

City, University of London Institutional Repository

Citation: Komninos, N. & Mantas, G. (2008). Efficient group key agreement & recovery in

ad hoc networks. IET Conference Publications(545 CP), pp. 25-28. doi:
10.1049/cp:20080928

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2483/

Link to published version: https://doi.org/10.1049/cp:20080928

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Efficient Group Key Agreement & Recovery in Ad hoc Networks
Nikos Komninos*, Georgios Mantas*

*Algorithms and Security Group
Athens Information Technology

GR-190 02 Peania (Attiki), Greece
{nkom, gman}@ait.edu.gr

Abstract

Ad hoc networks are dynamic peer-to-peer wireless networks
composed of a collection of nodes which employ wireless
transmission methods in a self-organized way without relying
on fixed infrastructure or predetermined connectivity. Such
networks pose great challenges in group communication. In
this paper, we propose an efficient group key agreement and
recovery mechanism based on key escrow systems for ad hoc
networks. Nodes randomly change their operation and
perform authentication services for specific groups.

Keywords: key escrow, Clipper, key agreement, key
recovery.

1 Introduction

Ad hoc networks are characterized by the lack of any
centralized entity, as any centralized entity is very easy to be
attacked. Furthermore, an ad hoc network is extremely
dynamic as its nodes are able to join or leave the network at
any time [1, 5]. Moreover, the deployment of security
mechanism in an ad hoc network is a challenging issue
because of its above inherent characteristics. First of all,
conventional authentication techniques can not be used in ad
hoc networks since public key infrastructures with a
centralized, trusted entity is not possible to be implemented.
Thus, only distributed solutions are employed. In addition,
group key agreement protocols are applied in ad hock
networks instead of key agreement protocols due to lack of
trust in the network. However, ad hoc networks are subject to
a lot of passive and active attacks which can be derived from
outside malicious nodes or from inside compromised hosts
[2]. Frequently, as a result from the attacks in an ad hoc
network is the loss or the destruction of the secret key. Thus,
it is very useful for the ad hoc networks the existence of key
recovery mechanisms so as the key, which encrypts the data
transferred among nodes, to be obtained at any time it is
necessary. A key recovery mechanism can be achieved with a
key escrow system. A key escrow system requires a lot of
complex computations and storage of information. These
requirements of a key escrow system can be satisfied by smart
cards.

In this paper, we proposed an efficient group key agreement
and recovery mechanism for ad hoc networks. Each node of
the ad hoc network is equipped with a smart card which

performs the complex computations required according the
group session key agreement protocol, as well as the key
recovery mechanism. Following the introduction, in section 2,
we present the related work of group session key agreement
protocols, key recovery, key escrow systems as well as the
Clipper key escrow system. In section 3, the design of the
proposed group session key agreement protocol is discussed.
Furthermore, in section 4, the modified Clipper key escrow
system is described. In section 5, the experimental results are
presented. Finally, section 6 concludes the paper.

2 Related Work

Group Session Key Agreement Protocols

Group key agreement protocols are generalized key
agreement protocols which establish a common group session
key among a group of parties and not only between two
parties. Also, group key agreement protocols take into
consideration the cases that parties may join or leave a group
at any time. In these dynamic cases, supplementary group key
agreement protocols are used in order that a new group
session key to be derived. Moreover, group key agreement
protocols do not require central authority. Thus, group key
agreement protocols are suitable for ad hoc networks
characterized by their dynamic changing topology, the lack of
centralized control and trusted third parties as well as the
resetting of connections [4]. Several group key agreement
protocols are presented in [5].

Key Recovery

The objective of a key recovery system is to permit access to
encrypted communication data, when the encryption key is
lost or destroyed due to equipment failure or malicious
activities. An establishment of a session key is always
required in order to achieve a key recovery. A key recovery
system derives the encryption key from information stored in
a secure back up copy. Key escrow is a way to achieve key
recovery. According to this mechanism, information
associated with the decryption key is divided into several
parts and these parts are distributed and stored to trusted third
parties (escrow agents). Thus, the escrow agents are able to
reconstruct the decryption key from their stored parts at any
time [4].

Key escrow systems – The Clipper key escrow system

A key escrow system provides encryption of user data using a
session key (Ks) which can be recovered by an authorized
third party under special circumstances. Thus, a third party,
which has monitored the encrypted user data with the session
key, is able to decrypt them. A very famous implementation
of a key escrow system was the Clipper key escrow system,
which uses the Clipper chip. This chip was developed and
started to be promoted by the U.S. government as an
embedded encryption device for voice communication
systems in 1993. Clipper key escrow system offers encryption
of the user’s data as well as capability of session key recovery
(Ks). This system is based on the fact that two key
components, which can create an encryption key, can be
stored into two escrow agents (authorized third parties) which
are going to be part of the user data recovery mechanism
when a recovery request exists [4].

3 Proposed Group Key Agreement Protocol

First of all, we consider a group of N nodes. We suppose that
this group is a cluster created by applying any clustering
algorithm in an ad hoc network [3]. We consider that the
cluster-head (one of the N nodes) which is elected according
the applied clustering algorithm is our Checker. Furthermore,
we consider that the Checker and each node of this cluster are
connected with a smart card. Firstly, we employ our group
session key agreement protocol on the created cluster. Then,
our modified Clipper key escrow system can be employed for
key recovering at any time in our group (cluster). The
Checker is considered as the only key escrow agent in our
system. Furthermore we consider that each node has a unique
identity number, ID. Also, each node knows the secret master
key (MK), which is the stored key in the smart card, and the
ID of the Checker. In addition, each node has embedded a
unique key (UK).

In the first step, each node sends to the Checker a message
that includes its ID (id_node), the ID of the Checker
(id_checker), and an encrypted message with the master
key MK , which is derived from the concatenation of the ID of
the node (id_node), the ID of the Checker (id_checker) and a
nonce (nonce_node) generated randomly by each node
(i.e.)_||ker_||_(nodenoncechecidnodeidE

MK).

In the second step, the Checker decrypts the received
encrypted message from each node and obtains the ID of each
node. Then, the Checker compares it with the ID of each node
sent outside of the encrypted message in order to authenticate
each node. After that, the Checker sends to each node a
message that includes its ID (id_checker), the ID of the
corresponding node (id_node), and an encrypted message
with the master key MK , which is derived from the
concatenation of the ID of the Checker (id_checker), the ID
of the corresponding node (id_node), the nonce generated by
the corresponding node in the step one increased by one

(nonce_node+1) and a nonce (nonce_checker) generated by
Checker, (i.e. ker_||1_||_||ker_(checnoncenodenoncenodeidchecidE

MK +).

In the third step, each node decrypts the received encrypted
message from the Checker and obtains the ID of the Checker.
Then, each node compares it with the ID of the Checker sent
outside of the encrypted message in order to authenticate the
Checker. After that, each node sends to the Checker a
message that includes its ID (id_node), the ID of the Checker
(id_checker), and an encrypted message with the master
key MK , which is derived from the concatenation of the ID
of the node (id_node), the ID of the Checker (id_checker), the
nonce (nonce_checker) generated by the Checker increased
by one (nonce_checker+1) and the unique key of each node
(i.e.)||1ker_||ker_||_(_nodeUK KchecnoncechecidnodeidE

M
+).

In the forth step, the Checker decrypts all the received
encrypted messages and obtains the unique keys of all nodes.
Thus, the Checker is able to create the family key (FK). The
family key is calculated in the Checker by the following
formula:

121 _____ ...
−

⊕⊕⊕=
NnodeUnodeUnodeUF KKKK

We note that the family key (FK) is a key which contains
key contributions of each node apart from the Checker.
Then, the Checker broadcasts the family key (FK) to all
nodes. In particular, the Checker broadcasts a message which
includes its ID (id_checker), and an encrypted message with
the master key (MK), which is derived from the
concatenation of the ID of the Checker (id_checker), the
family key (FK), a random quantity (S_checker) generated
by the Checker and another random quantity (nonce1)
generated by the Checker
(i.e.)1||ker_||||ker_(noncechecSKchecidE FKM

).

In the fifth step, each node decrypts the received encrypted
message from the Checker, obtains the random quantity
(S_checker) generated by the Checker, the random quantity
(nonce1) generated by the Checker and the family key (FK)
which was created by the Checker in the previous step. After
that, each node constructs a session key (iK) with the
following XOR function:

ker_ checSKK Fi ⊕=
Then, each node sends to the Checker a message that includes
its ID (id_node), the ID of the Checker (id_checker), and the
hash value produced by the hash function H of a message
derived from the concatenation of the ID of the Checker
(id_checker), the random quantity (nonce1) generated by the
Checker in the forth step increased by one (nonce1+1) and the
calculated session key (iK)
(i.e.)||11||ker_(iKnoncechecidH +).

In the sixth step, the Checker compares the hash values that it
received from each node. If the Checker finds that all the
received hash values are the same

(121 ... −==== Ns KKKK), it means that each node has
generated the same session key (K). Then, the Checker
notifies all nodes that the session key has been established
successfully. Thus, the Checker sends to each node a message
that includes its ID (id_checker), and an encrypted message
with the master key (MK), which is derived from the
concatenation of the ID of the Checker (id_checker) and an
number (ack_code) which is known to the nodes a priori and
means that the session key has been established successfully
(i.e.)_||ker_(codeackchecidE

MK).
Thus, the group session key agreement protocol flow is the
following:

Fig. 1. The proposed group session key agreement protocol

flow

4 Modified Clipper Key Escrow System

When the group session key agreement protocol is
accomplished, each node has obtained the two critical keys
which are going to be used for the creation of its modified
LEAFs. These two critical keys are the family key (FK) and
the session key (iK) of each node which is the group session
key (is KK =) as all nodes have created the same session key
according to the sixth step of group session key agreement
protocol. Our modified key escrow system consists of the
following processes:

Process 1
First of all, the modified LEAF is created. The modified
LEAF is a data block which contains the ID of the node, the
encrypted session key with the unique key of each node

()(E
U_nodeK sK), a hash value (hash_value) and a timestamp.

The hash value (hash_value) is created by the hash function H
of a message derived from the concatenation of the session
key (SK) and a random value.
Then, the LEAF block is encrypted with the family key (FK)
(i.e.)||_||)(||_(

_
timestampvaluehashKEnodeidE SKK nodeUF

). After

that, the node sends its ID and the LEAF block to the
Checker. The Checker stores the received LEAF in a file
according to the ID of the node that sent it. Thus, the Checker
stores the LEAFs of each node.

Process 2
In case that a node wants to recover the session key, it needs
to send a recovery request message to the Checker. Thus, the
node sends to the Checker a recovery request message that
includes its ID (id_node), and an encrypted message with the
master key MK , which is derived from the concatenation of
the ID of the node (id_node) and the recovery code
(rec_code) (i.e.)_||_(coderecnodeidE

MK).

Process 3
When the Checker receives the recovery request message, it
decrypts the received encrypted message and obtains the ID
of the node and the recovery code. Then, the Checker
compares the obtained ID with the ID of the node sent outside
of the encrypted message in order to authenticate the node.
After that, the Checker recognizes the recovery code and
restores the LEAF that corresponds to the node that sent the
recovery request message. Then, the Checker decrypts the
restored LEAF with the family key (FK), which is common
for the Checker and all nodes according to the group session
key protocol, and obtains the encrypted session key with the
unique key of the node ()(E

U_nodeK sK). Then, the Checker

sends to the node a message that includes its ID (id_checker)
and an encrypted message with the master key MK , which is
derived from the concatenation of the ID of the Checker
(id_checker) and the encrypted session key with the unique
key of the node ()(E

U_nodeK sK)

(i.e.))(E||ker_(
U_nodeK sK KchecidE

M
).

Process 4
The node that sent the recovery request message, receives the
response message of the Checker, decrypts the received
encrypted message and obtains the ID of the Checker as well
as the encrypted session key with its unique key
()(E

U_nodeK sK).Then, the node compares the obtained ID

with the ID of the Checker sent outside of the encrypted
message in order to authenticate the Checker. After that, the
node decrypts the quantity ()(E

U_nodeK sK) with its unique key

in order to obtain the session key (SK).

5 Experimental Results

For the implementation, we considered that our group
consists of three nodes and each node is connected with a
smart card. One of them is the Checker. Thus, the simulation
environment consists of the Checker, the Node1 and the
Node2. For the communication between the Checker and
Node1 and for the communication between the Checker and
Node2 we used the client/server model. Furthermore, all
required cryptographic functions (encryption, decryption,
hashing), were executed by the Cryptoflex Smart Card. There
are three types of encryption: encryption with the master key,
encryption with the family key and encryption with the
unique key of each node.

The master key is a DES key stored in the smart card. In case
that one of the three applications needs to make encryption
with the master key, then the application gets connection with
the smart card, sends the data for encryption to it and the
smart card encrypts these data with the stored DES key. Then,
the smart card returns the encrypted data back to the
application.

The family key is created during the group key agreement
protocol. Now, the encryption with the family key includes
two steps. In the first step, the application, which wants to
make encryption with the family key, gets connection with
the smart card, sends the data for encryption to it and the
smart card encrypts these data with the stored DES key. Then,
the smart card returns the encrypted data back to the
application. In the second step, the application is XORing the
returned encrypted data with the family key.

Each node has embedded a unique key. The encryption with
the unique key of a node includes two steps too. In the first
step, the application, which wants to make encryption with
the unique key, gets connection with the smart card, sends the
data for encryption to it and the smart card encrypts these data
with the stored DES key. Then, the smart card returns the
encrypted data back to the application. In the second step, the
application is XORing the returned encrypted data with the
unique key.

Furthermore, for each of the above encryption type there is
the corresponding decryption type: decryption with the master
key, decryption with the family key and decryption with the
unique key of each node. Thus, in case that one of the three
applications needs to decrypt encrypted data with the master
key, then the application gets connection with the smart card,
sends the encrypted data for decryption to it and the smart
card decrypts these data with the stored DES key. Then, the
smart card returns the decrypted data back to the application.

In case that one application needs to decrypt encrypted data
with the family key, then two steps are required. In the first
step, the application is XORing the encrypted data with the
family key. In the second step, the application gets connection
with the smart card, sends the data which is the result of XOR
for decryption to the smart card and the smart card decrypts

these data with the stored DES key. Then, the smart card
returns the decrypted data back to the application.

In case that one application needs to decrypt encrypted data
with the unique key of a node, then two steps are required. In
the first step, the application is XORing the encrypted data
with the unique key. In the second step, the application gets
connection with the smart card, sends the data which is the
result of XOR for decryption to the smart card and the smart
card decrypts these data with the stored DES key. Then, the
smart card returns the decrypted data back to the application.

Regarding hashing, in case that one application needs to
calculate the hash value of an amount of data, then the
application gets connection with the smart card, sends the
data to it and the smart card calculates the corresponding hash
value.

We measured that the proposed group session key agreement
protocol requires 21 seconds until to be accomplished. In
other words, Node1 should wait 21 sec until to receive the
ack_code in step 6. Furthermore, we calculated that Node1
should wait 4 sec until to recover the session key. This is the
required time from the moment that Node1 sends the
rec_code in process 2 until to achieve the recovery.

6 Conclusion

Ad hoc networks suffer from lack of reliable security
mechanisms due to their inherent characteristics. In this
paper, we proposed an efficient group key agreement and
recovery mechanism. Our mechanism performs better than
other protocols [5] at the key agreement and recovery phase.

References

[1] M. Bechler, H.-J. Hof, D. Kraft, F. Pählke, L. Wolf, “A
Cluster-Based Security Architecture for Ad Hoc Networks”,
IEEE INFOCOM 2004

[2] Kai Inkinen, “New Secure Routing in Ad Hoc Networks:
Study and Evaluation of Proposed Schemes”, HUT T-110.551
Seminar on Internetworking, Sjökulla, 2004-04-26/27

[3] Kadri, A. M’hamed, M. Feham, “Secured Clustering
Algorithm for Mobile Ad Hoc Networks”, IJCSNS
International Journal of Computer Science and Network
Security, volume 7 No.3, March 2007

[4] Menezes A., Oorschot van P. and Vanstone S., 1996,
Handbook of Applied Cryptography, CRC Press

[5] Bing Wu, Jie Wu and Mihaela Cardei, “A Survey of Key
Management in Mobile Ad Hoc Networks”, HANDBOOK OF
RESEARCH ON WIRELESS SECURITY, Y. Zhang, J. Zheng,
and M. Ma

