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Older and younger adults studied paired-associates. 

Some pairs, such as "sheep-doctor" were easily integrated. 

A Multinomial Processing Tree (MPT) accounted for response probabilities. 

Factors can selectively influence vertices in an MPT.   

To test with response probability and time, only two MPTs need be considered. 

Under certain conditions selectively influenced vertex order is undetermined.   
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Use of Multinomial Processing Tree (MPT) models is illustrated by fitting one to data of Dhir 

(2017). Her experiment examined age and association type in a paired-associate recall task.   Age 

and Pair-Type had interactive effects on probability of a correct response. A natural 

interpretation of the interaction would be that both factors impact the same mental process. 

However, fitting an MPT leads to the conclusion that Age and Pair-Type selectively influence 

two separate processes, one following the other.  A possible interpretation of these is as attempts 

at specific (verbatim) retrieval and knowledge supported (gist) processing, selectively influenced 

by Age and Pair-Type, respectively.  The order of these processes is not determined by the 

response probabilities.  In a further section of the paper, we show that if response times or other 

measures had also been available, they could have resolved the process order, but might have left 

it undetermined.  We give necessary and sufficient conditions for two factors to selectively 

influence two ordered vertices in an MPT, with either order of the vertices accounting for both 

response probability and response time.  They do so if and only if the MPT is equivalent to a 

special processing tree, not necessarily an MPT itself. 
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A Multinomial Processing Tree Inferred from Age-Related Memory-Error Probabilities: 

Possibility of Inferring More if Response Times were Available  

 

  One of the many lasting contributions of William H. Batchelder was the establishment of 

Multinomial Processing Trees (MPTs) as general-purpose models in psychology.  Through his 

work and friendly encouragement of work of many others, he ensured use of MPTs would spread 

and continue.  At this time, they are models in many domains, including perception (e.g., Bishara 

& Payne, 2009), memory (e.g., Chechile , 1977), social cognition (e.g., Klauer & Wegener, 

1998), and psychological assessment (e.g., Batchelder, 1998).  For reviews, see Batchelder and 

Riefer (1999), Erdfelder, Auer, Hilbig, Abfalg, Moshagen and  Nadarevic (2009), and Hütter and 

Klauer (2016).   

This paper begins with a brief description of Multinomial Processing Trees.  One 

application is in studies of aging (e.g., Greene & Naveh-Benjamin, in press) and we fit an MPT 

to data from a paired associate learning experiment by Dhir (2017) with factors of  age and 

paired associate type.  Analysis indicates that age and pair-type have effects on two different 

processes, represented by two vertices in an MPT.  The data lead to an MPT in which the 

processes represented by the two vertices are executed one after the other, but their order is not 

determined.  The data were probabilities of correct responses.  Some investigators incorporate 

response time and other measures in MPTs (e.g., Heck & Erdfelder, 2016; Hu, 2001, Klauer & 

Kellen, 2018; Link, 1982; Schweickert & Zheng, 2018; Wollschläger & Diederich, 

2012).  Accordingly, the last part of the paper considers whether response times or other 

measures, if available, could reveal more than response probabilities do about the form of an 

MPT, in particular whether they could determine the order of vertices unresolved by response 
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probabilities.  

 Multinomial Processing Trees  

In a Multinomial Processing Tree, a mental process such as memory retrieval is 

represented with a point, called a vertex.  (An example will be given later.)  A possible outcome 

of a process, such as successful retrieval, is represented by a line, called an arc, descending from 

the corresponding vertex (see Figures 1-3).  The first process to be executed is represented by the 

source vertex of the tree, a vertex with no arcs entering it.  On each trial, every outcome of the 

source vertex has some probability of occurring, and one outcome occurs.  The sum of the 

probabilities of the arcs descending from a vertex is 1.  When an outcome occurs, the arc 

representing this outcome is traversed and the vertex at the lower end of the arc is reached.  That 

vertex represents a further process, which is executed.  One of its outcomes occurs, with a certain 

probability.  These steps are repeated until a vertex that has no arcs descending from it is 

reached.  Such a vertex is a terminal vertex, and at it a response is made.  Responses are in 

classes such as correct or incorrect, or high, medium and low confidence.  The probability of a 

path from one vertex to another, going along each arc in the descending direction, is the product 

of the probabilities associated with the arcs on the path.  The probability of a response in a 

certain class is the sum of the probabilities of all the paths from the source vertex to those 

terminal vertices associated with that class.    

 In some MPT models there is more than one source vertex, for example, one for a recall 

trial and another for a recognition trial.  Usually to analyze a given situation, say a recognition 

trial, only one source vertex is relevant and other source vertices and arcs that follow them can 

be ignored.     

An experimental factor that changes parameters associated with arcs that descend from 
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one and only one vertex in an MPT is said to selectively influence that vertex.  For example, in 

an immediate memory experiment by Poirier, Schweickert and Oliver (2005), the serial position 

of items selectively influenced a vertex representing the degradation of representations in 

memory, while list length selectively influenced a vertex representing the redintegration 

(reconstruction) of degraded representations.  For details and a review of selective influence in 

MPT models see Schweickert, Fisher and Sung (2012).     

Suppose an experiment has two factors.  For notation in this paper we assume throughout 

that one factor, Φ, has levels i = 1, . . . , I and the other factor, Ψ, has levels j = 1, . . . , J.  With 

response probabilities, if there are two response classes (e.g., correct and incorrect) one can test 

whether each factor selectively influences a different vertex in an MPT.  One need only test 

MPTs of two forms (Schweickert & Chen, 2008).  The first is in Figure 1.  Suppose Factor Φ 

selectively influences the vertex with probabilities indexed by i in the MPT in Figure 1.  Suppose 

Factor Ψ selectively influences the vertex with probabilities indexed by j.  A correct response can 

be made by following either of two paths.  The probability of a correct response when Factor Φ 

is at level i and Factor Ψ is at level j is  

p(i,j)= pD(i) +  pB(i)pF(j).      (1)  

In the equation above, the second term on the right side produces an interaction between the two 

factors.    

Similarly, the MPT in Figure 2 predicts the probability of a correct response to be   

p(i,j) = pApD(i) +  pBpF(j).      (2)    

The MPT in Figure 2 predicts additive effects of the factors because the first term on the right-

hand side depends only on the level i of Factor Φ and the second term depends only on the level j 

of Factor Ψ.    
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The difference between the two forms of MPTs is straightforward.  In the MPT in Figure 

1 there is a path (arcs B and F) descending from the vertex selectively influenced by a first factor 

to the vertex selectively influenced by a second factor, and on this path there is an arc whose 

parameter values change when the level of the second factor changes.  We say the vertices are 

ordered by the factors, or for short, ordered.  In the MPT in Figure 2 there is no such path and 

we say the vertices are unordered.  Either there is such a path or there is not.  If there are more 

than two response classes, the MPTs in Figures 1 and 2 can be extended in a straightforward 

way.  Figure 3, for example, extends the MPT in Figure 1 to more than two response classes.  It 

may be that a participant in an experiment executes processes in a rather complicated MPT.  

Importantly, if each of two factors selectively influences a different vertex in an MPT, then it 

turns out that the MPT the participant used makes exactly the same predictions for response 

probabilities as either the MPT in Figure 1 or that in Figure 2, or to the extension of one of these 

to more than two response classes (Schweickert & Chen, 2008; Schweickert & Xi, 2011).  If 

these are rejected, then no MPT is possible in which each factor selectively influences a different 

vertex.  An MPT that accounts for response probabilities may be possible, but not one in which 

the factors selectively influence different vertices.   

Age and Integrative Relations in Paired Associate Learning  

Here we give an example of selective influence of factors with data from a study on aging 

and associative memory, taken from the first experiment in Dhir (2017; Dhir & Poirier, 2015).  

An old controversy in the study of aging was about whether aging impairs all cognitive processes 

and in the same way (e.g., Fisk & Fisher, 1994; Cerella & Hale, 1994).  There is now 

considerable evidence that some processes have little or no impairment with age, and efforts 

have turned to finding which these are, such as automatic processing (e.g., Hasher & Zacks, 



6 
 

1979) and processing based on word knowledge (e.g., Horn, 1982; Salthouse, 1991).  For review 

see Salthouse (2010). 

Recently Greene and Naveh-Benjamin (in press) considered whether older adults are 

impaired in memory for specifics but not in memory of gist.  The distinction comes from Fuzzy 

Trace Theory (Brainerd, Reyna, & Mojardin, 1999), in which an episode leaves two traces, one 

specific (called “verbatim”) and another fuzzier trace often based on knowledge (called “gist”).  

At test, separate retrieval attempts can be made from the “verbatim” trace or from the "gist" 

trace.  With an MPT model, Greene and Naveh-Benjamin (in press) compared younger and older 

adults on recognition memory for face-place pairs.  Their MPT model modifies those of 

Brainerd, Reuna and Mojardin (1999) and Stahl and Klauer (2008).  The MPT analysis found 

that younger and older adults differed in probability of specific "verbatim" retrieval; however, 

there was no age effect when the probability of recognition depended on a knowledge-based 

"gist" trace.   

We note that the vertex labels "verbatim" and "gist" of the MPT model of Greene and 

Naveh-Benjamin (in press) come from earlier papers and may not apply aptly to entities in a 

particular experiment.  For example, stimuli in their experiment were pictures of a face and a 

place, which would not form a literally verbatim trace.  In what follows, when speaking of an 

MPT, we will say, as they do, "verbatim" and "gist" when referring to certain vertices.  When 

speaking of what a participant does we will say “specific retrieval” and “knowledge-supported 

processing” when referring to the corresponding mental processes.        

Experiment 1 of Dhir (2017) gives an opportunity to see, with different stimuli and 

knowledge support varied in a different way, whether specific retrieval will be impaired in older 

adults while knowledge-supported processing is age invariant.  Moreover, while Greene and 
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Naveh-Benjamin (in press) used a recognition paradigm, Dhir (2017) used a paired-associate 

recall task; this allows us to test MPTs in the context of a recall task. The original purpose of 

Dhir’s experiment was to learn whether the difficulty older adults have in learning new word 

associations can be alleviated when they are easily integrated (e.g., sheep-doctor).  Three types 

of word pair were used, described below.  Because the pair-types differ in how meaningful and 

familiar they are and younger and older adults were studied, the experiment is well suited to 

examine the effect of age on specific memory and knowledge-supported processing.     

Background and Experiment 

Episodic memory decline is one of the hallmarks of normal cognitive aging. It is well 

established that this decline is related to growing difficulties with retrieving associative 

relationships, a view known as the associative deficit hypothesis (ADH; Naveh-Benjamin, 2000; 

Naveh-Benjamin & Mayr, 2018). According to the ADH, the age-related episodic memory 

problems are in part caused by a decline in the capacity to encode and retrieve new associations 

between the features of an episode (Naveh-Benjamin, 2000; Bayen, Phelps, & Spaniol, 2000; 

Chalfonte & Johnson, 1996).  The hypothesis applies to different types of new associations, 

including links between two items, between an item and its source, and between an item and its 

context.  These effects are robust and have been reported in a variety of studies, including meta-

analyses (e.g., Old & Naveh-Benjamin, 2008; Spencer & Raz, 1995). An important fact in the 

present context is that the associative memory deficit is known to be alleviated if the new 

learning can be supported by prior knowledge (Naveh-Benjamin, 2000; Badham & Maylor, 

2015).  

Moreover, using a paired-associate learning task, Badham, Estes and Maylor (2012) 

suggested that older adults (OA) can form new associations as readily as younger adults (YA) if 
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they are presented with items that make sense when considered together (e.g., sheep-doctor). 

Such items pairs are said to be integrative (Estes, Golonka, & Jones, 2011) in that the first word 

of the pair specifies or defines the second.  

Badham et al (2012) compared memory performance of younger and older adults with 

pairs that were unrelated (pillow-candle), integrative (lemon-cake) or semantically related 

(article-book); importantly, the integrative pairs were chosen to have a very low-level of prior 

association—i.e. they represented new associations. The authors reported that the integrative 

pairs alleviated the age-related deficit just as well as the semantic pairs did, despite the 

integrative pairs being “unassociated and semantically dissimilar”. However, Dhir (2017; Dhir & 

Poirier, 2015) argued that closer inspection of the stimuli revealed that many of the integrative 

pairs had pre-established associations (e.g. herb-garden, winter-sports), suggesting this may 

have supported performance for older adults. Dhir hence set out to replicate and extend the study 

by Badham et al.  She compared the performance of young and old adults for integrative pairs 

that had pre-established associative links, integrative pairs that did not have prior associative 

links, and unrelated pairs. For example, border-land is an integrative pair with pre-established 

associative link, dinosour-land is an integrative pair without prior associative link, and stripe-

land is an unrelated pair. Her aim was to offer a stringent test of the proposal that integration was 

a sufficient condition to produce an improvement in the associative memory deficit of OA. 

Accordingly, she used a design with two age levels crossed with three pair-types (see Dhir, 2017, 

for details).   

Results and Discussion 

Figure 4 with data from Dhir (2017) summarizes mean performance for each group and 

each type of list; it suggests that integrative-associative pairs were recalled the best and unrelated 
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pairs the worst. In addition, the age difference appeared to be largest with the unrelated pairs, 

and smallest with the integrative associative pairs. Data were analyzed with a 2 (age: young, old) 

x 3 (pair-type: integrative associative, integrative non associative, unrelated) mixed ANOVA 

which confirmed these observations. There was a main effect of age (F(1, 38) = 33.7, MSE = 

0.7, p<.001) such that YA recalled more items than OA and that pair-type affected performance. 

Importantly, there was a main effect of pair-type (F(2, 76) = 230.1, MSE = 1, p<.001) and a 

significant interaction between age and pair-type (F(2, 76) = 16.3, MSE = 0.1, p<.001).  To 

clarify the source of the interaction, further ANOVAs were run. The first was 2 (age: young, old) 

x 2 (pair-type: integrative associative, integrative non-associative).  It showed an effect of pair-

type (F(1, 38) = 153.4, MSE = .4, p<.001), age (F(1, 38) = 18., MSE = .2, p<.001), as well as a 

significant interaction (F(1, 38) = 7.9, MSE<0 , p = .008). Further analyses showed that as 

Figure 4 suggests, OA benefited more than YA when going from non-associative integrative to 

associative integrative pairs, although YA performed significantly better in both cases. Post-hoc 

t-tests indicated a significant age difference (YA>OA) for both the integrative non-associative 

(t(38) = 7, p<.001) and the integrative associative (t(38) = 4.2, p<.001) conditions. A further 2 

(age: young vs old) x 2 (pair-type : integrative non-associative vs unrelated) ANOVA produced a 

main effect of pair-type (F(1, 38) = 123.3, MSE = .6, p<.001), age (F(1, 38) = 36.9, MSE = .8, 

p<.001), and a further significant interaction (F(1, 38) = 10.9, MSE = .1, p = .002). Figure 4 

suggests that OA benefitted more than YA when going from unrelated to the integrative non-

associative pairs. Here also, post-hoc independent t-tests showed an age difference (YA>OA) for 

the integrative non associative (t(38) = 7, p<.001), as well as for the unrelated (t(38) = 9, p<.001) 

word pairs.   

The results reproduce the age-related deficit in associative memory, most obvious in the 
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relative difficulties of OA participants in the unrelated pairs condition. The original purpose of 

the experiment was to test the hypothesis that this age-related deficit can be significantly 

alleviated when the to-be-remembered association is imbedded within an integrative structure – 

even if the association is new or unfamiliar. This hypothesis was supported by the findings:  

When memory for unrelated items was compared to memory for unfamiliar but integrative pairs, 

there was a disproportionate advantage for the OA. Finally, if item pairs can be integrated and 

are familiar (integrative associative pairs) OA again benefit more than YA, relative to the 

performance observed with integrative non-associative pairs. This indicates that both integration 

and prior knowledge or familiarity with item-pairs contribute to reducing the age-related deficit 

in associative memory.  We now turn to our current purpose, examining the data for what they 

reveal about the effect of age on specific retrieval and knowledge-supported processing.   

A Multinomial Processing Tree for Dhir (2017) Experiment 1 

How do age and pair-type combine to produce the results of Dhir (2017)?  Because the 

factors interact, it is tempting to suggest they both affect some memory process, with the effect 

of one factor on the process depending on the level of the other.  But it is instructive to examine 

the MPT model of Greene and Naveh-Benjamin (in press) for effect of age in an associative 

recognition memory task.   

There were two major processes in the MPT model, an attempt to retrieve a specific 

memory representation (represented by a “verbatim” vertex in the MPT), and if that failed, an 

attempt at knowledge-supported processing (represented by a "gist" vertex in the MPT), 

followed by minor processes of guessing.  Based on estimates of parameters in the model, the 

authors concluded that young adults had higher probability of successful specific memory 

retrieval, but did not differ in probability of successful knowledge-supported processing. The 
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results encourage testing for selective influence of age in an MPT for the experiment of Dhir 

(2017).   

    Let’s consider an MPT.  If age and pair-type selectively influence different vertices, 

then, as we said earlier, the MPT must be equivalent to either that in Figure 1 or that in Figure 2.  

If neither of these MPTs fits the data it is not possible that the two factors selectively influence 

different vertices in any MPT (Schweickert & Chen, 2008).  The MPT in Figure 2 predicts 

additive effects of age and pair-type, contrary to the interaction in the results (see the Appendix 

for discussion), so we consider the MPT in Figure 1.  Consider the hypothesis that when the cue 

is presented, the first vertex is influenced by age but not by pair-type and the second vertex is 

influenced by pair-type but not by age.   

The MPT is in Figure 1.  Denote the levels of age as i = 1 (YA) and i = 2 (OA), and the 

levels of pair-type as j = 1 (Unrelated),  j = 2 (Integrative NonAssociative) and j = 3 (Integrative 

Associative).  In the MPT, at the first vertex an outcome produces a correct response with 

probability pD(i), an outcome leads to further processing with probability pB(i), and an outcome 

produces an incorrect response with probability 1 -  pD(i) - pB(i).  Probabilities pD(i) and pB(i) 

depend on the age level i of the participant, but not on the pair-type.  If the outcome of the first 

vertex leads to further processing, the further processing produces a correct response with 

probability pF(j).  Probability pF(j) depends on the pair-type j, but not on the age of the 

participant.      

 With the MPT, the probability of correct recall of the target when the cue is presented is, 

as in Equation (1),   

p(i,j)= pD(i) +  pB(i)pF(j).  

Correct recall data are in Table 1.  For this model, arc probability parameters were 
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estimated to minimize the likelihood ratio statistic, G2, a procedure that produces the maximum 

likelihood estimates (Bishop, Feinberg, & Holland, 1975).  Results are in Table 1.  The goodness 

of fit, G2 = .12, has approximately a chi square distribution with 1 df, and is not significant, 

indicating a good fit.  One can see in Table 1 that predicted and observed values are quite 

close.  For details of parameter estimation, see Appendix.    

The formula for the probability of a correct response has a product term, pB(i)pF(j), which 

leads to an interaction of the effect of age and pair-type.  One multiplier depends on age, the 

other on pair type, so although the factors interact, they do not both influence the same 

process.  Instead, they selectively influence different processes.    

In another version of the model, the first vertex is influenced by the pair-type, and if an 

outcome of the first vertex requires further processing, the success of further processing is 

influenced by the age of the participant.  Then the probability of correct recall for age i pair-type 

j is  

p(i,j)= p*D(j) +  p*B(j)p*F(i).    (3)  

The indices i and j are interchanged in Equations (1) and (3).  It turns out that this version of the 

model has just enough free parameters to exactly account for the data from the experiment, see 

Appendix.  Because this version of the model fits perfectly, the versions cannot be meaningfully 

compared by goodness of fit alone.  In the Appendix we compare models by taking the number 

of free parameters into account with the Akaike Information Criterion (Akaike, 1973).  We arrive 

at a slight preference for the model in Equation (1).  In any case, each version of the model 

demonstrates that a Multinomial Processing Tree in which each factor selectively influences a 

different process can account for the data.    

In a Multinomial Processing Tree the vertices represent processes.  But it is not necessary 
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to know what the processes are doing for the MPT to account for response probabilities.  In other 

words, an MPT, i. e., a tree with vertices, arcs and parameters, is not committed to a particular 

interpretation of its vertices.  Data from Dhir (2017) Experiment 1 can be accounted for by an 

MPT in which one vertex is selectively influenced by participants' age and another vertex is 

selectively influenced by pair-type.  Essentially the meaning of a parameter is operationally 

defined by the factor that changes the values of the parameter.  Knowing that a factor selectively 

influences a vertex constrains possibilities for what the process the vertex represents could be 

doing, but does not specify the function of the process uniquely.  Knowing, for example, that a 

change in age changes the processing represented by a vertex does not allow us to know what the 

process is as such.     

Keeping in mind that an MPT can accurately account for data, despite an erroneous 

interpretation of its vertices, let's consider a possible interpretation in terms of the similar model 

of Greene and Naveh-Benjamin (in press), in which the source vertex represents an attempt at 

specific retrieval and the second represents an attempt at retrieval based on knowledge-supported 

processing.  In the experiment of Dhir (2017) overall performance of older adults is worse than 

that of younger adults, and the extent of the deficit is greater for unrelated pairs than for the two 

types of integrative pairs.  In terms of the model, relative to YA, associations available for OA 

are more difficult to retrieve specifically.  But the effect of pair-type -- i.e. of support afforded by 

knowledge – is equivalent for both YA and OA, because, knowledge-supported processing is 

affected by pair-type but it is unaffected by age.  As proposed by the ADH, age has a detrimental 

effect on the processing of associative information.    Although the MPT of Green and Naveh-

Benjamin differs from ours in several ways, for example, the former for recognition, ours for 

recall, comparing them suggests a possibility for which cognitive process is impaired by age and 
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which is not.    
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What Response Times and Response Probabilities Together Reveal 

 The preceding MPT analysis was based on response probabilities.  Earlier we said some 

MPT models incorporate an additional measure such as response time (Hu, 2001; Link, 1982) or 

distance (Rosenbaum, 1980), and recently additional measures have become of interest again 

(Heck & Erdfelder, 2016, 2017; Klauer& Kellen, 2018; Schweickert & Zheng, 2018, 2019a).  

Suppose an additional measure is observed.  What would we learn beyond what we learn from 

response probability alone?   

 What we learn depends on the technique used.  We recommend the excellent papers by 

Heck and Erdfelder (2016, 2017) and by Klauer and Kellen (2018) for information gained with 

their techniques, and continue here to discuss the technique of manipulating factors that 

selectively influence processes.  This technique has been fruitfully used for response time 

analysis from the pioneering work of Sternberg (1969) until now (e.g., Reimer, Strobach,  & 

Schubert, 2017; Sung & Gordon, 2018).   

 With an additional measure we would obtain further tests of an MPT model and estimates 

of the other measure's parameter values.  Such tests and estimates are discussed in earlier papers 

(Schweickert & Zheng, 2018, 2019a, 2019b, in press).  Here we consider whether we could learn 

anything about the form of an MPT not already revealed by the response probabilities.   

 Suppose each of two factors selectively influences a different vertex in an MPT.  Two 

questions about form arise.  First, are the selectively influenced vertices ordered or not?  If 

response probabilities are the only observations, either the MPT in Figure 1 (for ordered vertices) 

or that in Figure 2 (for unordered vertices) will suffice for two response classes (Schweickert & 

Chen, 2008).  With more than two response classes, the MPTs in Figures 1 and 2 suffice if 

extended in a straightforward way (Schweickert & Xi, 2011); see Figure 3 for the extension of 
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the MPT in Figure 1.  If there is an additional measure, must some additional form be 

considered?  According to a previous paper (Schweickert & Zheng, 2019a), the answer is no, 

except for an unsettled case, which we consider in a moment.   

 The second question about form arises if the vertices are ordered:  What is their order?  

Sometimes response probabilities alone do not determine the order of the vertices on which the 

factors have their influences.  For example, in the experiment discussed in the first part of this 

paper (Dhir, 2017), the Akaike Information Criterion favored the order expressed in Equation (1) 

over the order expressed in Equation (3), but not strongly.  Suppose response probabilities alone 

do not establish the order of vertices selectively influenced by factors.  Is it possible for an 

additional measure to resolve the question of order?   

 

Notation and Assumptions for an Additional Measure 

 For an additional measure we need additional assumptions and notation.  We usually say 

the additional measure is response time, but it could be some other quantity.   

 If the starting vertex of an arc L in an MPT is reached, we assume, as before, that arc L 

has a probability pL of being selected and we now assume that selection of arc L takes time tL.  

Here we make the simple assumptions that the probability pL associated with arc L is a fixed 

number and the time tL is the expected value of a random variable TL.  These assumptions can be 

weakened so response time distributions can be considered (Schweickert & Zheng, 2018, in 

press), but they are beyond the scope of this paper.  Suppose a factor, say Factor Φ, selectively 

influences the starting vertex of arc L.  Then when the factor is at level i, the probability and time 

associated with arc L are denoted pL(i) and tL(i), respectively.  (The level i could be removed 

from the symbol pL(i) or tL(i) if the probability or time associated with arc L does not change 
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when the level i changes.  In this paper, it is not necessary to do so.)  As before, the probability 

of a path from one vertex to another going along arcs in a descending direction is the product of 

the probabilities associated with the arcs on the path.  The time for such a path is the sum of the 

times associated with the arcs on the path.   

 Each terminal vertex has an associated response class k, k = 1, , , , K.  A response of class 

k is made by following a path from the source vertex to a terminal vertex of class k.  As before, 

the probability of a response in class k is the sum of the probabilities of all the possible paths 

from the source vertex to a terminal vertex of class k.  The response time for a response of class k 

is obtained from all the paths leading to a response of class k.  We explain this with an example.     

 Consider the MPT in Figure 1.  Parameters on the arcs are labeled with the levels i and j 

of the factors selectively influencing vertices in the MPT; those labels will be relevant later.  

There are two paths from the source vertex to a response in the class of correct responses.  One 

path consists simply of the arc D.  The probability a correct response is made via this path is 

pD(i).  The other path consists of the arcs B and F.  The probability of a correct response made 

via this path is pB(i)pF(f).  Hence, the probability of a correct response is, as in Equation (1), 

p(i,j) = pD(i) + pB(i)pF(j). 

 To calculate the time for a correct response, we need conditional probabilities.  Given 

that a correct response is made, the probability it is made via the path consisting of arc D is 

pD(i)/p(i,j).  The time to make a response via the path consisting of arc D is tD(i).  Given that a 

correct response is made, the probability it is made via the path consisting of arcs B and F is 

pB(i)pF(j)/p(i,j).  The time to make a response via the path consisting of arcs B and F is tB(i) + 

tF(j).  Now let t(i,j) denote the time to make a correct response when the factors are at their levels 

i and j.  Then  
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�(�, �) =  
��(�)

�(�,�)
��(�) +  

��(�)��(�)

�(�,�)
[��(�) +  ��(�)]. 

The above equation can be put in a more useful form, 

�(�, �)�(�, �) =  ��(�)��(�) +  ��(�)��(�)[��(�) +  ��(�)].   

The expression on the left hand side above is useful because it combines both accuracy and time 

in a natural way. 

 With analogous reasoning for the MPT in Figure 2, the probability of a correct response 

when the factors are at levels i and j, is in Equation (2), 

�(�, �) =  ����(�) + ����(�).   

And the time for a correct response satisfies the equation  

�(�, �)�(�, �) =  ����(�)[�� + ��(�)] + ����(�)[��(�)].   

A key feature of the MPT in Figure 2 is that it predicts the factors to have additive effects on 

both p(i,j) and p(i,j)t(i,j).  Consequently, the MPTs in Figures 1 and 2 can readily be 

distinguished in data by the presence of an interaction (Figure 1) or its absence (Figure 2).     

 The equations above were derived for fixed quantities and a reader may wonder if they 

apply to response times, which are variable.  Under plausible assumptions, the equations above 

may be considered as applying to expected values of random variables.  Details are not needed 

here, but for further discussion and tests based on response time cumulative distributions, see 

Schweickert and Zheng (2018, in press).       

 Suppose Factor Φ has levels i = 1, . . . , I and Factor Ψ has levels j = 1, . . . , J and 

suppose these factors change parameters in two MPTs.  The two MPTs are equivalent for these 

factors and these levels if they make the same predictions for p(i,j) and t(i,j) for all i and j.   

 We assume each factor is effective, that is, it is not the case that for every level i p(i,j) and 

t(i,j) never change when level j changes, and the analogous statement holds for every level j.  



19 
 

Further, we assume that in the MPT in Figure 1 there is at least one change of the level i of 

Factor Φ that changes the probability or time associated with arc B.  That is, it is not the case that 

for every i, pB(i) = pB and tB(i) = tB.  Without this assumption, the MPT in Figure 1 may be 

equivalent to the MPT in Figure 2, complicating discussion.  We return to the question of what 

an additional measure could reveal.      

 
Does Response Time Reveal Additional MPT Form? 
 
 Consider an arbitrary MPT.  Suppose Factor Φ and Factor Ψ each selectively influence a 

different vertex.  Suppose there is a path directed from the vertex selectively influenced by 

Factor Φ to the vertex selectively influenced by Factor Ψ and on this path there is an arc whose 

parameters change value when the level of Factor Φ changes.  An earlier result (Schweickert & 

Zheng, 2019a, Theorem 10) considered such an MPT with the restriction that response 

probabilities p(i,j) are strictly between 0 and 1.  With that restriction, such an MPT is equivalent 

to the Standard Tree for Ordered Processes (Figure 1) or its extension, the K-Class Standard Tree 

for Ordered Processes (Figure 3).  Here we give an alternate derivation that allows response 

probabilities equal to 0 or 1.   

 For consistency, notation and reasoning here follow that in Schweickert and Zheng 

(2019a) as far as possible.  When Factor Φ is at level i and Factor Ψ is at level j, the probability 

of a response in class k is denoted p(i,j), 0 < p(i,j) < 1, and p(i,j), is the entry in row i and colunn 

j of a matrix, Pk.  Likewise, the measure produced by a response in class k is denoted t(i,j) and is 

the entry in row i and column j of a matrix, Tk. Although we usually speak of the measure as 

time, it could be voltage or payoff, so no assumption is made about the sign of t(i,j).   

Theorem 1 (Schweickert & Zheng, 2019a).  Suppose there are K response classes.  Suppose for 

every class k, probability matrix Pk and measure matrix Tk are produced by Factors Φ and Ψ 
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each selectively influencing a different vertex in a Multinomial Processing Tree with K response 

classes. Suppose there is a path λ from the source to the vertex selectively influenced by Factor 

Φ, through an arc whose parameter values change when the level of Factor Φ changes, to the 

vertex selectively influenced by Factor Ψ. Then for every class k, Pk and Tk are produced by 

Factors Φ and Ψ each selectively influencing vertices ordered by the factors in an equivalent K-

class Standard Tree for Ordered Processes, with the vertex selectively influenced by Factor Φ 

preceding the vertex selectively influenced by Factor Ψ.   

Proof.  Suppose in an arbitrary MPT with K response classes Factor Φ selectively influences one 

vertex and Factor Ψ selectively influences a different vertex.  Suppose there is a path λ from the 

source to the vertex selectively influenced by Factor Φ, through an arc whose parameter values 

change when the level of Factor Φ changes, to the vertex selectively influenced by Factor Ψ.   

 A response of class k is made by following a path from the source vertex to a terminal 

vertex of class k.  Such a path can be formed in one of three ways (see Figure 5).  (1)  Both the 

vertex selectively influenced by Factor Φ and the vertex selectively influenced by Factor Ψ are 

on the path. (2)  The vertex selectively influenced by Factor Φ is on the path, but the vertex 

selectively influenced by Factor Ψ is not.  (3)  Neither of the selectively influenced vertices is on 

the path.  We consider each way in turn.  Denote the vertex selectively influenced by Factor Φ as 

v1 and the vertex selectively influenced by Factor Ψ as v2.      

 (1)  Consider a response of class k produced by following a path from the source vertex 

to a terminal vertex of class k with both v1 and v2 on the path.  We can divide such a path into 

parts.  There is a single path α from the source vertex to vertex v1.  Denote the probability of this 

path as pα and the measure of this path as tα.  Descending from vertex v1 is an arc e1 that is on the 

path to vertex v2 and whose probability and time parameter depend on the level i of Factor Φ.  
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Denote the probability of arc e1 as pe1(i) and the time for arc e1 as te1(i).  Following the end 

vertex of arc e1 there is a single path β to vertex v2.  Denote the probability of this path as pβ and 

the measure of this path as tβ.   

 Descending from vertex v2 are arcs that precede a terminal vertex of class k.  Denote 

these as f1, . . . ,  fq, . . . , fQ.  (If an arc descending from vertex v2 does not precede a terminal 

vertex of class k, it is not included in this list.  Note that to avoid a subscript to a subscript, an arc 

is denoted with two symbols, e.g., fq.)  One of these arcs, say fq, is selected to be on the path to a 

response of class k.  Because vertex v2 is selectively influenced by Factor Ψ, the probability and 

measure for arc fq may change when the level j of Factor Ψ changes.  Denote the probability of 

arc fq as pfq(j) and the measure for arc fq as tfq(j).  (If the probability or measure of an arc fq does 

not change when the level j changes, the j in the notation is superfluous, but the reasoning is 

unaffected.)  Following the end vertex of arc fq there are paths to a terminal vertex of class k.  No 

arcs on these paths depend on the level i of Factor Φ or the level j of Factor Ψ.  Denote the 

probability over all these paths of reaching a terminal vertex of class k from the end vertex of arc 

fq as πfq and the measure to reach a terminal vertex of class k as τfq.  

 Denote the probability a response of class k is made in way (1), for levels i and j of the 

factors, as pk
(1)(i,j).  Assembling the parts of the paths, we find the probability a response of class 

k is made in way (1) is, for every i and j, 

��
(�)(�, �) =  �����(�)�� ∑ ���(�)���

�
��� . 

Denote the measure for making a response of class k by way (1) as tk
(1)(i,j).  We find the measure  

for making a response of class k made in way (1) satisfies the following equation, for every i and 

j, 

��
(�)(�, �)��

(�)(�, �) =  �����(�)�� ∑ ���(�)������ +  ���(�) +  �� +  ���(�) +  �����
��� . 
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 (2)  Consider a response of class k produced by following a path from the source vertex 

to a terminal vertex of class k with v1 on the path but not v2.  We can divide such a path into 

parts.  As before, the single path α from the source vertex to vertex v1 has probability pα and 

measure tα.  Descending from vertex v1 are arcs that precede a terminal vertex of class k.  Denote 

these as e1, . . . ,  em, . . . , eM.  One of these arcs, say em, is selected to be on the path to a 

response of class k.  Because vertex v1 is selectively influenced by Factor Φ, the probability and 

measure for arc em may change when the level i of Factor Φ changes.  Denote the probability of 

arc em as pem(i) and the measure for arc em as tem(i).  (If the probability or measure of an arc em 

does not change when the level i changes, the i in the notation is superfluous, but the reasoning is 

unaffected.)  Following the end vertex of arc em there may be paths to a terminal vertex of class 

k that do not go through vertex v2.  No arcs on these paths depend on the level i of Factor Φ or 

the level j of Factor Ψ.  Denote the probability over all these paths of reaching a terminal vertex 

of class k from the end vertex of arc em as πem and the measure to reach a terminal vertex of class 

k as τem.    

 Denote the probability a response of class k is made in way (2), for levels i and j of the 

factors, as pk
(2)(i,j).  Assembling the parts of the paths relevant to way (2), we find 

  ��
(�)(�, �) =  �� ∑ ���(�)���

�
��� . 

Denote the measure for making a response of class k in way (2), for levels i and j of the factors, 

as tk
(2)(i,j).  We find the measure for making a response of class k made in way (2) satisfies the 

following equation, for every i and j, 

��
(�)(�, �)��

(�)(�, �) =  �� ∑ ���(�)���
�
��� [�� + ���(�) + ���]. 

Note in the above expressions that neither ��
(�)(�, �) nor ��

(�)(�, �)��
(�)(�, �) depend on the level 

j.   
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 (3)  Consider a response of class k produced by following a path from the source vertex 

to a terminal vertex of class k with neither v1 and v2 on the path.  No arc on any such path 

depends on the level i of Factor Φ or the level j of Factor Ψ.  Denote the probability over all such 

paths of reaching a terminal vertex of class k as p3 and the measure for reaching a terminal vertex 

of class k as t3.   

 Denote the probability a response of class k is made in way (3), for levels i and j of the 

factors, as pk
(3)(i,j).  Then 

 pk
(3)(i,j) = p3. 

Denote the measure to make a response of class k in way (3), for levels i and j of the factors, as 

tk
(3)(i,j).  Then 

pk
(3)(i,j)tk

(3)(i,j)  = p3t3. 

Note in the above expressions that neither ��
(�)(�, �) nor ��

(�)(�, �)��
(�)(�, �) depend on the level 

i or j.   

 The three ways of making a response of class k are mutually exclusive and jointly 

exhaustive.  Hence, the probability of making a response of class k is found by adding the 

probabilities of making such a response in each way.  For every i and j the probability of making 

a response of class k is 

 p(i,j) = pk
(1)(i,j) + pk

(2)(i,j) + pk
(3)(i,j) 

          =  �����(�)�� ∑ ���(�)��� +  �� ∑ ���(�)��� +  ��
�
���

�
��� .  (4) 

Further, for every i and j the measure t(i,j) to make a response of class k satisfies the equation 

p(i,j)t(i,j) = pk
(1)(i,j)tk

(1)(i,j)  + pk
(2)(i,j)tk

(2)(i,j) + pk
(3)(i,j)tk

(3)(i,j)    

     =  �����(�)�� ∑ ���(�)������ + ���(�) +  �� +  ���(�) + ���� �
���  

  + �� ∑ ���(�)���[�� + ���(�) +  ���] +  ��
�
��� ��.    (5) 
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 The above equations are for an arbitrary MPT in which Factors Φ and Ψ selectively 

influence two vertices, with the vertex selectively influenced by Factor Φ preceding the vertex 

selectively influenced by Factor Ψ.  We now find parameter values for an equivalent K-Class 

Standard Tree for Ordered Processes will account for the response probabilities. 

 Let  

    ��.�(�) =  �� ∑ ���(�)��� +  ��
�
���  .  (6) 

Let 

    ��(�) =  �����(�)��. 

Note that no parameter on the right side of the equation above is associated with an arc that 

precedes only terminal vertices of class k.  Hence, the value of ��(�) does not depend on the 

response class k.   

Let 

    ��.�(�) =  ∑ ���(�)���
�
��� .   

From Equation (4). 

    �(�, �) =  ��.�(�) + ��(�)��.�(�). 

Further, because for every i and j, 0 < p(i,j) < 1, it must be that for every i and j  

 0 ≤ ��.�(�),  ��(�), ��.�(�)  ≤ 1.  Hence the parameter values are suitable as probabilities.   

 We now find measure parameter values for the arcs of a K-Class Standard Tree for 

Ordered Processes that accounts for response measures and is equivalent to the arbitrary MPT we 

started with.   

 If pD.k(i) = 0, let tD.k(i) = 0. 

 If pD.k(i) ≠ 0 let 

 ��.�(�) =  {�� ∑ ���(�)���[�� +  ���(�) +  ���] +  ��
�
��� ��}/��.�(�). (7) 
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Note that if it is possible to make a response of class k by way (3), then the probability p3 of 

making such a response by way (3) is greater than 0, so pD.k(i) ≠ 0 and can be a divisor.     

 If pB(i) = 0, let tB(i) = 0. 

 If pB(i) ≠ 0 let 

 ��(�) =  ������(�)����� + ���(�) +  ����/��(�).   

Note that no parameter on the right side of the equation above is associated with an arc that 

precedes only terminal vertices of class k.  Hence, the value of ��(�) does not depend on the 

response class k.   

 If pF.k(j) = 0, let tF.k(j) = 0. 

 If pF.k(j) ≠ 0 let 

 ��.�(�) =  �∑ ���(�)�������(�) + ���� �
��� �/��.�(�).  

With these assignments, for every i and j, from Equation (5) 

��.�(�)��.�(�) + ��(�)��.�(�)[��(�) + ��.�(�)] = �(�, �)�(�, �). 

 Then for every class k, Pk and Tk are produced by Factors Φ and Ψ each selectively 

influencing vertices ordered by the factors in an equivalent K-class Standard Tree for Ordered 

Processes, with the vertex selectively influenced by Factor Φ preceding the vertex selectively  

influenced by Factor Ψ.   

            QED 

 The conclusion is straightforward.  Suppose two factors each selectively influence a 

different vertex in an arbitrary MPT, and there is a path from one vertex to the other with an arc 

on the path influenced by one of the factors.  Then there is an equivalent K-Class Standard Tree 

for Ordered Processes that accounts for both response probabilities and response measures.  
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Response measures do not reveal anything about the form of the equivalent MPT that is not 

already revealed by the response probabilities. 

 Remarks.  Suppose measures associated with the arcs are nonnegative, as times are.  

Then all quantities ��, ���(�), ���, ��,  ��, ���(�), and ��� are nonnegative.  It follows 

immediately from  assignments that for every i, ��.�(�), ��(�) ≥ 0 and for every j, ��.�(�) ≥ 0; 

that is, these measures are nonnegative also.   

 In an arbitrary MPT, a response in class k may be made in way 3, via a path from the 

source to a terminal vertex of class k with no vertex selectively influenced by either Factor Φ or 

Factor Ψ on the path.  No such path is needed in an equivalent K-Class Standard Tree for 

Ordered Processes.  The probability associated with such paths can simply be added to the 

probability of arc D.k as in Equation (6).  The measures associated with such paths can be 

included in the time of arc D.k as in Equation (7).   

Does Response Time Reveal the Order of Selectively Influenced Vertices? 

 Suppose each of two factors selectively influences a different vertex in an MPT.  If the 

vertices are ordered, a further question arises:  Which vertex is first?  For the order to be 

reversible, response probabilities must satisfy certain conditions and response times must satisfy 

additional conditions.  Response times may provide information in addition  to that provided by 

response probabilities.  We consider the conditions in turn for two response classes.     

 Response probabilities.  Suppose Factors Φ and Ψ selectively influence two vertices in 

the Standard Tree for Ordered Processes.  Suppose Factor Φ selectively influences the source 

vertex.  Then for every level i of Factor Φ and every level j of Factor Ψ there are probabilities 

pD(i), pB(i) and pF(j) such that the probability of a correct response is  

    p(i,j) = pD(i) + pB(i)pF(j).      (8) 
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 Now suppose there is another Standard Tree for Ordered Processes in which the factors 

influence vertices in the reverse order.  That is, in this second MPT Factor Ψ selectively 

influences the source vertex.  Then for every level i of Factor Φ and every level j of Factor Ψ 

there are probabilities p*D(j), p*B(j) and p*F(i) such that the probability of a correct response is  

    p(i,j) = p*D(j) + p*B(j)p*F(i).      (9) 

 The equations above lead to conditions for both orders to be possible (Schweickert & 

Chen, 2008).  A qualitative condition can be quickly checked.  Put probabilities p(i,j) in a matrix 

with rows indexed by i and columns indexed by j.  Then it must be possible to permute the rows 

and columns so that p(i,j) monotonically increases across columns and monotonically increases 

down rows.  To see this, order the levels j of Factor Ψ so that if j < j' then pF(j) < pF(j').  Then by 

Equation (8) for every level i of Factor Φ, p(i,j) < p(i,j').  Likewise, order the levels i of Factor Φ 

so that if i < i' then p*F(i) < p*F(i').  Then by Equation (9) for every level j of Factor Ψ, p(i,j) < 

p(i',j).  As an example, in Table 1 probabilities of a correct response in the experiment of Dhir 

(2017) increase across rows and down columns.   

 A quantitative condition is necessary and sufficient for two orders of the selectively 

influenced vertices to be possible (Schweickert & Chen, 2008).  Order the levels i and j as 

described above.  Parameter values can be transformed to convenient values for which for i = 1, 

p*F(1) = 0 and for j = 1, pF(1) = 0.  Using Equations (8) and (9) we find  

 p(i,j) - p(1,j) - p(i,1) + p(1,1)  

  = pB(i)pF(j) - pB(1)pF(j) = p*B(j)p*F(i) - p*B(1)p*F(i).   

Then for every i and j, 

  [pB(i) - pB(1)]pF(j) = [p*B(j) - p*B(1)]p*F(i),   (10) 

so 
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��(�)

�∗
�(�)� �∗

�(�)
=

�∗
�(�)

��(�)� ��(�)
 , 

provided denominators are not 0.   

 Expressions on the left side of the above equation depend only on j and do not change 

when i changes.  Hence, the right side must take the same value for every value of i.  That is, 

there is a constant c such that for every i and j 

   c = pF(j)/[p*B(j) - p*B(1)] = p*F(i)/[pB(i) - pB(1)],      (11) 

provided denominators are not 0.   

 Consider the case of a 0 denominator, say for i', pB(i') - pB(1) = 0.  Then by Equation (10), 

0 = [p*B(j) - p*B(1)]p*F(i').  By our general assumptions, it is not true that p*B(j) - p*B(1) = 0 for 

every j.  So p*F(i') = 0.  Likewise, if p*B(j) - p*B(1) = 0 then pF(j) = 0.  Then we can generalize 

Equation (11) to every i and every j, 

 pF(j) = c[p*B(j) - p*B(1)] and p*F(i) = c[pB(i) - pB(1)].      (12) 

 For response probabilities the existence of a constant c such that the above equation is 

true turns out to be the necessary and sufficient for the order in which the vertices selectively 

influenced by Factors Φ and Ψ are reversible in the Standard Tree for Ordered Processes 

(Schweickert & Chen, 2008, Theorem 13).   

 The constant c must be between upper and lower bounds, see Schweickert and Chen 

(2008) for details.  For our purposes, note that pF(j) > 0 and by Equation (12) with the order we 

have chosen for j,  p*B(j) > p*B(1).  Then c > 0.  But c = 0 is not possible, because then for every 

j, pF(j) = 0 and then Factor Ψ is ineffective for response probabilities.  Hence, c > 0.    

 If there is a number c such that Equation (12) is true, then response probabilities do not 

determine the order in which the factors influence vertices.  Can response times settle the 

question?   
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 Response times.  Assume as before that Factors Φ and Ψ selectively influence two 

vertices in each of two Standard Trees for Ordered Processes.  In one MPT Factor Φ selectively 

influences the source vertex and in the other MPT Factor Ψ selectively influences the source 

vertex.  Suppose both MPTs account for response probabilities and response times.   

 As before, for response probabilities for every level i of Factor Φ and every level j of 

Factor Ψ there are arc probabilities pD(i), pB(i) and pF(j) such that Equation (8) is true, and there 

are arc probabilities p*D(j), p*B(j) and p*F(i) such that Equation (9) is true.  Further, for response 

times, for every level i of Factor Φ and every level j of Factor Ψ there are arc times tD(i), tB(i) 

and tF(j) such that the time t(i,j) for a correct response satisfies the equation 

   p(i,j)t(i,j) = pD(i)tD(i)+ pB(i)pF(j)[tB(i) + tF(j)].    (13) 

And, for every level i of Factor Φ and every level j of Factor Ψ there are arc times t*D(j), t*B(j) 

and t*F(i) such that the time for a correct response satisfies the equation 

   p(i,j)t(i,j) = p*D(j)t*D(j)+ p*B(j)p*F(i)[t*B(j) + t*F(i)].   (14) 

 Table 2 gives an example of probabilities and times for correct responses that can be 

accounted for by two MPTs in which each of two factors selectively influences a different 

vertex.  In one MPT the vertex selectively influenced by Factor Φ comes first, in the other MPT 

it is second.   

 The interested reader can check that Eq. (8) for probabilities and Eq. (13) for times are 

satisfied when the vertex selectively influenced by Factor Φ comes first in an MPT with 

parameter values pD(1) = .20, pD(2) = .22, pD(3) = .24, pB(1) = .3, pB(2) = .4, pB(3) = .5, pF(1) = 0, 

pF(2) = .2, pF(3) = .4, tD(1) = 60, tD(2) = 80, tD(3) = 100, tB(1) = 90, tB(2) = 80, tB(3) = 75, tF(1)= 

100, tF(2) = 80, tF(3) = 50.  Also, Eq. (9) and Eq. (14) are satisfied when the vertex selectively 

influenced by Factor Φ comes second in an MPT with parameter values p*D(1) = .20, p*D(2) = 
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.26, p*D(3) = .32, p*B(1) = .2, p*B(2) = .4, p*B(3) = .6, p*F(1) = 0, p*F(2) = .1, p*F(3) = .2, t*D(1) 

=60, t*D(2) = 81.92, t*D(3) = 82.50, t*B(1) = 110, t*B(2) = 90, t*B(3) = 60, t*F(1)= 12, t*F(2) = 

15.1, t*F(3) =  18.3.   

 Two such MPTs are possible only under certain conditions.  Table 3 gives an example of 

probabilities and times for correct responses that can be accounted for by an MPT in which two 

factors selectively influence ordered vertices, but the order of the vertices cannot be reversed.  

To see this, we derive qualitative conditions that are violated by the reverse order.   

 Consider an MPT in which a Factor Φ, with levels indexed by i, selectively influences a 

vertex followed by a vertex selectively influenced by a Factor Ψ, with levels indexed by j.  Then 

Eq. (8) for probabilities and Eq. (13) for times both hold.  Renumber the levels j, if necessary, so 

pF(j) monotonically increases with j.  Conveniently, one can always find parameters such that 

pF(1) = 0 (Schweickert & Chen, 2008).  Then from Eq. (8), for any i and j,  

p(i,j) - p(i,1) = pD(i) + pB(i)pF(i) - pD(i) = pB(i)pF(j).   

Likewise from Eq. (13), for any i and j,  

p(i,j)t(i,j) - p(i,1)t(i,1) = pD(i)tD(i) + pB(i)pF(j)[tB(i) + tF(j)]  - pD(i)tD(i) = pB(i)pF(j)[tB(i) + tF(j)]. 

From the above two equations,  

�(�,�)�(�,�) � �(�,�)�(�,�) 

�(�,�) � �(�,�) 
= tB(i) + tF(j), 

provided the denominator is not 0.   

 One consequence is that if tB(i) and tF(j) are times, the expression on the left hand side of 

the above equation must be nonnegative.  Another consequence is that over the values of i and j 

it must be possible to order expressions on the left hand side so they increase monotonically with 

i and increase monotonically with j, whether or not tB(i) and tF(j) are nonnegative.  For the 

example in Table 3, expressions on the left hand side are in the top panel of Table 4; they satisfy 
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the conditions.  However, if the order of the selectively influenced vertices is reversed, the roles 

of i and j in the above equation change and it becomes 

�(�,�)�(�,�) � �(�,�)�(�,�) 

�(�,�) � �(�,�) 
= t*B(j) + t*F(i).    

For the example in Table 3, expressions on the left hand side are in the bottom panel of Table 4; 

they do not satisfy the conditions.  Some are negative.  Further, expressions in the first column 

increase with i but expressions in the other two columns decrease with i.  No MPT is possible in 

which measures t(i,j) can be accounted for by an MPT in which a vertex selectively influenced 

by Factor Ψ precedes a vertex selectively influenced by Factor Φ, although such an MPT can 

account for probabilities.   

 The interested reader can check that arc times producing the numbers in Table 3 are tD(1) 

= 200,  tD(2) = 50, tD(3) = 100, tB(1) = 100, tB(2) = 1000, tB(3) = 150, tF(1) = 0, tF(2) = 300, tF(3) 

= 500.  Arc probabilities are the same as those used for Table 2.   

 We have discussed qualitative conditions.  The following theorem gives quantitative 

conditions.  Parameters for two such MPTs are possible only if the arc probabilities of one MPT 

are related to those of the other MPT via a constant c, and time parameters of one MPT are 

related to those of the other MPT via a constant e.   

 Details about the parameters are somewhat complicated, but the key idea is relatively 

simple.  One can easily see that two factors selectively influence two ordered vertices in an MPT, 

but the order of the vertices is not determined, if the MPT is equivalent to a tree with the special 

form in Figure 6.  In this tree for every i and j there are parameters α, βi, and γj such that 

p(i,j) = α + βiγj 

and there are parameters δ, εi, and ζj such that 
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p(i,j)t(i,j)  = αδ + βiγj(εi + ζj). 

In the above equations parameters with subscripts i and j commute, so the equations do not 

specify an order for the two factors indexed by i and j.  It turns out, according to the following 

theorem, that the only way two factors selectively influence two ordered vertices in an MPT, but 

the vertex order is not determined, is when the MPT is equivalent to the commutative tree in 

Figure 6.  

 We note that the tree in Figure 6 is not necessarily an MPT because parameters α, βi, and 

γj might not be probabilities.  Further, parameters δ, εi, and ζj might not be times.  For example, α 

might negative, βi might be greater than 1 for some j, or δ might be negative.   

 Although we have usually considered response time as a dependent variable to account 

for, processing trees are also used as models for payoffs, lengths, and other dependent variables 

that need not be nonnegative.  In what follows we do not restrict t(i,j) to be nonnegative, as it 

would be if it were response time, and we refer to it as a measure.   

   To prove the following theorem, we need to know when probabilities p(i,j) and 

measures t(i,j) can be produced by the Standard Tree for Ordered Processes with the vertex 

selectively influenced by Factor Φ preceding the vertex selectively influenced by Factor Ψ.  

Three conditions, from Schweickert and Zheng (2019, Theorem 5) are sufficient (and necessary).    

 1.  The levels of Factor Ψ can be numbered so j > j' implies that for every i, 

     p(i,j) > p(i,j').     (15) 

 2.  There are levels i* and j* and for every level i of Factor Φ there is a number ri > 0 

such that for every level j of  Factor Ψ   

   p(i,j) – p(i,j*) = ri[p(i*,j) – p(i*,j*)].     (16) 
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 3.  There is a level n of Factor Ψ and for every level i of Factor Φ there is a number si 

such that the following is true.  Let max{ri} = rh.  For every i and j, 

������[�(�, �) − �(�, �)] 

 = ��[�(�, �)�(�, �) − �(�, �)�(�, �)] − ��[�(�, �)�(�, �) − �(�, �)�(�, �)].    (17) 

 If the two factors selectively influence two ordered vertices, but the order is the reverse of 

that considered above, then Equations (15), (16), and (17) hold, but with the roles of i and j 

switched.   

 The following theorem gives necessary and sufficient conditions for Factors Φ and Ψ to 

selectively influence two ordered vertices in two MPTs, with the vertex selectively influenced by 

Factor Φ being first in one MPT and the vertex selectively influenced by Factor Ψ being first in 

the other MPT.  

Theorem 2.  For every level i of Factor Φ and for every level j of Factor Ψ denote the 

probability and measure for  a correct response as p(i,j) and t(i,j), respectively.  The following 

three  statements are equivalent. 

 (1) For every i and j, p(i,j) and t(i,j) are produced by Factors Φ and Ψ selectively 

influencing vertices ordered by the factors in two MPTs.  In one MPT the vertex selectively 

influenced by Factor Φ precedes the vertex selectively influenced by Factor Ψ and in the other 

MPT the order is reversed.   

 (2)  For every level i of Factor Φ there are probabilities pB(i), pD(i), and values tB(i), and 

tD(i), and for every level j of Factor Ψ there are probabilities pF(j) and values tF(j) such that 

Equations (8) and (13) are true.  For every level i of Factor Φ there are further probabilities 

p*F(i), and values t*F(i), and for every level j of Factor Ψ there are further probabilities p*B(j), 

p*D(j), and values  t*B(j), and t*F(j) such that Equations (9) and (14) are true.   
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 The parameters satisfy the following conditions. 

  There is a number c such that for every i and j   

pF(j) = c[p*B(j) - p*B(1)] and p*F(i) = c[pB(i) - pB(1)]. 

  There is a number e such that for every i  

    e =  
��(�)��(�)� ��(�)��(�)

��(�) � ��(�)
− �∗

�(�)   (18) 

and for every j 

    e = 
�∗

�(�)�∗
�(�)� �∗

�(�)�∗
�(�)

�∗
�(�) � �∗

�(�)
−  ��(�),   (19) 

where each equation holds provided the denominator is not 0.   

 If pB(i) = pB(1) ≠ 0, then tB(i) = tB(1).  If p*B(j) = p*B(1) ≠ 0, then t*B(j) = t*B(1).   

  Further, c ≠ 0 and 

if c < 0, then 
�

(���{��(�)� ��(�)})
≤ � and 

�

�����∗
�(�)� �∗

�(�)�
≤ � 

if c > 0, then � ≤ 1/ max{��(�) −  ��(1)} and � ≤ 1/ max��∗
�

(�) −  �∗
�

(1)�.   

 (3)   For every i and j, p(i,j) and t(i,j) are produced by Factors Φ and Ψ selectively 

influencing vertices in a commutative tree in which βi has the same sign for all i and γj has the 

same sign for all j.     

Proof:  I. Suppose Statement (1) is true.  We show that Statement (2) is true.  Consider the MPT 

in which the vertex selectively influenced by Factor Φ precedes the vertex selectively influenced 

by Factor Ψ.  This MPT is equivalent to a Standard Tree for Ordered Processes in which Factor 

Φ selectively influences the source vertex (as in Figure 1).  With this Standard Tree, for every 

level i of Factor Φ there are parameter values pB(i), pD(i), tB(i), and tD(i), and for every level j of 

Factor Ψ there are parameter values pF(j) and tF(j) such that Equations (8) and (13) are true.   



35 
 

 Order the levels j of Factor Ψ so that if j < j' then pF(j) < pF(j').  Transform the arc 

probability values (if necessary) so for j = 1, pF(1) = 0.  (This is always possible,  Schweickert & 

Chen, 2008.)   

 Likewise, the MPT in which the vertex selectively influenced by Factor Ψ precedes the 

vertex selectively influenced by Factor Φ is equivalent to a Standard Tree for Ordered Processes 

in which Factor Ψ selectively influences the source vertex.  With this Standard Tree, for every 

level i of Factor Φ there are parameter values p*F(i), and t*F(i), and for every level j of Factor Ψ 

there are parameter values p*B(j), p*D(j), t*B(j), and t*D (j) such that Equations (9) and (14) are 

true.    

 Order the levels i of Factor Φ so that if i < i' then p*F(i) < p*F(i').  Transform the arc 

probability values (if necessary) so for i = 1, p*F(1) = 0. 

 From Equation (12) there is a number c such that for every i and j   

pF(j) = c[p*B(j) - p*B(1)] and p*F(i) = c[pB(i) - pB(1)] 

(Schweickert & Chen, 2008).  If c = 0, then pF(j) = 0 for every j.  But then by Eq. (8) p(i,j) does 

not change when j changes, contrary to the assumption that each factor is effective.  Hence, c ≠ 

0.  

 The lower and upper bounds on c follow from a little algebra and the requirement that 

pF(j) and p*F(i) are probabilities.      

 Using Equations (13) and (14), noting that their left hand sides are the same, we find 

   p(i,j)t(i,j)- p(1,j)t(1,j) - p(i,1)t(i,1) + p(1,1)t(1,1)  

  = pB(i)pF(j)[tB(i) + tF(j)] - pB(1)pF(j)[tB(1) + tF(j)] 

  = p*B(j)p*F(i)[t*B(j) + t*F(i)]  - p*B(1)p*F(i)[t*B(1) + t*F(i)].    

Then 
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 [pB(i)tB(i) - pB(1)tB(1)]pF(j) + [pB(i) - pB(1)]pF(j)tF(j) 

= [p*B(j)t*B(j) – p*B(1)t*B(1)]p*F(i) + [p*B(j) – p*B(1)]p*F(i)t*F(i).   (20) 

 Consider i such that pB(i) = pB(1).  Then p*F(i) = c[pB(i) - pB(1)] = 0.  Then the equation 

above becomes [pB(1)tB(i) - pB(1)tB(1)]pF(j) = 0.  This must be true when pF(j) ≠0, so pB(1)[tB(i) - 

tB(1)] = 0.  Then either pB(1)= 0 or tB(i) = tB(1).   

 Likewise, for j such that p*B(j) = p*B(1), either p*B(1) = 0 or t*B(j) = t*B(1).     

 Now choose i such that p*F(i) ≠ 0 and choose j such that pF(j) ≠ 0.  Dividing each side of 

Eq. (20) by pF(j)p*F(i), we obtain 

 
��(�)��(�)� ��(�)��(�)

�∗
�(�)

+  
��(�)� ��(�)

�∗
�(�)

��(�) 

  = 
�∗

�(�)�∗
�(�)� �∗

�(�)�∗
�(�)

��(�)
+  

�∗
�(�)� �∗

�(�)

��(�)
�∗

�(�). 

From Equation (12), p*F(i) = c[pB(i) - pB(1)] and pF(j) = c[p*B(j) - p*B(1)].  Substituting these 

values and cancelling c from the two sides of the equation we obtain 

��(�)��(�) −  ��(1)��(1)

��(�)  −  ��(1)
+ ��(�) 

  =  
�∗

�
(�)�∗

�(�)� �∗
�

(�)�∗
�(�)

�∗
�(�) � �∗

�(�)
+  �∗

�(�). 

Then  

��(�)��(�) −  ��(1)��(1)

��(�)  −  ��(1)
− �∗

�(�) 

  =  
�∗

�(�)�∗
�(�)� �∗

�(�)�∗
�(�)

�∗
�(�) � �∗

�(�)
− ��(�). 

The left hand side of the above equation does not depend on j and the right hand side does not 

depend on i.  Hence there is a constant e such that for every i  

  e =  
��(�)��(�)� ��(�)��(�)

��(�) � ��(�)
−  �∗

�(�)      
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and for every j 

   e = 
�∗

�(�)�∗
�(�)� �∗

�(�)�∗
�(�)

�∗
�(�) � �∗

�(�)
−  ��(�),     

provided the denominators are not 0.   

 At this point we have shown that Statement (1) implies Statement (2). 

 II.  Suppose Statement (2) is true.  We show that Statement (3) is true.  

 With probabilities described in Statement (2) 

   p(i,j) = pD(i) + pB(i)pF(j) = p*D(j) + p*B(j)p*F(i).  (21) 

Order the levels i of Factor Φ so that if i < i' then p*F(i) < p*F(i').  Transform the arc probability 

values (if necessary) so for i = 1, p*F(1) = 0.  Likewise, order the levels j of Factor Ψ so that if j 

< j' then pF(j) < pF(j').  Transform the arc probability values (if necessary) so for j = 1, pF(1) = 0.  

(These orderings and transformations are always possible, Schweickert & Chen, 2008.)   

 In Eq. (21), set i = 1.  Then because p*F(1) = 0, p*D(j) = pD(1) + pB(1)pF(j). 

 In Eq. (21), substitute this value for p*D(j) and substitute the value p*F(i) = c[pB(i) - pB(1)] from 

Statement (2).  We obtain 

p(i,j) = pD(1) + pB(1)pF(j) + p*B(j)c[pB(i) - pB(1)] 

         = pD(1) + pB(1)pF(j) + p*B(j)cpB(i) - p*B(j)cpB(1).   

From Statement (2),  p*B(j) = pF(j)/c + p*B(1).  Substitute this value for the second occurrence of 

p*B(j) in the equation above for p(i,j).  We obtain 

p(i,j) = pD(1) - cpB(1)p*B(1) + cpB(i)p*B(j).   

In the above equation, p(i,j) is produced by a commutative tree.  Further, cpB(i) has the same sign 

for all i and p*B(j) has the same sign for all j.     

 We turn to the times. With arc probabilities and arc times described in Statement (2),  

   p(i,j)t(i,j)  = pD(i)tD(i)+ pB(i)pF(j)[tB(i) + tF(j)] 
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        = p*D(j)t*D(j)  + p*B(j)p*F(i)[t*B(j) + t*F(i)]. (22) 

Levels of the factors can be ordered and probability and time values can be transformed so if i < 

i' then p*F(i) < p*F(i'), p*F(1) = 0, if j < j' then pF(j) < pF(j'), and pF(1) = 0.  (These orderings and 

transformations are always possible, Schweickert & Chen, 2008; Schweickert & Zheng, 2019b).     

 Set j = 1 in Eq. (22).  Because pF(1) = 0, 

pD(i)tD(i) = p*D(j)t*D(j)  + p*B(j)p*F(i)[t*B(j) + t*F(i)], 

so 

       p*D(j)t*D(j) = pD(i)tD(i) - p*B(j)p*F(i)[t*B(j) + t*F(i)].      (23) 

Similarly, by setting i = 1 in Eq. (22), because p*F(1) = 0, we obtain  

          pD(i)tD(i) = p*D(j)t*D(j) - pB(i)pF(j)[tB(i) + tF(j)].          (24) 

By setting i = 1 and j = 1 in Eq. (22),  we obtain 

pD(1)tD(1) = p*D(1)t*D(1). 

Then by setting j = 1 in Eq. (23) and i = 1 in Eq. (24),  

pD(i)tD(i) - p*B(1)p*F(i)[t*B(1) + t*F(i)] = p*D(j)t*D(j) - pB(1)pF(j)[tB(1) + tF(j)]. 

From the above equation we obtain two expressions we will use in substitutions below. 

  pD(i)tD(i) = p*B(1)p*F(i)[t*B(1) + t*F(i)] + p*D(j)t*D(j) - pB(1)pF(j)[tB(1) + tF(j)]   (25) 

and 

  p*D(j)t*D(j) = pB(1)pF(j)[tB(1) + tF(j)] + pD(i)tD(i) - p*B(1)p*F(i)[t*B(1) + t*F(i)].  (26) 

 We now derive an equation for p(i,j)t(i,j), starting from the first equation of Eq. (22).  

Substitute the value of pD(i)tD(i) from Eq. (25). 

  p(i,j)t(i,j)  = p*B(1)p*F(i)[t*B(1) + t*F(i)] + p*D(j)t*D(j) - pB(1)pF(j)[tB(1) + tF(j)] 

   + pB(i)pF(j)[tB(i) + tF(j)].   
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In the above equation, substitute the values of p*F(i) and t*F(i) given in Statement (2), and the 

value of p*D(j)t*D(j) from Eq. (26).  After a little algebra, we obtain 

  p(i,j)t(i,j)  = pD(1)tD(1) - cpB(1)p*B(1)[tB(1) + t*B(1) - e]  

  + cpB(i)p*B(1)[tB(i) + t*B(1) - e]  

  + pB(i)pF(j)[tB(i) + tF(j)].        (27) 

Finally, in the above equation substitute the values of pF(j) and tF(j) given in Statement (2).  

After a little algebra, we obtain 

p(i,j)t(i,j) = pD(1)tD(1) - cpB(1)p*B(1)[tB(1) + t*B(1) - e]  

 + cpB(i)p*B(j)[tB(i) + t*B(j) - e].      (28) 

In the above equation, p(i,j)t(i,j)  is produced by a commutative tree.   

 We now consider the situation where a denominator is 0 in Eq. (18) or Eq. (19).  There 

are several cases to consider.     

 (1)  Suppose p*B(j’) =  p*B(1) ≠ 0 and  pB(i’) ≠  pB(1).   

 Equation (27) holds.  From Statement (2), p*B(j’) =  p*B(1) ≠ 0 implies pF(j’) =  0 and  

t*B(j’) =  t*B(1).   

 Then Eq. (27) becomes Eq. (28), the equation of the commutative tree. 

 (2)  Suppose p*B(j’) =  p*B(1) ≠ 0 and  pB(i’) =  pB(1) ≠ 0. 

 From Statement (2), pF(j’) = 0 and p*F(i’) = 0.  Recall that pF(1) = 0 and p*F(1) = 0.  

We have  

p(i’,1) = pD(i’) + pB(i’)pF(1) = pD(i’), 

because pF(1) = 0. 
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 Also,  

 p(i’,1) = p*D(1) + p*B(1)p*F(i’) = p*D(1), 

because p*F(i’) = 0.   

 Then  

       pD(i’) = p*D(1).     (29) 

 Analogous reasoning shows  

    p*D(j’) = pD(1).       (30) 

 For every j, 

p(i’,j)t(i’,j)  = p*D(j)t*D(j) + p*B(j)p*F(i’)[ t*B(j) + t*F(i’)] 

       = p*D(j)t*D(j),      (31) 

because p*F(i’) = 0.   

 When j = 1 the above equation becomes p(i’,1)t(i’,1) = p*D(1)t*D(1).   

 We also have  

p(i’,1)t(i’,1) = pD(i’)tD(i’)  + pB(i’)pF(1)[tB(i’) + tF(1)]  = pD(i’)tD(i’), 

because pF(1) = 0.   

 From the lines immediately above pD(i’)tD(i’) = p*D(1)t*D(1).  Then from Eq. (29),  

tD(i’) = t*D(1).   

 Analogous reasoning shows, t*D(j’) = tD(1).   
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 From Eq. (31) we have from the line above and Eq. (30),  

  p(i’,j’)t(i’,j’) = p*D(j’)t*D(j’) 

    = pD(1)tD(1).         

 On the other hand, from Statement (2), p*B(j’) =  p*B(1) ≠ 0 implies t*B(j’) =  t*B(1) and  

pB(i’) =  pB(1) ≠ 0 implies tB(i’) =  tB(1).  Making these substitutions in Eq. (28) we obtain the 

result above,  

  p(i’,j’)t(i’,j’) =  pD(1)tD(1).   

Hence, p(i’,j’)t(i’,j’) is obtained from the equation for the commutative tree.   

 Reasoning is similar in the remaining cases.   

 Hence, Statement (2) implies Statement (3).     

III.  Suppose Statement (3) is true.  We show Statement (1) is true by showing Eq. (15), (16) and 

(17) hold.   

 Suppose for every i and j there are parameters α, βi, and γj such that 

p(i,j) = α + βiγj. 

Number the levels j so that γ1 < γ2 < . . . .  Then for every i if j > j’ then p(i,j) > p(i,j’), so Eq. (15) 

holds. 

 If βi = 0 for every i, Factor Φ is ineffective.  Choose h so max {|βi|} = |βh| ≠ 0.  For every 

i and j,  

 p(i,j) - p(i,1) = βiγj - βiγ1 

   = 
��

��
����� − ��� 
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   =  
��

��
[�(ℎ, �) − �(ℎ, 1)] 

Let ri = βi/βh.  Because βi has the same sign for all i, ri > 0.  Then Eq. (16) holds,, with i* = h and 

j* = 1.   

 We turn to Eq. (17).  By Statement (3), there are parameters δ, εi, and ζj such that 

p(i,j)t(i,j)  = αδ + βiγj(εi + ζj). 

Let n be any level j.  Note that max {ri} = rh = 1.  If  ri = 0, let si = 0, otherwise let si = εi – ε1.   

 In the case that ri = 0, the left hand side of Eq. (17) is 0.  Also, if ri = 0, βi = 0.  Then 

p(i,j)t(i,j) - p(n,j)t(i,n)  = βiγj(εi + ζj) - βiγn(εi + ζn) = 0.  So the right hand side of Eq. (17) is also 0. 

 Consider the case that ri ≠ 0.  The left hand side of Eq. (17) is 

 
��

��

��

��
[�� −  ��]����� − ����� =  ��[�� − ��][�� −  ��]. 

 The right hand side of Eq. (17) is 

��

��
�����(�� − ��)   − ����(�� − ��)� 

    − 
��

��
�����(�� − ��)   − ����(�� − ��)� 

   =  ��[�� − ��][�� − ��]. 

Hence, Eq. (17) holds. 

 Because Eq. (15), (16) and (17) hold p(i,j) and t(i,j) are produced by the Standard Tree 

for Ordered Processes, with the vertex selectively influenced by the factor whose levels are 

denoted i preceding the vertex selectively influenced by the factor whose levels are denoted j.  

Similar reasoning shows the order of the vertices can be reversed.  Hence, Statement (3) implies 

Statement (1).  

             QED 
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Remark.  Given parameter values for parameters of one of the Standard Trees described in the 

theorem, values for the numbers c and e, and a value for p*B(1) it is straightforward to find 

parameter values for the other Standard Tree.   

 Suppose Statement (2) is true.  Suppose for every level i of Factor Φ we have values 

pB(i), pD(i), tB(i), and tD(i), and for every level j of Factor Ψ we have values pF(j) and tF(j).  

Transform these, if necessary, so pF(1) = 0.  Equation (12) directly gives the value p*F(i) = 

c[pB(i) - pB(1)].  Because p*F(i) > 0, c > 0.  If c = 0, the factor whose levels are indexed by i is 

ineffective.  We can divide by c in Equation (12) and we find p*B(j) =  pF(j)/c + p*B(1).  Note 

that p*F(1) = 0.  Then by Equation (9), �∗
�

(�)  = �∗
�

(�) +  �∗
�

(�)�∗
�

(1) = �(1, �).   

 We now find values for arc time parameters t*F(j), t*B(j), and t*D(j).   

 Equation (18) holds for every i for which the denominator is not 0.  For every such i 

Equation (18) can be solved for �∗
�(�).  Let 

�∗
�(�) =  

��(�)��(�)� ��(�)��(�)

��(�) � ��(�)
− �.   

Suppose for a level i the denominator of Equation (18) is 0.  Then ��(�)  − ��(1) = 0.  Then by 

Equation (12), p*F(i) = 0.  By Equation (14), the value of p(i,j)t(i,j) does not depend on t*F(i) and 

we can let t*F(i) = 0.   

 Equation (19) holds for every j for which the denominator is not 0.  For every such j it 

can be solved for �∗
�(�).  

�∗
�

(�)�∗
�(�) −  �∗

�
(1)�∗

�(1) = [��(�) + �][�∗
�

(�) −  �∗
�

(1)] 

      =  [��(�) + �]��(�)/�. 

So 

 �∗
�(�) =  

�∗
�(�)�∗

�(�)� ��(�)[��(�)��]/�

�∗
�(�)

 =  
��∗

�(�)�∗
�(�)� ��(�)[��(�)��]

��(�)���∗
�(�)

 . 
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Note that division by p*B(j) is justified for such a j, because by the order of the levels j, p*B(j) > 

p*B(1).  If p*B(j) = 0, then p*B(1) = 0.  Then the denominator of Equation (19) would be 0 and j 

would not be in the case we are considering.   

 Now consider the case of j for which the denominator of Equation (19) is 0.   

Then �∗
�

(�) − �∗
�

(1) = 0, and by Equation (12), pF(j) = 0.  Then solving Equation (18), with 

�∗
�

(�) =  �∗
�

(1), we find �∗
�(�) =  �∗

�(1).   

 Finally, we obtain the value of t*
D(j).  Above, we found �∗

�
(�) =  �(1, �).  By Equation 

(13), 

 �(1, �)�(1, �) = �∗
�

(�)�∗
�(�) +  �∗

�
(�)�∗

�
(1)[�∗

�(�) + �∗
�(1)] = �∗

�
(�)�∗

�(�). 

Because �(1, �) = �∗
�

(�), we let �∗
�(�) = �(1, �).   

 In this section, we have shown that response times may resolve a question about the form 

of an MPT that response probabilities do not.  Suppose Factors Φ and Ψ selectively influence 

two vertices in the Standard Tree for Ordered Processes with Factor Φ selectively influencing the 

source vertex.  If there is a number c such that Equation (12) is true, then response probabilities 

can be accounted for by another Standard Tree for Ordered Processes in which Factors Φ and Ψ 

selectively influence two vertices, but the order of the selectively influenced vertices is reversed.  

If further, there is a number e such that Equations (18) and (19) are true, then response times can 

be accounted for by another Standard Tree for Ordered Processes in which Factors Φ and Ψ 

selectively influence two vertices, but the order of the selectively influenced vertices is reversed.   

Because the existence of the number c does not imply the existence of the number e, response 

times may reveal an aspect of form that response probabilities alone do not.   

 

Conclusion 
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 This paper began with discussion of an experiment by Dhir (2017) on the effect of 

participant age on learning of word pairs.  After study, participants were cued with the first 

member of a pair and asked to recall the second.  Three types of pairs varied in how much 

support word knowledge affords recall.  A Multinomial Processing Tree gives a good account of 

the response probabilities.  In the MPT age and pair-type selectively influence two different 

ordered vertices.  Drawing on an MPT model by Greene and Naveh-Benjamin (in press), we –

propose as a possibility that the vertex selectively influenced by age as an attempt at retrieval of 

a specific verbatim trace and the vertex selectively influenced by pair-type as an attempt at recall 

via a fuzzier gist trace.  Processing at the second vertex is unaffected by age, consistent with 

earlier findings that word knowledge is not impaired by age.  The MPT gives resolution about 

which processes are impaired by age and which are not.  A question unresolved by the response 

probability data is the order of the vertices.  Two orders are possible and both lead to good fits.  

In the second part of the paper we considered whether observation of an additional measure, such 

as response time, could resolve the question of order.  We showed that indeed an additional 

measure can imply an order on selectively influenced processes even when response probabilities 

alone do not.   
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Appendix  

Model Fitting and Comparisons 
 
 When estimating probability values in Equations (1), (2) and (3), two probability values 

in each equation can be set to arbitrary values before estimating the remaining ones.  The reason, 

in brief, is that some of the probability values are on an interval scale.  Such values can be 

transformed with two free parameters, a slope and intercept.  Alternatively, two values can be set 

arbitrarily.  For details see Schweickert and Chen (2008). 

 There are two levels of age and three levels of pair-type.  For the model in Equation (1), 

there are seven probability values, pD(1), pD(2), pB(1), pB(2), pF(1), pF(2), and pF(3).  To fit the 

model, two values were set arbitrarily ahead of time, pF(1) = 0 and pF(3) = 1.  The other values 

were then chosen to minimize G2, by using Solver in Excel.  Results are in Table 1, with G2 = 

.12.   

  For the model in Equation (3), there are eight probability values, pD(1), pD(2), pD(3), 

pB(1), pB(2), pB(3), pF(1), and pF(2).  To fit the model, two values would be set arbitrarily ahead 

of time.  The six remaining probability values would then be used to fit the six observed values 

of correct response probability.  The fit would be perfect, so the model cannot be rejected on the 

basis of goodness of fit.   

 We can compare the models in Equations (1) and (3) by taking the number of parameters 

into consideration with the Akaike Information Criterion (Akaike, 1973).  For a particular model,  

AIC = G2 + 2S, 

where S is the number of estimated parameters of the model (see, e.g., Singmann & Kellen, 

2013).  For the model in Equation (1), 

AIC = .12 + 2(5) = 10.12. 
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For the model in Equation (3), the perfect fit indicates G2 = 0.  So for this model, 

AIC = 0 + 2(6) = 12. 

The slightly lower AIC for the model in Equation (1) leads to preferring it, although not strongly.   

 For the model in Equation (2), there are five probability values, pA, pD(1), pD(2), pF(1), 

pF(2), and pF(3).  To fit the model, two values were set arbitrarily ahead of time, pF(1) = 0 and 

pF(3) = 1.  The other values were then chosen to minimize G2, by using Solver in Excel.  For this 

model, G2 = 3.63.  The distribution of G2 is approximately chi square, with 2 degrees of freedom 

in this case.  The obtained value is not significant, indicating a good fit.  An argument against 

this model is that it predicts additive effects of Age and Pair-Type, contrary to the interaction 

found with an ANOVA.  For comparing this model with the other two,  

  AIC = 3.63 + 2(4) = 11.63. 

Although the AIC values are not very different from each other, the smallest AIC is that for the 

model in Equation (1), so it is the preferred model, although not strongly preferred.   
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Table 1 

Correct and Incorrect Recall Frequencies of Young and Old Participants  
For Three Types of Paired Associates in Experiment 1 of Dhir (2017) 
 
    ____________________________________ 
      Pair-Type j 
    ____________________________________ 

    Unrelated Integrative Integrative 
           Non-Assoc     Assoc 
Age i             j = 1      j = 2      j = 3 
_____________________________________________________________ 

     Correct Recall Frequency 
_____________________________________________________________ 
Old i = 1 Observed 90  150   198 
  Predicted 90.61  148.45   198.74 
Young i = 2 Observed 162  201  240 
  Predicted 161.01  202.87  239.26 
_____________________________________________________________ 

     Incorrect Recall Frequency 
_____________________________________________________________ 
Old i = 1 Observed 210  150  102 
  Predicted 209.39  151.55  101.26 
Young i = 2 Observed  138   99   60 
  Predicted  138.99  97.13   60.74 
_____________________________________________________________ 
Note.  Predicted values are from Equation (1) with the following parameter values:   
pD(1) = .30, pB(1) = .36; pD(2) = .54, pB(2) = .26; pF(1) = 0, pF(2) = .53, pF(3) = 1.   
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Table 2 
 
Numerical Example of Response Probabilities and Times Predicted by Factors Φ and Ψ 

Selectively Influencing Ordered Vertices in an MPT But Order is Not Determined 

Level of 

Factor Φ 

Level of Factor Ψ 

j = 1 j = 2 j = 3 

 Probability p(i, j) 

i = 1 0.20 0.26 0.32 

i = 2 0.22 0.30 0.38 

i = 3 0.24 0.34 0.44 

 p(i,j)t(i, j) 

i = 1 12.0 21.3 26.4 

i = 2 15.1 26.7 32.7 

i = 3 18.3 32.3 39.3 
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Table 3 
Numerical Example of Response Probabilities and Times Predicted by Factors Φ and Ψ 

Selectively Influencing Ordered Vertices in an MPT And Order is Determined 

Level of 

Factor Φ 

Level of Factor Ψ 

j = 1 j = 2 j = 3 

 Probability p(i, j) 

i = 1 0.20 0.26 0.32 

i = 2 0.22 0.30 0.38 

i = 3 0.24 0.34 0.44 

 p(i,j)t(i, j) 

i = 1 40   64 112 

i = 2 11 115 251 

i = 3 24   69 154 
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Table 4 
Values of tB(i) + tF(j) and t*B(j) + t*F(i) Derived from Table 3 
In Top Panel Factor Φ Selectively Influences the Source Vertex: Possible  
In Bottom Panel Factor Ψ Selectively Influences the Source Vertex: Impossible  
 
 

Level of 

Factor Φ 

Level of Factor Ψ 

j = 1 j = 2 j = 3 

 tB(i) + tF(j) 

i = 1    400   600 

i = 2  1300 1500 

i = 3    450   650 

 t*B(j) + t*F(i) 

i = 1      

i = 2 -1450.0 1275.0 2316.7 

i = 3   -400.0     62.5   350.0 
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Figure 1.  A Multinomial Processing Tree for an experiment with two factors.  Probability values 
pD(i) and pB(i)  depend on the level i of one of the factors and probability value pF(j) depends on 
the level j of the other factors.  The vertex with probabilities indexed by i precedes the vertex 
with probabilities indexed by j on a path.  A parameter such as tB(i) on an arc is the time required 
for the outcome represented by the arc to occur.  A terminal vertex results in a Correct response 
an Incorrect response.   
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Figure 2.  A Multinomial Processing Tree for an experiment with two factors.  Probability value 
pD(i) depends on the level i of one of the factors and probability value pF(j) depends on the level 
j of the other factor.  The vertex with probabilities indexed by i is not on a path with the vertex 
with probabilities indexed by j.   
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Figure 3.  The K-Class Standard Tree for Ordered Processes  
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Figure 4. Proportion of integrative associative, integrative non-associative and unrelated 

targets correctly recalled across young and old adults. Error bars represent means to ±1 

standard error. 
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Figure 5.  Paths from the source of an arbitrary MPT to a terminal vertex.  A factor with levels 
indexed by i selectively influences one vertex and a factor with levels indexed by j selectively 
influences a following vertex.  All possible paths to a vertex of one particular response class are 
illustrated.    
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Figure 6.  The commutative tree.  Only terminal vertices for correct responses are illustrated.  
One arc has parameters indexed by i; another arc has parameters indexed by j.  The order of 
these arcs makes no difference for predictions.   

 


