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Abstract (150 – 200 words) 

 

The paper presents a numerical investigation of the interaction between focused waves and wave energy 

converter (WEC) models using a hybrid solver, qaleFOAM, which couples a two-phase incompressible 

Navier-Stokes (NS) solver OpenFOAM/InterDyMFoam with the Quasi Lagrangian-Eulerian Finite 

Element Method (QALE-FEM) based on the fully nonlinear potential theory (FNPT) using the domain-

decomposition approach. In the qaleFOAM, the NS solver deals with a small region near the structures 

(NS domain), where the viscous effect may be significant; the QALE-FEM covers the remaining 

computational domain (FNPT domain); an overlap (transitional) zone is applied between two domains. 

The WEC models, mooring system and the wave conditions are specified by the CCP-WSI (Collaborative 

Computational Project in Wave-Structure Interaction) Blind Test Series 2. In the numerical simulation, 

the incident wave is generated in the FNPT domain using a self-correction wavemaker and propagates 

into the NS domain through the coupling boundaries and attached transitional zones. An improved 

passive wave absorber is imposed at the outlet of the NS domain for wave absorption. The practical 

performance of the qaleFOAM is demonstrated by comparing its prediction with the experimental data, 

including the wave elevation, motion responses (surge, heave and pitch) and mooring load.  

 

Keywords chosen from ICE Publishing list 

Fluid Mechanics; Mathematical Modelling; Renewable Energy 

 

List of notations (examples below) 

𝜌𝑤 is the density of the water 

𝜙 is the velocity potential 

𝜂 is the free surface elevation 

�⃗�  is the fluid velocity 

p  is the pressure 

w is the weighting function ranging from 0 to 1 

d is the water depth 

�⃗⃗� ℎ is the horizontal velocity component 

𝑈𝑧 is the vertical velocity component 

�̃� is the instantaneous wave frequency 

�̃� is the instantaneous wave number 

𝜂 is the recorded wave elevation at the wave absorber 

�⃗� ℎ is the normal direction of the absorber surface 

 



 

 

Introduction 1 

 2 

Reliable prediction on the structural responses in waves plays an essential role on the design, deployment 3 

and operation of the offshore and marine structures, such as the wave energy converters (WECs).  For 4 

survivability of the structure, its behaviour in realistic extreme wave conditions need to be paid extra 5 

attention. Such extreme wave conditions are often generated in physical and numerical wave tanks using 6 

a focused wave group, e.g. the NewWave theory (Tromans et al. 1991).  Consequently, modelling the 7 

wave-structure interaction (WSI) in focused waves attracts the interests from both the academia and 8 

industrial.   9 

 10 

To model WSIs, numerous numerical models and software have been developed based on a wide range of 11 

theoretical models, including the fully nonlinear potential theory (FNPT), where the fluid is assumed to 12 

be incompressible, irrotational and inviscid, and the single- or multi-phase Navier-Stokes (NS) models 13 

with or without turbulence modelling.  The performances of these models rely on the effectiveness of 14 

generating incident waves in the far field, modelling the wave propagation, simulating structural 15 

responses and resolving small-scale turbulence/viscous effects in the near field.   For the non-breaking 16 

extreme waves, it is widely accepted that the FNPT model can satisfactorily reproduce the wave 17 

conditions and model their propagation in a large computational domain (e.g.  Grilli et al., 2001;  Ma et 18 

al., 2001, 2006, 2015;  Ning et al., 2008, 2009; Stansby, 2013; Engsig-Karup et al., 2016;  Wang et al., 19 

2018).   For simulating structural responses, the FNPT model can also deliver a promising accuracy if the 20 

structure is relatively big compared with the wave length (Celebi et al, 1998; Kashiwagi, 2000; Tanizawa 21 

and Minami,2001; Wu and Hu, 2004; Bai and Eatock Taylor, 2006; Yan and Ma, 2007; Ma and Yan, 22 

2009; Hu et al. 2020), due to insignificant viscous effects involved in such problems. This was further 23 

confirmed by the final report of the first CCP-WSI (Collaborative Computational Project in Wave-24 

Structure Interaction) blind test held in ISOPE 2018 (Ransley et al. 2019), in which cases with a fixed 25 

FPSO subjected to extreme wave conditions were numerically simulated using various numerical models 26 

and compared with the experimental data. The blind test minimised the possibility of numerical 27 

calibrations or tuning for the participated numerical models, due to the fact that the experimental data was 28 

released after the numerical predictions were submitted, and, therefore, largely reflects the reliabilities of 29 

participated numerical models for daily practices without available experimental data. One conclusion 30 
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given by Ransley et al (2019) is that FNPT methods have performed equally as well as the high fidelity 31 

methods; the FEM-based FNPT method, i.e. the Quasi Lagrangian Eulerian Finite Element Method 32 

(QALE-FEM, Ma & Yan, 2006,2009; Yan & Ma, 2007; Ma et al. 2015),  is at least 1.5 orders of 33 

magnitude faster than the quickest NS code and has comparable predictive capability in these cases 34 

(Ransley et al. 2019), where the viscous and the turbulent effects are insignificant (Yan and Xie et al. 35 

2019). 36 

 37 

However, if the relative size of the structure is small compared with the characteristic wave length, e.g. 38 

within the range of the application of the Morison’s equation (usually < 0.2 characteristic wavelength), 39 

the viscous effects become important. The viscous effects may also be significant when the motion of the 40 

structure is significant (e.g. Yan & Ma, 2007; Hu et al, 2020) and/or the fluid is sloshing in a confined 41 

zone (e.g. Yan and Ma et al. 2019). For such problems, the NS models may be necessary and the potential 42 

theory is not suitable, unless an appropriate artificial viscosity is applied (e.g. Yan & Ma, 2007).  The 43 

artificial viscosity is often numerically calibrated using available experimental results or reliable high-44 

fidelity predictions. This obviously brings inconvenience and uncertainty into the numerical practices.  45 

However, the NS model is more time-consuming compared with the FNPT models, as evidenced by 46 

Ransley et al. (2019), not only because of its higher degree of complexity of the governing equations, but 47 

also due to the fact that a much finer temporal-spatial resolutions are required by the former to achieve 48 

convergent results. For these reasons, the NS models are rarely applied to modelling WSIs in large 49 

spatial-temporal domain. In many applications (e.g. Hildebrandt and Sriram, 2014; Hu et al, 2014, 2017), 50 

the computational domain of the NS model is limited to a finite space near the structure (near field). This 51 

implies that one needs to accurately specify the wave field on the wave generation boundaries of the 52 

computational domain.  A few tools (e.g. Jacobsen et al. 2011; Hu et al. 2014) are available for specifying 53 

the wave conditions using different wave theories, e.g. the linear wave theory, second-order wave theory, 54 

Stokes wave theory, stream functions and high-order potential theories (e.g. OceanWave3D, Engsig-55 

Karup et al. 2008).  Recently, developments on hybrid models, combining the NS solver with simplified 56 

theory, for modelling WSIs have attracted interest of world-wide researchers. They take the advantages of 57 

the simplified theories for robust modelling of large-scale wave propagations within their range of 58 

application and the advantages of the NS models on resolving small-scale viscous/turbulent effects, 59 

vortex shedding and flow separation, fluid compressibility and aeration. By limiting the computational 60 
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domain for the NS model to a small temporal/spatial zone, e.g.  near the structure or where/when breaking 61 

wave occurs, they are expected to achieve robust solutions without comprising the overall computational 62 

accuracy.  Broadly speaking, applying these tools with the NS models leads to a hybrid model combining 63 

these wave theories with the NS model using one-way zonal approach (space-splitting or domain 64 

decomposition).  Both the function-splitting, e.g. the velocity-decomposition (Edmond et al, 2013), space-65 

splitting /domain-decomposition (e.g. Colicchio et al, 2006; Yan and Ma, 2010a; Hildebrandt et al., 2013; 66 

Sriram et al. 2014; Fourtakas et al. 2017; Li et al. 2018; Zhang et al. 2020) and time-splitting approaches 67 

(e.g. Wang et al, 2018) have been attempted.  Systematic reviews on the development of the hybrid 68 

models can be found in Sriram et al. (2014), Li et al. (2018), Wang et al. (2018) and Zhang et al (2020).  69 

The effectiveness of the hybrid model on improving the computational efficiency has been reported by 70 

recent CCP-WSI blind test for modelling the interaction between the focused wave and the floating 71 

bodies (Ransley, Yan and Brown et al, 2020).  It was concluded that the hybrid methods combining the 72 

FNPT with NS solvers, including the qaleFOAM combing the QALE-FEM with openFOAM (Li et al., 73 

2018; Yan et al 2019; Yan et al. 2020) and a one-way hybrid model combining the FNPT with SPH 74 

(Zhang et al 2020), demonstrate a potential improvement in the required CPU effort when compared to 75 

the most robust NS solvers participating to the test, including one adopting the linear and second-order 76 

wave condition in the OpenFOAM (wave2Foam, Jacobsen et al. 2011) . It is admitted that the 77 

implementations of different numerical models, e.g. the computational domain and mesh sizes, are 78 

considerably influenced by users’ experiences, since no specific domain/mesh are provided for 79 

standardisation.  Nevertheless, the comparison by Ransley, Yan and Brown et al. (2020) may demonstrate 80 

a better practical performance of the hybrid model for WSI problems than both the potential theory and 81 

NS solvers.  82 

 83 

This paper contributes to the CCP-WSI Blind Test Series 2, in which the cases with two simplified WEC 84 

models subjected to focusing waves with different wave conditions are set. The details of the case 85 

configurations can be found in Ransley, Brown and Hann, et al. (2020).  The sizes of the WEC models in 86 

this test are considerably smaller than the characteristic wavelength, implying that the associated viscous 87 

effect may be significant. Furthermore, one of the WEC model is a cylinder with a moonpool at its centre, 88 

in which the liquid sloshing is expected to bring additional viscous damping for supressing the wave-89 

induced motions of the WEC model.  Following Yan et al. (2020), the qaleFOAM with an improved 90 
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passive wave absorber is applied to model the cases considered in the blind test.  The numerical results on 91 

the motions of the WECs have been obtained before the experimental data were released.  This paper 92 

mainly focuses on the comparison with the experimental data to demonstrate the practical performance of 93 

the qaleFOAM. For this purpose, all results presented in this paper are the originally submitted ones but 94 

additional quantitative analysis is added.  95 

 96 

Figure 1. Schematic sketch of the domain decomposition and the coupling approach of the qaleFOAM 97 

(ΩFNPT does not include the floating structure) 98 

 99 

2. Mathematical formula 100 

The hybrid model, qaleFOAM, combines the QALE-FEM and OpenFOAM/InterDyMFoam (Jasak, 2009) 101 

using the domain-decomposition strategy. The details of the qaleFOAM have been given by Li et al. 102 

(2018) but a summary is given herein for completeness.   Figure 1 illustrates the coupling of the FNPT 103 

and NS solvers, which are combined via a coupling boundary, Γc. The FNPT domain (ΩFNPT) starts from a 104 

location far away from the structures, where a wavemaker is used to generate the incoming wave.  The 105 
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length of the FNPT domain shall be sufficient to cover the inlet of the NS domain (ΩNS). In this paper, 106 

one-way coupling is adopted and, therefore, the solution in ΩFNPT is only used to provide an accurate wave 107 

condition at Γc.  This means that the diffraction and radiation caused by the structures do not need to be 108 

reproduced in ΩFNPT and thus the structure is omitted from ΩFNPT. The right end of ΩFNPT is an absorption 109 

boundary and the self-adaptive wave absorber (Yan et al. 2016) is employed.  The absorption efficiency 110 

of the absorber is approximately 95% in terms of wave energy for the case considered in this paper and is 111 

at a similar level for a wide range of nonlinear regular and irregular waves, as demonstrated by Yan et al. 112 

(2016).  As all other techniques, perfect absorption is impossible and the reflection from the right end of 113 

ΩFNPT exists no matter how small it is. Such reflection can influence the structural responses when it 114 

approaches the structure site. To minimise the effect, the length of ΩFNPT is specified to be sufficiently 115 

long such that required duration of the results is obtained before the reflection wave reaches the structure 116 

site.   In ΩFNPT , the QALE-FEM is used to solve the governing equations and its high robustness on 117 

modelling nonlinear waves up to wave breaking (Yan and Ma, 2010b) assures a good overall robustness 118 

of the qaleFOAM, even though a long ΩFNPT may be implemented to ensure a tolerable error caused by 119 

the reflection from the end of  ΩFNPT during the simulation.  ΩNS is bounded by the coupling boundaries Гc 120 

at its left end and two sides in longitude direction (dashed line in Figure 1), seabed ГB , a pressure 121 

inlet/outlet boundary on the top ГTOP, where the total pressure is specified as the atmospheric pressure, 122 

and the right end boundary ГO. In ΩNS, the multiphase solver interDyMFoam, based on the finite volume 123 

method (FVM) with volume of fluid (VOF) technique for identifying the fluid phases, is used.  On the 124 

coupling boundary Гc, the velocity and pressure for the NS solver are fed by the QALE-FEM using, 125 

 126 

�⃗� (𝑥, 𝑦, 𝑧) = {
∇𝜙(𝑥, 𝑦, 𝑧)        𝑧 ≤ 𝜂

(1 − 𝑅𝑧)∇𝜙(𝑥, 𝑦, 𝜂) + 𝑅𝑧�⃗� 𝑤(𝑥, 𝑦, 𝑧)      𝑧 > 𝜂
 127 

1. 128 

𝑝(𝑥, 𝑦, 𝑧) = {−𝜌𝑤

𝜕𝜙

𝜕𝑡
− 𝜌𝑤

|�⃗� 𝜙|
2

2
− 𝜌𝑤𝑔𝑧         𝑧 ≤ 𝜂

0                                                            𝑧 > 𝜂

 129 

2. 130 

 131 

in which 𝜌𝑤 is the density of the water; 𝜙 is the velocity potential; 𝜂 is the free surface elevation; �⃗�  is the 132 

velocity vector and p the pressure.  It is noted that the FNPT is a single-phase model only describing the 133 
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water flow. In Eq. (1), the velocity of the flow above the free surface (i.e. 𝑧 > 𝜂 the air phase) is specified 134 

by a weighted summation of the corresponding water velocity on the free surface (∇𝜙(𝑥, 𝑦, 𝜂)) and the 135 

wind velocity, �⃗� 𝑤(𝑥, 𝑦, 𝑧) , where 𝑅𝑧 is a ramp function ranging from 0 to 1, to ensure a smooth transition 136 

of the fluid velocity from the water phase to the air phase. 𝑅𝑧 = 1 − 𝑒−𝛽(𝑧−𝑧𝑡)/𝑙𝑧 when the volume 137 

fraction 𝛼 at a surface cell on Гc is smaller than 0.01, otherwise, 𝑅𝑧 = 0, where 𝛽 is an exponential 138 

coefficient, 𝑙𝑧 is the size of the transition zone and 𝑧𝑡 is the vertical coordinate corresponding to the upper 139 

boundary of the surface cell in which 𝛼 > 0.01. In this paper, �⃗� 𝑤(𝑥, 𝑦, 𝑧) = 0, 𝛽 = 5 and 𝑙𝑧 equal to the 140 

vertical cell size near the free surface at Гc are appropriate according to the preliminary test. The volume 141 

fraction at a surface cell on Гc is specified by the ratio of the wetted surface area against the total area of 142 

the cell after the free surface at Гc is determined by 𝜂. Detailed numerical formulation may be found in 143 

Yan and Ma (2010a) and Jacobsen et al.(2011).   144 

 145 

It is noted that Eq. (2) can be used to specify the pressure at Гc of ΩNS, acting as a pressure boundary 146 

condition. However, applying both Eq. (1) and (2) for velocity and pressure boundary conditions at Гc 147 

results in a scenario that the velocity-pressure relation at such boundary follows the Bernoull’s equation 148 

and thus the NS equation is not satisfied, possibly yielding a unsmoothed NS solutions near Гc . In the 149 

qaleFOAM, two techniques have been employed to overcome the problem. The first one is to use Eq. (1) 150 

to specify the velocity boundary condition and to impose the fixed Flux Pressure condition, available in 151 

OpenFOAM, as the pressure boundary condition.  The 2nd approach is to implement a transitional zone 152 

near Гc.  (Fig. 1), similar to the relaxation zone suggested by Jacobsen et al. (2011).  In the transitional 153 

zone, the NS-solution f (velocity and pressure) is corrected by 𝑓𝑄𝐴𝐿𝐸𝑤 + 𝑓𝑁𝑆(1 − 𝑤), where subscripts 154 

QALE and NS stand for QALE-FEM solution and NS solution respectively; w is the weighting function, 155 

which is 1 on Гc, and 0 on the other boundary of the transitional zone, and the exponential function 156 

following Jacobsen et al. (2011) is employed.    This does not only ensure a smooth transition of the 157 

solutions within the transitional zone, but also absorb the reflection/radiation waves from the structures. 158 

The length of the transitional zone is determined based on a preliminary test, which suggests that a length 159 

of 1 to 2 characteristic wave length is sufficient (Li et al, 2018).   160 

 161 

The wave in the qaleFOAM is generated by the QALE-FEM in ΩFNPT using a second order wavemaker 162 

theory (Schaffer, 1996)  and propagates towards ΩNS through the coupling boundary Гc,. Due to the fact 163 
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that neither the shape nor the motion of the wavemaker are specified in the blind test, to reproduce the 164 

wave conditions identical to that in the laboratory, a self-correction technique (Ma et al. 2015) is 165 

employed in this study.   A summary of this technique is given here for completeness. The initial 166 

amplitudes and phases of the wave components driving the motion of the wavemaker are given by 𝑎𝑖
0 =167 

√2𝑆(𝜔𝑖)Δ𝜔 and 𝜑𝑖
0 = 𝑘𝑖𝑥𝑓 − 𝜔𝑖𝑡𝑓, i = 1, 2…N, where xf and tf are the specified focusing location and 168 

time, respectively. The target spectrum S*(ω) and phase φ* are obtained by applying FFT to the measured 169 

surface elevation η*(t, xr) at a specific gauge location xr in the experiment. Then iterations are carried out 170 

in the following procedures: (i) At the nth iteration, the wavemaker motion is specified by using ai
n and 171 

φi
n, based on the second order wavemaker theory (Schäffer, 1996), and the surface elevation ηn(t, xr) is 172 

recorded; (ii) The amplitude and the phase of each component are corrected by 𝑎𝑖
𝑛+1 =173 

𝑎𝑖
𝑛√𝑆∗(𝜔𝑖)/𝑆

∗(𝜔𝑖), 𝜑𝑖
𝑛+1 = 𝜑𝑖

𝑛 + 𝜑𝑚
∗ (𝜔𝑖) − 𝜑𝑚

𝑛 (𝜔𝑖), where the subscription m denotes the average 174 

phase within the range [ωi – Δω/2, ωi + Δω/2]; (iii) The error between η*(t, xr) and ηn(t, xr) is calculated by 175 

using the formula, Err = max{(η* - ηn)2/ η*2}. If Err is sufficiently small, the iteration stops; Otherwise, n 176 

= n + 1, go to step (i). Although this approach seems to calibrate the wave in the observation point, 177 

numerical investigations have indicated that the wavemaker motion specified in such a way result in a 178 

satisfactory agreement between the numerical wave elevation with the experimental data at other 179 

locations (Ma et al, 2015; Yan et al, 2020).   180 

 181 

On the right end of the NS domain, ГO , a fully absorption of the reflected wave from this boundary or a 182 

free passage of the incoming wave is expected. In our previous paper (Li et al. 2018), this boundary was 183 

treated in the same way as the left end. The numerical investigation by Li et al. (2018) has demonstrated 184 

the effectiveness of this approach for a satisfactory absorption of the reflected waves.  However, in this 185 

paper, the improved passive wave absorber (Wang et al. 2019; Yan et al. 2020) is employed. On the 186 

boundary applying such absorber, a fixed Flux Pressure condition is imposed, the fluid velocity above the 187 

free surface (air phase) is specified by a zero-gradient condition, whereas the fluid velocity below the free 188 

surface (water phase) are given by 189 

 190 

�⃗⃗� ℎ(𝑡) =  �̃�(𝑡)
cosh(�̃�(𝑡)(𝑧 + 𝑑))

sinh(�̃�(𝑡)𝑑)
�̃�(𝑡) ∙ �⃗� ℎ 191 

3. 192 
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𝜕𝑈𝑧

𝜕𝑧
=  0 193 

4. 194 

 195 

where �⃗⃗� ℎ and 𝑈𝑧 are the horizontal and vertical velocity components, respectively; �̃�, �̃�, 𝜂 are 196 

instantaneous wave frequency, wave number and the wave elevation recorded at the location of the 197 

absorber; �⃗� ℎ  is the normal direction of the absorber surface. Once 𝜂 is recorded, �̃� can be obtained using 198 

the EKF filter and �̃� can be determined using the linear wave dispersion.  The effectiveness of the 199 

improved passive wave absorber has been demonstrated in Wang et al. (2019) and readers are referred to 200 

these references for further details.  For the boundary on the floating body surface, the moving-wall 201 

velocity boundary condition and a zero-gradient pressure condition are imposed. 202 

 203 

In the qaleFOAM, the NS equation, continuity equation and the transport equation for the volume fraction 204 

are solved in the arbitrary Lagrangian Eulerian (ALE) forms in order to use the dynamic mesh technique. 205 

After the governing equations are solved, the force and moment on the floating body can be evaluated. 206 

The following six-degree-of-freedom (6DoF) motion equation is solved in a body-fixed coordinate 207 

system (Ob-xb-yb-zb, as sketched in Fig. 1), where the origin Ob locates at the centre of the gravity of the 208 

floating body, following Yan and Ma (2007) and Ma and Yan (2009), 209 

 210 

[𝑀]�̇�𝑐 = 𝑭 211 

5. 212 

[𝐼]�̇� + 𝛀 × [𝐼]𝛀 = 𝑵  213 

6. 214 

𝑑𝑺

𝑑𝑡
= 𝑼𝑐 215 

7. 216 

[𝐵]
𝑑𝜽

𝑑𝑡
= 𝛀  217 

8. 218 

where F and N are the external forces and moments acting on the floating body in the body-fixed coordinate 219 

system;  𝑼𝑐  and �̇�𝑐 are translational velocity and acceleration at its gravitational centre (rotational centre);  220 
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𝛀 and �̇� are its angular velocity and acceleration; 𝜽(𝛼, 𝛽, 𝛾) are the Euler angles and S is the translational 221 

displacement. In Eq. (5) and (6), [𝑀] and [𝐼] are the mass and inertia-moment matrices, respectively. [𝐵] 222 

in Eq. (8) is the transformation matrix formed by Euler angles and defined as 223 

[𝐵] = [
𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝛾 𝑠𝑖𝑛𝛾 0
−𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾 0

𝑠𝑖𝑛𝛽 0 1
]                                     224 

It is easy to deduce that 𝛀 × [𝐼]𝛀 = 𝟎 and  [𝐵] is a unit matrix for the cases with 3 DoF, i.e. surge, heave 225 

and pitch.  After the translational and rotational motions of the floating body are obtained by Eqs. (5-8), the 226 

OpenFOAM mesh will be updated using the dynamic mesh technique.  227 

 228 

Table 1 Wave Condition 229 

 230 
Table 2 Mass and Moment of Inertia 231 

 232 
 233 

3. CCP-WSI Blind Test 234 

For all cases considered by the CCP-WSI blind test, the experiment was performed in the wave basin at 235 

the University of Plymouth, which features 35 m in length, 15.5m in width and 3m in depth.  Flap wave 236 

paddles are installed to generate three-dimensional waves. The temporal variation of surface elevations at 237 

various locations is recorded by 13 wave gauges (WG) with sampling frequency of 128Hz. The sketches 238 

of the geometry of the wave basin and the distribution of the gauges can be found in Ransley, Brown and 239 

Hann et al (2020) .  Three wave conditions are used and summarized in Table 1.  Two models of point-240 

absorber WECs with a specific mooring system are initially placed at where WG5 is located. The 241 

geometries of these models are illustrated by Ransley, Brown and Hann et al (2020).  The mass (m), 242 

moments of inertias (Ixx, Iyy and Izz) at the centre of the mass (CoM) are summarised in Table 2, in which 243 

ZC0M stands for the vertical distance from the CoM to the bottom of the models. For both models, the 244 

mooring line is a linear spring with a stiffness of 67 N/m and a rest length of 2.224 m.  245 

 

Case ID An(m) fp(Hz) h(m) Hs(m) kA 

1BT2 0.25 0.3578 3.0 0.274 0.128778 

2BT2 0.25 0.4 3.0 0.274 0.160972 

3BT2 0.25 0.4382 3.0 0.274 0.193167 

 

 

Model m(kg) ZC0M(m) Ixx(kgm2) Iyy(kgm2) Izz(kgm2) 

1 43.674 0.191 1.620 1.620 1.143 

2 61.459 0.152 3.560 3.560 3.298 
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3.1 Wave generation and absorption 246 

For all wave conditions, the corresponding empty-tank simulation are carried out to examine whether the 247 

target waves are generated properly. The wave is generated using the self-correction wavemaker in the left 248 

end of ΩFNPT aiming to reproduce the same time history of the wave elevations recorded at WG5. In the 249 

empty tank test, ΩFNPT starts from the wavemaker and the length of ΩFNPT is 50 m, which is longer than the 250 

physical wave tank.  As indicated above, this is to minimise the error caused by the reflection from the right 251 

end of ΩFNPT, where a self-adaptive wave absorber is imposed and produces approximately 95% absorption 252 

efficiency.  ΩNS starts at x = 11.55 m, between WG1 and WG2.  Generally speaking, the length of ΩNS shall 253 

be sufficient to accommodate the transitional zone, whose thickness is 1.5 m in the front side and 0.5 m 254 

near the size boundaries of ΩNS, according to the preliminary investigations.  To investigate the absorption 255 

efficiency of the improved passive wave absorber applied at the right end of ΩNS,  ΩNS ends at x = 17.55 m, 256 

where WG8 is placed. Using such a configuration, the gauge data at WG8 can be used as a reference to 257 

qualify the absorption efficiency. The height and width of ΩNS are 6m and 3m respectively. For all cases, a 258 

laminar model is specified as the turbulence properties. 259 

 260 

 261 

Figure 2. Comparison of the wave elevation recorded at different locations (case 1BT2, empty tank test, 262 

dsv = 0.0175m) 263 

 264 
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 265 

 266 

Figure 3. Comparison of the wave elevation recorded at different locations (case 2BT2, empty tank test, 267 

dsv = 0.0175m) 268 

 269 

 270 

Figure 4 Comparison of the wave elevation recorded at different locations (case 3BT2, empty tank test, 271 

dsv = 0.0175m) 272 

 273 
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The comparisons of the wave elevations at different wave gauges between the qaleFOAM results and the 274 

experimental data are shown in Figures 2-4, where the qaleFOAM results with two different mesh 275 

resolutions are plotted.  As observed, two sets of the qaleFOAM results are almost identical to each other, 276 

demonstrating a satisfactory convergence of the qaleFOAM in the empty-tank test.  More importantly, the 277 

qaleFOAM results agree well with the corresponding experimental data. This conforms a satisfactory 278 

reproduction of the target waves at WG5 by the self-correction wavemaker technique, even though the tank 279 

geometry and the wavemaker used in the qaleFOAM are different from the experiment.   280 

 281 

 282 

Figure 5 Comparison of the wave elevation recorded at WG5 (empty tank test, qaleFOAM: dsh = 0.05m, 283 

dsv = 0.0175m; QALE-FEM: ds = 0.075m) 284 

 285 

Although the agreements between the qaleFOAM results and the experimental data at WG5 has proven 286 

that the present passive wave absorber applied at ГO can effectively prevent the wave reflected at ГO from 287 

influencing the wave condition at WG5 during the required duration of the simulation (the blind test 288 

requires the submission of the time history ranges from 35.3 s to 50.3 s), a further analysis has been 289 

carried out to quantitively evaluate the absorption efficiency.  As stated by Yan et al (2016), the 290 

theoretical approach based on the linear regular wave theory may not be applicable to highly nonlinear 291 

focusing waves considered in this paper, the absorption efficiency is estimated through the relative 292 

difference between the numerical results adopting the absorber and a reference data which does not 293 
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include reflection wave, e.g. the corresponding results obtained using a longer tank. One may agree that 294 

the wave elevation in ΩFNPT by the QALE-FEM can be regarded as the refence data, since ΩFNPT is 295 

sufficiently long and the reflection wave from the end of ΩFNPT does not reach WG8 at t = 50.3 s.  Figures 296 

5 and 6 compare the wave elevations record at WG5 and WG8, respectively. As observed from Figure 5, 297 

the qaleFOAM results are very close to the corresponding QALE-FEM results. The relative differences 298 

between them during t = 35.3 s to 50.3 s are all within 2% for three cases (yielding an absorption 299 

efficiency of 98%).  Nevertheless, at WG8 (Figures 6), the QALE-FEM results agree with the 300 

experimental data, whereas the qaleFOAM with the wave absorber results in a slightly different results 301 

from others due to the reflection from ГO .  The relative difference between the QALE-FEM results and 302 

the qaleFOAM results are 2%, 4% and 6% (yielding absorption efficiencies of 98%, 96% and 94%) for 303 

cases 1BT2, 2BT2 and 3BT2, respectively.  This is consistent with what Yan et al (2020) concluded.  304 

 305 

Figure 6 Comparison of the wave elevation recorded at WG8 (empty tank test, qaleFOAM: dsh = 0.05m, 306 

dsv = 0.0175m; QALE-FEM: ds = 0.075m) 307 

 308 

3.2 Mesh Convergent Test 309 

The results shown in Figures 2-6 are obtained in a wave tank without WEC models.  For the cases with 310 

WECs, mesh convergent tests are also carried out. For each WEC model, four sets of computational mesh 311 

are generated using the snappyHexMesh tool and adopted in the convergent test. The horizontal (dsh ) and 312 

vertical grid sizes (dsv ), the total number of grid, Nt, and the number of grid on the structure surface, Ns, are 313 
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summarised in Table 3. In order to capture the nonlinear wave-structure interaction, as well as small-scale 314 

viscous effects, e.g. boundary layer seperation, near the structure, the mesh near a confined zone 315 

surrounding the WEC model with a radius of 0.5m is refined. One example of the mesh near the WEC is 316 

illustrated in Figure 7.  317 

 318 

Table 3 Summary of computational grids used in the convergent test 319 

 320 

 321 

Figure 7 Illustration of the computational mesh near the WEC (Model 1, dsh = 0.05m, dsv = 0.0175m, red: 322 

water; blue: air)  323 

 324 

Figure 8 and Figure 9 compare the motions of and the mooring force on the WEC model 1 and model 2, 325 

respectively, subjected to the wave condition 3BT2, which has the highest wave steepness (kA = 326 

0.193127) within all wave conditions specified by the blind test.  It is observed that the present results are 327 

insensitive to the mesh resolutions for all participated mesh; especially the results with medium mesh 328 

satisfactorily agree with the corresponding results with finer mesh. Relative errors of the qaleFOAM 329 

results with different mesh sizes are quantitatively analysed.   Some results are summarised in Table 4, in 330 

which the relative errors of the numerical results with medium mesh in terms of both the peak value (Ep) 331 

and the RMS error using the time histories during t = 35.3 s to t = 50.3 s. Similar to Brown et al. (2020), 332 

the results with finest mesh are regarded as the reference values for the analysis.  Considering the fact that 333 

 

Model Mesh  dsh(m) dsv (m) Nt (M) Ns 

1 Finest 0.04 0.015 1.550 10348 

1 Fine 0.05 0.0175 0.956 7512 

1 Medium 0.06 0.02 0.613 5346 

1 Coarse 0.08 0.02 0.358 3882 

2 Finest 0.04 0.015 1.549 20128 

2 Fine 0.05 0.0175 0.937 13920 

2 Medium 0.06 0.02 0.612 9840 

2 Coarse 0.08 0.02 0.376 7244 

 



15 

 

 

the maximum relative errors shown in Table 4 is RMS error of 7.5% for Model 1 subjected to Wave 334 

2BT2, one may agree that the medium mesh is sufficient to achieve convergent predictions on the WEC 335 

motions and the mooring force, although similar numerical uncertainty analysis by Brown et al. (2020) is 336 

not presented.   337 

 338 

Figure 8 Comparison of the WEC motions and mooring force in the cases with different mesh sizes (case 339 

3BT2, Model 1) 340 

 341 

Figure 9 Comparison of the WEC motions and mooring force in the cases with different mesh sizes (case 342 

3BT2, Model 2) 343 

 344 
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 Table 4 Relative error of qaleFOAM results with the medium mesh 345 

 346 

 347 

Figure 10 Wave elevations near the WECs at t = 45s (case 2BT2)  348 

 

Error (%) 
Model 1 

1BT2 

Model 1 

2BT2 

Model 1 

3BT2 

Model 2 

1BT2 

Model 2 

2BT2 

Model 3 

3BT2 

Ep (Surge) 0.17 2.53 1.69 0.49 0.84 1.83 

Ep (Heave) 0.81 1.05 0.69 0.30 0.22 0.18 

Ep (Pitch) 0.27 0.39 0.71 0.44 1.12 2.48 

Ep (Force) 0.32 0.44 0.27 0.15 0.08 0.10 

RMS(Surge) 5.22 7.47 5.36 1.60 1.12 1.75 

RMS(Heave) 1.06 1.90 1.91 0.79 0.97 0.49 

RMS(Pitch) 2.08 4.97 4.11 3.53 3.38 3.60 

RMS(Force) 0.18 0.28 0.26 0.14 0.15 0.16 

 



17 

 

 

3.3 Responses of WECs in extreme waves 349 

 350 
By using the medium mesh, the motions of the WECs subjected to three wave conditions are numerically 351 

simulated and analysed in this section. For demonstration, Figure10 illustrates the free surface profiles near 352 

the WEC modelsat three instants around the focusing time, i.e. t = 45s, t = 45.5s and t = 46s, in the cases 353 

with wave condition 2BT2.  As expected, the presences of the WECs do not seem to disturb the surrounding 354 

wave field, confirming to the typical feature of slender bodies (the sizes of the WECs considerably smaller 355 

than the characteristic wavelength).  356 

 357 
(a) Model 1 358 

 359 
(b) Model 2 360 

Figure 11 Comparison of the time histories of the WEC motions and the mooring loads (case 2BT2)  361 
 362 
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 363 
Figure 12 Comparison of the amplitude spectra of the WEC motions (case 2BT2)  364 

 365 

Table 5 Relative error of qaleFOAM results with reference to the experimental data 366 

 367 

 368 

The motions of the WECs and the mooring force acting on the WECs in the case shown in Figures 10 are 369 

illustrated in Figure 11.  It is found that the profiles of the heave motions largely follow the wave motion 370 

(Figure 5(b)). This can be confirmed by Figure 12, which displays the amplitude spectra of the WEC 371 

motions and the corresponding wave spectrum at WG5 where the WECs are initially located. The spectra 372 

shown in Figure 12 are obtained using the time histories at the duration of 35.3 – 50.3s with a sampling 373 

frequency of 128Hz. As observed from Figure 12(c and d), the amplitude spectra of the wave and the 374 

heave motion are very close, suggesting a linear heave response to the incident wave. However, the surge 375 

motion and the pitch motion exhibit different features from the expected wave at the WEC sites. 376 

Specifically, the surge motions suffer from a long-period oscillation after the focused wave crest passes 377 

the WECs at 𝑡 ≈ 45𝑠 (Figure 11 (a)), whereas the pitch motion exhibits a high-frequency response, which 378 
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Error (%) 
Model 1 

1BT2 

Model 1 

2BT2 

Model 1 

3BT2 

Model 2 

1BT2 

Model 2 

2BT2 

Model 3 

3BT2 

Ep (Surge) 6.94 1.36 7.52 6.20 1.14 7.39 

Ep (Heave) 9.77 0.54 3.53 3.41 1.38 1.31 

Ep (Pitch) 44.0 16.4 19.9 6.38 8.51 6.75 

Ep (Force) 4.72 1.59 0.86 3.45 0.87 2.00 
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is gradually supressed in the case with Model 2.  These are confirmed by the corresponding spectrum 379 

analysis shown in Figure 12 (a and b) and (e and f), respectively.    380 

 381 

 382 
(a) Model 1                 383 

 384 
 (b) Model 2 385 

Figure 13 Comparison of the time histories of the WEC motions and the mooring loads (case 1BT2)  386 
 387 
 388 

More importantly, the comparisons between the qaleFOAM results and the corresponding experimental 389 

data shown in Figure 11 and Figure 12 largely reflect the practical performance of the qaleFOAM on 390 

modelling the motions of the WECs in extreme waves. For three motion modes and the mooring loads, 391 

the qaleFOAM seems to satisfactorily capture the peak values. The corresponding errors are summarised 392 

in Table 5.  Except the pitch motion, the relative errors on surge, heave and mooring load are all below 393 

2%. However, the relative error on peak pitch angle is 16.4% and 8.51% for Model 1 and 2 subjected to 394 
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Wave 2BT2.  Not only the peak pitch angle, the spectra shown in Figure 12 (e) and (f) and the 395 

corresponding time histories shown in Fig. 11 have revealed an unsatisfactory prediction by the 396 

qaleFOAM.  Similar phenomena are observed in other cases with different wave conditions. The 397 

corresponding motion responses and the mooring loads are shown in Figures 13-14 and the quantitative 398 

errors on the peak values are summarised in Table 5.  In fact, numerical results by other numerical 399 

methods in Ransley et al (2020) behave similarly in terms of predicting pitch motion.   A recent 400 

sensitivity analysis by Windt et al (2020) has shown that the pitch motion is sensitive to the centre of 401 

rotation and the moment of inertia.  Ransley et al (2020) did not provide the free-decay test for pitch 402 

motion and, therefore, it is difficult to quantify whether the error in pitch motion is due to incorrect 403 

measure of the centre of rotation and the moment of inertia.   404 

 405 
(a) Model 1                 406 

 407 
 (b) Model 2 408 

Figure 14 Comparison of the time histories of the WEC motions and the mooring loads (case 3BT2)  409 
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4. Conclusions 410 

In this paper, the qaleFOAM is used to numerically simulate the cases specified by the CCP-WSI Blind 411 

Test 2 (Ransley, Brown et al, 2020). All wave conditions summarised in Table 1 have been considered.  412 

The effectiveness of the qaleFOAM on modelling focused wave group is assessed by comparing the wave 413 

elevations in the empty tank tests, in which the WEC models are not placed.  The results confirm a 414 

promising accuracy of the qaleFOAM on modelling highly nonlinear water waves. In addition, the 415 

convergence test has demonstrated a good convergence property in terms of predicting the motions of the 416 

WECs and the associated mooring forces. The comparisons on the motion responses of the WECs 417 

between the present numerical results and the experimental data demonstrate a satisfactory accuracy of 418 

the qaleFOAM for modelling the highly nonlinear WSI problems addressed in this paper.   419 

 420 

It is further noted that the CPU time spent on cases 1BT3, 2BT3 and 3BT3 to achieve convergent results 421 

during t = 35.3s and t = 50.3s are, respectively 12 hours using an 8-processor MPI parallel computing in a 422 

workstation with Intel Xeon E5-2680, 2.4GHz, 32G RAM.  This demonstrates a satisfactory robustness of 423 

the present qaleFOAM.  424 

 425 
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