1 Vulnerability Discovery Models (VDMs)

Vulnerability discovery models (VDMs) can be character-
ized into two classes: time-based and effort-based VDMs.
Time-based VDMs tally the vulnerabilities of a given soft-
ware as a function of calendar time. Effort based VDMs,
presented by Alhazmi et.al [6], consider changes in envi-
ronmental factors over usage time of the software like, for
example, the number of installations, share of installed
base of the software and so forth (see [6] for more infor-
mation regarding effort-based models). In this paper, we
will focus on time-based models since the data sources we
have utilized have information about vulnerability report
dates but not installation dates. A classification of the time-
based VDMs used in this research is shown in Figure 1,
based on [20]. These models include the most well-known
VDMs utilized in the literature.

S-shaped VDMs isolate the procedure of vulnerability
disclosure into three phases as shown in Figure 2. Phase 1
corresponds to the learning phase, which begins from the
presentation of the product and proceeds until the start of
the period "Sustained Growth" as a result of expanding
popularity of the software [23]. Amid the learning phase,
the vulnerability discovery intensity function is an increas-
ing function. Phase 2, or the linear phase, is the period
when the majority of the vulnerabilities are discovered.
The intensity function at this phase is steady and linear.
Phase 3, or the saturation phase, is the period when the
majority of the vulnerabilities have been detected [20]. The
vulnerability discovery intensity function for phase 3 is di-
minishing. This phase is present only if most vulnerabili-
ties have been discovered.

The five S-shaped VDMs in this paper consist of two
right-skewed distributions (Gamma-based VDM, Younis
Folded VDM), one flexible-skewed distribution (Weibull-
based VDM), and two symmetrical distributions
(Alhazmi–Malaiya Logistic (AML) model and Normal dis-
tribution-based model). These VDMs include the most fre-
quent ones for the modeling process of vulnerability dis-
covery [23].

Furthermore, we have included three non-S-Shaped

VDMs: Rescorla Exponential (RE) model, Rescorla Quad-
ratic (RQ) model, and NHPP Power-law model. More in-
formation regarding the Rescorla models can be found in
[5]. When modeling the cumulative number of failures
Ω(𝑡) for software dependability/reliability assessments,
models built upon a nonhomogeneous Poisson process
(NHPP) are often selected. Allodi [31] demonstrated that
discovered vulnerabilities may pursue a Power-law distri-
bution. The model utilized in this paper was applied on
vulnerability data as a VDM in [32], [33]. The main as-
sumption of this model is that the number of discovered
vulnerabilities pursues a nonhomogeneous Poisson pro-
cess. Moreover, in NHPP-based software reliability
growth models (SRGMs), the intensity function (ω(t) =

dE[Ω(t)]/dt) is assumed as a monotonic function [34].
The equations associated with all the models above are

provided in Table 1.

3.1.1 NHPP Power-law

When modeling the mean cumulative number of fail-
ures (MCF) (𝑡) for software reliability evaluations, models
derived from a nonhomogeneous Poisson process (NHPP)
are often used. Allodi [31] showed that the vulnerability
exploitation may follow a Power-law distribution. How-
ever, such models have several assumptions. The main one
is that the number of detected vulnerabilities follows a
nonhomogeneous Poisson process. In addition, if we con-
sider a software as a repairable system, its intensity func-
tion ω(t) = dE[Ω(t)]/dt, is often, for simplicity, assumed a
monotonic function of t. Therefore, in NHPP-based soft-
ware reliability models (SRMs) or NHPP-based VDMs, the
intensity function (the detection rate of software er-
rors/the detection rate of vulnerabilities) is considered to
be a monotonic function [34]. In this research, we use an
NHPP Power-law model and compare it with other VDMs
in terms of modeling capabilities. The equation associated
with the Power-law model is presented in Table I. This
model is continuous over time and has two parameters: α
(shape parameter), β (scale parameter).

Fig. 2. Three Phases for S-shaped Models

TABLE 1
TABLE OF MODELS AND THEIR EQUATIONS

Model Equation
NHPP Power-law

[32]
Ω(𝑡) = (𝛽−𝛼). 𝑡𝛼

Gamma-based
VDM [23] Ω(𝑡0) = ∫

𝛾

Γ(𝛼)𝛽𝛼
𝑡𝛼−1𝑒

−
𝑡

𝛽
𝑡0

𝑡=0
𝑑𝑡

Weibull-based VDM
[18] Ω(𝑡) = 𝛾{1 − 𝑒

−(
𝑡

𝛽
)

𝛼

}

AML VDM [6] Ω(𝑡) =
𝐵

𝐵𝐶𝑒−𝐴𝐵𝑡+1

Normal-based VDM
[23]

Ω(𝑡) =
𝛾

1+𝑒−
(𝑡−𝜇)

𝑠

Rescorla Exponen-
tial (RE) [5] Ω(𝑡) = 𝛾(1 − 𝑒−𝜆𝑡)

Rescorla Quadratic
(RQ)[5] Ω(𝑡) =

𝐴𝑡2

2
+ 𝐵𝑡

Younis Folded (YF)
[35]

Ω(𝑡) =
𝛾

2
{erf (

𝑡 − 𝜏

√2𝜎
) + erf (

𝑡 + 𝜏

√2𝜎
)}

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

3.1.2 Gamma-based VDM

The Gamma-based VDM, derived from the Gamma dis-
tribution, belongs to the family of right-skewed distribu-
tions. It has a continuous intensity function with three pa-
rameters: α (shape parameter), β (scale parameter), and 𝛾 ,
which represents the total number of vulnerabilities that would
finally be discovered. The equation associated with the
Gamma-based VDM is presented in Table I. This distribu-
tion is only defined for t >0. The shape and the scale pa-
rameters are always positive. It is expected that for the soft-
ware with large values of t, right-skewed distributions pro-
vide better fits to vulnerability discovery data than other
models [23] because of gradual reduction in the number of
discovered vulnerabilities, which yields a tail on the right
side of the relevant vulnerability discovery intensity func-
tion.

3.1.3 Weibull-based VDM

The Weibull-based VDM, derived from the Weibull dis-
tribution, belongs to the family of flexible-skewed distri-
butions. This VDM was first introduced in 2007 [18]. Like
the Gamma-based VDM, the Weibull-based VDM has a
continuous intensity function with three parameters: α
(shape parameter), β (scale parameter), and 𝛾 which represents
the total number of vulnerabilities that would finally be discov-
ered. This VDM can be symmetrical with zero skewness for
α values around 3. For α <3, this VDM is always right-
skewed, while for α >3, it is left-skewed. Like the Gamma-
based VDM, this distribution is defined for t >0.

3.1.4 AML VDM

Alhazmi–Malaiya Logistic (AML) model belongs to the
family of distributions with symmetrical intensity (rate)
functions. This model was first introduced in 2005 [6] and
is based upon the idea that as an operating system gains
market share, the attention it receives increases. Then, after
experiencing a peak, it starts decreasing when a newer ver-
sion is released. Overall, the AML model assumes the cu-
mulative number of vulnerabilities is influenced by two
factors: the share of the installed base (increasing factor)
and the number of remaining undiscovered vulnerabilities
(declining factor). The AML model has three parameters
including a constant C. Parameters A and B are empirical
constants and directly estimated from the dataset. B stands
for the total number of vulnerabilities that would finally be dis-
covered. This model is defined for time values t from the
negative infinity to the positive infinity, and the parame-
ters must be positive.

3.1.5 Normal-based VDM

The Normal-based VDM belongs to the family of distri-
butions with symmetrical intensity/probability density
functions. This model presents a distribution with zero
skewness that has three parameters: μ is a location param-
eter, σ is a scale parameter and 𝛾 is the total number of vul-
nerabilities that would eventually be discovered. The Normal-
based VDM has lighter tails on both sides in comparison to
the logistic distribution used for the AML model. For a da-
taset with fewer vulnerabilities discovered at the begin-
ning and at the end of a discovery process, the Normal

VDM might be a better fit than the AML model [23].

3.1.6 Rescorla VDMs

In 2005, Rescorla proposed two VDMs to estimate the
number of undiscovered vulnerabilities [4], [5]. In Rescorla
Exponential (RE) model, 𝛾 is the total number of vulnerabili-
ties that would eventually be discovered and, as time increases,
Ω approaches 𝛾. In the second model, as t grows, Ω grows
quadratically, thus it is called the Rescorla Quadratic
model.

3.1.7 Younis Folded (YF) VDM

The normal distribution is symmetric around its mean
and is defined for a random variable that takes values from
-inf to +inf. In some cases, a distribution is needed that has
no negative values. Folded distributions are kinds of asym-
metrical models obtained by folding the negative values
into the positive side of the distribution. The folded distri-
bution has been found usable in industrial practices such
as measurement of flatness and straightens.

In the Younis folded model [35] vulnerability discovery
starts at time t = 0 which corresponds to the release time of
the software. In this model, t represents the calendar time,
𝜏 is a location parameter, σ is a scale parameter, and 𝛾 rep-
resents the number of vulnerabilities that will be eventu-
ally discovered. Compared to AML, the Folded VDM has
shorter learning phase or missing learning phase which
makes the normal distribution asymmetric. It results in a
higher discovery rate at the beginning which may be espe-
cially applicable to the cases where the vulnerability dis-
covery plot is in linear phase even at the beginning.

3.2 Neural Network

Neural network models (NNMs) comprise of an arrange-
ment of algorithms for modeling and perceiving specific
patterns. NNMs have been generally utilized for predic-
tions of sequential data in time series, for example, month
to month electricity demand of a city or stock price [36]–
[38]. Unlike VDMs, NNMs can incorporate the nonlinear-
ity that exists in noisy time series data. Moreover, NNMs
are not based upon a specific model since they are data
driven models. Thus, NNMs are flexible nonlinear data
driven models with powerful predictive capability. Data
driven models are helpful for the cases without a theoreti-
cal model to explain the data. In [39], it has been empiri-
cally proven that NNMs are suitable for capturing both lin-
ear and nonlinear behavior of time series.

In this paper, we utilize a feedforward NNM to forecast
the number of detected vulnerabilities over time. Feedfor-
ward NNMs are widely-used forms of neural network [36]
that accept a fixed number of inputs at any given time, and
generate one output. We assume that the number of future
vulnerabilities rely upon the number of vulnerabilities un-
veiled over the past periods (lags).

We utilize a single hidden-layer NNM for one step-
ahead prediction. As indicated by [40], a single hidden-
layer NNM is fit for approximating non-linear functions
with discretionary accuracy. Figure 3 shows the structure
of our NNM that comprises of three layers called input,

AUTHOR ET AL.: TITLE 5

hidden (the middle layer), and output. Each layer is an ac-
cumulation of neurons (nodes) where the associations are
governed by the corresponding weights. Data have been
fed through the input layer, after that they go through the
at least one hidden layer, and the ultimate result is given
by the output layer.

To predict the present value, several past observations
are utilized. In other words, the inputs are a p-component
subset of the set {𝑦𝑡−𝑝, . . . , 𝑦𝑡−2, 𝑦𝑡−1}; and 𝑦𝑡 is the output
or the total number of vulnerabilities reported in time pe-
riod t. Equations 1 and 2 show the relations with the input
and output values of the middle layer, consecutively. The
equations associated with the output layer are represented
by Equations 3 and 4, respectively.

𝐼𝑗 = ∑ 𝑤𝑗𝑖 × 𝑦𝑖 + 𝛽𝑗

𝑡−1

𝑖=𝑡−𝑝

 (𝑗 = 1, … , ℎ), (1)

𝑦𝑗 = 𝑓ℎ(𝐼𝑗) (𝑗 = 1, … , ℎ), (2)

𝐼𝑜 = ∑ 𝑤𝑜𝑗 × 𝑦𝑗 + 𝛼𝑜

ℎ

𝑗=1

 (𝑜 = 1), (3)

𝑦𝑡 = 𝑓𝑜(𝐼𝑜) (𝑜 = 1), (4)

where I is the input; y denotes the output; p and h denote
the number of input and hidden layer nodes, respectively;
𝑤𝑗𝑖 represents the connection weights of the input and hid-
den layers; and 𝑤𝑜𝑗 denotes the connection weights of the
hidden and output layers. The bias values of the hidden
and output layers are respectively shown by 𝛽𝑗 and 𝛼𝑜 ,
and are always between -1 and 1. 𝑓ℎ and 𝑓𝑜 are the non-lin-
ear activation functions associated with the hidden and the
output layers, respectively. A hyperbolic tangent function
was employed as the activation function for the hidden
layer since it is the function that is most widely used [36].

Deciding the optimal number of input nodes (lags) and
hidden layer nodes is the initial step in structuring a NNM.
From the literature, there is no systematic solution [18]. To
determine the optimal number of inputs (lags) and the
number of hidden nodes, we utilized the optimization al-
gorithm (ADE-BPNN) introduced in [36]. It is shown that,

1 We looked at the following ones: http://www.cvedetails.com/,
https://cxsecurity.com/, http://www.security-database.com/ and

for time series data, applying this algorithm improves pre-
diction accuracy associated with basic NNMs, and other
hybrid models [36]. This algorithm uses the minimum
mean square error (MSE) of the training data as loss func-
tion for finding the proper number of the nodes (input and
hidden) by experimentation. MSE is it the most frequently
used accuracy measure in literature [41]. As our start point,
we began with statistically significant lags derived from
assessing the partial autocorrelation function (PACF) asso-
ciated with each time series. In time series analysis, the
PACF gives the linear partial correlation of a time series
with its own lagged values [42]. However, we cannot only
rely on the lags we found from PACF since the selection of
inputs would then have be only based on the identification
of a linear model, while our NNM should also be able to
handle non-linear correlations. A detailed survey of exist-
ing input selection strategies for NNMs is provided in [43].
We assessed up to 50 hidden nodes for each time series and
selected the number of hidden nodes that minimize the
MSE.

4 DATASET USED

The dataset used in this paper was collected from the Na-
tional Vulnerability Database (NVD) maintained by NIST.
We leveraged the vulnerability CVE IDs to compare the re-
porting date of each vulnerability in NVD with the dates
in other public repositories on vulnerabilities 1 . We up-
dated the reporting dates to the earliest date that a given
vulnerability was publically known in any of the vulnera-
bility databases used [33]. To obtain exploited vulnerabil-
ity data, we used Exploit Database (EDB)2. The EDB is a
CVE compliant archive of public exploits and correspond-
ing vulnerable software, developed for use by penetration
testers and vulnerability researchers [44].

We will analyze the reported vulnerabilities associated
with four well-known OSs: Windows (1995-2017), Mac
(1997-2017), IOS (the OS associated with Cisco) (1992-2017),
and Linux (1994-2017), as well as four well-known web
browsers including Internet Explorer (1997-2017), Safari
(2003-2017), Firefox (2003-2017), and Chrome (2008-2017).
These software have been selected because they are the
most widely used and have the most vulnerabilities among
the databases. The variable we used in this research is the
cumulative number of vulnerabilities reported in 30-day
time intervals. In other words, for a given software, we
partitioned the relative study period into intervals of 30
days, and counted the total number of vulnerabilities de-
tected in each time interval.

For each software, all the vulnerabilities reported for
any of its versions were included. For instance, all the vul-
nerabilities reported for mac_os, mac_os_server, mac_os_x,
and mac_os_x_server were put together to create a vulner-
ability database for Mac.

Two modeling scenarios were considered. In the first
scenario (S1), we analyze all vulnerabilities reported for a
software for any of its versions. In the second scenario (S2),

http://www.securityfocus.com/
2 https://www.exploit-db.com/

Fig. 3. The architecture of the NNM model used for our study

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

for each software, we only consider the exploited vulnera-
bilities.

Table 2 presents the total number of vulnerabilities for
each software (All vulnerabilities together (”S1”) and only
exploited vulnerabilities (“S2”)). The percentages of ex-
ploited/unexploited vulnerabilities per software are pre-
sented in Figure 4. Windows and IE had the most percent-
ages of exploited vulnerabilities with 24.13% and 22.65%,
respectively. The reason is that, for each software, our da-
taset includs all the vulnerabilities reported for any of its
version.

5 ANALYTICAL STEPS OF SCENARIO S1

In this section, we explain the approach we developed to
predict the number of publically reported exploited vul-
nerabilities associated with a given software using all vul-
nerabilities reported for that software.

5.1 For VDMs

Regarding VDMs, we need to find a relationship between
the discovery pattern of all vulnerabilities (S1) and those
vulnerabilities that were exploited (S2). We focused on the
ratio of the time to next vulnerability (TTNV) for exploited

vulnerabilities over the TTNV associated with all vulnera-
bilities. TTNV was introduced as a way examining the fre-
quency of vulnerability reports in [3]. Zhang et. al [45] also
used TTNV as a measure that could imply the likelihood
for presence of zero-day vulnerabilities in a software. By
calculating the ratio of the TTNV for exploited vulnerabil-
ities, which could also be referred as time to next exploit,
over the TTNV associated with all vulnerabilities, we are
looking for using the predictions resulted from VDMs to
predict exploited vulnerabilities. In other words, we use
this ratio as a multiplier in the equations associated the
VDMs in the training phase to approximate the VDMs’
equations for exploited vulnerabilities. We used a
resampling method and a filtering method to take care of
the noisy nature of vulnerability data [46], [47]. For each
software, we resample/split the vulnerability data (all
vulnerabilities & exploited vulnerabilities) into intervals
of 120, 150, 180, 210, 240, 270, 300, 330, 360 days to remove
the effect of the daily fluctuations. For each interval (i-th
interval), we calculate the mean TTNV of the observations
at each time step (MTTNV) and calculate the ratio of MTT-
NVs, Ratio𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑖(t) = MTTNV𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑(𝑡)/MTTNV𝐴𝑙𝑙(𝑡) .
Figure 5 shows the box plot of ratios associated with each
interval per software. As it is shown, the median of the ra-
tios for each software, 𝑀𝑒𝑑𝑖𝑎𝑛 (Ratio𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑖(𝑡)), is almost
constant over different intervals. The median values of the
ratios per software are presented in Table 3. The VDM for
exploited vulnerabilities is calculated as follows:

Ω(𝑡)𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑 = Ω(𝑡)𝐴𝑙𝑙/𝑀𝑒𝑑𝑖𝑎𝑛 (Ratio𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑖(𝑡)) (5)

5.2 For NNM

Regarding the NNM, since we want to link two time
series, we feed one time series (all vulnerabilities) into the
NNM as input and select the output (𝑦𝑡) from the second
time series (exploited vulnerabilities). In other words, the
vector of inputs {𝑦𝑡−𝑝, . . . , 𝑦𝑡−2, 𝑦𝑡−1} belongs to S1 and the
output is chosen from S2.

The NNM developed for this paper was programmed
utilizing Matlab R2018a. For every software, our analysis
started by separating the vulnerability dataset into two
groups; training and testing. The training set comprises of
all the vulnerabilities published before 2015. The testing
data set comprises of vulnerabilities reported in years 2015,
2016, and 2017. NNM training is a complex nonlinear opti-
mization problem. Therefore, there is the likelihood to be
caught in local minima of the error surface. To avoid get-
ting poor outcomes, the training procedure needs to be it-
erated a few times with various random starting weights
and biases [39].

We set the maximum training number equal to 500
epochs, which based upon our experiments provided the
best results for our problem. An epoch represents the total
number of times a given dataset is used for training. In
other words, it represents the number of times the weights
in a network were updated [48]. Since the process of model
optimization in deep learning algorithms is done utilizing
the gradient decent method [41], it requires to pass the
training data through the network numerous times to up-
date the weights and obtain a more precise prediction

Fig. 4. Percentage of exploited vulnerabilities per software

TABLE 2
NUMBER OF VULNERABILITIES PER SOFTWARE

OS Windows Mac IOS Linux

All Vulnera-
bilities

3100 2705 650 4745

Exploited
Vulnerabilities

748 282 27 481

Web Browser IE Safari Firefox Chrome
All Vulnera-

bilities
1775 943 1477 1837

Exploited
Vulnerabilities

402 108 100 78

AUTHOR ET AL.: TITLE 7

model [48]. As our learning function, we utilized the Le-
venberg-Marquardt (LM) method as recommended by the
reference paper, which proposed the optimization algo-
rithm [36]. We set the logsig and purelin functions as the
activation function of the hidden and output layers, re-
spectively. These functions also were picked similarly to
the settings recommended by the algorithm. To avoid
overfitting/over training, for every software, we utilized a
cross validation technique by partitioning our training da-
taset into two subgroups of training data (70%), validation
data (30%), and checked the validation performance of the
trained network metrics of the Matlab Neural Network
tool compartment such as gradient decent (gradient thresh-
old=1.00e-4) and maximum number of validation checks
(max_fail=100). These metrics appear as stop states of the
training phase and were estimated after running a number
of trials and errors while observing the training/validation
error curves. Whenever the parameters of the network un-
der training met any of these limits, the training procedure
ends.

6 RESULTS

For both scenarios (S1 and S2), we used the eight VDMs for
the discovery process of vulnerabilities on eight well-
known software (four OSs and four web browsers). The
VDMs were fitted to the datasets using a non-linear re-
gression method described in [20]. In addition, for the first
scenario (S1) we also used one NNM, which is capable of
modeling nonlinearities. Since the NNM is a data driven

model, we could not use it for scenario S2 due to lack of
exploited vulnerabilities.

As mentioned previously, we started the analysis by
splitting the data into two groups of training and test data.
For scenario S1, both the VDMs and the NNM use a dataset
that includes all vulnerabilities reported for all versions of
a given software. For scenario S2, the VDMs use the data
associated with exploited vulnerabilities reported for those
versions. The training period for both scenarios starts from
the time when the first exploited vulnerability associated
with a given software was reported and continues until
12/31/2014. We made the predictions for the years 2015,
2016, and 2017. We then partitioned the vulnerability data
into intervals of 30 days as is common in the vulnerability
analysis literature [20], [21], [23].

For scenario S1, for the VDMs, during the training pe-
riod, the training data was used to estimate model param-
eters. To avoid overfitting, 10-fold cross validation was
also conducted on the training data. Using the estimated
parameters and the TTNV ratios we found from Section 5,
we estimated the number of exploited vulnerabilities. Then,
the estimations for each time interval produced by the
eight models were compared with the actual number of ex-
ploited vulnerabilities to calculate the prediction accuracy.
For the NNM, for each software, we used the training data
to train the NNM. The process is like feeding the NNM by
one time series and comparing the outputs with values as-
sociated with another time series. Using the trained NNM,
we predicted the number of exploited vulnerabilities for
the next intervals. We calculated the prediction accuracy
by comparing the obtained estimation and the actual num-
ber of exploited vulnerabilities.

For scenario S2, for the VDMs, during the training pe-
riod, the training data was used to estimate model param-
eters. The estimated final values for each interval produced
by the eight models were compared with the actual num-
ber of exploited vulnerabilities to calculate the prediction
accuracy. The Chi-square (χ2) goodness of fit test [20] was
utilized for evaluating the quality of fit of each model on

Fig. 5. Box plots of TTNV coefficient ratios per software (S2/S1)

 TABLE 3
TABLE OF TTNV COEFFICIENTS (DAYS)

OS Windows Mac IOS Linux

TTNV Ratio
(Median)

3.526 9.393 5.696 5.306

Web
Browser

IE Safari Firefox Chrome

TTNV Ratio
(Median)

3.360 5.792 10.917 50.127

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

training datasets. The χ2 statistic is calculated using the fol-
lowing equation:

χ2 = ∑
(𝑆𝑖 − 𝐸𝑖)

2

𝐸𝑖

 (6)

𝑁1

𝑖=1

where 𝑆𝑖 and 𝐸𝑖 are the simulated and expected observed
values at 𝑖𝑡ℎ time point, respectively. N1 is the number of
observations in the training dataset (the time blocks used
for simulation). For acceptable fits, the corresponding χ2
critical value should be greater than the χ2 statistic for the
given alpha level and degrees of freedom. We selected an
alpha level of 0.05. The null hypothesis indicates that the
actual distribution is well described by the fitted model.
The p-values below 0.05 marks the fit as unsatisfactory. For
each VDM, before testing its prediction capability, first we
check whether the associated fit is statistically satisfactory.
We neglect the model, if it shows up with a p-value<0.05.

For the training part, for the NNM, we used the MSE
value to select the optimal analytical model, out of the
models trained with different combination of lags. Then,
for each software, the best model was selected to make the
prediction for the testing dataset (the vulnerabilities re-
ported in 2015, 2016, and 2017).

To evaluate prediction capabilities of the models, we
used two common normalized predictability measures, av-
erage error (AE) and average bias (AB) [23]. AE represents
how well a model predicts throughout the test phase, and
AB is a measure of the model’s general bias, which shows
its tendency to overestimate or underestimate the number
of disclosed vulnerabilities. AE and AB are defined as fol-
lows, respectively:

𝐴𝐸 =
1

𝑁2
∑ |

Ω𝑡 − Ω

Ω
|

𝑁2

𝑡=1

 (7)

𝐴𝐵 =
1

𝑁2
∑

Ω𝑡 − Ω

Ω

𝑁2

𝑡=1

 (8)

where N2 presents the total number of time points (one per
30 days) over the prediction period, and Ω stands for the
actual number of total exploited vulnerabilities, whereas
the estimated number of total exploited vulnerabilities at
interval t is shown by Ω𝑡.

For the VDMs associated with each scenario, we also re-
port ΔVAE𝑖

𝑘, which shows the difference between the AE of
the i-th VDM and the VDM with minimum AE in the sce-
nario to choose the best VDM/VDMs among the VDMs
present in each scenario.

%ΔVAE𝑖
𝑘 = (VAE𝑖

𝑘 − VAE𝑚𝑖𝑛
𝑘) ∗ 100 (9)

where k is the k-th scenario, VAE𝑖 is the AE of the i-th VDM,
and VAE𝑚𝑖𝑛 is the lowest AE found in the set of VDMs ex-
amined in the scenario (i.e., the best model). Thus, the
ΔVAE𝑖

𝑘 of the best VDM in a scenario is 0.
To highlight the difference between the AE of the k-th

model and the overall best model in both scenarios, we re-
port ΔAE𝑖

𝐺 , which is defined as follows:

%ΔAE𝑗
𝐺 = (AE𝑗 − AE𝑚𝑖𝑛

𝐺) ∗ 100 (10)

where AE𝑗 is the AE of the j-th model, and AE𝑚𝑖𝑛

𝐺 is the low-
est AE found in the set of models examined (i.e., the best
model). Thus, ΔAE𝑗

𝐺 of the best overall model is 0. In addi-
tion, if for a given model we have ΔAE𝑗

𝐺 = 1.2, it means
than the model has 1.2% higher prediction error than the
best overall model.

The Hanna and Heinold indicator (HH) is another met-
ric to calculate prediction errors. It is proven that for some
applications including analyzing real data with high fluc-
tuation the lower values of the commonly used root mean
square error (RMSE) are not always a reliable indicator of
the simulations’ accuracy [49]. Hence, Hanna and Heinold
introduced a corrected estimator as follows [50]:

𝐻𝐻 = √
∑ (𝑆𝑖 − 𝑂𝑖)2𝑁2

𝑖=1

∑ 𝑆𝑖𝑂𝑖
𝑁
𝑖=1

 (11)

where 𝑆𝑖 is the 𝑖𝑡ℎ simulated data, 𝑂𝑖 is the 𝑖𝑡ℎ observation
(test data) and N represents the number of observations in
test dataset (the time blocks used for simulation). The
closer to zero HH is, the more accurate the model.

Tables 4-5 present the values of AE, AB, HH, ΔVAE𝑖
𝑘 ,

and ΔAE𝑗
𝐺 for the cases we analyzed per scenario per

model (VDMs and NNM), respectively. Regarding p-val-
ues, we used * to show the models with p<0.05. AB can be
positive (for overestimation) or negative (for underestima-
tion), while AE is always positive. In each case, we first
found the best VDMs per scenario by comparing their pre-
diction accuracy and then compared the accuracy of those
models with the NNM results. In other words, for each
software, for the VDMs associated with each scenario, the
models that had the smallest values of AE were selected as
the best VDMs in terms of prediction and their AE values
were accompanied by “bv” superscript, which stands for
best VDM. In addition, the VDMs with ΔVAE𝑖

𝑘 < 2 were
also selected as the best predictive VDMs, which we as-
sume, show similar prediction capability compared to the
best VDM (the VDM/VDMs with ΔVAE𝑖

𝑘 = 0). In other
words, one of our assumptions in this paper is that the
VDMs with less than 2% performance difference from the
best predicting VDM represent similar prediction capabil-
ities and the differences in their prediction performance
are negligible. For each software, the best overall model in
both scenarios is shown by “bo” superscripts attached to
their associated AE values, which stands for best overall
model (the model with ΔAE𝑗

𝐺 = 0). If a VDM is the best
model of a scenario and simultaneously is the best overall
model, its AE value is only accompanied by “bo” super-
script.

For each software, the normalized error values ((Ω𝑡 −
Ω)/Ω) over prediction time are plotted in Figure 6. As is
shown, the models with fewer fluctuations lead to higher
accuracy.

Based upon the results provided by Tables 4-5, in terms
of prediction accuracy (AE and HH), out of eight software
we analyzed, scenario S1 led to the most accurate results in
seven cases. Only for Firefox, the best VDM from scenario

AUTHOR ET AL.: TITLE 9

S2 was more accurate than the best model of scenario S1,
which is NNM. In addition, considering both scenarios, the
NNM was selected as the best prediction model in seven
cases. As mentioned before, the VDMs with the * super-
script are the models that had a p-value less than 0.5 and
will not be considered in our analysis. In Tables 4-5, we
used the term “NS” for these models, which stands for Not
Satisfactory.

For Windows, the best model from scenario S1, which is
NNM (ΔAE𝑗

𝐺 = 0), is 1.8% more accurate than the one from
scenario S2 (the model with smallest AE in scenario S2,
ΔAE𝑗

𝐺 = 1.836). For Mac, the best model is also NNM by
having 19.59% smaller average prediction error (AE) than
the best model from scenario S2. For IOS, Linux, IE, Safari,
and Chrome the stories are like what happened for Win-
dows and Mac by NNM (from S1) as being the best model,
which comes up with 1.1%, 1.9%, 3.5%, 3.9%, and 9.3%
smaller prediction errors than the best models from sce-
nario S2. For Firefox, the model with smallest AE (ΔAE𝑗

𝐺 =
0) belongs to scenario S2 by having 1.6% smaller AE than
the best model from scenario S1, which is NNM (ΔAE𝑗

𝐺 ≈
1.6).

Overall, scenario S1 provides more accurate results in
seven cases (out of eight cases) for the number of future
exploited vulnerabilities. In the only case that the best
model from scenario S2 provided most accurate predic-
tions, the performance of the best model from scenario S1
was only 1.6% worse.

Considering only VDMs, in terms of prediction accu-
racy (AE and HH), out of eight software we analyzed, sce-
nario S1 led to most accurate results in only two cases. In
other words, for Mac, and IE, the best VDM from S1 had
higher accuracy than the best VDM from scenario S2 by
having 18.8%, and 1.6% smaller prediction errors, respec-
tively. However, the VDMs from scenario S1 were less than
2.2% different in prediction error in three cases compared
to the best VDM from scenario S2. The error differences for
Windows, IOS, and Linux are 2.2%, 1.6%, and 0.3%, respec-
tively. Only for Safari, Firefox, and Chrome this difference
is high and the best VDM from scenario S2 outperformed
the best VDM from scenario S1 by having 16.2%, 15.7%,
and 26% smaller prediction error, respectively.Overall,
comparing only VDMs, scenario S1 was able to perform
better than or as well as scenario S2 (with less than 2.2%

TABLE 4 PREDICTION ACCURACY FOR OSS PER SCENARIO

Windows S1 S2

 AE AB HH %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮 AE AB HH %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮

Gamma 0.187 0.187 0.170 8.126 12.111 0.101bv -0.097 0.148 1.703 3.539

Weibull 0.148 0.148 0.142 4.245 8.230 0.139 -0.139 0.197 5.432 7.268

AML 0.106bv 0.083 0.106 0.000 3.984 0.145 -0.145 0.203 6.021 7.856

Normal 0.106 bv 0.083 0.106 0.000 3.984 0.145 -0.145 0.203 6.021 7.856

Power-law 0.277 0.277 0.241 17.076 21.061 0.084 bv 0.084 0.085 0.000 1.836

RE 0.387 0.387 0.329 28.122 32.106 0.138* 0.138 0.128 NS NS

RQ 0.274 0.274 0.239 16.766 20.750 0.113 0.113 0.108 2.892 4.727

YF 0.122 bv 0.118 0.123 1.576 5.560 0.140 -0.140 0.199 5.579 7.415

NNM 0.066 bo -0.024 0.111 NA 0.000 NA NA NA NA NA

Mac S1 S2

 AE AB HH %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮 AE AB HH %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮

Gamma 0.215 -0.215 0.319 14.203 14.985 0.261bv -0.261 0.395 0.000 19.599

Weibull 0.251 -0.251 0.373 17.772 18.553 0.282 -0.282 0.423 2.038 21.637

AML 0.257 -0.257 0.379 18.399 19.180 0.277 bv -0.277 0.416 1.577 21.177

Normal 0.257 -0.257 0.379 18.399 19.180 0.277 bv -0.277 0.416 1.577 21.177

Power-law 0.073 bv -0.008 0.081 0.000 0.781 0.101* -0.008 0.113 NS NS

RE 0.081* 0.081 0.080 NS NS 0.092* 0.005 0.099 NS NS

RQ 0.077 bv -0.011 0.086 0.341 1.122 0.094* 0.017 0.100 NS NS

YF 0.248 -0.248 0.368 17.513 18.295 0.280 bv -0.280 0.420 1.834 21.433

NNM 0.065 bo 0.026 0.073 NA 0.000 NA NA NA NA NA

IOS S1 S2

 AE AB HH %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮 AE AB HH %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮

Gamma 0.149 0.146 0.165 10.441 13.206 0.032 bv 0.018 0.034 0.445 1.524

Weibull 0.156 0.154 0.172 11.126 13.891 0.029 bv 0.001 0.032 0.182 1.260

AML 0.185 0.185 0.196 14.066 16.831 0.028 bv -0.014 0.036 0.000 1.079

Normal 0.185 0.185 0.196 14.066 16.831 0.028 bv -0.014 0.036 0.000 1.079

Power-law 0.156 0.154 0.172 11.153 13.918 0.240* 0.240 0.217 NS NS

RE 0.301 0.301 0.304 25.647 28.412 0.279* 0.279 0.248 NS NS

RQ 0.044 bv -0.007 0.055 0.000 2.765 0.153* 0.153 0.143 NS NS

YF 0.220 0.220 0.231 17.555 20.321 0.028 bv -0.014 0.037 0.080 1.158

NNM 0.017 bo -0.002 0.020 NA 0.000 NA NA NA NA NA

Linux S1 S2

 AE AB HH %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮 AE AB HH %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮

Gamma 0.132 0.132 0.124 8.919 11.140 0.116 -0.116 0.144 7.620 9.542

Weibull 0.140 0.140 0.131 9.732 11.954 0.128 -0.128 0.159 8.874 10.796

AML 0.043 bv 0.037 0.054 0.000 2.221 0.168 -0.168 0.205 12.811 14.733

Normal 0.043 bv 0.037 0.054 0.000 2.221 0.168 -0.168 0.205 12.811 14.733

Power-law 0.182 0.182 0.168 13.914 16.135 0.040 bv 0.040 0.046 0.000 1.922

RE 0.282 0.282 0.255 23.969 26.190 0.045 bv 0.045 0.049 0.540 2.462

RQ 0.196 0.196 0.180 15.291 17.513 0.050 bv 0.050 0.053 1.031 2.953

YF 0.084 0.084 0.083 4.135 6.356 0.158 -0.158 0.194 11.843 13.765

NNM 0.020 bo 0.019 0.031 NA 0.000 NA NA NA NA NA

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

error difference) in five cases.
Another important factor, which plays a role in model

selection is the tendency of a given model to overestimate
or underestimate the results. In this research, we provided
the average bias values (AB) as well as the visual fluctua-
tion trend of normalized prediction errors (Figure 6).

Now, for each software, we compare the best overall
model and the models of similar prediction power (those
with ΔAE𝑗

𝐺 ≤ 2), in terms of average bias. For a given soft-
ware, if there are multiple models that satisfy the men-
tioned condition, we consider the model with lowest AB.
There are five software, which are qualified for this condi-
tion (i.e. Mac, IOS, Linux, IE, and Firefox). For Linux, IE,
and Firefox, the absolute value of AB for the best overall
model was smaller than the other candidates with ΔAE𝑗

𝐺 ≤
2 by 2.1%, 3.9%, and 1.9%, respectively. This For Mac and
IOS, the best overall model has higher absolute bias by
1.8%, and 0.1% difference, respectively.

7 DISCUSSION AND LIMITATIONS

In terms of prediction accuracy (AE and HH), considering

the OSs and web browsers (eight cases), our presented ap-
proach led to more accurate results in seven cases. Out of
those cases, the NNM provided the best model in all the
cases. Comparing only VDMs, in terms of prediction accu-
racy, scenario S1 was able to perform better than or as well
as scenario S2 (with less than 2.2% error difference) in five
cases.

We believe that the NNM's better execution contrasted
with VDMs originates from the capacity of the NNM in
foreseeing the nonlinearity nature of the vulnerability dis-
covery process as a time series. Moreover, a common as-
sumption in most VDMs is the pure S-shaped curve for
vulnerability discovery process or considering a discovery
function with a monotonic disclosure rate with constant to-
tal number of vulnerabilities. While, in reality, the vulner-
ability discovery process of a given software may have sev-
eral linear and saturation phases as the total number of
vulnerabilities may change as the result of introducing
newer software versions. Furthermore, VDMs and tradi-
tional time-series functions only utilize one set of parame-
ters for estimation. NNMs due to having multilayer per-
ceptron structure, having various neurons per layer, and

TABLE 5 PREDICTION ACCURACY FOR WEB BROWSERS PER SCENARIO

IE S1 S2

 AE AB HH %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮 AE AB HH %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮

Gamma 0.121 -0.121 0.132 7.189 9.018 0.175 -0.175 0.208 11.004 14.475

Weibull 0.120 -0.120 0.132 7.138 8.967 0.182 -0.182 0.217 11.700 15.170

AML 0.188 -0.188 0.220 13.922 15.752 0.256 -0.256 0.316 19.048 22.519

Normal 0.188 -0.188 0.220 13.922 15.752 0.256 -0.256 0.316 19.048 22.519

Power-law 0.120 -0.120 0.132 7.113 8.942 0.087 -0.087 0.100 2.172 5.643

RE 0.049 bv -0.049 0.054 0.000 1.829 0.065 bv -0.065 0.075 0.000 3.471

RQ 0.102 -0.102 0.110 5.292 7.121 0.069 bv -0.069 0.080 0.386 3.856

YF 0.126 -0.126 0.140 7.717 9.547 0.228 -0.228 0.279 16.253 19.724

NNM 0.030 0.010 0.035 NA 0.000 NA NA NA NA NA

Safari S1 S2

 AE AB HH %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮 AE AB HH %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮

Gamma 0.498 -0.498 0.847 20.921 41.101 0.140 bv -0.076 0.331 1.386 5.308

Weibull 0.528 -0.528 0.925 23.943 44.123 0.126 bv -0.106 0.353 0.000 3.923

AML 0.533 -0.533 0.937 24.492 44.672 0.131 bv -0.095 0.344 0.500 4.423

Normal 0.533 -0.533 0.937 24.492 44.672 0.131 bv -0.095 0.344 0.500 4.423

Power-law 0.357 -0.357 0.550 6.898 27.078 0.285 0.224 0.250 15.963 19.886

RE 0.288 bv -0.288 0.428 0.000 20.181 0.265 0.193 0.240 13.924 17.847

RQ 0.351 -0.351 0.541 6.312 26.493 0.270 0.202 0.242 14.462 18.384

YF 0.527 -0.527 0.923 23.863 44.043 0.127 bv -0.104 0.351 0.101 4.024

NNM 0.087 0.042 0.130 NA 0.000 NA NA NA NA NA

Firefox S1 S2

 AE AB HH %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮 AE AB HH %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮

Gamma 0.324 0.324 0.301 15.768 31.419 0.010 bo 0.005 0.013 0.000 0.000

Weibull 0.324 0.324 0.301 15.743 31.394 0.029 bv -0.029 0.031 1.912 1.912

AML 0.167 bv 0.167 0.159 0.000 15.651 0.064 -0.064 0.067 5.344 5.344

Normal 0.167 bv 0.167 0.159 0.000 15.651 0.064 -0.064 0.067 5.344 5.344

Power-law 0.355 0.355 0.327 18.888 34.539 0.209* 0.209 0.202 NS NS

RE 0.492 0.492 0.436 32.510 48.162 0.199* 0.199 0.194 NS NS

RQ 0.393 0.393 0.356 22.610 38.261 0.170* 0.170 0.169 NS NS

YF 0.238 0.238 0.223 7.097 22.748 0.064 -0.064 0.067 5.370 5.370

NNM 0.026 -0.024 0.032 NA 1.594 NA NA NA NA NA

Chrome S1 S2

 AE AB HH %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮 AE AB HH %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮

Gamma 0.531 bv -0.531 1.106 0.000 35.283 0.363 -0.363 0.771 9.162 18.482

Weibull 0.557 -0.557 1.180 2.635 37.918 0.359 -0.359 0.764 8.724 18.045

AML 0.544 bv -0.544 1.141 1.324 36.606 0.409 -0.409 0.859 13.722 23.043

Normal 0.544 bv -0.544 1.141 1.324 36.606 0.409 -0.409 0.859 13.722 23.043

Power-law 0.210* -0.204 0.368 NS NS 0.285 bv -0.231 0.537 1.404 10.725

RE 0.108* -0.052 0.142 NS NS 0.271 bv -0.148 0.428 0.000 9.321

RQ 0.325* -0.325 0.579 NS NS 0.330 -0.328 0.714 5.831 15.152

YF 0.544 bv -0.544 1.143 1.275 36.557 0.473* -0.473 0.895 NS NS

NNM 0.178 bo -0.157 0.307 NA 0.000 NA NA NA NA NA

AUTHOR ET AL.: TITLE 11

utilizing diverse arrangement of parameters per neuron
yield a structure with higher complexity for prediction.

In terms of overall magnitude of bias (i.e., absolute
value of AB), out of the seven cases that scenario S1 per-
formed better, the best model from scenario S1 outper-
formed the best VDMs from scenario S2 (those with
ΔAE𝑗

𝐺 ≤ 2) in five cases.
We believe that, in equivalent precision conditions, in

terms of bias, the final decision is up to the specialist to pick
the best model dependent on his/her priorities. Neverthe-
less, from a security perspective, it is better to pick a model,
which gives more conservative forecast results. In the cur-
rent study, out of the seven NNMs that were chosen as the
best models, the AB value in three cases (Windows, IOS,
and Chrome) is negative. In other words, in these cases, the
predictor underestimated the total number of exploited
vulnerabilities. It can also be easily inferred from Figure 6,
where for Windows, IOS, and Chrome most of the predic-
tion points associated with the NNMs are located under
the X=0 axis. For rest of the cases, the best overall model
has come up with positive ABs or conservative results.

There are a few limitations to our work that prevents us
from expanding our conclusions in a more generalized

manner. One of which is with respect to utilizing an-
nounced published date of vulnerabilities as their discov-
ery date. Vulnerabilities normally are found by pernicious
users earlier than the time they are officially reported. To
ensure that this gauge is as close as conceivable to the real
date the vulnerability is publically known to the world, we
searched for various vulnerability repositories and se-
lected the earliest date announced for a vulnerability. Bet-
ter gauges can be achieved in the event that we have more
precise proxies for ascertaining attacker effort and more
exact times on when a vulnerability is found and reported
(for instance, in the dark web), as opposed to when it is
detected in an open vulnerability database. However, ac-
quiring this information is not straightforward: data in the
dark web is unstructured and extremely hard to add sig-
nificance to what is mined.

Another limitation is as to the manner in which we com-
bined all vulnerabilities announced for all versions of a
given software to have sufficient data for training the mod-
els. While a number of studies utilize vulnerability data as-
sociated with separate version of software (e.g. Windows
7) on which to apply VDMs [20], [28], there are papers that
consider all versions of a software together [23], [32]. The

O
S

s

S
1

S
2

W
eb

 B
ro

w
se

rs

S
1

S
2

Fig. 6. Prediction errors for OSs and web browsers The X-axis indicates time (Year). The Y-axis represents normalized prediction error values in

percent ((Ω𝑡 − Ω)/Ω).

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

first group expects that each version of a given software is
an independent and all around characterized item, yet dis-
tinguishing the sources of reliance in vulnerability data is
not a simple task.

VDMs utilize the calendar time, which may not be a de-
cent proxy for the product utilization. In security the diffi-
culty is in evaluating the "attacker effort" - the sum of time
that a malicious user/attacker spends in finding a vulner-
ability - which is something that isn't required for depend-
ability (we assume the users inadvertently experience
faults that lead to failure, henceforth use time is a sufficient
proxy for time between failures). A broader discussion of
this limitation is addressed in [51].

Another limitation is with regard to the NNMs, since
they are not mathematically tracable and easily interpreta-
ble, unlike analytical models (ie. VDMs). However, it is
quite benefial to use their modeling capability as a guid-
ance for improving the structure of the analytical models
as some vulnerability discovery mechanisms might be
missed by the common VDMs [52]. In this research, we
showed that more accurate predictions are also possible
using NNMs.

Another limitation is with regard to the availability of
public information for exploits. Many vendors and public
repositories, with good reason, may not publish infor-
mation on exploits as that is likely to increase the security
risks for the end users of those systems. Responsible hack-
ers are also more likely to not publish their exploits in pub-
lic fora, as they can report them to the vendors directly.
Malicious hackers are more likely to attempt to monetize
their discoveries via dark web fora. Hence the predictions
we make of publically known exploits are likely to be un-
derestimates of the true number of all vulnerabilities with
exploits. Nevertheless, the approach we describe in this pa-
per can be used by vendors and organization who have
more information about exploits that they cannot share
publically to calibrate their predictions.

8. CONCLUSION AND FUTURE WORK

In this paper, we evaluated the capability of all vulnerabil-
ities associated with a software in predicting the number
of exploited ones. We compared two scenarios: S1 (use of
all vulnerabilities) and S2 (use only of exploited vulnera-
bilities). We used eight common vulnerability discovery
models (VDMs) for both scenarios as well as a non-linear
neural network model (NNM) for the first scenario. Due to
insufficient number of exploited vulnerabilities, it was not
conceivable to use NNM for the second scenario. We used
the aforementioned models for predicting the total number
of future exploited vulnerabilities over a prediction period
of three years. The mentioned models were applied to vul-
nerability data associated with four well known OSs and
four well-known web browsers. We evaluated the models
in terms of prediction accuracy and prediction bias. The
main highlights from the results are:

- Out of eight software we analyzed, the first sce-
nario led to more accurate results in seven cases.
Moreover, out of these seven cases, the NNM was
chosen as the best model in all the cases.

- Comparing only VDMs, in terms of prediction ac-
curacy, the first scenario was able to acceptably
approximate the results from the second scenario
in five cases (by performing better in two cases
and providing less than 2.2% error difference in
three cases). This is good since we do not always
have access to exploited vulnerability data, which
are scarce, and need to predict their report time
based on other publically accessible information.

- This study shows that neural networks are prom-
ising for accurate predictions of the number of
software vulnerabilities.

For future work, we are planning on publishing the re-
sults associated with different settings we tried for our
neural networks as well as other possible configurations to
investigate the best neural network structure for our prob-
lem. In addition, we intend to explore other nonlinear
model structures using machine learning algorithms.
Among them are Recurrent Neural Network (RNN) mod-
els, used for prediction time series, which may better than
NNMs at modeling dependencies between two points in a
sequence. We also plan to find the reason behind the ob-
served gap between prediction capabilities of the NNMs
versus VDMs and to investigate whether current VDMs
missing a mechanism associated with the process of vul-
nerability discovery within their mathematical structure.

9 ACKNOWLEDGEMENTS

This research is supported by NSF Award #1223634, and
the UK EPSRC project D3S (Diversity and defence in depth
for security: a probabilistic approach) and the European
Commission through the H2020 programme under Grant
Agreement 700692 (DiSIEM).

REFERENCES

[1] H. Okamura, M. Tokuzane, and T. Dohi, “Optimal
Security Patch Release Timing under Non-homogeneous
Vulnerability-Discovery Processes,” Nov. 2009, pp. 120–
128, doi: 10.1109/ISSRE.2009.19.
[2] M. R. Lyu, Ed., Handbook of software reliability engi-
neering. Los Alamitos, Calif. : New York: IEEE Computer
Society Press ; McGraw Hill, 1996.
[3] J. A. Ozment, “Vulnerability discovery & software
security,” University of Cambridge, 2007.
[4] E. Rescorla, “Security holes... Who cares?,” pre-
sented at the USENIX Security, Aug. 2003.
[5] E. Rescorla, “Is finding security holes a good
idea?,” IEEE Secur. Priv. Mag., vol. 3, no. 1, pp. 14–19, Jan.
2005, doi: 10.1109/MSP.2005.17.
[6] O. H. Alhazmi and Y. K. Malaiya, “Quantitative
vulnerability assessment of systems software,” 2005, pp.
615–620, doi: 10.1109/RAMS.2005.1408432.
[7] L. Allodi and F. Massacci, “A Preliminary Analy-
sis of Vulnerability Scores for Attacks in Wild: The Ekits
and Sym Datasets,” in Proceedings of the 2012 ACM Work-
shop on Building Analysis Datasets and Gathering Experience
Returns for Security, New York, NY, USA, 2012, pp. 17–24,
doi: 10.1145/2382416.2382427.
[8] A. A. Younis and Y. K. Malaiya, “Comparing and

AUTHOR ET AL.: TITLE 13

Evaluating CVSS Base Metrics and Microsoft Rating Sys-
tem,” in 2015 IEEE International Conference on Software Qual-
ity, Reliability and Security, Aug. 2015, pp. 252–261, doi:
10.1109/QRS.2015.44.
[9] R. Adhikari and R. K. Agrawal, “An introductory
study on time series modeling and forecasting,” ArXiv
Prepr. ArXiv13026613, 2013.
[10] P. E. Verissimo et al., “Intrusion-tolerant middle-
ware: the road to automatic security,” IEEE Secur. Priv.
Mag., vol. 4, no. 4, pp. 54–62, Jul. 2006, doi:
10.1109/MSP.2006.95.
[11] H. Okamura, M. Tokuzane, and T. Dohi, “Quanti-
tative Security Evaluation for Software System from Vul-
nerability Database,” J. Softw. Eng. Appl., vol. 06, no. 04, p.
15, Apr. 2013, doi: 10.4236/jsea.2013.64A003.
[12] W. A. Arbaugh, W. L. Fithen, and J. McHugh,
“Windows of vulnerability: a case study analysis,” Com-
puter, vol. 33, no. 12, pp. 52–59, Dec. 2000, doi:
10.1109/2.889093.
[13] S. Frei, M. May, U. Fiedler, and B. Plattner,
“Large-scale Vulnerability Analysis,” in Proceedings of the
2006 SIGCOMM Workshop on Large-scale Attack Defense,
New York, NY, USA, 2006, pp. 131–138, doi:
10.1145/1162666.1162671.
[14] S. Frei, D. Schatzmann, B. Plattner, and B. Tram-
mell, “Modeling the Security Ecosystem - The Dynamics of
(In)Security,” in Economics of Information Security and Pri-
vacy, Springer, Boston, MA, 2010, pp. 79–106.
[15] G. R. Hudson, “Program errors as a birth-and-
death process,” System Development Corp., Report SP-
3011, Dec. 1967.
[16] R. Anderson, “Security in open versus closed sys-
tems—the dance of Boltzmann, Coase and Moore,” Cam-
bridge University, England, Technical report, 2002.
[17] O. H. Alhazmi and Y. K. Malaiya, “Modeling the
vulnerability discovery process,” in 16th IEEE International
Symposium on Software Reliability Engineering (ISSRE’05),
Nov. 2005, pp. 10 pp. – 138, doi: 10.1109/ISSRE.2005.30.
[18] J. Kim, Y. K. Malaiya, and I. Ray, “Vulnerability
Discovery in Multi-Version Software Systems,” in 10th
IEEE High Assurance Systems Engineering Symposium, 2007.
HASE ’07, Nov. 2007, pp. 141–148, doi:
10.1109/HASE.2007.55.
[19] P. L. Li, M. Shaw, J. Herbsleb, B. Ray, and P. San-
thanam, “Empirical Evaluation of Defect Projection Mod-
els for Widely-deployed Production Software Systems,” in
Proceedings of the 12th ACM SIGSOFT Twelfth International
Symposium on Foundations of Software Engineering, New
York, NY, USA, 2004, pp. 263–272, doi:
10.1145/1029894.1029930.
[20] F. Massacci and V. H. Nguyen, “An Empirical
Methodology to Evaluate Vulnerability Discovery Models,”
IEEE Trans. Softw. Eng., vol. 40, no. 12, pp. 1147–1162, Dec.
2014, doi: 10.1109/TSE.2014.2354037.
[21] O. H. Alhazmi and Y. K. Malaiya, “Application of
Vulnerability Discovery Models to Major Operating Sys-
tems,” IEEE Trans. Reliab., vol. 57, no. 1, pp. 14–22, Mar.
2008, doi: 10.1109/TR.2008.916872.
[22] S. Woo, O. Alhazmi, and Y. Malaiya, “Assessing
Vulnerabilities in Apache and IIS HTTP Servers,” 2006, pp.

103–110, doi: 10.1109/DASC.2006.21.
[23] H. Joh and Y. K. Malaiya, “Modeling Skewness in
Vulnerability Discovery: Modeling Skewness in Vulnera-
bility Discovery,” Qual. Reliab. Eng. Int., vol. 30, no. 8, pp.
1445–1459, Dec. 2014, doi: 10.1002/qre.1567.
[24] R. Johnston, S. Sarkani, T. Mazzuchi, T. Holzer,
and T. Eveleigh, “Bayesian-model averaging using
MCMCBayes for web-browser vulnerability discovery,”
Reliab. Eng. Syst. Saf., vol. 183, pp. 341–359, Mar. 2019, doi:
10.1016/j.ress.2018.11.030.
[25] R. Johnston, S. Sarkani, T. Mazzuchi, T. Holzer,
and T. Eveleigh, “Multivariate models using MCMCBayes
for web-browser vulnerability discovery,” Reliab. Eng. Syst.
Saf., vol. 176, pp. 52–61, Aug. 2018, doi:
10.1016/j.ress.2018.03.024.
[26] Y. Movahedi, M. Cukier, and I. Gashi, “Vulnera-
bility Prediction Capability: A Comparison between Vul-
nerability Discovery Models and Neural Network Models,”
Comput. Secur., p. 101596, Aug. 2019, doi:
10.1016/j.cose.2019.101596.
[27] A. Ozment and S. E. Schechter, “Milk or wine:
does software security improve with age?,” presented at
the 15th USENIX Security Symposium, Jul. 2006, Accessed:
Mar. 21, 2017. [Online]. Available: https://www.use-
nix.org/legacy/event/sec06/tech/full_pa-
pers/ozment/ozment_html/.
[28] V. H. Nguyen, S. Dashevskyi, and F. Massacci,
“An automatic method for assessing the versions affected
by a vulnerability,” Empir. Softw. Eng., vol. 21, no. 6, pp.
2268–2297, Dec. 2016, doi: 10.1007/s10664-015-9408-2.
[29] B. B. Madan, K. Goševa-Popstojanova, K. Vaidya-
nathan, and K. S. Trivedi, “A method for modeling and
quantifying the security attributes of intrusion tolerant
systems,” Perform. Eval., vol. 56, no. 1–4, pp. 167–186, 2004.
[30] H. K. Browne, W. A. Arbaugh, J. McHugh, and W.
L. Fithen, “A trend analysis of exploitations,” in Proceed-
ings 2001 IEEE Symposium on Security and Privacy. S&P 2001,
Oakland, CA, USA, 2001, pp. 214–229, doi:
10.1109/SECPRI.2001.924300.
[31] L. Allodi, “The Heavy Tails of Vulnerability Ex-
ploitation,” in Engineering Secure Software and Systems, Mar.
2015, pp. 133–148, doi: 10.1007/978-3-319-15618-7_11.
[32] Y. Movahedi, M. Cukier, A. Andongabo, and I.
Gashi, “Cluster-based vulnerability assessment of operat-
ing systems and web browsers,” Computing, Sep. 2018, doi:
10.1007/s00607-018-0663-0.
[33] Y. Movahedi, M. Cukier, A. Andongabo, and I.
Gashi, “Cluster-based Vulnerability Assessment Applied
to Operating Systems,” presented at the 13th European De-
pendable Computing Conference, Geneva, Switzerland,
Jun. 2017, Accessed: Nov. 29, 2017. [Online]. Available:
http://edcc.dependability.org/.
[34] T. Y. Yang and L. Kuo, “Bayesian computation for
the superposition of nonhomogeneous poisson processes,”
Can. J. Stat., vol. 27, no. 3, pp. 547–556, Sep. 1999, doi:
10.2307/3316110.
[35] A. A. Younis, H. Joh, and Y. Malaiya, “Modeling
Learningless Vulnerability Discovery using a Folded Dis-
tribution,” in Proceedings of the International Conference on
Security and Management (SAM), Jan. 2011, pp. 617–623.

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

[36] L. Wang, Y. Zeng, and T. Chen, “Back propagation
neural network with adaptive differential evolution algo-
rithm for time series forecasting,” Expert Syst. Appl., vol. 42,
no. 2, pp. 855–863, Feb. 2015, doi:
10.1016/j.eswa.2014.08.018.
[37] A. A. Adebiyi, A. O. Adewumi, and C. K. Ayo,
“Comparison of ARIMA and Artificial Neural Networks
Models for Stock Price Prediction,” J. Appl. Math., vol. 2014,
pp. 1–7, 2014, doi: 10.1155/2014/614342.
[38] C. Bennett, R. A. Stewart, and C. D. Beal, “ANN-
based residential water end-use demand forecasting
model,” Expert Syst. Appl., vol. 40, no. 4, pp. 1014–1023,
Mar. 2013, doi: 10.1016/j.eswa.2012.08.012.
[39] N. Kourentzes, D. K. Barrow, and S. F. Crone,
“Neural network ensemble operators for time series fore-
casting,” Expert Syst. Appl., vol. 41, no. 9, pp. 4235–4244, Jul.
2014, doi: 10.1016/j.eswa.2013.12.011.
[40] A. Aslanargun, M. Mammadov, B. Yazici, and S.
Yolacan, “Comparison of ARIMA, neural networks and
hybrid models in time series: tourist arrival forecasting,” J.
Stat. Comput. Simul., vol. 77, no. 1, pp. 29–53, Jan. 2007, doi:
10.1080/10629360600564874.
[41] G. Zhang, B. Eddy Patuwo, and M. Y. Hu, “Fore-
casting with artificial neural networks:,” Int. J. Forecast., vol.
14, no. 1, pp. 35–62, Mar. 1998, doi: 10.1016/S0169-
2070(97)00044-7.
[42] D. N. Gujarati and D. C. Porter, Basic Econometrics.
McGraw-Hill Irwin, 2009.
[43] R. May, G. Dandy, and H. Maier, “Review of input
variable selection methods for artificial neural networks,”
in Artificial neural networks-methodological advances and bio-
medical applications, InTech, 2011.
[44] A. Andongabo and I. Gashi, “vepRisk-A Web
Based Analysis Tool for Public Security Data,” 2017, pp.
135–138.
[45] S. Zhang, D. Caragea, and X. Ou, “An Empirical
Study on Using the National Vulnerability Database to
Predict Software Vulnerabilities,” in Database and Expert
Systems Applications, vol. 6860, A. Hameurlain, S. W. Liddle,
K.-D. Schewe, and X. Zhou, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 217–231.
[46] C. N. Babu and B. E. Reddy, “A moving-average
filter based hybrid ARIMA–ANN model for forecasting
time series data,” Appl. Soft Comput., vol. 23, pp. 27–38, Oct.
2014, doi: 10.1016/j.asoc.2014.05.028.
[47] A. Phinyomark, A. Nuidod, P. Phukpattaranont,
and C. Limsakul, “Feature extraction and reduction of
wavelet transform coefficients for EMG pattern classifica-
tion,” Elektron. Ir Elektrotechnika, vol. 122, no. 6, pp. 27–32,
2012.
[48] S. Siami-Namini and A. S. Namin, “Forecasting
Economics and Financial Time Series: ARIMA vs. LSTM,”
ArXiv Prepr. ArXiv180306386, 2018.
[49] L. Mentaschi, G. Besio, F. Cassola, and A. Mazzino,
“Problems in RMSE-based wave model validations,”
Ocean Model., vol. 72, pp. 53–58, Dec. 2013, doi:
10.1016/j.ocemod.2013.08.003.
[50] S. R. Hanna, D. W. Heinold, A. P. I. H. and E. A.
Dept, and E. R. & T. Inc, Development and application of a

simple method for evaluating air quality models. American Pe-
troleum Institute, 1985.
[51] B. Littlewood et al., “Towards Operational
Measures of Computer Security,” J. Comput. Secur., vol. 2,
no. 2–3, pp. 211–229, Jan. 1993, doi: 10.3233/JCS-1993-22-
308.
[52] R. Iten, T. Metger, H. Wilming, L. Del Rio, and R.
Renner, “Discovering physical concepts with neural net-
works,” ArXiv Prepr. ArXiv180710300, 2018.

Yazdan Movahedi received his PhD degree
in Reliability Engineering at the University of
Maryland, College Park in 2019. He also
holds a Master’s degree in Industrial
Engineering from Isfahan University of
Technology, Iran, in 2015. His research
interests are in statistics and machine
learning and their application in evaluating
reliability of software/hardware.

Michel Cukier is an associate professor of
reliability engineering with a joint
appointment in the Department of
Mechanical Engineering at the University of
Maryland, College Park. He is also the
director for the Advanced Cybersecurity
Experience for Students (ACES). His
research covers dependability and security
issues. His latest research focuses on the
empirical quantification of cyber security. Dr.
Cukier has published more than 70 papers
in journals and refereed conference
proceedings in those areas.

 Ilir Gashi holds PhD (2007) and BEng
(Honours) (2003) degrees in Software
Reliability and Computing respectively from
City, University of London. He joined the
Centre for Software Reliability (CSR) in July
2003, where he is currently a Senior
Lecturer. He is currently (2018), a Principal
Investigator in two projects which
investigate the potential benefits of diversity
and defence in depth for security. His
research focus is on quantitative
assessment of the dependability and
security of software-based systems.

